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Chapter 1

Introduction

1.1 Inside the nephron

The nephron represents the basic structural and functional unit of the kidney. It filters
the blood, reabsorbs useful substances, and excretes waste substances with the urine.
The nephron consists of the glomerulus and the tubule. The tubule is divided in three
compartments: the proximal, the intermediate and the distal tubules. The glomerulus
consists of three major cell types: the fenestrated endothelial cells, which build the capil-
lary tuft located inside of Bowman’s capsule, the mesangial cells, which help to maintain
the three-dimensional structure of the capillary tuft, and the podocytes. The specialized
form of the basement membrane called glomerular basement membrane (GBM) is located
between the endothelial cells and the podocytes (Figure 1.1) (Pozzi and Zent, 2012).

Nephron Glomerulus

Proximal
Glomerulus convoluted

/ tubule Afferent arteriole
Smooth muscle cell

Endothelial cell

Efferent arteriole

Bowman capsule

Parietal cell
GBM

\ Mesangial cell —"‘( <

Collecting duct Glomerular capilary —

Artery

Podocyte

T Podocyte foot proc

Proximal tubule
Proximal tubular cell

tubule

Loop of Henle

Ultrafiltrate

Figure 1.1: Major structural components of the nephron and the glomerulus. Figures were
modified from (Albiges et al., 2012) and (Pozzi and Zent, 2012), respectively. GBM stands
for glomerular basement membrane.

The podocytes are highly differentiated cells with a unique cytoarchitecture. Many
large protrusions, called primary or major processes, extend directly from the podocyte
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cell body. Primary processes branch and finally end in many small extensions called foot
processes. The foot processes from two adjacent podocytes interdigitate with each other
thus forming the slit diaphragm (Mundel and Kriz, 1995). The endothelial cells, the
glomerular basement membrane, and the slit diaphragm build the glomerular filtration
barrier. Dysregulation of the glomerular filtration barrier on the molecular level may lead
to renal diseases. One example of such a disease is nail-patella syndrome which affects
the kidneys in approximately 40% of patients (Sweeney et al., 2003). The syndrome is
described in detail in Section 1.2.

1.2 Nail-Patella Syndrome

Nail-patella syndrome (NPS), also known as Osterreicher syndrome (Osterreicher, 1930),
Turner-Kieser syndrome (Turner, 1933; Kieser, 1939), Fong disease (Fong, 1946) and
hereditary osteo-onychodysplasia (Roeckerath, 1951) is a rare autosomal-dominant dis-
order with an incidence of ~1:50,000. As its name indicates, the typical clinical features
of nail-patella syndrome include the deformation of finger- and toenails, the hypoplasia
or absence of kneecaps, and iliac horns in 95.1%, 92.7% and 70-80% of cases, respec-
tively [reviewed by (Bongers et al., 2002)]. Approximately 40% of NPS patients suffer
from renal symptoms like proteinuria, hematuria or chronic renal failure (Sweeney et al.,
2003; Witzgall, 2007). Electron microscopic studies of kidney biopsies from NPS patients
demonstrate morphological abnormalities such as a thickened glomerular basement mem-
brane with both fibrillar inclusions and electron-lucent areas, and loss of podocyte foot
processes (Del Pozo and Lapp, 1970; Ben-Bassat et al., 1971; Rohr et al., 2002; Witzgall,
2007).

The first report about NPS dates back to 1820 (Roeckerath, 1951). In 1955 NPS was
genetically linked to the ABO blood group locus by Renwick et al. and in 1969 to the
adenylate kinase locus by Schleutermann et al. (Renwick and Lawler, 1955; Schleuter-
mann et al.; 1969). Only in 1998 mutations in the LMX1B gene, coding for the LIM
homeobox transcription factor 1 beta, were identified in patients with NPS (Dreyer et al.,
1998; McIntosh et al., 1998; Vollrath et al., 1998). LMX1B and its target genes are de-
scribed in Section 1.3.

1.3 LMXI1B and its target genes

LIM homeobox transcription factor 1 beta (LMX1B) is a transcription factor that belongs
to the family of LIM-homeodomain proteins and plays a significant role in the normal
development of the dorsal limb structures, the anterior segment of the eye, dopaminergic
and serotonergic neurons and the podocytes in the kidney. The LMXI1B gene gives rise
to a protein of 395 and 402 amino acids (Dunston et al., 2004). The LMXI1B protein
contains two N-terminal cysteine-rich zinc-binding LIM-A and LIM-B domains mediating
interactions with other proteins, one central homeodomain responsible for the binding of
LMXI1B to specific target genes, and a C-terminal glutamine- and serine-rich transcrip-
tional activation domain (Bongers et al., 2002). LMX1B is exclusively expressed in the
brain, developing limb and eye, cranial mesenchyme, and in the podocytes.

Since the genetic linkage of nail-patella syndrome to the LMX1B gene, more than
140 mutations including missense, splicing, insertion/deletion and nonsense alterations
have been identified in NPS patients. Roughly 82% of such mutations identified in
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LMX1B are concentrated in the LIM-A and LIM-B domains, while only 18% are located
in the homeodomain (Bongers et al., 2002). The binding of LMXI1B to its target genes is
mediated by the central homeodomain which specifically recognizes the so-called FLAT
(FAR linked AT-rich) elements. These elements were characterized for the first time in
the promoter sequence of the rat insulin I gene (German et al., 1992). FLAT elements can
be subdivided into two types: FLAT-E (5-TAATTA-3’) and FLAT-F (5-TTAATA-3’).
To date several LMX1B target genes have been identified. Morello et al. have demon-
strated that expression of the a3 and a4, but not of the al, a2 and a5 chains of col-
lagen IV in the GBM of Lmx1b null mice was strongly reduced. Furthermore, LMX1B
showed binding to a FLAT element within the first intron of both mouse and human
COL4A4 and it upregulated reporter constructs containing this sequence (Morello et al.,
2001). Moreover, LMX1B regulates expression of some genes involved in podocyte dif-
ferentiation and function. Miner et al. have shown that Cd2ap and podocin mRNA and
protein levels in Lmaz1b~/~ mice were significantly decreased. In cotransfection assays
LMX1B showed binding to the FLAT elements within CD2AP and NPHS2 (podocin)
promoters in vitro and activated transcription of these genes through FLAT elements
(Miner et al., 2002). In contrast to what has been found in the conventional Lmz1b
knock-out mouse, podocin and the a3 and a4 chains of collagen IV were still detected in
constitutive podocyte-specific Lmz1b knock-out mice (Suleiman et al., 2007) and in kid-
ney biopsies from NPS patients (Heidet et al., 2003). Functional studies using chromatin
immunoprecipitation and luciferase reporter assays in HeLa cells revealed that LMX1B
regulates the expression of NF-xB target genes, such as IL6 or ILS, by binding to the
FLAT-F elements within the proximal promoter of these genes (Rascle et al., 2009).
Microarray studies of glomeruli isolated from inducible podocyte-specific Lmx1b knock-
out mice have shown a significant increase of the mRNA levels of several actin cytoskeleton-
associated proteins, including Abra and Arl4c, as well as a protein of unknown func-
tion, Crctl, in comparison to control mice. Chromatin immunoprecipitation experi-
ments in conditionally immortalized human podocytes revealed that LMX1B binds to
FLAT elements within the ABRA and ARL/C promoter regions (Burghardt et al.,
2013). The aim of this PhD project was the characterization of putative target genes
which have shown an upregulation in microarray studies of adult Lmz1b knock-out ani-
mals. Therefore, the main properties of ABRA and ARL4C are summarized in Subsec-
tions 1.3.1 and 1.3.2, respectively. Currently there is no biological information available
regarding CRCT1 (Cysteine-rich C-terminal 1), making it attractive as a research object.

1.3.1 ABRA — Actin Binding Rho Activating

The actin binding Rho activating protein ABRA was identified in 2002 by two different
laboratories and is also named STARS (for Striated Muscle Activator of Rho Signal-
ing) and msl (for myocyte stress factor 1) (Arai et al., 2002; Mahadeva et al., 2002).
Initially, ABRA transcripts were discovered in human and murine cardiac and skeletal
muscles (Arai et al., 2002; Mahadeva et al., 2002), and most recently in smooth mus-
cles (Troidl et al., 2009). In rat primary cardiomyocytes ABRA showed localization to
the I-band and was partially seen between Z-lines of the sarcomere. Binding of ABRA to
F-actin and activation of Rho-signaling events was demonstrated in transfected COS-7
cells (Arai et al., 2002). Recently, Fogl et al. characterized two independent F-actin bind-
ing domains at the C-terminus of the protein — actin binding domains 1 and 2 (ABD1
and ABD2) located between amino acids 193-296 and 294-375, respectively. Moreover,



Chapter 1. Introduction 8

ABD1 showed higher affinity to F-actin in comparison to ABD2 (Fogl et al., 2012).

Two members of the actin-binding LIM (ABLIM) protein family, ABLIM-2 and
ABLIM-3 were recently reported as interaction partners of ABRA. Upon ABLIM-2 and
ABLIM-3 association with ABRA, the activation of downstream targets of the serum
response factor (SRF) is initiated (Barrientos et al., 2007). Another pathway of ABRA-
mediated SRF signaling includes depletion of G-actin and release of myocardin-related
transcription factors (MTRFs) which after transport into the nucleus stimulate SRF tar-
gets (Kuwahara et al., 2005). Finally, ABRA stimulates the SRF-dependent transcription
via RhoA activation (Arai et al., 2002). A scheme of the ABRA-mediated regulation of
actin dynamics and SRF signaling is shown in Figure 1.2.

+ end - end

F-actin

@
@
e ©
G-actin

RhoA _Z

MRTF

Nuclear
transport ~

Nuc/eusﬂ )

Figure 1.2: A scheme of the ABRA-mediated regulation of actin dynamics and SRF sig-
naling. ABRA stimulates F-actin polymerization directly or through activation of RhoA.
ABLIM proteins associate with ABRA and stimulate the ABRA-dependent activation of the
downstream targets of SRF. Upon the ABRA-dependent polymerization of F-actin, MTRF's
are released from the inhibitory influence of G-actin and imported into the nucleus, where
they stimulate SRF transcriptional activity. Abbreviations: ABLIM — actin binding LIM
domain protein, MTRF — myocardin-related transcription factor, RhoA — Ras homolog gene
family, member A, SRF — serum response factor. Modified from (Kuwahara et al., 2005;
Barrientos et al., 2007).

1.3.2 ARL4C — ADP-Ribosylation Factor-Like 4C

The ADP-Ribosylation Factor-Like 4C (ARL4C), also known as ARL7, belongs to the
ARF-related family of small GTP-binding proteins (Jacobs et al., 1999). As reported by
Jacobs et al. transcripts of human ARL4C are highly enriched in the brain, and lower
levels of ARL4C were detected in the spleen, thymus, esophagus, stomach, intestine
and uterus (Jacobs et al., 1999). A few years after the work of Jacobs et al., Wei et
al. demonstrated mRNA expression of ARL4C in human lung, brain, leukocytes and
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placenta (Wei et al., 2009). Recent immunohistochemical analysis of mouse embryos on
day 15 revealed that Arldc was expressed in the brain, in some epithelial rudiments, and
in the kidney, where Arl4c was detected in ureteric buds, pretubular aggregates, renal
vesicles, and the comma-shaped body (Matsumoto et al., 2014).

The subcellular localization of ARL4C depends on the binding to GTP or GDP. In
overexpression studies the wild-type form of ARL4C and the active GTP-bound mutant
of ARL4C were detected within the cytoplasm and at the plasma membrane of filopodia.
On the other hand, the inactive GDP-bound ARL4C mutant was detected in the per-
inuclear region of the cell and was not associated with filopodia (Engel et al., 2004). A
ARL4C mutant which lacked the myristoylation site lost its ability to bind to the plasma
membrane (Engel et al., 2004).

. Actomyosin rearrangement

Tube formation

[[5uTR ARLAC | 3'UTR

Nucleus

Figure 1.3: Scheme of the Arldc-mediated regulation of actomyosin rearrangement and
epithelial tube formation after combinatorial induction of Wnt3a/EGF signaling based on
the data from Matsumoto et al. (Matsumoto et al., 2014). The induction of Wnt3a/EGF
activates the MAPK and (-catenin pathways, then a complex consisting of Ets/Tcf4/CBP
forms at the Ets-binding site in the 3’ non-coding region of the Arljc gene. Arldc induces
ARNO and Arf6, resulting in Racl activation. Racl induction leads to the inhibition of
RhoA, rearrangement of the cytoskeleton and tubular structure formation. Abbreviations:
[B-cat — f-catenin, ARF6 — ADP-ribosylation factor 6, ARNO — Arf nucleotide-binding site
opener, CBP — cyclic AMP-responsive element binding protein [(CREB)-binding protein],
EGF — epidermal growth factor, EGFR — epidermal growth factor receptor, MAPK — mitogen
activated kinase-like protein, Racl — ras-related C3 botulinum toxin substrate 1, RhoA — Ras
homolog gene family, member A, Tcf4 —T-cell factor 4, UTR — untranslated region, Wnt3a —
wingless-type MMTYV integration site family, member 3A.

