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Introduction

Bone is a living tissue that is continuously remodelled1-3, 
normally without obvious modifications of macroscopic 
structure and shape. This changes when significant 
alterations in the loading spectrum occur, be it because of 
disuse due to reduced gravity in space or long bed rest4-6, 
during the recovery after bed rest of space-flight7,8, or in the 
course of sport-specific increased loading9-11. In such cases 
we observe significant modifications of bone geometry 
showing an increased bone mass with increasing load and 

reduced bone mass with decreasing load. To describe the 
underlying regulatory mechanisms in a formal way, Frost 
proposed the ‘mechanostat’ model12,13. Such a formal 
description of bone mechano-adapation has been the basis 
for clinical differentiation of primary and secondary bone 
disorders14,15.

A plethora of attempts exists to elucidate the rules of bone 
mechano-adaptation, starting with the qualitative theory 
known as Wolff’s law16, over Frost’s semi-quantitative three-
way-rule12,13 up to more elaborate in silico studies (for survey 
see17). Of the latter, the model proposed by Huiskes and co-
workers18,19 is particularly attractive because it differentiates 
between dynamic and static loading20, and also because it is 
biologically-motivated, namely having the osteocytes, living 
cells, embedded inside the matrix of the compact bones, 
working as mechano-sensors21.

Recently, we have applied that approach to perform a 
‘computer-assisted experiment of thought’ into the shape 
forming processes of shaft-like geometries17. Results of 
that study yielded, as expected, the sensitivity to model 
parameters, but additionally and quite surprisingly that the 
Huiskes mechanostat can explain flexure neutralization, 
the adaptive straightening of flexed children’s bone after 
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ill-healed fractures. This latter result was in stark contrast 
to the expectations in literature1. Another relevant finding 
was that torsion might be more important than suggested 
by previous studies22-26. Moreover, recent work has found 
torsion to be a significant component in the load spectrum 
of long bones in vivo27.

Therefore, the current study has been designed to further 
clarify this latter aspect, and to disentangle the relative 
influence of the different load types on the geometry-
shaping process. Accordingly, the loads imposed by axial 
compression, bending and axial torsion, individually or in 
combination, were systematically varied, in order to study the 
induced alterations on our standardized starting geometries. 

Methods

Transformation cycle

The mechanostat algorithm used in this study has been 
described before16. 

In brief, each transformation cycle (section B of Figure 
1) starts from a given model geometry to which a random 
load pattern comparable to those acting on the diaphysis of 
long bones is applied. Next, the resulting stress distribution 
within the structure is calculated by means of Finite Element 

Analysis (FEA) using commercial software (ANSYS version 
12.1; ANSYS Germany GmbH, Darmstadt). Strain energy 
density rate in the volume elements of the model serves as a 
control parameter and governs the transformation algorithm, 
which in turn modifies the model geometry in an iterative 
way. The in silico design space was a cube of 4.5 mm edge 
length, consisting of 421,875 cubic voxels with 60 µm edge 
length each. “Bone” and “no-bone” voxels were implemented 
by the setting of the related material properties, set to 15 
GPa respectively 200 MPa for bone or no-bone voxels. The 
Poisson number was set to 0.36.

Starting geometries and their generation

Two different brick models were used as starting 
geometries, defined by the setup for bone properties in 
the corresponding voxels. In z-direction, the geometry 
extended over the whole width of the design space, in x and y 
directions the diameters were smaller than the design space 
leaving space for the evolution of the geometry. Two starting 
geometries were used in order to investigate a) the building 
of a structure from a neutral lattice-like precursor structure 
and b) the maintenance (or degradation) of a given bone–like 
geometry. A depiction of the starting geometries can be seen 
in section A of Figure 1:

Figure 1. Part B shows a sketch of the transformation cycle; further explanation found in the text. Part A shows the geometries that 
have been chosen as starting geometries; the left panel of the image shows the cylindrical lattice together with the related cross-section 
silhouettes (horizontal mid-shaft and vertical) where the block 1 simulation of CL type started; the right panel shows the straight closed 
tube that itself is the product of our simulations together with cross-sectional silhouettes, used as starting geometry for the FT type 
simulation runs. Part C represents a sketch of the loading pattern; the black arrow represents a force on the rigid upper plane with a 
constant axial component in z-direction combined with a randomly distributed lateral component in the x-y-plane; the magenta double 
head arrow represents a torque on the plane around its centre of area. All three sketches appear in similar form in 17.
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Cylindrical Lattice (CL) a cylindrical shaped cubic Bravais 
lattice model with the axial length of the full design space size 
of 4.5 mm and a diameter of 3.38 mm. The unit cell was a 
cube with an edge length of 8 voxels (=0.48 mm) with beams 
of 2x2 voxels at all edges building a cubic frame. Combining 
these unit cells, a cubic lattice of quadratic beams with a 
diameter of 4 voxels (=0.24 mm) was generated. For the 
creation of the CL we used a template lattice generated in 
Matlab (Mathworks Inc., Natick, Mass. USA version R2011a) 
and matched that lattice into the mesh of our FE model using 
ANSYS standard functionality. Irregular surfaces of the lattice 
rods were due to this matching process. The irregularity was 
assumed to not influence the simulation results, because the 
same two starting lattices were used for all simulation runs. 
The CL was the main starting geometry for the investigation.

Full Tube (FT): In order to investigate the reversibility 
of effects, a total ‘bone disuse’ was modelled using an – 
up to then – fully maintained tubular structure. Note that 
in the context of this study “full tube” signifies a hollow 
cylinder with “fully” closed walls. This starting geometry 
derived from a previous simulation run with 100 N axial 
compression, 40 N bending load and 180 Nmm torsion, 
resulting in a regular tube. 

The loading pattern

The principal loading pattern is shown in section C of Figure 
1. We applied axial compression forces of up to 300 N, lateral 
bending forces of up to 40 N and axial torques of up to 180 
Nmm in different magnitude levels and different combinations 
of those levels. Note that the bottom of the structure was 
always fixed. It should be noted as well that due to technical 
limitations, dimensions had to be downscaled in comparison 
to human scales. For the justification of the downscaling and 
discussion of its potential effects we refer to our previous 
study17. For the selection of the loading magnitudes and the 
scaling problem when comparing our mouse size model with 
human geometries see appendix A.

Transformation law and its implementation

The transformation law has been adopted from Huiskes 
et al.18,19 and simulates the modification of bone density m 
(value between 0 and 1) in terms of the bone-generating 
activities of the osteoblasts and the bone-resorbing activities 
of osteoclasts. Following Huiskes et al., strain energy density 
(SED) rate was taken as the leading mechanical signal 
that activates the osteocytes. We refer to our previous 
publication17 for a detailed description of the algorithm.

The transformation cycle was implemented in Matlab. 
Strain energy densities resulting from the simulated 
load applications were calculated using FEA based on 
the commercial package ANSYS, using a Preconditioned 
Conjugate Gradient (PCG) solver. Calculations were 
performed on a high performance computing cluster (IBM 
x3550 and X iDataPlex computers). For each run, between 
200 and 400 iterations were calculated to make sure that 

the forming process did converge. Each calculation step 
(a single loop of the transformation cycle) took up to 60 
minutes of computation time, depending on the number 
of remaining bone voxels. Considering an average step-
duration of 30 minutes and a total number of 56 runs with 
200 steps each we arrive at an estimate of 240 days of 
computation time in total.

Simulations overview

We performed two blocks of simulation:
In the first block we implemented any combination of 

three magnitudes of load w.r.t the three load types axial 
compression, bending and axial torsion. In these calculations 
we started with the CL geometry.

1)  Axial compression force in z-direction was applied as a 
constant value with the following magnitudes:

 a) No compression force, b) 50 N, c) 100 N, d) 300 N.

2)  Bending force was applied on the top surface in an x-y-
direction randomly selected over 360° with following 
magnitudes:

 a) No bending force, b) 20 N, c) 40 N.
  The bending arm length being 4.5 mm, that settings 

correspond to bending moments of 0, 90 and 180 Nmm. 
In the present study we do not consider directed bending. 
Note that the fixed bottom generates a cantilever type of 
bending that has to be taken into account when comparing 
with real biomechanical situations. 

3)  Axial torque was applied around the central z-axis of the 
top surface as a random magnitude between:

  a) No torque, b) 90 Nmm ccw and 90 Nmm cw, c) 180 
Nmm ccw and 180 Nmm cw.

Thus, a total of 36 computational runs have been 
performed for that block.

Note that on a human scale those 300 N axial compression, 
180 Nmm bending moment and axial torque of 180 Nmm as 
well would correspond to 10.4 kN compression, 39 Nm bending 
moment (bending load of 1440 N on a 27 cm arm) and 39 
Nm axial torsional load respectively. For a deeper explanation 
refer to appendix A. In appendix A we are also showing that the 
maximum stress generated in the bone (for the ideal geometrie 
used there) for our maximum load cases are the same for all 
the load modi. For our simulation we extrapolate a maximum 
stress level of 30 Mpa for all modes of load.