The first reported interaction partner of ARL4C was a-tubulin. Wei et al. have
shown that the association of both proteins leads to microtubule-dependent vesicular
transport (Wei et al., 2009). Hofmann et al. demonstrated that Arl4c was able to recruit
ARNO (Arf nucleotide-binding site opener) and Arf6 (ADP-ribosylation factor 6) to the
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plasma membrane (Hofmann et al., 2007). Recent findings of Matsumoto et al. shed
light on the interaction of Arl4c with other proteins (Matsumoto et al., 2014). It was
demonstrated that the expression of Arl4c was induced by the combined action of Wnt3a
and epidermal growth factor (Wnt3a/EGF). The Wnt3a/EGF signaling activated the
MAPK and fS-catenin pathways, then a complex of Ets/Tcf4/CBP formed at the Ets-
binding site in the 3’ non-coding region of the Arljc gene (Matsumoto et al., 2014). Arldc
induced ARNO and Arf6, resulting in Racl activation. Finally, Racl activation led to
RhoA inhibition, rearrangement of the cytoskeleton and tubular structure formation as
shown in Figure 1.3 (Matsumoto et al., 2014).

1.4 The podocyte actin cytoskeleton

The cytoskeleton is a dynamic network of filaments with a large number of functions,
including cell shape maintenance, cell migration, intracellular transport, cell division,
etc. It consists of three main components: microfilaments, intermediate filaments, and
microtubules. Microfilaments, or actin filaments, are polymeric structures with a diam-
eter of 5-9 nm, formed by actin. Intermediate filaments, as its name indicates, are the
fibers of the cytoskeleton with an intermediate size of about 10 nm. They are composed
of intermediate filament proteins. The largest component of the cytoskeleton are the
microtubules, which have a diameter of around 25 nm and are formed by a protein called
tubulin (Alberts et al., 2008).

As mentioned previously, the following segments can be distinguished in podocytes:
the cell body, the large processes, and the foot processes (FPs). The cell body and
the large processes contain all components of cell cytoskeleton, while the FPs are exclu-
sively composed of actin filaments and actin-associated proteins (Drenckhahn and Franke,
1988). The membrane of FPs is functionally divided into three domains: the apical mem-
brane domain (AMD), the basal membrane domain (BMD), and the slit diaphragm (SD),
as shown in Figure 1.4 (Kerjaschki, 2001).

AMD PAB

GBM

Figure 1.4: Scheme of three membrane domains of FPs: the apical membrane domain
(AMD) (blue), the basal membrane domain (BMD) (red), and the SD (black). PAB stands
for parallel actin bundles. The figure was taken from Greka and Mundel, 2012.

The disruption of any of the three FP domains leads to the reorganization of the
actin cytoskeleton: parallel bundles of actin cytoskeleton change into a disordered struc-
ture (Shirato et al., 1996; Kerjaschki, 2001), which is followed by the retraction of FPs
and the loss of the slit diaphragm. This process is known as foot process effacement. Foot
process effacement leads to proteinuria (Farquhar et al., 1957; Murphy et al., 1979) which
is typical of numerous glomerular disorders, such as focal segmental glomerulosclerosis
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(FSGS) (Grishman and Churg, 1975), minimal change disease (Farquhar et al., 1957),
and diabetic nephropathy (Kerjaschki, 2001). The described morphological changes in
the FP actin cytoskeleton were also observed in some NPS patients (Del Pozo and Lapp,
1970). Therefore, the purpose of Subsection 1.4.1 is to present the current knowledge in
the (re)organization of the actin cytoskeleton during podocyte injury.

1.4.1 (Re)organization of the actin cytoskeleton after podocyte
injury

It is now commonly accepted that podocytes play a key role in the maintenance of the
glomerular filtration barrier. Injury of podocytes leads to proteinuria and development of
glomerular diseases. During podocyte injury, changes in their shape are observed, which
is called foot process effacement. The FPs of each podocytes are retracted, moreover the
amount of filtration slits is reduced, so that FPs appears as a continuous cytoplasmic
sheet along the GBM as shown in Figure 1.5 (Shirato, 2002).

To date many causes of podocyte injury have been described, including changes in
the SD structure (Simons et al., 2001; Verma et al., 2003), interference with the GBM or
the podocyte-GBM interaction (Noakes et al., 1995; Kreidberg et al., 1996; Raats et al.,
1997; Regele et al., 2000; Kretzler et al., 2001), modulations of the negatively charged
podocyte membrane (Orlando et al., 2001; Takeda et al., 2001; Galeano et al., 2007),
alterations of the transcriptional regulation of podocytes (Quaggin, 2002; Rascle et al.,
2007), and reorganization of the podocyte actin cytoskeleton (Smoyer and Mundel, 1998;
Kos et al., 2003; Jones et al., 2006; Verma et al., 2006).

Despite the increasing number of studies on actin-associated proteins in podocytes,
the molecular mechanisms of the reorganization of the podocyte cytoskeleton remain un-
clear. Upon podocyte injury the coordinated parallel bundles of actin filaments change
into an interwoven network (Shirato et al., 1996; Kerjaschki, 2001). The expression of
actin and the actin-filament cross-linking protein a-actinin is increased (Shirato et al.,
1996). Studies by Smoyer et al. consider a-actinin-4 as initiator of FP effacement (Smoyer
et al., 1997). Subsequently glomerular a3-integrin is induced (Smoyer et al., 1997). The
importance of a-actinin-4 in podocyte injury was demonstrated by the fact that muta-
tions in the ACTN4 gene coding for a-actinin-4 lead to an autosomal dominant form
of FSGS (Kaplan et al., 2000; Pollak, 2002). Miao et al. discovered further cytoskele-
tal proteins involved in the dynamic changes of foot processes. Transgelin, survivin,
Arp2, cytokeratin7, and vinculin mRNA and protein levels were significantly increased
in puromycin aminonucleoside nephropathy in rats and in patients with proteinuric re-
nal diseases (Miao et al., 2009). Mutations in the MYH9 gene, which encodes another
component of the FP cytoskeleton (non-muscle myosin heavy chain ITA), are associated
with Epstein, Fechtner, and Sebastian syndromes, and May-Hegglin anomaly (Arrondel
et al., 2002; Seri et al., 2003).

The Rho family of small GTPases takes part in many cellular aspects including regu-
lation of actin cytoskeleton (Hall, 1998). Recent studies in podocytes indicate that signal-
ing pathways regulated by the most studied members of Rho-GTPases (RhoA, Racl and
Cdc42) are crucial for maintenance of structural and functional podocyte integrity. Ac-
tivation of RhoA in podocytes leads to albuminuria accompanied by FP effacement (Zhu
et al., 2011; Wang et al., 2012). Podocyte-specific deletion of Cdc42 causes proteinuria,
FP effacement, and glomerulosclerosis, while deletion of Racl in podocytes prevents FP
effacement (Blattner et al., 2013).
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Figure 1.5: (a) The structure of the affected (left) and of the normal (right) glomeru-
lus. Nephrotic syndrome leads to FP effacement. (b-c) Ultrastructural imaging taken from
kidneys of mice with podocyte-specific inactivation of Lmax1b, where FP effacement and
a thickened GBM are observed (arrows in b). Scale bars, 5 pm. Abbreviations: GBM,
glomerular basement membrane; MC, mesangial cells; US, urine space; +/loz control mice
with one wild-type and one floxed Lmz1b allele; lox/lox, mice with two floxed Lmx1b alleles;
Cre, Cre transgene under control of the human NPHS2 promoter. Modified from (Somlo
and Mundel, 2000; Suleiman et al., 2007).

1.5 Actin and actin-associated proteins

One of the objectives of this study was to unveil the role of LMX1B for the maintenance
of the podocyte actin cytoskeleton. Because of the fact that to date about 150 pro-
teins involved in the formation of the actin cytoskeleton are known (Zaidel-Bar et al.,
2007), only several proteins, including actin, a-actinin-1, a-actinin-4, focal adhesion ki-
nase, non-muscle myosin heavy chain ITA, paxillin, talin, utrophin, vasodilator stimulated
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phosphoprotein, vinculin, and zyxin were chosen for these studies. The essential infor-
mation about the selected proteins will be presented in the following subsections. The
interactions between the actin-associated proteins in the podocyte FPs are shown in
Figure 1.6.

COLLAGEN IV (a3, a4, a5)

o S g D €

Figure 1.6: Scheme of the molecular composition of podocyte FPs. Abbreviations: Cas,
p130Cas; Cat, catenins; CD, CD2-associated protein; Ez, ezrin; FAK, focal adhesion kinase;
ILK, integrin-linked kinase; M, myosin; N, NHERF2; NSCC, nonselective cation channel;
PC, podocalyxin; S, synaptopodin; TPV, talin, paxillin, vinculin; U, utrophin; z, ZO-1. The
figure was taken from Pavenstadt et al., 2003.

1.5.1 Actin

Actin is the most abundant protein in many eukaryotic cells. It builds microfilaments, one
of the major components of the actin cytoskeleton. Actin exists in two forms, monomeric
G-actin (globular) and polymeric F-actin (filamentous). A multitude of actin-associated
proteins is engaged in the maintenance of the actin cytoskeleton. Thus, the actin-binding
protein formin promotes elongation of actin filaments, while actin-related protein 2/3
(Arp2/3) induces branched actin filaments. Profilin increases the elongation of actin fila-
ments, and cofilin accelerates its disassembly. Another actin-associated protein, a-actinin,
cross-links microfilaments into loose bundles (Alberts et al., 2008). As previously men-
tioned, actin filaments in healthy podocytes are organized in parallel bundles. Podocyte
injury causes the reorganization of actin filaments into a dense network (Shirato et al.,

1996; Kerjaschki, 2001). Moreover, the expression of actin is increased (Shirato et al.,
1996).
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1.5.2 «-Actinins

a-Actinin was originally isolated from striated muscles (Ebashi and Ebashi, 1965). To
date, four a-actinins have been reported, which are named a-actinin-1, -2, -3 and -4.
a-Actinins are dimeric proteins with an essential role in cross-linking actin filaments.
In vertebrates, a-actinin-1 and a-actinin-4 are expressed in most tissues and cell types,
while expression of a-actinin-2 and a-actinin-3 is restricted to muscles (Foley and Young,
2014). Despite the great sequence similarity between a-actinin-1 and a-actinin-4, muta-
tions in these genes lead to different abnormalities. Thus, mutations in the a-actinin-1
gene can lead to congenital macrothrombocytopenia characterized by decreased numbers
of thrombocytes (Guéguen et al., 2013). On the other hand, mutations in the a-actinin-4
gene are associated with different tumors, including breast cancer (Honda et al., 1998),
ovarian cancer (Yamamoto et al., 2007), neuroendocrine lung cancer (Miyanaga et al.,
2013), and many others. Additionally, mutations in the a-actinin-4 gene result in fo-
cal segmental glomerulosclerosis characterized by proteinuria and kidney failure (Kaplan
et al., 2000).

1.5.3 Focal Adhesion Kinase

Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2 (PTK2), is a cy-
toplasmic tyrosine kinase localized to focal adhesions (Schaller et al., 1992). It interacts
with the integrin-binding proteins paxillin (Hildebrand et al., 1995), talin (Chen et al.,
1995), and vinculin (Stevens et al., 1996). Fibroblast-like cells derived from fak~/~ murine
embryos at day 8 showed decreased mobility (Ili¢ et al., 1995). The importance of FAK in
cell-matrix adhesion of podocytes during glomerular injury was demonstrated by Ma et al.
As a consequence of glomerular injury FAK is activated in murine podocytes, which then
leads to proteinuria and FP effacement. Inhibition of FAK with specific pharmacological
agent protects against glomerular damage (Ma et al., 2010).

1.5.4 Non-muscle myosin heavy chain ITA

The non-muscle myosin heavy chain ITA (NMMHC-ITA) is a cytoskeletal protein encoded
by the MYHY9 gene. It plays a role in cell contractility, motility, morphology, cytokinesis,
and polarity (Miiller et al., 2011). Mutations in the MYH9 gene are associated with var-
ious autosomal-dominant diseases such as Epstein, Fechtner, and Sebastian syndromes,
and May-Hegglin anomaly. All of them are characterized by macrothrombocytopenia,
hearing defects, cataracts, Dohle-like bodies in neutrophils, and glomerular injury (Seri
et al., 2003). In adult human kidney MYH9 mRNA and protein are predominantly ex-
pressed in podocytes (Arrondel et al., 2002). Recent studies by Johnstone et al. revealed
that the podocyte-specific deletion of Myh9 predisposes mice to glomerulopathy. Mice
with the podocyte-specific deletion of Myh9 showed no renal insufficiency or proteinuria
compared to control. However, mutant mice treated with doxorubicin hydrochloride de-
veloped proteinuria and glomerulosclerosis, while control mice were resistant (Johnstone
et al., 2011).

1.5.5 Paxillin

The cytoskeleton-associated protein paxillin was initially localized to the focal adhesions
at the ends of actin stress fibers in chicken embryo fibroblasts (Turner et al., 1990). To
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date the binding of paxillin to various focal adhesion proteins including vinculin (Turner
et al., 1990), focal adhesion kinase (Hildebrand et al., 1995), and f; integrin (Schaller
et al., 1995) has been reported. Hagel et al. have demonstrated the necessity of paxillin for
normal development of mice: no paxillin-deficient embryos were detected after embryonic
day 9.5 (Hagel et al., 2002). During maturation of a healthy rat kidney the expression of
paxillin is reduced and restricted to distal tubular cells (Matsuura et al., 2011).