In the second block we started with the FT geometry. In 
total 20 additional runs have been performed for all bending 
and torsion cases, with the axial compression restricted to 
zero or a 100 N load.

An overview of all runs is given in Table 1.
Criteria for convergence were defined as previously 

described17. In an attempt to classify the geometric and 
topological properties of the resulting structures, the 
following parameters have been computed for the x-y-planes 
(slices) at z-position (axial direction) 38 out of 75:
1)  The number of ‘bone’ voxels NoV in a given cross-section.
2)  The maximum principle second moments of area MSMoA 
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around the center of that cross-section in the design space.

The focus has been set on the mid-shaft, where the 
influences of boundary effects of the force injection at 
the upper and lower surface of the structures are at their 
minimum.

Finally, Multiple Linear Regression was performed in order 
to get a quantitative estimate of the relative bone-shaping 
effects of compression, bending and torsion. To this purpose, 
compression, bending and torsion data were re-scaled to the 
range of [0..1], and NoV and MSMoA were z-transformed. The 
regression analysis thus yielded beta values, i.e. regression 

coefficients that are normalized to the standard deviation of 
the dependent variables.

Results

Block 1 results: starting from cylindrical lattice with random 
bending directions

Figure 2 provides an overview of the resulting 
geometries in two different perspectives, one of them 
(section A) a 3-dimensional representation of the full 
geometry, the other (section B) a mid-shaft cross-sectional 

Table 1. Overview of the computational runs performed in this study. ID signifies a run identifier that contains the block code (first 2 
characters). The numbers in the code represent the different load levels for compression, bending and torque at positions 3, 4 and 6, 
respectively. Z gives the axial load in N, XY the lateral bending load that was applied with random direction from step to step. Torque is the 
range of axial torque applied; e.g. ±90 means that within a range from 90 Nmm clock-wise to 90 Nmm counter-clock-wise torques have 
been applied randomly with uniform distribution. #steps indicates the total number of steps computed for this computational run. Starting 
geometry indicates one of the two starting geometries as previously described. In all runs we used the following settings for the Huiskes 
parameters: τ=5⋅10-7 mm5/(Nmol), k

thr
=0.05, D=100 µm, µ(osteocyte)= 1 nmol⋅mm⋅s/(J⋅day), F=1 Hz, V

r
=1.5 mm3, f

ocl
=7.1⋅10-4/(voxel⋅day), 

osteocyte density=44⋅103/mm3. See references16-18 for details of the model. 

ID
Z (ax.) 

[N]
XY (lat.) 
[N] 360°

Torque 
[Nmm]

#steps
Starting 

geometry

CL0000 0 0 0 93 CL

CL0001 0 0 +/-90 194 CL

CL0002 0 0 +/-180 199 CL

CL0100 0 20 0 198 CL

CL0101 0 20 +/-90 300 CL

CL0102 0 20 +/-180 191 CL

CL0200 0 40 0 178 CL

CL0201 0 40 +/-90 191 CL

CL0202 0 40 +/-180 196 CL

CL1000 50 0 0 197 CL

CL1001 50 0 +/-90 196 CL

CL1002 50 0 +/-180 186 CL

CL1100 50 20 0 187 CL

CL1101 50 20 +/-90 191 CL

CL1102 50 20 +/-180 200 CL

CL1200 50 40 0 200 CL

CL1201 50 40 +/-90 200 CL

CL1202 50 40 +/-180 200 CL

CL2000 100 0 0 200 CL

CL2001 100 0 +/-90 200 CL

CL2002 100 0 +/-180 200 CL

CL2100 100 20 0 200 CL

CL2101 100 20 +/-90 200 CL

CL2102 100 20 +/-180 400 CL

CL2200 100 40 0 200 CL

CL2201 100 40 +/-90 400 CL

CL2202 100 40 +/-180 600 CL

CL3000 300 0 0 200 CL

ID
Z (ax.) 

[N]
XY (lat.) 
[N] 360°

Torque 
[Nmm]

#steps
Starting 

geometry

CL3001 300 0 +/-90 200 CL

CL3002 300 0 +/-180 200 CL

CL3100 300 20 0 200 CL

CL3101 300 20 +/-90 200 CL

CL3102 300 20 +/-180 400 CL

CL3200 300 40 0 200 CL

CL3201 300 40 +/-90 400 CL

FT0000 0 0 0 200 FT

FT0001 0 0 +/-90 1200 FT

FT0002 0 0 +/-180 200 FT

FT0100 0 20 0 200 FT

FT0101 0 20 +/-90 200 FT

FT0102 0 20 +/-180 200 FT

FT0200 0 40 0 200 FT

FT0201 0 40 +/-90 200 FT

FT0202 0 40 +/-180 200 FT

FT1000 50 0 0 200 FT

FT1200 50 40 0 200 FT

FT2000 100 0 0 200 FT

FT2001 100 0 +/-90 200 FT

FT2002 100 0 +/-180 200 FT

FT2100 100 20 0 200 FT

FT2101 100 20 +/-90 200 FT

FT2102 100 20 +/-180 400 FT

FT2200 100 40 0 200 FT

FT2201 100 40 +/-90 400 FT

FT2202 100 40 +/-180 200 FT
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representation. In general, the geometries tend to be more 
‘shaft’-like tube structures towards the right (increasing 
torque). Towards the top (increasing bending) this trend 
is enhanced. Towards the top (increasing bending) and 
towards the rear (increasing compression) this trend is 
increased even further. Of special interest: there is no 
‘shaft’-like structure without torsion! A more systematic 
analysis of these figures reveals the following.

Compression only (left row of bottom diagram) generates 
compact rods that increase in diameter with increasing 
compression force. As demonstrated by the cross-sectional 
images in section B of Figure 2, the resulting structure is 
always solid.

Bending only (shown in the left and front cross-sections 
of the upper two diagrams) shapes strongly conic forms 
that are of tripod-like character. With increasing magnitude 
of bending torque the structure tends to close from top to 
bottom but with an irregular shape to be seen in the cross-
sections of section B in Figure 2. 

Torsion only (bottom row of bottom diagram) generated a 
tubular truss at 90 Nm and an open-walled cylinder at 180 
Nm of torque. Notably, the latter result was still open towards 
both ends (section A of Figure 2), but actually closed at mid-
shaft, showing the typical ring-like cross-section of long 
bones (section B of Figure 2). 

The combination of compression with bending (left 

Figure 2. Section A gives an overview about final geometrical results of the 36 block 1 simulation runs, given in form of single 3D 
bodies that represent the resulting “bone” geometries; The shaded planes have been introduced to help as optical guiding means in the 
“3D-space” of torsional, axial compression and lateral bending loads. The number of steps in the calculations were approximately 200. 
The bodies have been generated as 3D-surface models in STL-format directly from the pattern of the simulation space with Matlab. 
The appropriate scenes of Figure 4 have been rendered with the open source tool Blender (Blender Foundation, Amsterdam). The 
representation is organized in a way that three planes with pseudo-3D diagrams are stacked above each other to represent the three 
lateral bending levels 0, 20 and 40 N. Within the planes, the two remaining dimensions represent axial bending from left to right and 
the axial compression from front to background. Section B of this figure gives an overview about the transversal cross-sections of all 
geometries at mid-shaft (50%); representation is analogue to that in Figure 5; every cross-section is an image of 75x75 voxels in 
binary representation with bone in white and no-bone in black. In analogy to Figure 4, transversal cross-sections at 50% of the bodies 
are plotted in order to provide additional information on the body topology in that region. The mid shaft area is of particular interest, 
as it minimizes influences of border effects from the force transfer at the lower and upper plane. As expected, the simulation algorithm 
produces a no-bone space for an unloaded geometry. Therefore the related position in both figures remains empty.
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outer plane when combining all diagrams) led on all 
bending levels towards a closing of the geometry untill 
the emergence of a solid cylinder. Markedly, within this 
load combination, the effects of compression (towards a 
solid cylinder) were dominating over the effects of bending 
(towards a tripod-like geometry).

The combination of compression with torsion (lower 
plane) quite clearly leads to a central erosion and formation 
of a central cavity at the highest compression level. Only in its 
highest level is compression able to reduce the open trusses 
of the mid-level torsional regime. 

The combination of bending with torsion (“front plane” 
when combining all diagrams) generate an almost perfect 
tube at the highest simulated bending and compression 
levels. At lower levels, torsion seems to mitigate the conic and 
irregular shapes that occurred with bending only. Conversely, 
bending seems to have potential to close the trusses induced 

by pure torsional loading. 
Thus, none of the three loading types are able to generate a 

shaft-like geometry by themselves. However, these qualitative 
results suggest that torsion is a prerequisite for this, albeit in 
combination with either compression or bending. 