1.5.6 Talin

The cytoskeletal protein talin identified in focal adhesions (Burridge and Connell, 1983a;
Burridge and Connell, 1983b) plays an essential role in linking the actin cytoskeleton
to integrins (Horwitz et al., 1986; Critchley et al., 1999). Besides actin and integrin,
talin is able to interact with other focal adhesion proteins such as vinculin (Critchley
and Gingras, 2008). Recent studies of talinl in murine podocytes revealed that talinl is
important for development of the glomerular filtration barrier and its maintenance (Tian
et al., 2014). The podocyte-specific loss of talinl in mice leads to severe proteinuria,
foot process effacement, and kidney failure. The activation of (; integrin as well as
cell spreading and adhesion in the talini-deficient podocytes were moderately reduced.
Nevertheless, significant changes in the actin cytoskeleton of podocytes without talini
were observed (Tian et al., 2014).

1.5.7 Utrophin

Utrophin, also known as dystrophin-related protein (DRP), is a component of the dys-
trophin-glycoprotein complex. Utrophin participates in linking the actin cytoskeleton
to agrin, a major heparan sulfate proteoglycan in the glomerular basement membrane,
through its interaction with S-dystroglycan. In the normal human and rat kidney
utrophin was localized within glomerulus outlining the peripheral capillary loops (Raats
et al., 2000; Regele et al., 2000). Detailed immunoelectron microscopy studies of the rat
kidney demonstrated that utrophin was localized at the cytoplasm of some podocyte foot
processes with the strongest intensity in the regions near the GBM (Raats et al., 2000).

1.5.8 Vasodilator stimulated phosphoprotein

Vasodilator stimulated phosphoprotein (VASP) was initially described in human platelets
as a major protein phosphorylated in response to stimulation with vasodilators (Halbriigge
and Walter, 1989). VASP is known to interact with multiple actin-associated proteins. It
is able to bind profilin, which as a consequence leads to actin polymerization (Reinhard
et al., 1995). Its interaction with other cytoskeletal proteins, such as vinculin (Brindle
et al., 1996), talin, a-actinin, and F-actin stabilizes focal adhesion and the connection with
actin filaments (Hemmings et al., 1995). Recent studies by Harris et al. on conditionally
immortalized podocytes revealed that proteases present in the plasma of focal segmen-
tal glomerulosclerosis (FSGS) patients after transplatation lead to a podocin-dependent
phosphorylation of VASP via protease-activated receptor-1. Additionally, FSGS plasma
induced VASP phosphorylation-dependent motility of podocytes (Harris et al., 2013).
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1.5.9 Vinculin

Vinculin was originally described as an intracellular protein localized at specialized sites
where microfilaments terminate at cell membranes (Geiger et al., 1980). This cytoskele-
tal protein consists of head and tail domains separated by a proline-rich region (Price
et al., 1989). The head domain of vinculin is able to bind talin, which then leads to the
recruitment of vinculin to focal adhesions, while the tail domain binds F-actin and pax-
illin (Ziegler et al., 2008). Vinculin plays an essential role during embryonic development:
vinculin-deficient embryos die due to heart and brain defects (Xu et al., 1998). More-
over, vinculin-deficient mouse embryonic fibroblasts show reduced adhesion and migration
rates (Xu et al., 1998).

1.5.10 Zyxin

The integrin-associated linker protein zyxin was discovered at both cell-matrix and cell-
cell junctions (Crawford and Beckerle, 1991). The interaction of zyxin with several focal
adhesion proteins including a-actinin (Crawford et al., 1992) and VASP (Grange et al.,
2013) was demonstrated. Zyxin is not absolutely essential for development: zyxin null
mice showed no defects, they are viable and fertile (Hoffman et al., 2003).

1.6 Research goals

The main purpose of this study was to clarify the molecular pathway(s) regulated by
LMX1B by focusing on the characterization of the putative LMX1B target genes which
are upregulated after the inactivation of LmaxIb, and on the importance of LMXI1B for
the maintenance of the podocyte actin cytoskeleton. The specific goals of the studies
were:

1) Identification of LMX1B binding elements (FLAT elements) within the promoter
regions of its putative target genes.

2) Determination of the role of LMX1B in the transcriptional regulation of its putative
target genes.

3) Demonstration of the subcellular localization of the corresponding proteins and
their interaction with the actin cytoskeleton.

4) Determination of the effect of Abra, Arldc and Crctl on F-actin and paxillin.

5) Demonstration of the localization of Abra, Arldc and Crctl in the kidney and
determination of their role in nail-patella syndrome.

6) Investigation of the role of LMX1B in the dynamics of the podocyte actin cytoskele-
ton.
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Materials and methods

2.1 Materials

2.1.1 Chemicals and reagents

Chemicals/reagents Producer

0.25% Trypsin-EDTA solution Sigma-Aldrich
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Roth

5x Phusion® HF Reaction Buffer NEB

Acetic acid Merck
Acrylamid/bis solution 37.5:1 Serva

Agarose Roth

Albumin fraction V Roth

Amido black 10B Merck
Ammonium persulfate (APS) Fluka

Ampicillin sodium salt Roth

Aprotinin Roth

Bacto agar Becton Dickinson
Bacto tryptone Becton Dickinson
Bacto yeast extract Becton Dickinson
B-mercaptoethanol Merck

Bovine serum albumine (BSA) Sigma
Bromophenol blue Serva

Calcium chloride Roth

Cyanogen bromide-activated-Sepharose® 4B

DEAE-Dextran

Sigma-Aldrich
Sigma-Aldrich

Deoxynucleotide triphosphates (ANTPs) Fermentas
Dimethyl sulfoxide (DMSO) Sigma
Dipotassium phosphate Merck
Dithiothreitol (DTT) Roth
DMEM/Ham’s F12 PAA
Doxycycline hyclate Applichem
Dulbecco’s modified Eagle’s Medium (DMEM) - high glucose Sigma-Aldrich
Ethanol Sigma
Ethidium bromide Sigma
Ethylene glycol tetraacetic acid (EGTA) Serva

17
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Ethylenediaminetetraacetic acid (EDTA)
Fetal bovine serum (FBS)

Ficoll® 400

Formaldehyde solution, 37%
G-418-sulfate

Glucose

Glycerine/glycerol

Glycine

Hydrochloric acid

Hygromycin B liquid

Imidazole

Immersol 518F for Microscope
Isopropanol (2-propanol)

Isopropyl -D-1-thiogalactopyranoside (IPTG)
ITS supplement

Kanamycin sulfate

A DNA /Hind IIT Marker, 2

Leupeptin

Light cycler®480 SYBR Green I master mix
Magnesium chloride

Magnesium sulfate

Methanol

Monopotassium phosphate

Nickel sulfate

PageRuler prestained protein ladder
Paraformaldehyde
Penicillin-streptomycin
Phenylmethanesulfonylfluoride (PMSF)
»X174 DNA/BsuRI (Haelll) Marker, 9
Polyethylen glycol (PEG 3350)
Potassium acetate

Potassium chloride

Powdered milk

Puromycine

Roti®-Phenol (Phenol/chlorophorm /isoamylalcohol 25:24:1)
Roti®-Quant

RPMI-1640 with L-glutamine

Sodium acetate

Sodium azide

Sodium cacodylate trihydrate

Sodium chloride

Sodium dodecyl sulfate (SDS)

Sodium fluoride

Sodium hydrogen carbonate

Sodium hydroxide
Tetramethylenediamine (TEMED)
Thimerosal

Tris

Roth

Gibco

Serva

Sigma
Invitrogen
Merck

Roth

Merck

Merck

PAA

Merck

Carl Zeiss
Merck
Fermentas
PAA

Roth
Fermentas
Serva

Roche

Sigma

Merck

Merck

Merck

Merck
ThermoScientific
Merck
Sigma-Aldrich
Sigma-Aldrich
Fermentas
Sigma-Aldrich
Merck

Merck

Sucofin

PAA

Roth

Roth

Sigma

Roth

Merck

Fluka

VWR

Serva

Merck

Merck

Merck

Serva
Sigma-Aldrich
Affymetrix



Folded filters @ 90 mm

Gene Pulser® Cuvette for electroporation
Glass coverslips 12 mm

Glass coverslips 22 mm

Glass Pasteur pipettes

Glassware (media bottles, beakers with scale, Erlenmeyer
flasks etc.)

Light cycler 96-well plate

Membrane filters VSWP (0.025 pm)
Micro tube 0.2 ml

Micro tube 1.5 ml

Microscope slides

Neubauer counting chamber depth 0.1 mm
Nitrile gloves

Parafilm

Pipette tips

Polystyrene cuvettes for spectrophotometer U-2000
PVDF transfer membrane (0.45 pum)

Scalpel

Serological pipettes

Sterile filter 0.20 wm

SuperFrost® Plus Microscope Slides

Syringes

Schleicher & Schull
Bio-Rad
R.Langenbrinck
R.Langenbrinck
VWR

VWR

Sarstedt
Millipore
Sarstedt
Sarstedt
Roth
Marienfeld
Kimtech
Pechiney
Packaging
Sarstedt
Sarstedt
Millipore
Swann-Morton
Sarstedt

VWR
R.Langenbrinck
Brown

Plastic
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Trisodium phosphate Merck

Triton X-100 Roth

Tween® 20 Roth

Urea Merck

Western Lightning-ECL Enhanced Luminol Reagent Perkin Elmer

Western Lightning-ECL Oxidizing Reagent Perkin Elmer

2.1.2 Consumables

Consumable Producer

15 ml tube Sarstedt

50 ml tube Sarstedt

96-well white non-binding plate for luciferase assay Greiner bio-one

Autoclave tape VWR

Cell scraper Sarstedt

Centrifuge tubes for centrifuge (20 ml) Beckman  coulter
GmbH

Chromotography paper “3MM Chr” Whatman

Cover glasses 24 x 40 mm Roth

Cover glasses 24 x 60 mm Roth

CryoPure tube 1.8 ml Sarstedt

Culture flasks Schott duran

Filter tips Sarstedt
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Task wipes Kimtech
Tissue culture dishes Sarstedt
Tissue culture flasks Sarstedt
Tissue culture plates Sarstedt
2.1.3 Enzymes
A. Restriction enzymes
Enzyme Producer
BamHI-HF: 20 U/ul NEB
EcoRI-HF: 20 U/ul NEB
KpnI-HF: 20 U/ul NEB
Miul: 10 U/ul Fermentas
Nhel-HF: 20 U/ul NEB
Xhol: 20 U/ul NEB
B. DNA and RNA modifying enzymes
Enzyme Producer
BAP (Bacterial alkaline phosphatase): 150 U/ul Invitrogen
T4 DNA ligase: 400 U/ul NEB
Phusion® DNA Polymerase: 2 U/ul Finnzymes
RNase A: 1ug/ul Serva
2.1.4 Equipment and instruments
Equipment/ Instrument Producer
Agarose gel documentation system “Gel Max” Intas
Agarose gel electrophoresis apparatus “Horizon 58” Gibco BRL™
Autoclave “Systec 5050 ELV” Tuttnauer
Battery powered pipette filler for all pipetting from 0.1 ml to Hitschmann
200 ml Pipetus®-akku Laborgerte
Bunsen burner Usbeck
Centrifuge “Heraeus Pico 17”7 with Ch.500005 PP rotor Thermo Scientific
Chemiluminescence system “Fusion Fx7” Vilber Lour-

mat  Deutschland
GmbH



Rotating wheel for Eppendorf-tubes

Spectrophotometer “U-2000”
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CO2 incubator “APT.line™CB” Binder

Confocal microscope “LSM 510 Meta” Zeiss

Cryostat “Leica CM3050s” Leica

Electrophoresis power supply “PS 608” Gibco BRL™

Electrophoresis power supply “Standard Power Pack P25” Biometra

Electroporator “Gene Pulser Xcell™ Electroporation System” Bio-Rad

Filter catridge set “Seralpur PRO 90 CN” Seral

Fluorescence microscope “Axiovert 200” Zeiss

Flow cytometry system “CyFlow Space” Partec

Freezers -20°C Privileg

Freezers -80°C “Herafreeze” Heraeus

Gel electrophoresis chamber “Owl™EasyCastT™B2 Mini Gel Thermo Scientific

Electrophoresis Systems”

Heating block “VLM LS 17 VLM

Hot plate with a magnetic stirrer “MR 2002” and “MR 3001” Heidolph

Ice machine “AF-10” Scotsman

Incubator “Kelvitron t” Heraeus

Incubator “Unitron” Infors

Laboratory balance “KERN 770" KERN & Sohn
GmbH

Laboratory pH Meter “CG 842” SCHOTT  Gerte
GmbH

Laminar flow bench “Lamin Air HA 2448 GS” Heraeus

LightCycler® 480 1I Roche

Liquid nitrogen container “ARPEGE TP 170" Air Liquide Medi-
cal GmbH

Microplate luminometer “MicroLumat Plus LB96V” Berthold Technolo-
gies

Microtome “Leica RM2255” Leica

Microscope “Nikon Eclipse T'S 100” Nikon

Microwave “Privileg 8016 G” Privileg

pH electrode “SenTix60” WTW

Pipette 2-20, 20-200 Labmate

Pipette P2, P10N, P1000 Gilson

Refrigerated centrifuge “Avanti® J-26 XP” with rotor Ja-10 Beckman Coulter

and Ja-25.50

Refrigerated centrifuge “Multifuge 3 L-R” with rotor Ch. Heraeus

2454

Refrigerated centrifuge “Sigma 3K20” with rotor Nr. 12158  B.Braun, Labora-
tory  Centrifuges
GmbH