“Best” results are achieved when all loads types are 
present. Notably, there was virtually no tendency by bending, 
either alone or in combination with compression, to drive the 
geometry towards a closed cylinder shape.

Figure 3 takes these qualitative results a step further and 
provide a quantitative analysis. 

It can be seen from Figure 3, diagrams A-C, that no single 
load mode dominated the impact on resulting bone strength 
represented by number of voxels NoV, as evidenced from the 
scatter of curves in all three diagrams. The maximum value 
for NoV is generated when all load mode magnitudes are 
highest. For several load combinations the increase in NoV is 

Figure 3. Numerical analysis of the cross-sectional images in Figure 3; depicted is the commutation of the number of bone voxels (NoV) 
as well as well as the maximum second moment of area (MSMoA) at the mid-shaft (at 50% of its length); NoV reflects the ‘amount’ of 
bone available at the investigated cross-section and thus serves as a surrogate for strength in axial compression. The three diagrams 
A-C show the dependencies of NoV from the perspective of the three different load types axial compression (A), axial torque (B) and 
lateral bending (C). MSMoA is a measurement for the resistance to bending and torsion. Its dependencies on the load types compression, 
bending and torsion are shown in plots D-F respectively. The line coding is as follows:  Torsion is coded in color: green=0, red=90, 
blue=180 Nmm; neutral =black; bending is coded in dot size: small=0, middle=20, large=40 N; neutral =cross; compression is coded in 
line type: dotted=0, small dash=100, large dash=300 N; neutral=full line; for clarity reason we omitted the 50N compression curves for 
the B, C and E, F diagrams. Note that torsion color coding is ranked as green < red < blue, indicating in the plots A, C, D, F that the number 
of voxels as well as second moment of area steadily increase with torsion.
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quite steep and nearly linear with compression magnitude, for 
others - those with higher torsion and bending contribution, 
especially contributions of both - it shows only small increase 
or even a flat for low magnitudes. Comparing the 0-bending-
high-torque curve (blue, small dots) with the high-bending-
0-torque curve (green, large dots) in diagram A we find both 
on a quite similar level, the torsion with light advantages. So 
we might conclude that torsion fosters bone strength at least 
to a similar extent as lateral bending. The increase of NoV 
with torque is moderate and similar to the effect of bending. 
In maximum we see increases of some 500 voxels looking 
at absolute values of 400 to 2000 voxels. NoV seems to 
be very much enhanced by compression when increasing 
compression levels as can be seen in Figure 3 in the upper 
left diagram A. Here we can see jumps of 800 voxels, going 
from 100 N to 300 N axial compression load.

By the same token, diagrams D-F of Figure 3 demonstrate 
a strong dependence of the MSMoA on torsional loading (as 
evidenced by the narrow overlap of curves in diagram E of 
Figure 3). The increase of MSMoA ranged from 0.3 mm4 to 
3 mm4 for zero-torsion to absolute values between 4.2 and 
5.5 mm4 for maximum torque. The dependence of MSMoA 

on compression and on bending is much less pronounced. 
Here we see peak increases of 1.5 mm4, yet in certain cases 
even decreases of 1.5 mm4 e.g. for increasing bending load 
at high torsion and compression levels. These impressions 
were quantitatively corroborated by multiple linear 
regression analysis. For compressive strength (assessed via 
NoV) we obtained significant correlation (beta coefficient 
with P<0.001) with compression (1.38±0.16), bending 
(1.71±0.21), torsion (2.10±0.22), and torsion combined 
with bending (-1.44±0.33). For the MSMoA significant 
correlation was found only for torsion (2.10±0.19). All other 
combinations did not show significant correlations for NoV 
or MSMoA. The results indicate that compression, bending 
and torsion had more or less equal contributions to the 
compressive strength (assessed via NoV), whilst the MSMoA 
was dominated by torsion alone. 

Summarizing, it can be stated that compression has a 
strong positive effect on the NoV when a certain compression 
amplitude is exceeded. The highest positive influence on 
MSMoA has torque. Compared to that, the effect of bending is 
moderate for both indicators.

Figure 4. Final geometries of block 2 calculations; starting geometry was the result of block 1 calculations under high compression, high 
bending, high torque conditions; only zero or 100N compression force were applied. 
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Block 2 results: starting from straight closed tube with 
random bending directions

Instead of starting with a cylindrical lattice the initial 
geometry was a well-shaped tube (FT). This allowed us to 
investigate the extent to which the final geometry depends 
on the starting geometry or, vice-versa, whether the shape-
forming could be reversible. The convergence for these 
calculations took slightly longer than for the CL approach 
in block 1. In order to verify the results we extended the 
calculations of two of the runs (FT2201 and FT2102) to 
400 steps, but did not find any significant changes. For this 
principle verification we considered the two cases 0 and 100 
N axial compression only. 

Figure 4 depicts the related geometric and topological 
pattern that we showed earlier in Figure 2. Because 
the processes under observation in this block resemble 
‘remodeling’ we will refer to this term in order to distinguish 
it from the ‘modelling’ in block 1.

In the high torsion regime we find a quite high similarity 
between ‘modelling’ and ‘remodelling’ results. That can be 
seen in the outer 3D-view on the geometries as well as from 
the cross-sections at 50%. In the low torque regime we have 
minor differences for the 0-bending cases where we have 

slightly different characteristics in the degree of openness in 
comparison to the ‘modelling’ experiment.

Larger differences can be found in the 0-torsion regime. 
Obviously, the different starting conditions lead to multiple 
rod like structures for the compression only cases and 
significantly reduces the conic character of the geometries 
at low and high bending. The structures of the high bending 
cases are slightly more regular for the ‘remodelling’ case as 
can be seen from the cross-sections at 50%. 

Figure 5 illustrates the indicators NoV and MSMoA for 
the ‘remodelling’ experiment series. Whereas we have quite 
a good compliance for the NoV the MSMoA values do not 
decrease as much for the 0-torsion case, resulting in a more 
flat torsion dependence. That correlates with the observation 
at the geometries themselves that the generation of cone-
type geometries in the low torsion regime with bending load 
elements is reduced and substituted by more truss-type of 
structures. This results in similar NoV values on the one hand 
but in significantly higher MSMoA-values on the other hand. 

Therefore, it might be the case that some dependence 
exists on these modified ‘remodelling’ starting conditions, 
and that this dependence is greatest for low levels of torsion 
and compression, and is thus mainly related to bending. 

Figure 5. Number of bone voxels (NoV) and maximum second moment of area (MSMoA) at 50% for the “remodelling” case; same 
representation as in Figure 3.
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Obviously it is difficult for the mechanostat to reconstruct a 
tripod starting from a tube structure. The principal findings 
of the ‘modelling’ calculations, however, are unaffected.

Discussion 

An in silico experiment has been performed in order 
to find out how the different types of mechanical loading, 
originating from axial compression, lateral bending and 
axial torsion, might contribute to build-up and maintain the 
skeletal structure and its mechanical properties, e.g. that of 
a tubular long bone. The hypothesis was that torsion might 
play a considerable more important role in these processes 
than previously believed. For the calculations a mechanostat 
model by Huiskes et al. proposed for remodelling of 
trabecular bone has been adopted. A 3-dimensional loading-
space of four compression, three bending and three torsion 
magnitudes has been analysed. The lateral bending load 
case has been applied focusing on a uniform distribution 
with respect to the bending direction. Because we wanted to 
know whether our results depend on the starting conditions 
we calculated two different ones: a ‘modelling’ experiment 
starting from a cylindrical lattice and a reduced ‘remodelling’ 
program starting from one of the tubular shaped geomatries 
resulting from the prior ‘modelling’ simulation. Besides 
the 3D-geometry and the topology of the cross-section at 
midshaft we surveyed the indicators NoV and MSMoA at mid-
shaft as well. We used a model with scaled geometrie with 
respect to human proportions. In translation our scaled load 
magnitudes cover a representative range between 0 and 
10kN for axial compression, 0 and 29 Nm bending moment 
and a similar range of 0 to 29 Nm for axial torque. The 
maximum magnitudes are 30% above known physiological 
maxima in terms of maximum bone stresses. We have shown 
that for an ideal tube our maximum loads for all three modes 
would generate a very similar maximum stress in the material 
of some 30 MPa, so that the load cases can be assessed as 
comparable in magnitude. It can be assumed that in principle 
all kind of combinations of the load types can appear under 
sports conditions and at reduced magnitudes during normal 
life. For the bending case it has to be taken into account that 
cantilever-like bending load on a long bone is the exception 
because the motion of joints seldom are totally fixed but it 
can not be completely excluded. 