Refrigerators Privileg

Rocking platform shaker “Duomax 1030” Heidolph

Workshop of Uni-
versity of Regens-
burg NWF III
Hitachi
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Tabletop high-speed micro centrifuge“HITACHI himac VWR
CT15RE” with rotor T15A61-1041
Thermal cycler “MyCycler” Bio-Rad
Thermomixer “5436” for Eppendorf tubes Eppendorf
Trans-Blot® SD Semi-Dry ElectrophoreticTransfer Cell Bio-Rad
Transmission electron microscope “EM Zeiss 902” Zeiss
Ultramicrotome “Ultracut E” Reichert Jung
UV-visible spectrophotometer “Evolution 201” Thermo Scientific
Vacuum gas pump VWR
Vertical gel electrophoresis cell “Mini Protean Tetra cell” Bio-Rad
Vortexer “Vortex-Genie 2” Scientific Industries
Weighing scale “BL 1500 S” Sartorius

2.1.5 Software

A. Programs
Program Purpose Company

Adobe Photoshop

BiolD

FCS express version 3
FileMaker Pro 6
Fusion version 15.18
ImageJ 1.46r

LightCycler®480 1.5.0
Microsoft Excel

Microsoft Word
SPOT Advanced 4.0.9

Thermo Insight 1.4.40

ZEN (blue edition)

Digital image processing

Optical density
FACS data analysis
Institute databases
WB imaging

Real-time PCR

Data calculations, dia-
grams and tables

Word processing

Image processing

DNA/RNA concentration
measurement
LSM images visualization

B. Internet databases and software

Adobe Systems Incorpo-
rated

Vilber Lourmat

De Novo Software
FileMaker, Inc.

Vilber Lourmat

National Institutes of
Health

Roche

Microsoft

Microsoft
Diagnostic
Inc.
Thermo Scientific

instruments,

Carl Zeiss Microlmaging
GmbH

Name of the
database/software

Purpose

Internet address
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EMBOSS: stretcher

Nucleotide
Primer3

Protein

PubMed

RestrictionMapper

UCSC
Browser
Universal ProbeLi-
brary Assay Design
Center

Genome

Needleman-Wunsch

alignment of two se-
quences
Gene and transcript
source

Primer design

Protein sequence source
Biomedical literature
search

Mapping sites for re-
striction enzymes in
DNA sequences
Promoter studies

Primer design for RT-
qPCR

www.emboss.bioinformatics.nl/cgi-
bin/emboss/stretcher

www.ncbi.nlm.nih.gov/nuccore
www.bioinfo.ut.ee/primer3-
0.4.0/primer3
www.ncbi.nlm.nih.gov/protein

www.ncbi.nlm.nih.gov/pubmed

www.restrictionmapper.org

www.genome.ucsc.edu

www.lifescience.roche.com

2.1.6 Kits
Kit name Producer
E.Z.N.A.® Gel Extraction Kit VWR
iScript™cDNA Synthesis Kit Bio-Rad

NucleoSpin® RNA II

Western Lightning Chemiluminescence Reagent

Macherey-Nagel
Perkin Elmer

Wizard® Plus Midipreps DNA Purification System Promega

2.1.7 Antibodies

A. Primary antibodies, peptides
Name Immunogen/Epitope Species Dilution Source
12CA5 HA-epitope Mouse mAb  1:30 WB, IF  J. Kyriakis
Acti-stain- F-actin - 1:500 IF Cytoskeleton
555 Flu-
orescent

Phalloidin
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Acti-stain- F-actin - 1:500 IF Cytoskeleton
488 Flu-
orescent
Phalloidin
Anti-Abra mouse Abra Rabbit, poly- 1:100 WB this work

clonal
1:1 IF
Anti-Actin C-terminal actin frag- Rabbit, poly- 1:2500 WB Sigma-Aldrich
ment (C11 peptide at- clonal
tached to MAP back-
bone)
Anti-Arl4c aa of mouse Arldc Rabbit, poly- 1:30 WB this work
clonal
undiluted IF
Anti-Cretl Peptide mapping near Goat, poly- 1:500 WB Santa Cruz
N-terminus of NICE-1 clonal Biotechnology
of human origin
1:2500 IF
Anti- 314-333 aa of mouse Rabbit poly- 1:10000 WB  Sigma-Adrich
GAPDH GAPDH clonal
Anti-His6 Histidine-Tagged Pro- Mouse mAb  1:100 WB Calbiochem
teins
Anti-LMX1B  322-395 aa of human Mouse mAb  1:10 WB D. Heudobler
LMX1B, clone 193-67
Anti-Paxillin ~ 1-557 aa of chicken Mouse mAb  1:10000 WB  BD Transduc-
paxillin tion Laborato-
ries

B. Secondary antibodies
Name Immunogen/Epitope Species Dilution Source
Anti-goat Goat IgG Donkey, 1:100 1F Santa Cruz
IgG  FITC- polyclonal Biotechnology
conjugated
Anti-mouse Mouse IgG, Fab spe- Goat, poly- 1:10000 WB  Sigma-Aldrich
IeG (Fab cific clonal
specific)
peroxidase

conjugate
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Anti-mouse ~ Mouse IgG (H&L) Goat, poly- 1:400 IF Dianova
IgG Cy™3- clonal

conjugated

Anti-mouse Mouse IgG Goat, poly- 1:150 IF Cappel
IeG  (whole clonal

molecule)

FITC-

conjugated

Anti-rabbit Rabbit IgG Goat, poly- 1:20000 WB  Sigma-Aldrich
IeG  (whole clonal

molecule)

peroxidase

conjugate

Anti-rabbit ~ Rabbit IgG (H&L) Goat, poly- 1:300 IF Dianova
IgG Cy™3- clonal

conjugated

Anti- Rabbit IgG (H&L) Donkey, 1:600 IF Rockland
rabbit  IgG polyclonal

DyLight™405

conjugated

2.1.8 Oligonucleotides
A. Oligonucleotides for PCR

Oligonucleotides for PCR were synthesized by Metabion (Planegg). “F” and “R” stands
for “Forward” and “Reverse” primers, respectively. T,, is the melting temperature of
oligonucleotides calculated with OligoAnalyzer 3.1.

Name Sequence [5’-3’] T,, [°C]

Cloning to pGL4.10

Nhel- ATT TGC GCT AGC TCA GAT GCC GTT GAA CTC TG 64.7
hABRA.wt F

Xhol- GCA AAT CTC GAG GAG GCT GGA GTG CAG TGG 66.8
hABRA.wt R

Nhel- ATT TGC GCT AGC AGC ATC TCC ATC CCA AAC AG 65.0
hARL4C.wt F
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Xhol-

hARLAC.wt R

Nhel-
hIL6.wt F

Xhol-
hIL6.wt R

BamHI-
Kozak-HA-
mAbra F

Xhol-
mAbra R

BamHI-
Kozak-HA-
mArldc F

Xhol-
mArldc R

BamHI-
Kozak-HA-
mCrctl F

Xhol-
mCrctl R

BamHI-
mAbra F

Xhol-
mAbra R

BamHI-
mArldc F

Xhol-
mArldc R

BamHI-
mCrctl F

GCA AAT CTC GAG ACC CAG CTG AGA CCA GAG AA

ATT TGC GCT AGC TGA GAC CAA GGA TCC TCC TG

GCA AAT CTC GAG AGT TCA TAG CTG GGC TCC TG
Cloning to pcDNA3.1

ATT TGC GGA TCC GCC ACC ATG TAC CCA TAC GAC
GTC CCA GAC TAC GCT ATG GCT CCA GGA GAA
AGG GA

ATT TGC CTC GAG TTA CTC AAG GAG AGT AAT C
ATT TGC GGA TCC GCC ACC ATG TAC CCA TAC GAC
GTC CCA GAC TAC GCT ATG GGC AAC ATC TCC TCC
AAC

ATT TGC CTC GAG TTA CCG CTT CTT CTT CTG C
ATT TGC GGA TCC GCC ACC ATG TAC CCA TAC GAC
GTC CCA GACTAC GCT ATG TCT CAA CAG GGC GCC
A

ATT TGC CTC GAG TCA GCA GCC ACC GGA GCA G

Cloning to pET21a

ATT TGC GGA TCC ATG GCT CCA GGA GAA AGG GA

ATT TGC CTC GAG CTC AAG GAG AGT AAT CAC

ATT TGC GGA TCC AAG TCG CTG CCG GTG GCC G

ATT TGC CTC GAG CCG CTT CTT CTT CTG CTT G

ATT TGC GGA TCC ATG TCT CAA CAG GGC GCC A

65.1

65.4

64.3

73.5

99.3

72.9

63.3

73.9

69.3

66.9

61.4

71.4

65.2

67.9
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Xhol-
mCrctl R

Xhol-
mAbra F

Kpnl-
mAbra R

Xhol-
mArldec F

Kpnl-
mArldc R

Xhol-
mCrctl F

Kpnl-
mCrctl R

BamHI-
mAbra F

Miul-
mAbra R

BamHI-
mArldec F

Mlul-
mArlde R

BamHI-
mCrctl F

Miul-
mCrctl R

rtTA F

rtTA R

ATT TGC CTC GCA GCC ACC GGA GCA GCA G

Cloning to pminiSOG-C1-mCherry

ATT TGC CTC GAG TAA TGG CTC CAG GAG AAA
GGG A

ATT TGC GGT ACC TTA CTC AAG GAG AGT AAT CAC
ATT TGC CTC GAG TAA TGG GCA ACA TCT CCT CCA
AC

ATT TGC GGT ACC TTA CCG CTT CTT CTT CTG CTT
G

ATT TGC CTC GAG TAATGT CTC AAC AGG GCG CCA

ATT TGC GGT ACC TCA GCA GCC ACC GGA GCA
GCA GCA G

Cloning to pLVPT-rtTR-KRAB-2SM2

ATT TGC GGA TCC ATG GCT CCA GGA GAA AGG G

ATT TGC ACG CGT GGC TCA AGG AGA GTA ATC AC

ATT TGC GGA TCC ATG GGC AAC ATC TCC TCC AAC

ATT TGC ACG CGT GGCCGCTTCTTCTTCTGC TTG

ATT TGC GGC TCC ATG TCT CAA CAG GGC GCC

ATT TGC ACG CGT GGG CAG CCA CCG GAG CAG

CAG

Oligonucleotides for PCR from genomic DNA

CCC ACT TCT GAG ACA ACG

GGT CAA AGT CGT CAA GGG

71.1

65.9

60.7

65.2

64.2

66.3

72.2

66.3

64.7

66.1

68.1

67.2

73.5

52.8

53.2
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Tomato F CTC TGC TGC CTC CTG GCT TCT 61.6
Tomato R1 CGA GGC GGA TCA CAA GCA ATA 57.5
Tomato R2 TCA ATG GGC GGG GGT CGT T 62.3
Cre F TGG ACA TGT TCA GGG ATC GC 57.4
Cre R TCA GCT ACA CCA GAG ACG GA 57.4
Floxed AGG CTC CAT CCA TTC TTC TC 54.1
Lmz1b F

Floxed CCA CAA TAA GCA AGA GGC AC 54.1
Lmz1b R

Oligonucleotides for qPCR
luc2 F CAT GAC CGA GAA GGA GAT CG 54.8

luc2 R CAG CTT CTT GGC GGT TGT A 55.4

B. Oligonucleotides for site-specific mutagenesis

Oligonucleotides for PCR were synthesized by Metabion (Planegg). “F” and “R” stands
for “Forward” and “Reverse” primers, respectively. T,, is the melting temperature of
oligonucleotides calculated with OligoAnalyzer 3.1.

Name Sequence [5’-3] T,, [°C]
Abra-mut F CTG TAG ATT AAG TCT AGA ATC ACT TCC C 54.4
Abra-mut R GGG AAG TGA TTC TAG ACT TAA TCT ACA G b4.4

Arldc-mut F GTC CAG CCA AGT AAG CTT GAT GAA ATG AAA ATA 59.3
ATA G

Arldc-mut R CTA TTA TTT TCA TTT CAT CAA GCT TAC TTG GCT  59.3
GGA C

C. Oligonucleotides for cloning of shRNAs into pInducer10 vector

The shRNAs were designed using the miR RNAi design option of the Block-iT RNAi
Designer program. “T” and “B” stands for “Top” and “Bottom” strands, respectively.
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Name Sequence [5’-3]
Xhol-Arldc- TCG AGT AAC GAT GTG CAG AGA CTG GAG TTT TGG
shRNA # 559 T CCA CTG ACT GAC TCC AGT CTG CAC ATC GTT AG

EcoRI-Arldc— AAT TCT AAC GAT GTG CAG ACT GGA GTC AGT CAG
shRNA # 559 B TGG CCA AAA CTC CAG TCT CTG CAC ATC GTT AC

Xhol-Arl4c- TCG AGC AAA CTT GGT CAC CTT GTG CAG TTT TGG
shRNA # 850 T CCA CTG ACT GAC TGC ACA AGG ACC AAG TTT GG

EcoRI-Arldc— AAT TCC AAA CTT GGT CCT TGT GCA GTC AGT CAG
shRNA # 850 B TGG CCA AAA CTG CAC AAG GTG ACC AAG TTT GC

Xhol-Arl4c- TCG AGT CAT AGA GCT TGT CCA TGC CCG TTT TGG
shRNA # 1037T CCA CTG ACT GAC GGG CAT GGA AGC TCT ATG AG

EcoRI-Arldc— AAT TCT CAT AGA GCT TCC ATG CCC GTC AGT CAG
shRNA # 1037B TGG CCA AAA CGG GCA TGG ACA AGC TCT ATG AC

2.1.9 Vectors
A. Outside plasmids

Vector Selection Source
marker
mEmerald-FAK kan M. W. Davidson (National High Mag-

netic Field Laboratory, Florida State
University)

mEmerald-Talin kan M. W. Davidson (National High Mag-
netic Field Laboratory, Florida State
University)

mEmerald-VASP kan M. W. Davidson (National High Mag-
netic Field Laboratory, Florida State
University)

Lifeact-GFP kan R. Faessler, S. Wickstroem (Max Plank
Institute of Biochemistry)

pcDNA3.1 amp Invitrogen

pcDNAG.2/N-EmGFP- amp T. Vallenius (University of Helsinki)

MYH9
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pCMYV delta R8.2 amp
pCMV-SPORT6.1/Crctl amp
pCR4-TOPO/Abra kan

pCS2+/GFP-UtrCH amp

pDEST /Lifeact-mCherry-N1  kan

pEGFP-a-actininl kan
pEGFP-a-actinin4 kan
pET21a amp
pEYFP/Arldc-wt kan
pEYFP/Arl4c-T27N kan
pEYFP/Arl4c-Q71L kan
pGL3-Enhancer amp
pInducer10 amp

pLVPT-rtTR-KRAB-2SM2  amp

pmCherry /Paxillin-C3 kan

Addgene
Source BioScience
Source BioScience

E. Kerkhoff (The Molecular Cell Biol-
ogy Laboratory, University of Regens-
burg)

Addgene

C.A. Otey (Department of Cell Biol-
ogy and Physiology, UNC, Chapel Hill,
USA)

C.A. Otey (Department of Cell Biol-
ogy and Physiology, UNC, Chapel Hill,
USA)

Novagen

Th. Engel (Leibniz Institute for Arte-
riosclerosis Research, University Muen-
ster)

Th. Engel (Leibniz Institute for Arte-
riosclerosis Research, University Muen-
ster)

Th. Engel (Leibniz Institute for Arte-
riosclerosis Research, University Muen-
ster)

Promega

S.Elledge (Brigham and Women’s Hos-
pital, Boston)

Addgene

E. Kerkhoff (The Molecular Cell Biol-
ogy Laboratory, University of Regens-
burg)
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pmCherry-C1/Zyxin kan E. Kerkhoff (The Molecular Cell Biol-
ogy Laboratory, University of Regens-
burg)

pMD2.G amp Addgene

pminiSOG-C1 kan M. W. Davidson (National High Mag-
netic Field Laboratory, Florida State
University)

pYX-Asc/Arldc amp Source BioScience

Vinculin-Venus amp Addgene

B. Own constructs

Name of construct Size of in- 5’ cloning 3’ cloning Resistance
sert [kbp] site site

pcDNA3.1/HA-mAbra 1.1 BamHI Xhol amp
pcDNA3.1/HA-mArl4c 0.6 BamHI Xhol amp
pcDNA3.1/HA-mCret1 0.3 BamHI Xhol amp
pET21a/mAbra-His 1.1 BamHI Xhol amp
pET21a/mArl4c-His 0.4 BamHI Xhol amp
pET21a/mCrect1-His 0.3 BamHI Xhol amp
pGL4.10/hAbra.wt 0.4 Nhel Xhol amp
pGL4.10/hArl4c.wt 1.9 Nhel Xhol amp
pGL4.10/hIL6.wt 1.3 Nhel Xhol amp
pInducer10/shRNA-Arldc  0.065 Xhol EcoRI amp
4559

pInducer10/shRNA-Arl4c 0.065 Xhol EcoRI amp
4850

pInducer10/shRNA-Arldc  0.065 Xhol EcoRI amp

#1037
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pLVPT-rtTR-KRAB- 1.1 BamHI Miul
2SM2/mAbra-GFP

pLVPT-rtTR-KRAB- 0.6 BamHI Miul
2SM2/mArl4c-GFP

pLVPT-rtTR-KRAB- 0.3 BamHI Miul
2SM2/mCrct1-GFP

pminiSOG-C1- 1.1 Xhol Kpnl
mCherry/mAbra

pminiSOG-C1- 0.6 Xhol Kpnl
mCherry/mArl4c

pminiSOG-C1- 0.3 Xhol Kpnl
mCherry/mCrct1

2.1.10 Cells

A. Bacterial strains

amp

amp

amp

kan

kan

kan

Strain Antibiotic resistance
DHbH« none
BL21(DE3) none
BL21(DE3)pLysS chloramphenicol
Rosetta(DE3)pLysS chloramphenicol
TOP 10 none
B. Cell lines
Name Description Source
COS-7 African green monkey kidney B. Royer-Pokora (Institute of Hu-
fibroblast-like cell line man Genetics, Heidelberg)
HEK293T Human Embrionic Kidney 293 W. Nickel (University of Heidel-

cells, which constitutively express
the simian virus 40 (SV40) large
T antigen

berg, Biochemistry Center)
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Murine
podocyte
cell line

Human
podocyte
cell line

HtTA-
1/myc-
LMX1B
clone #34

Podocytes isolated from H-
2kb-tsA58 mice, which carried
temperature-sensitive SV40 large
T antigen under control of the
IFN-v-inducible H-2kb promoter

conditionally immortalized hu-
man podocyte cell line trans-
fected with the temperature-
sensitive SV40-7 gene

HtTA-1 transfected
pUHD10-3/myc-LMX1B

with

C. Mouse strains

K. Endlich (University of Heidel-
berg, Institute of Anatomy and
Cell Biology I)

M.A. Saleem (University of Bris-
tol)

A. Rascle (University of Regens-
burg)

Name

Description

Source

Lmaxl b2loxP

P2.5-rtTA

LC-1

mT/mG

LoxP sites are above and below of
exons 4 and 6 respectively

Gene for reverse tetracycline-
dependent transactivator (rtTA)
under the control of 2.5 kbp of hu-
man NPHS2 promoter

Expression of the luciferase and
cre gene is regulated by the Tet
system

Expression of membrane-targeted
tandem dimer Tomato (mT) prior
to Cre-mediated excision and
membrane-targeted green fluores-
cent protein (mG) after excision

2.1.11 Media, solutions, buffers

R. Johnson (MD Anderson Can-
cer Center, Houston, USA)

J.Kopp (NIH, Bethesda, USA)

H. Bujard (ZMBH, Heidelberg)

T.Huber (Nephrology, University
Medical Center, University of
Freiburg)

A. Media and solutions for work with bacteria
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Medium /solution

Components

LB Broth

LB Broth with agar
(Agar plates)

Transformation and
storage solution (TSS)

Amount per 1 liter:
10 g Bacto-Tryptone
5 g Yeast Extract

10 g NaCl

Amount per 1 liter:
10 g Bacto-Tryptone
5 g Yeast Extract

10 g NaCl

15 g Bacto Agar

After autoclaving medium was cooled to
about 50°C and appropriate antibiotics were
added. Approximately 25 ml were poured
into each plate. Inverted plates were stored

at 4°C.

10% PEG 3350
5% DMSO
LB medium

B. Solutions and buffers for DNA isolation, cloning and electrophoresis

Solution/buffer

Components

Cell lysis solution
(Alkaline SDS solution)

Cell resuspension solution

(GTE buffer)

CutSmart buffer, 1x

DNA loading buffer, 5x

0.2 M NaOH/1% SDS

50 mM glucose
25 mM Tris, pH 8.0
10 mM EDTA pH 8.0

50 mM Potassium acetate
20 mM Tris acetate

10 mM Magnesium acetate
100 pg/ml BSA

pH 7.9 at 25°C

0.125% bromophenol blue
15% Ficoll type 400

50 mM EDTA, pH 8.0
0.5% SDS
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dNTP, 10 mM

NEBuffer 1.1, 1x

NEBuffer 2.1, 1x

NEBuffer 3.1, 1x

Potassium acetate solution

Sodium acetate, 3 M

Solution 1 for genomic DNA
isolation from blood

Solution 2 for genomic DNA
isolation from blood

T4 DNA ligase buffer

TAE, 50x

10 mM dATP, 10 mM dTTP, 10 mM dCTP,
10 mM dGTP

10 mM Bis Tris Propane-HCI
10 mM MgCl,

100 pg/ml BSA

pH 7.0 at 25°C

50 mM NaCl

10 mM Tris-HC1
10 mM MgCl,
100 pg/ml BSA
pH 7.9 at 25°C

100 mM NaCl
50 mM Tris-HC1
10 mM MgCl,
100 pg/ml BSA
pH 7.9 at 25°C

5 M potassium acetate
pH 4.8 was adjusted with 5 M acetic acid

3 M sodium acetate
pH 5.2 was adjusted with glacial acetic acid

10 mM Tris, pH 7.6
10 mM KCI
2.4% NP-40

10 mM Tris pH 7.6
10 mM KCI

0.5 M NaCl

2 mM EDTA

0.5% SDS

50 mM Tris-HCI
1 mM ATP

10 mM DTT
pH 7.5 at 25°C

2 M Tris
0.1 M EDTA
pH 8.0 was adjusted with acetic acid
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C. Buffers for protein isolation

Buffer

Components

G actin buffer

Protein lysis buffer

1% Triton X-100

20 mM Tris, pH 7.4

5 mM EGTA, pH 74

20 mM NaF

25 mM sodium pyrophosphate
10 mM DTT

0.5 mM PMSF

2 pg/ml leupeptin

2 pg/ml aprotinin

prepared each time fresh

1x PBS

1% Triton X-100
6 M urea

stored at 4°C

D. Buffers for protein electrophoresis

Buffer

Components

Laemmlie buffer, 5x
(SDS-PAGE loading buffer)

Lower gel buffer, 4x

SDS-PAGE Running buffer, 10x

Upper gel buffer, 4x

2% SDS

5% [-mercaptoethanol or 200 mM DTT

20% glycerol
0.1% bromophenol blue
62.5 mM Tris-HCI, pH 6.8

1.5 M Tris, pH 8.8
0.4% SDS

0.25 M Tris base
1.92 M glycine
1% SDS

0.5 M Tris, pH 6.8
0.4% SDS
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Resolving gel components

10% 12% 15%

30% acrylamide/ 0.8% bisacrylamide ~ 1.66 ml  1.98 ml  2.46 ml
4x lower gel buffer, pH 8.8 1.25ml  1.25ml  1.25 ml
deionized water 2.07ml  1.75ml 1.27 ml
TEMED 2.9 ul 2.9 ul 2.9 ul
10% APS 139l 139wl 139 ul

Stacking gel components 4%

30% acrylamide/ 0.8% bisacrylamide  0.39 ml

4x upper gel buffer, pH 6.8 0.75 ml

deionized water 1.84 ml

TEMED 3 ul

10% APS 15 ul

E. Solutions and buffers for protein detection

Solution/buffer

Components

Amido black destaining solution

Amido black staining solution

Blocking buffer

PBST

Semi-dry transfer buffer, 1x

50% methanol
10% acetic acid

1.5 mM amido black 10 B
50% methanol
10% acetic acid

5% low-fat milk in PBST buffer

0.02% Tween® 20
1x PBS

25 mM Tris base
192 mM glycine
20% methanol
0.02% SDS

F. Buffers for recombinant protein purification
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Buffer Components
Binding buffer, 8x 40 mM imidazole
4 M NaCl

Charge buffer, 8 x

Elute buffer, 4 x

SDS-sample buffer

Strip buffer, 2x

Wash buffer, 4x

G. Buffers for coupling of proteins

160 mM Tris-HCI, pH 7.9

4 M imidazole
2 M NaCl
80 mM Tris-HCI, pH 7.9

125 mM Tris, pH 6.7
2.5% SDS

10% glycerol

2.5% [-mercaptoethanol
0.01% bromophenol blue

200 mM EDTA
1 M NaCl
40 mM Tris-HCI, pH 7.9

240 mM imidazole
2 M NaCl
80 mM Tris-HCI, pH 7.9

Buffer Components
Coupling buffer 100 mM NaHCOg, pH 8.3
500 mM Na(Cl

Wash buffer 1

Wash buffer 2

100 mM NaAc, pH 4.0
500 mM NaCl

100 mM NaHCOg, pH 8.0
500 mM NaCl

H. Buffers for affinity purification of antibodies
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Buffer Components
Wash buffer A 10 mM Tris-HCI, pH 7.5
170 mM NaCl

Wash buffer B

Wash buffer C

10 mM Tris-HCI, pH 7.5
170 mM NaCl
0.02% Tween® 20

10 mM Tris-HCI, pH 7.5
500 mM NaCl
0.02% Tween® 20

I. Media, solutions and buffers for work with cells

Medium /solution/buffer Components
Ca*"-buffer 150 mM NaCl
(Krebs-Henseleit Buffer) 5 mM KCl

DEAE-dextran/chloroquine
solution

Freezing medium

PBS, 10x, pH 7.5

2.2 mM CaCl,-2H50

1 mM MgCly-6H50

5 mM glucose (CgH1204-H20)
10 mM HEPES

1x PBS

10 mg/ml DEAE-dextrane
2.5 mM chloroquine
Solution was stored at 4°C

10% DMSO in FCS

Solution A:

1.4 M NaCl

Solution B:

Solution A was adjusted to pH 7.5 with so-
lution B
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2.2 Working with bacteria

2.2.1 Storage and inoculation of bacteria

The work with bacteria was carried out under sterile conditions near the flame. All
solutions were autoclaved at 121°C and 1 bar for 20 min. Solutions containing heat-
sensitive components (e.g. antibiotics, IPTG) were filter-sterilized through an 0.20 pm
filter. Bacterial cultures were shortly (days/weeks) stored at 4°C on antibiotic plates or in
15 ml tubes with LB medium containing suitable antibiotic. For long-term storage 600 pl
of freshly saturated bacterial cultures were frozen at -80°C in CryoTube vial containing
300 ul of 100% glycerol.