For the ‘modelling’ approach it has been found that there 
is a broad range of geometries generated ranging from thin 
compact rods when under axial compression only, over conic 
tripod-like structures under bending-only conditions and 
truss-like formations when under low torque loads up to the 
expected closed tubular shape. The latter is only developing 
when multiple load types are applied, out of which one has to 
be axial torsional load. It is not developing when bending and 
compression alone are applied. Both exotic trends, the conic 
shaping under bending resulting partially from the cantilever 
character of our set-up, as well as the multi rod shaping 
of under compression are “cured” by increasing torsional 

contributions. In order to reduce effects of the cantilever 
problem we restricted our further analysis to the central part 
of the model shaft which we saw as a largely unbiased test 
bed for our simulation purposes.

The MSMoA indicator significantly demonstrates the 
highest positive dependence on axial torque. Only the NoV 
indicator is influenced stronger by axial compression. For the 
variation of characteristic at lower compression levels from 
steep to flat we dare the following explanation: increasing 
contributions of torsional and bending loads, especially 
in combination, generate sufficient bone strength that 
compression contributions become effective only behind a 
certain threshold of magnitude. That indicates the importance 
of both torsional loads and bending loads. We are quite sure 
that a systematic underestimation of the compression level 
might not be the reason.

In the ‘remodelling’ part we found a clear reduction of the 
structures with respect to closeness of shape and quality 
indicators. The final results accorded, to a broad range, to 
the geometries developed by the ‘modelling’ experiment. We 
found deviations especially in the low torque regime where 
the conical forms typical for compression plus bending load 
combinations were substituted by open truss-like forms. This 
also becomes manifest in a lower dependence of MSMoA on 
torque while NoV shows the same behavior as in the previous 
‘modelling’ case. At the moment we do not have an attestable 
explanation for that behaviour. It may have to deal with the 
fact that the thin upper top of the cone structures cannot 
develop because of the empty space in this area in the tubular 
starting geometry of the ‘remodelling’ case.

The limitations of the study become obvious if we look on 
the no-load case. When the simulation is running long enough 
all bone voxels disappear. Real bone does not disappear when 
disused for long time and it does not extensively modify its 
shape. The assumption of bone being resorbed randomly 
and uniformly distributed needs modification. There might of 
course be one or more additional control elements that are 
not load-driven only. Yet, the principle results of this study 
are not affected by this part of the model. Of more interest 
might be the question as to “how the choice of the regulating 
parameter – being the strain energy density as suggested by 
Huiskes et al. – could influence the structural response not 
only in magnitude but also in principle?” 

Another possibly limitating issue might be addressed as 
well. In our study we assumed implicitely that maximum loads 
define the final geometries. We did not check which role the 
frequency of maximal events might play. Which consequences 
will it have for instance, if we apply a given magnitude to 
different directions not in a unique distribution, but with an 
odd distribution? Will we see an asymmetric final geometry 
at the end? In computations with explicit directed bending 
set-ups we saw resulting asymmetries, but in that study the 
less-loaded directions were never loaded at all. In our torsion 
set-up we deal as well with a reduced occurrence of maximum 
load because we admit intermediate torsion magnitudes. The 
answer to this question might also affect the way of comparison 
we performed with our indicators above. Can we compare 
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the behaviour of MSMoA for our all-directions bending cases 
(where one selected direction is loaded less often) with the 
compression cases where the load is there in every step? If 
we think further we might expect as well that the asymmetric 
distribution over the load types in real life - with compression 
being by far the most often load for a long bone - might bias 
the result correspondingly. Our answer is that maximum load 
is the driver – and hypothize that for a future study. Frequency 
might play a minor role or play a role insofar that a minimum 
frequency of load cases should occur. 

Conclusion

An extensive study on the structural response due to 
different combinations of compression, bending and torsion 
acting on bone-shaft-like structures under the regime of 
the Huiskes mechanostat model has been performed. In the 
structure forming regime we found a strong support for our 
hypothesis that the presence of torsional loads is required in 
building up the well-known tubular structure of long bones. In 
the structure maintaining regime we found torsion having a 
strong positive influence in preserving the tubular closed form.
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Appendix A:  
Scaling problem and comparability of force 
magnitudes

For justification of our selections for the magnitudes of 
loads the following test calculations may be given. That is 
especially important as we do not use dimensions of human 
bones but base our analysis on rat size bones.