Bacterial cultures were inoculated with overnight cultures diluted 1:100 or with splin-
ter of solid ice from frozen bacterial stock and were grown in Erlenmeyer flask in LB
medium with appropriate antibiotic. All bacterial cultures were grown overnight (~16 h)
at 37°C with constant agitation (250 rpm, “Unitron”). Working concentrations of an-
tibiotics used in this work are shown in Table 2.1. All antibiotics were stored at -20°C.

Antibiotic Working concentration [pg/ml]
Plates: 50
Ampicilli
fapictn Liquid cultures: 500
Chloramphenicol 34
Kanamycin 30

Table 2.1: Working concentration of antibiotics

2.2.2 Transformation of chemically competent bacteria
A. Cell preparation

The fresh overnight bacterial culture of DH5« strain was diluted 1:100 in LB medium and
was incubated at 37°C with constant agitation (250 rpm, “Unitron”) until cells reached
an ODgg of 0.4 to 0.5. Cells were pelleted by centrifugation (10 min, 2500 rpm, 4°C,
“Multifuge 3 L-R”, rotor Ch.2454). The supernatant was removed and the pellet was
resuspended in 1/10 of the initial volume of bacterial culture in TSS buffer. 200-ul
aliquots were immediately frozen at -80°C.

B. Cell transformation

10 ul of plasmid DNA were added to 200 ul of chemically competent cells and incubated
for 30 min on ice. Cells were placed at 42°C for 90 s and then again on ice for 2 min.
Cells containing DNA were transferred into a 15 ml tube containing 800 ul of LB medium
and were grown at 37°C for 1 h with constant agitation (250 rpm, “Unitron”). 30 ul,
100 ul, 300 ul and the remaining bacterial culture was plated on LB plates containing
an appropriate antibiotic. Plates were incubated overnight at 37°C in the “Kelvitron t”
incubator.
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2.2.3 Bacteria transformation by electroporation
A. Cell preparation

The fresh overnight bacterial cultures of DH5« and TOP10 strains were diluted 1:100
in LB medium without antibiotics and were incubated at 37°C with constant agitation
(250 rpm, “Unitron”) until cells reached an ODgoy of 0.4 to 0.5. 50 ml of cell aliquots
were incubated on ice for 30 min and afterwards centrifuged (15 min, 4000 rpm, 4°C,
“Multifuge 3 L-R”, rotor Ch.2454). The supernatant was discharged, the cell pellet was
resuspended in 50 ml of ice-cold autoclaved water and incubated on ice for 15 min. The
cells were centrifuged (15 min, 4000 rpm, 4°C, “Multifuge 3 L-R”, rotor Ch.2454) and
the supernatant was discarded. The cell pellet was resuspended in 20 ml of ice-cold
water and after 15 min incubation on ice, the cells were centrifuged (15 min, 4000 rpm,
4°C, “Multifuge 3 L-R”, rotor Ch.2454). The supernatant was poured off and the cell
pellet was resuspended in 10 ml of ice-cold water. After 15 min of incubation on ice,
the cells were centrifuged (15 min, 4000 rpm, 4°C, “Multifuge 3 L-R”, rotor Ch.2454).
The supernatant was discarded and finally the pellet was resuspended in 10% ice-cold
glycerol. 100 pl of aliquots were directly frozen at -80°C.

B. Cell transformation

The electroporation device (“Gene Pulser Xcell™Electroporation System”) was set to
2.5kV, 25 uF. 10 ul of dialyzed ligation mixture were added to 100 ul of electro competent
cells and left on ice for 30 s. The cells were transferred into an electroporation cuvette,
which was wiped with a Kimtech wipe and placed in the sample chamber. Immediately
after applying an electric pulse, 200 ul of LB medium were added. Then bacteria were
transferred with a pipette in the 15 ml tube containing 800 pl of LB medium and were
grown at 37°C for 1 h with constant agitation (250 rpm, “Unitron”). 30 ul, 100 ul, 300 ul
and the remaining bacterial culture was plated on LB plates containing an appropriate
antibiotic. Plates were incubated overnight at 37°C in the “Kelvitron t” incubator.

2.2.4 Preparation of plasmid DNA by alkaline lysis with sodium
dodecyl sulfate: Minipreparation

Principle of the method

In this work plasmid DNA for colony screening was extracted using alkaline lysis miniprepa-
ration. This method is based on bacterial protein denaturation by sodium dodecyl sulfate
(SDS) treatment and chromosomal and plasmid DNA denaturation by NaOH. Potas-
sium acetate treatment precipitates chromosomal DNA and proteins which are removed
from solution by centrifugation. Moreover, potassium acetate reanneals covalently closed
plasmid DNA. During the last step ethanol precipitates plasmid DNA from the super-
natant (Birnboim and Doly, 1979).

Course of the experiment

A single bacterial colony was inoculated in 5 ml of LB medium and was grown overnight
at 37°C with constant agitation (250 rpm, “Unitron”). On the next day 1.5 ml of cells
were centrifuged (1 min, 13000 rpm, room temperature, centrifuge “Heraeus Pico 177,
Ch.500005 PP rotor). After that the supernatant was discarded. The cell pellet was
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resuspended in 100 pl of GTE buffer containing 5 pg/ml of RNase A and left for 5 min
at room temperature. 200 ul of alkaline SDS solution were added, mixed and incubated
on ice for 5 min. Afterwards 150 pul of potassium acetate solution were added and the
sample was vortexed for 2 s and incubated on ice for 5 min. The sample was centrifuged
twice (3 min, 13000 rpm, room temperature, “Heraeus Pico 177), each time transferring
the supernatant into a fresh 1.5 ml tube. 900 ul of 100% ethanol were added to the
supernatant and plasmid DNA was pelleted by centrifugation (30 min, 13000 rpm, 4°C,
“HITACHI himac CT15RE”, rotor T15A61-1041). The pellet was washed once with
600 ul of 70% ethanol and air-dried. Finally the pellet was dissolved with 50 pul of water
and analyzed for the presence of positive colonies by digestion with suitable restriction
enzymes.

2.2.5 Preparation of plasmid DNA with Wizard® Plus Midi-
preps DNA Purification System

Principle of the method

Purification of plasmid DNA with Wizard® Plus Midipreps DNA Purification System
is based on the ability of DNA to bind Wizard® Midipreps DNA Purification Resin.
Bacterial lysate is cleared before the binding of DNA to the resin. Finally DNA is
washed with Column Wash Solution and eluted with water.

Course of the experiment

1 ml of fresh bacterial culture or splinter of solid ice of frozen bacterial stock was inoc-
ulated in 100 ml of LB medium containing appropriate antibiotic. Bacteria were grown
in Erlenmeyer flask overnight (~16 h) at 37°C with constant agitation (250 rpm, “Uni-
tron”). Cells were collected by centrifugation (20 min, 3500 rpm, 4°C, “Multifuge 3
L-R”, rotor Ch.2425) and the pellet was dissolved in 3 ml of Cell Resuspension Solu-
tion (50 mM Tris-HCI pH 7.5, 10 mM EDTA, 100 pg/ml RNase A). Cells were lysed
with 3 ml of Cell Lysis Solution (0.2 M NaOH, 1% SDS) and neutralized with 3 ml of
Neutralization Solution (1.32 M potassium acetate, pH 4.8). The lysate was centrifuged
(30 min, 13000 rpm, 4°C, “Sigma 3K20”, rotor nr. 12158) and then the supernatant was
filtered through a filter paper. 10 ml of DNA Purification Resin were added to the DNA
solution. The resin/DNA mixture was transferred into the Midicolumn and the sample
was passed through a column. The Midicolumn was washed twice with 15 ml of Column
Wash Solution (80 mM potassium acetate, 8.3 mM Tris-HCI, pH 7.5, 40 uM EDTA).
The reservoir was separated from the Midicolumn and placed in a 1.5 ml tube. The resin
was dried by centrifugation (2 min, 13000 rpm, room temperature, “Heraecus Pico 177,
rotor Ch.500005 PP). Afterwards 300 pl of autoclaved preheated (65°C) water was added
to the resin and incubated for 1 min. Finally DNA was eluted by centrifugation (20 s,
13000 rpm, room temperature, “Heraeus Pico 177, rotor Ch.500005 PP). The reservoir
was removed and discarded. Purified DNA was stored at -20°C.
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2.3 Working with DNA

2.3.1 Isolation and purification of DNA
A. Genomic DNA extraction from blood
Principle of the method

Genomic DNA from blood was extracted using a method described by John et al. (John
et al., 1991). Hypotonic solution 1 separates white blood cells from the other blood
constituents. During centrifugation white blood cells form a pellet in the bottom of
the tube. NaCl in solution 2 disperses white blood cells and SDS lyses them thereby
releasing DNA. Afterwards DNA is extracted with phenol:chlorofrom:isoamyl and finally
precipitated with ethanol.

Course of the experiment

Equal volumes of blood and solution 1 for genomic DNA extraction from blood were com-
bined and inverted several times. Then the mixture was centrifuged (15 min, 2000 rpm,
room temperature, “Multifuge 3 L-R”, rotor Ch.2425). The supernatant was removed
and the pellet was resuspended in 1/5 volume of solution 2. The mixture was phenolized
until the interphase was clear. After every addition of phenol:chlorophorm:isoamyl, the
mixture was centrifuged (10 min, 4000 rpm, room temperature, “Multifuge 3 L-R”, rotor
Ch.2425). The upper phase was transferred to a new tube and DNA was precipitated
with 2 vol of 100% ethanol. Genomic DNA was recovered with a heat-sealed Pasteur
pipette and washed twice with 70% ethanol. DNA was air-dried and dissolved in water.

B. Phenol extraction and ethanol precipitation of DNA
Principle of the method

This method was used for the purification of PCR products. Addition of equal volumes of
phenol:chlorophorm:isoamyl to an aqueous solution of DNA leads to a phase separation
between an upper aqueous phase containing DNA and a lower organic phase. DNA
precipitates in 70% ethanol in the presence of monovalent cations. Salts and small organic
molecules are removed by washing the DNA pellet with 70% ethanol.

Course of the experiment

Equal volumes of phenol:chlorophorm:isoamyl (25:24:1) were added to the PCR product
and vortexed. The mixture was then centrifuged (10 min, 14000 rpm, room temperature,
“Heraeus Pico 177, rotor Ch.500005 PP). The upper aqueous phase containing DNA was
transferred into a new 1.5 ml tube. 1/10 vol of 3 M sodium acetate, pH 5.2, and 3 vol
of ice-cold absolute ethanol were added to the DNA solution and then centrifuged (1 h,
14000 rpm, 4°C, “HITACHI himac CT15RE”, rotor T15A61-1041). The supernatant
was removed and the pelleted DNA was washed once with 70% ice-cold ethanol (10 min,
14000 rpm, 4°C, “HITACHI himac CT15RE”, rotor T15A61-1041). The pellet was air-
dried and then dissolved in autoclaved water.
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C. DNA restriction fragment extraction from agarose gel with E.Z.N.A.® Gel
Extraction Kit

Principle of the method

The E.Z.N.A.® Gel Extraction Kit was used during this work for the extraction and pu-
rification of restriction fragments from agarose gel. The method is based on the reversible
DNA binding to the HiBind DNA Mini Column. Contaminations, such as restriction en-
zymes or salts, are removed from the column during the washing step and purified DNA
fragments are eluted with a low salt buffer.

Course of the experiment

DNA was separated on agarose gel and a fragment of interest was excised with a scalpel.
The weight of the gel fragment containing DNA was estimated and the appropriate volume
of Binding Buffer (XP2) was added [1 ml of Binding Buffer (XP2) per 1 g of a gell.
The mixture was incubated at 60°C for 7 min on “Thermomixer 5436 for Eppendorf
tubes”. The HiBind DNA Mini Column was placed in a 2 ml collection tube and the
DNA /agarose solution was added to the HiBind DNA Mini Column. The column was
centrifuged (1 min, 10000x g, room temperature, “Heraeus Pico 177, rotor Ch.500005 PP)
and the flow-through was discarded. When the volume of the DNA /agarose mixture
was more than 700 pl, loading and centrifugation steps were repeated. Subsequently
300 pl of Binding Buffer (XP2) were added into the HiBind DNA Mini Column and the
column was centrifuged (1 min, 13000x g, room temperature, “Heraeus Pico 17”7, rotor
Ch.500005 PP). The flow-through was discarded and the column was placed in the same
collection tube. The column was washed twice with 700 pl of SPW Wash Bulffer, after
each SPW Wash Buffer application the column was centrifuged (1 min, 13000x g, room
temperature, “Heraeus Pico 177, rotor Ch.500005 PP). The flow-through was discarded.
After the last washing step, the empty column was centrifuged (2 min, 13000x g, room
temperature, “Heraeus Pico 17”7, rotor Ch.500005 PP) and the column was placed in
a fresh 1.5 ml tube. 30 ul of Elution Buffer (10 mM Tris-HCI, pH 8.5) was added to
the column and incubated for 2 min at room temperature. Finally the column was
centrifuged to elute the DNA (1 min, 13000x g, room temperature, “Heraeus Pico 177,
rotor Ch.500005 PP). The eluted DNA was stored at -20°C.

2.3.2 Estimation of DNA concentration
A. Concentration via OD measurement

The DNA concentration was measured spectrophotometrically at a wavelength of A =
260 nm against water (UV-Visible spectrophotometer “Evolution 201”). Assuming that
1 Aggo U of dsDNA equals 0.05 ng/ul HoO, the concentration of DNA was calculated
using the following formula:

CDNA [}lg/ul] = A260 x 0.05 x DF, (21)

where DF is the dilution factor. The purity of the isolated DNA was assessed by mea-
suring the absorbance at a wavelength A = 280 nm (maximum absorption of proteins)
and determining the Aggy/Aggg ratio. The ratio of well-purified DNA should be > 1.8.
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B. Estimation the amount of DNA in agarose gels

In order to estimate the amount of DNA in agarose gels, 1 ul of DNA was mixed with
21 ul of 1x DNA sample buffer. 2 and 20 ul of diluted DNA and 100 ng of molecular
weight size marker were separated on agarose gel. 2 ul of diluted DNA corresponded to
the concentration in 0.1 ul, while 20 ul to the concentration in 1 ul. DNA concentration
was estimated by comparing the analyzed bands with the molecular weight size marker.

2.3.3 Agarose gel electrophoresis

The required amount of agarose was mixed with 1x TAE buffer (for 1% agarose gel 1 g
of agarose was mixed with 100 ml of 1x TAE buffer). The concentration of agarose gel
depends on the size of DNA fragments. The mixture was heated in a microwave oven to
melt the agarose, then ethidium bromide was added in order to reach a final concentration
of 0.5 ug/ml. The gel was poured into a tray with a comb where it solidified. DNA samples
were mixed with 5x DNA loading buffer. Samples and 100 ng of molecular weight size
marker were loaded into the wells. Electrophoresis was performed in 1x TAE buffer at
a voltage of 130 V for 30 min (minigel), 130 V for 40 min (midigel) or 15 V overnight
(preparative gel). The electrophoretically separated DNA fragments were visualized by
placing an agarose gel on UV light and photographed by the agarose gel documentation
system “Gel Max”.

2.3.4 The Polymerase Chain Reaction
Principle of the method

The Polymerase Chain Reaction (PCR) is a rapid method for the amplification of selected
sequences of double-stranded DNA. PCR consists of three steps: denaturation of DNA
(separation of two DNA strands), primer annealing to the target sequence and DNA
synthesis (extension).

Course of the experiment

PCR was performed by making use of Phusion High Fidelity DNA Polymerase. Fach
reaction mixture contained 10 pl of 5x Phusion HF Buffer, 1 ul of 10 mM dNTPs, 2.5 pul
of 10 uM forward primer, 2.5 pl of 10 uM reverse primer, DNA template (10 ng of plasmid
DNA or 150 ng of genomic DNA), 0.5 ul of Phusion DNA Polymerase. Finally water
was added in order to obtain a total volume of 50 pl. Table 2.2 shows a typical cycling
protocol for PCR.

2.3.5 Site-directed mutagenesis

Site-directed mutagenesis was performed by making use of Pfu DNA Polymerase. Each
reaction mixture contained 50 ng of the plasmid targeted for mutagenesis, 125 ng of each
primer, 10 mM dNTP, 2.5 U of Pfu DNA Polymerase and 5 ul of 10x reaction buffer.
Finally water was added to obtain a total volume of 50 ul. Table 2.3 shows a cycling
protocol for site-directed mutagenesis.

Following the cycling protocol, the mixture was placed on ice for 2 min to cool the
reaction to < 37°C. To digest the parental (i.e., the nonmutated) dsDNA, 1 ul of the
restriction enzyme Dpnl (20 U/ul) was added to the reaction mixture and incubated at
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Cycle step Temperature [°C] Time Cycles
Initial denaturation 98 30 s 1
Denaturation 98 DS
Annealing X 20 s 35
Extension 72 30 s/kb
. . 72 10 min
Final extension 4 hold 1

Table 2.2: Cycling protocol for PCR. Notice that if the primer is >20 nt the annealing
temperature X equals T,,+3°C, if the primer is <20 nt the annealing temperature X equals
to the lower T, primer.

Cycle step Temperature °C] Time  Cycles
Initial denaturation 95 30 s 1
Denaturation 95 30 s
Annealing 55 60 s 12
Extension 68 1 min/kb

Table 2.3: Cycling protocol for site-directed mutagenesis.

37°C for 1 hour. Following incubation, DH5« cells were transformed with the mutated
plasmid.

2.3.6 Generating double-stranded oligonucleotides

Complementary oligonucleotides were mixed at 1:1 molar ratio in a test tube and diluted
to a final concentration of 100 ng/ul in water. The annealing reaction was performed in
a thermal cycler using the program listed in Table 2.4. Annealed oligonucleotides were
used for cloning into pInducer10 system.

Cycle step Temperature Time Cycles

Step 1 95°C 5 min 1
Step 2 95°C (—1°C/cycle) 1 min 70
Step 3 4°C hold 1

Table 2.4: Protocol for double-stranded oligonucleotide generation

2.3.7 DNA digestion with restriction endonucleases

Digestion of both vectors and insert fragments was performed with several restriction
enzymes, which were used according to the manufacturer’s instructions. The reaction
mixture contained 1/10 of the final volume of 10x supplied reaction buffer and 2 U
of the appropriate enzyme per 1 pg of plasmid. Additives such as BSA were added
when recommended by the manufacture. The mixture was filled up with water to the
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required final volume. Digestion was performed for a few hours at the enzyme’s optimum
incubation temperature. Digested DNA fragments were separated on an agarose gel.

2.3.8 Ligation of DNA fragments

150 ng of vector were combined with a 5-fold molar excess of insert (cloning of cDNA)
or 100-fold molar excess of oligonucleotides (shRNA cloning). The volume was adjusted
to 8 ul with distilled water (dH,O). 1 ul of 10x T4 DNA ligase buffer and 1 ul of T4
DNA ligase were added to the ligation mixture. The mixture was briefly centrifuged and
incubated overnight at 4°C. After incubation 10 ul of dH,O were added to the ligation
mixture and dialyzed against water on 0.025 pm cellulose membrane filter for 1 h at room
temperature. Electro- or chemically competent bacteria were transformed with 10 ul of
ligation mixture.

2.3.9 DNA sequencing

DNA sequencing is the determination of the exact order of nucleotide sequence in a
DNA molecule. The sequencing of constructs was carried out by the company Seqlab-
Microsynth (Goettingen). For one sequencing reaction 1.2 pg of plasmid DNA were mixed
with 3 ul of 50 pmol sequencing primer and filled up with water up to a final volume of
15 pl in a 1.5 ml tube. The sequenced DNA was compared with the original sequence
using EMBOSS stretcher software.

2.3.10 The real-time polymerase chain reaction
Principle of the method

The real-time polymerase chain reaction (real-time PCR), also known as quantitative
PCR (qPCR), is a method which enables amplification and monitoring of PCR products
in real time. Complementary DNA transcribed from total RNA was analyzed using SYBR
Green I fluorescent dye. After SYBR Green I binds to double-stranded DNA molecules,
a fluorescent signal at 521 nm wavelength is emitted. The emitted fluorescence intensity,
which is proportional to the amount of amplified PCR product, was measured during
each cycle.

Course of the experiment

Primers for real-time PCR were designed using the Universal ProbeLibrary Assay Design
Center (Roche). The Light cycler 96-well plate was loaded with 50 ng of ¢cDNA, 5 ul
of forward and reverse primer mix at 21.3 uM final concentration, 10 pl of 2x Light
cycler®480 SYBR Green I master mix and filled with PCR-grade water to 20 ul of
final volume. For standard curve preparation 0.15, 0.31, 0.62, 1.25 and 5 ng of cDNA
were mixed with primer mix and master mix. The real-time PCR was performed on
LightCycler® 480 II (Roche). Data were monitored and analyzed with LightCycler®480
1.5.0 software (Roche). Table 2.5 shows the cycling protocol for real-time PCR.
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Cycle step  Temperature [°C] Time Cycles

Pre-incubation 95 7 min 1
95 10 s
Amplification 60 10 s 45
72 10 s
: 95 5s
Melting curve 65 1 min 1
Cooling 40 30 s 1

Table 2.5: Cycling protocol for real-time PCR.

2.4 Working with proteins

2.4.1 Protein isolation from cell culture

Proteins were isolated from cells, which were grown on 60 mm dishes (approximately 80%
confluency). The medium was aspirated and cells were washed twice with 1x ice-cold
PBS. Then cells were collected by scraping, transferred to a 1.5 ml tube and centrifuged
(5 min, 600x g , 4°C, “HITACHI himac CT15RE”, rotor T15A61-1041). After cen-
trifugation the supernatant was decanted and the cell pellet was resuspended in 50 pl
of 1x protein lysis buffer and incubated on ice for 15 min. The lysate was then cen-
trifuged (5 min, 14000 rpm, 4°C, “HITACHI himac CT15RE”, rotor T15A61-1041) and
the supernatant was collected in a fresh tube. The protein lysates were stored at -80°C.

2.4.2 Determination of protein concentration
Principle of the method

The Bradford protein assay is a spectroscopic method for the determination of pro-
tein concentrations. The method is based on the fact that the absorption maximum
of Coomassie Brillant Blue-G250 shifts from 470 nm to 595 nm when bound to a protein.
This absorption change is proportional to the protein concentration (Bradford, 1976).

Course of the experiment

In order to prepare a calibration curve 0 pug, 1 ug, 2.5 pug, 5 ug, 15 ug and 50 pg of
BSA in 10 pul of water were diluted in 1 ml Roti-Quant solution in a plastic cuvette.
5 ul of protein lysate with unknown concentration were mixed with 1 ml of Roti-Quant
solution in a plastic cuvette. Next samples and standards were incubated for 5 min at
room temperature and the absorbance ratio at 590 nm to 450 nm was measured against
water. Unknown sample concentrations were calculated from the standard curve.
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2.4.3 Sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE)

Principle of the method

SDS is an anionic detergent which unfolds polypeptide chains and strongly binds to them
by interacting with polar and non-polar amino acids. Since proteins bind SDS they have
a negative charge and migrate in an electric field through the gel towards the anode.
Using SDS-PAGE technique proteins are separated primarily by size.

Course of the experiment

In this work the vertical mini-PROTEAN II Electrophoresis Cell SDS-polyacrylamide
gel electrophoresis system was used. Depending on the molecular mass of the studied
proteins 10, 12 or 15% polyacrylamide gels were used. The resolving gel was poured
into the apparatus and covered with a thin 100% isopropanol layer in order to achieve
a resolving gel surface as uniform as possible. After the resolving gel was polymerized,
isopropanol was removed and the stacking gel was poured onto the separating gel and a
comb was inserted in the stacking gel. Finally, the gel was placed into the gel chamber
and filled with 1x running buffer. Samples were mixed with 5x Laemmli sample buffer
and heated to 100°C for 5 min. For the experiments 10-30 pug of proteins per lane were
separated. To estimate the protein size, 1-3 ul of prestained protein size marker was used.
While running in the stacking gel, a voltage of 100 V was applied and then the voltage
was increased to 150-200 V. The gel was either stained with amido black or proteins
were transferred to a polyvinylidene difluoride (PVDF) membrane and Western blot was
performed.

Separation range [kDa] Acrylamide concentration [%]

20-100 10
10-70 12
8-50 15

Table 2.6: Polyacrylamide gel resolution as a function of the concentration of polyacry-
lamide in SDS-PAGE

2.4.4 Protein detection
A. Amido black staining

After protein separation the gel was stained with 1x amido black staining solution for
10 min. The gel was then destained twice with 1x amido black destaining solution for
30 min before overnight incubation with destaining solution. Photographs of the gels
were saved for documentation.