Let us take two tubes of different size. The first is 200 mm 
long, has a diameter of 24 mm and a wall thickness of 6 mm. 
This tube corresponds in its geometry to typical human long 
bone. The ratio wall thickness to radius is 2 and corresponds 
to the typical value found in mammalian long bones28. The 
second one is a1:6 scaled version that means a tube of 33 
mm length, 4 mm diameter and a wall thickness of 1 mm. 
That tube corresponds quite well to the size of “bones” that 
appears in this study. In the following text we will refer to 
those models as the small and large test models.

Looking at the axial torsion we learned in a recent study27 
that a human tibia over a length of 200 mm can reach torsion 
angles of 2°. 

The torque T required to induce such an angle can be 
calculated as:

T =
φGIp

L
 (1) 

with L and φ being the length and the torsion angle and

G (shear modulus) =
E

2(1+ν)  

with E=Young’s modulus (15Gpa) and ν the Poisson number 
(0.36) and 

Ip (polar moment of area) = (r2
4 - r1

4)
π
2  

with r
1
 the inner and r

2
 the outer radius of the tube wall.

In our case we get a value of 29.4 Nm for the torque 
necessary to generate a torsion angle of 2° in the large test 
model. The maximum shear stress at the outer surface can 
be calculated as

τ =
φGr2

L
 (2)

For our example we get 23.1 MPa as maximum shear stress.

CH. Numerical Modeling of Long Bone Adaptation due to 
Mechanical Loading: Correlation with Experiments. Ann 
Biomed Eng 2010;38(3):594-604.

27. Yang P, Sanno M, Ganse B, Koy T, Brüggemann GP, Müller 
LP, Rittweger J. Bending and torsion predominate the 
in vivo human tibia deformation regimes during walking 
and running. PLoS One 2014;9(4):e94525.

28. Currey JD. 2005. Bones: Structure and Mechanics. 
Princeton University Press. Princeton.

Looking into equation 2 we see that the same torsion 
angle will lead to the same shear stress in our small test 
model, because the change of L and r

2
 compensate in 

equation 2.
Calculating the torsion moment for the small test model 

we get a value of 136 Nmm.
Combining equations (1) and (2) yields

τ =
Tr2

Ip

 (2b)

It shows that τ does not depend on L, so we can use the 
136 Nmm for shorter test bodies as well. The value fits quite 
well into the range of 0-180 Nmm of the torsion loads in our 
study.

Assuming that the magnitude of the compression stress 
might be of a similar magnitude as the shear stress of 
torsion we can use equation 3 to calculate a corresponding 
compression force
F = σA (3) 
with A the force loaded cross-section and σ the compression 
stress
Α = π (r

2
 - r

1
2); σ ≈ -τ

We get a value of -7838 N (minus sign means compression) 
for the larger test model and a value of -227 N for the smaller 
model. While 8 kN is a very realistic magnitude for the load 
on a human tibia during jumping or running the 230 N for the 
small test model fits well into the range of the loads of our 
study (0-300 N).

To the compression stress of 23 MPa for both scale cases 
corresponds to a strain of -1540 µstrains that as well is a 
realistic value for typical human tibia loads.

Looking on the bending loads we apply in maximum 40 
N lateral load at one end of our 4.5 mm long study sample. 
Translating that to our 1:6 test geometry we would get a 
maximum bending moment of 180 Nmm. 

Permitting a bending stress magnitude of 23Mpa similar to 
the stresses in our compression and torsion test experiments 
at the outmost positions we can determine a corresponding 
bending moment M using equation 4:

M =
σΙ
z

 (4) 
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with I (second moment of area) = (r2
4 - r1

4) and z=r2

π
4

 

We obtain a maximum bending moment for our large test 
model of 29.4 Nm and bending moment of 136 Nmm for the 
small test model. With that magnitude we are quite well in the 
range of our study loads (0-180 Nmm).

It can be said that with all their maximum loads this 
study is positioned with a factor of 1.3 above the maximum 
loads recommended by the present calculations. That is a 
reasonable small overload.

We resume: based on data from in-vivo experiments 
with humans27 we have derived a reasonable maximum 

shear stress for a torsional deformation of 23MPa for a 
representative tube model. We assumed that this limiting 
stress value might be universal for different load modes and 
for different scales. At least the extrapolation of this value 
to compression resulted in reasonable physiological high 
end loads (8kN for a leg type bone structure). Under this 
assumption we showed that:
a)  the results of our scaled “small” model approach can be 

extrapolated to the “larger” human scale,
b)  the load ranges for the different load types of our scaled 

model correspond to loads typical on the human scale,
c)  the loads for the different load types in our study are of 

comparable levels of amplitude.