B. Western Blot

After being separated on a polyacrylamide gel proteins were transferred to a 0.45 pum
PVDF membrane using the semi-dry blotting technique. Transfer was performed for
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1 h at 22 V using the Trans-Blot SD Semi-Dry ElectrophoreticTransfer Cell. First, the
membrane was soaked with 100% methanol for 1 min and then in transfer buffer for 5 min.
Gel and Whatman 3MM papers were soaked in transfer buffer as well. Then, on the anode
plate of the semi-dry blotting apparatus three Whatman Papers, the PVDF membrane,
the separating gel and another three Whatman Papers were arranged on top of each
other. Finally, the gel/blotting paper/filter paper sandwich was covered with the cathode
plate. After transfer, the membrane was placed in the blocking solution for 30 min at
room temperature on a rotating platform shaker “Duomax 1030”. All other steps were
performed on a rotating platform as well in order to assure equal distribution of solutions
on the membrane. After blocking, the blot was incubated with the diluted primary
antibody at 4°C overnight. Primary and secondary antibodies were diluted in blocking
buffer. On the next day the membrane was washed 2x 5 minutes and 2x 10 minutes with
PBST. Then diluted HRP-conjugated secondary antibody was added and the incubation
was continued for 1 h at room temperature. Finally, the membrane was washed 5x 5
min with PBST and 1x 5 min with PBS. The measurement of chemiluminescence was
performed using the Western Lightning Chemoluminiscence Reagent from Perkin Elmer.
The membrane was incubated with pre-mixed 1:1 luminol and oxidation reagents for
1 min and the excess of reagents was removed on a Kimtech tissue. The signal from the
membrane was collected with the chemiluminiscence system “Fusion Fx7”. Densitometric
data analysis was performed on BiolD software.

2.4.5 Affinity purification of His-tag fusion proteins
Principle of the method

In this work six histidines (His-Tag) were fused to the proteins of interest at the carboxy-
terminus. The expression of recombinant proteins was induced by IPTG in different
strains of Escherichia coli. Histidines have affinity to immobilized Ni** ions. Fusion
proteins were purified on the Ni**-charged His-Bind resins.

Course of the experiment
a) Induction of protein expression and purification

The small-scale bacterial culture was grown overnight at 37°C in LB medium with an
appropriate antibiotic. On the next day a large-scale culture was inoculated and grown
at 37°C until the ODs55¢ reached 0.5. Bacteria were then induced with 1 mM IPTG for
the appropriate time and temperature. A 1 ml of aliquot was taken before and after
induction, centrifuged for 1 min at maximum speed and resuspended in 1x SDS-sample
buffer in a volume of 200 ul of SDS-sample buffer per 1 ODs559 and boiled for 5 min. 20 ul
of induced and non-induced bacterial lysate were separated on a polyacrylamide gel. After
induction, bacteria were harvested and resuspended in 2 ml per 100 OD559 of 1x binding
buffer/0.1% Triton X-100. Bacteria were sonicated 5-6 times (1x 30 s) using “Vibra-
Cell” ultrasonic processor with a 30 s interval. Then bacteria were centrifuged (10 min,
10000x g, 4°C, “Avanti J-26 XP”, rotor Ja-10). The pellet was washed three times with
1x binding buffer/0.1% Triton X-100. Afterwards the pellet was resuspended in 1 ml
per 100 ODs559 of 1x binding buffer/0.1% Triton X-100/6 M urea and rotated overnight
at 4°C on rotating wheel. The lysate was then centrifuged (30 min, 12000 rpm, 4°C,
“Avanti J-26 XP”, rotor Ja-10). The supernatant containing the protein of interest was
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purified with His-Bind resin. After protein binding, the column was washed with 10 bed
volumes of 1x binding buffer/0.1% Triton X-100/6 M urea. The protein was eluted with
0.5 bed volume of 1x elute buffer/0.1% Triton X-100/6 M urea. 3-4 protein fractions
were collected. The protein concentration was determined using Bradford protein assay.
The proteins were finally separated on a SDS-PAGE gel.

b) Column preparation and regeneration

The column was washed with 3 bed volumes of HyO, 5 bed volumes of 1x charge buffer,
3 bed volumes of 1x binding buffer/0.1% Triton X-100/6 M urea. After protein elution,
the column was washed with 5 bed volumes of HyO, 3 bed volumes of 1x strip buffer.
The column was stored in 1x strip buffer at 4°C.

2.4.6 Generation of antisera

Purified recombinant proteins for the generation of polyclonal antibodies were dialyzed
against 1x PBS. Approximately 6 mg of proteins were sent to Davids Biotechnologie
GmbH (Regensburg) where rabbits were immunized with each protein 5 times with
2 weeks interval between immunizations (total time of immunization protocol is 63 days).
On the day of immunization, 1 ml of serum was collected (preimmune serum). On the
63rd day, 40-90 ml of antisera were collected from rabbits.

2.4.7 Coupling of proteins to cyanogen bromide-activated se-
pharose beads

Principle of the method

In the reaction of cyanogen bromide (CNBr) with hydroxyl groups on agarose beads
cyanate esters and imidocarbonates are formed. These groups react with amino-group
of proteins allowing the protein coupling to the beads. Recombinant Crctl, Abra and
Arl4dc were coupled to cyanogen bromide-activated beads in order to affinity-purify rabbit
antisera.

Course of the experiment

Recombinant proteins were dialyzed at 4°C against 3x 100 volumes of coupling buffer. 5
to 10 mg of proteins were used per 1 ml of bed volume of beads. CNBr-Sepharose beads
were swollen in 10 ml of cold 1 mM HCI for 30 min at room temperature. Then beads
were washed 6 times with 10 ml of 1 mM HCI and with 2 ml coupling buffer. Proteins
were then immediately combined with activated sepharose beads and incubated overnight
at 4°C under constant agitation on the rotating wheel. On the next day, the flow-through
was collected in order to determine the coupling efficiency. Beads were washed with 10 ml
of coupling buffer. Remaining active groups were blocked by incubating them 2 hours at
room temperature with 5 ml of 0.2 M glycine pH 8.0. The column was washed first with
10 ml of wash buffer 1 and then with 10 ml of wash buffer 2. The two washing steps were
repeated twice. The column was then washed with 10 ml of coupling buffer and finally
with 10 ml of 1x PBS. Ready-to-use column was either used for affinity purification of
antibodies or stored at 4°C in 1x PBS/0.04% thimerosal.
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2.4.8 Affinity purification of antibodies

The column with CNBr-coupled recombinant protein was washed with 10 bed volumes
of 1x PBS. Beads were subsequently resuspended in antibody solution and incubated
overnight under constant agitation at 4°C on a rotating wheel. The next morning beads
were washed with buffer A, buffer B, buffer C and buffer A (10 bed volumes each).
Antibodies were eluted with 1 bed volume of 0.2 M glycine HCI pH 2.0/0.2 M NaCl.
Three fractions were collected and immediately neutralized with 0.2 bed volumes of 1 M
Tris pH 8.8. Purified antibodies were stored at -20°C with 0.04% thimerosal. After
antibody purification the column was washed with 20 bed volumes of 1x PBS. The
column was stored at 4°C in 1x PBS/0.04% thimerosal.

2.4.9 G-actin / F-actin ratio determination
Principle of the method

There are two forms of actin — filamentous (F-actin) and globular (G-actin) actin. In the
first step of the assay cells are lysed with G-actin buffer, which solubilizes G-actin, but
not F-actin. During the following centrifugation step, G-actin remains in the supernatant
and F-actin in the pellet. After washing the pellet with G-actin buffer, the pellet is
resuspended in protein lysis buffer. A final centrifugation step leaves F-actin in the
supernatant.

Course of the experiment

The day before the experiment 0.4x10° cells were plated into a 35-mm dish. On the next
day the cells were washed twice with ice-cold 1x PBS and collected by scraping into a 1.5-
ml tube. Cells were centrifuged (5 min, 1000x g, 4°C, “HITACHI himac CT15RE”, rotor
T15A61-1041). The cell pellet was resuspended in 100 pl of ice-cold G-actin buffer and
left on ice for 5 min. Afterwards the cell suspension was centrifuged (10 min, 16000x g,
4°C, “HITACHI himac CT15RE”, rotor T15A61-1041). The supernatant containing the
G-actin fraction was transferred into a fresh 1.5 ml tube. The pellet was washed once
with G-actin buffer, resuspended in 100 pl of protein lysis buffer and left on ice for 5 min.
Insoluble material was removed by centrifugation (10 min, 16000x g, 4°C, “HITACHI
himac CT15RE”, rotor T15A61-1041) and the supernatant containing the F-actin fraction
was transferred into a fresh 1.5 ml tube. For Western blot analysis 20 ul of F- and G-actin
were separated on a polyacrylamide gel.

2.5 Working with mammalian cells

2.5.1 Mammalian cell culture

Work with mammalian cells was performed under sterile conditions in a laminar flow
bench “Lamin Air HA 2448 GS”. In order to prevent bacterial or fungal contaminations
all used materials were either sterile packed or autoclaved before use at 121°C. Cell lines
used in this work and complete growth medium are listed in Table 2.7.
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Cell name Medium Additives
COS-7 DMEM 10% FCS
HEK293T DMEM 10% FCS
Human podocyte cell line RPMI 1640 10% FCS
HtTA-1/LMX1B DMEM 10% FCS

30 ng/ml doxycycline
300 pg/ml hygromycin B
200 pg/ml geneticin
Mouse podocyte cell line RPMI 1640 10% FCS
Primary podocytes DMEM/F-12  10% FCS
100 U/ml penicillin
100 pg/ml streptomycin
1x insulin/transferrin/selenium

Table 2.7: Cell lines and growth medium

A. Subculturing

Cell cultures were maintained in a COs-incubator at 95% relative humidity. HEK293T,
COS-7, HtTA-1/LMX1B and primary podocytes isolated from mice were grown at 37°C,
while mouse and human podocyte cell lines were grown at 33°C. The human and murine
podocyte cell lines contain a temperature-sensitive promoter which allows cells to prolif-
erate at 33°C and differentiate at 37°C (Saleem et al., 2002). The growth medium for
each cell line was changed every 2 or 3 days. Cells were grown until 80-90% of confluence.
Before splitting, the medium was aspirated and cells were washed once with 1x PBS.
Trypsin was then added (e.g. 2 ml per 75 cm? flask) and cells were incubated for 5 min
at 33°C or 37°C. Then complete growth medium was added and the appropriate volume
of cells was transferred to a fresh flask filled with complete growth medium. Growth
medium, 1x PBS and 1x trypsin were stored at 4°C. Before subculturing they were
warmed to a room temperature. Antibiotics were added to the medium directly before
use.

B. Freezing cells

Cells were grown in a 75 cm? flask until 90% confluence. The medium was then aspirated
from the cells and cells were washed once with 1x PBS. 2 ml of trypsin were added and
the cells were incubated 5 min at 37°C. 10 ml of growth medium were added and cells were
centrifuged (5 min, 100x g, 4°C, “Multifuge 3 L-R”, rotor Ch.2425). The medium was
aspirated and the cell pellet was resuspended in 3 ml of freezing medium and separated
into 3 cryovials. Cells were kept at -80°C overnight and then stored in liquid nitrogen.

C. Thawing cells

The cryovials were removed from liquid nitrogen and thawed at room temperature. The
fresh medium was added to the vial and cells were transferred drop-wise to a 15 ml tube
containing 10 ml of medium. Afterwards cells were centrifuged (5 min, 160x g, 4°C,
“Multifuge 3 L-R”, rotor Ch.2425). The medium containing DMSO was aspirated and
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cells were resuspended carefully with 5 ml of complete growth medium and placed in a
25 cm? flask.

D. Cell counting with Neubauer Chamber

Ten ul of a cell suspension was applied to a Neubauer Chamber for cell counting. Cells
were counted in the big squares. Because the surface area of a big square is 0.01 cm? and
the depth of the chamber is 0.01 c¢m, the cell chamber volume equals 0.000,1 ml. The
cell concentration is C' = N/V = N x 10,000 cells/ml, where N is the number of cells
counted in a big square and V' is the volume of the chamber.

2.5.2 Expression of proteins in mammalian cells
A. Transient transfection of COS-7 cells
Principle of the method

In this work COS-7 cells were transiently transfected with DEAE-dextran/chloroquine.
The DEAE-dextran is a positively charged molecule which binds the negatively charged
DNA. After binding the complex is able to cross the negatively charged cell membrane.
The chloroquine reduces lysosomal degradation of DNA. The DMSO shock results in an
increase of the transfection efficiency.

Course of the experiment

The day before the transfection 4.2x10° COS-7 cells were plated into a 60-mm dish.
The next day cells were approximately 50% confluent. Immediately before transfection
200 ul of the DEAE-dextran/chloroquine solution and 20 pg of recombinant DNA were
added to 5 ml of DMEM/10% FCS and mixed. The medium was removed from the cells
and the DNA/DEAE-dextran/chloroquine solution was added. After 4 h of incubation,
the medium was removed and 3 ml of 10% DMSO/1x PBS were added. The cells were
incubated for 2 min at room temperature. Then the DMSO was removed and the cells
were washed once with 1x PBS. Fresh DMEM/10% FCS was added and the cells were
incubated for 48 h. Subsequently the proteins were isolated and used for Western blot
(e.g. during antibody titration).

B. Transient transfection of HtTA-1/LMX1B, human and mouse podocyte
cell lines with polyethylenimine

Principle of the method

Polyethylenimine (PEI) is a polymer which is used for transfection of mammalian cell
lines. PEI is able to package the negatively charged DNA molecules into positively
charged particles which can enter the anionic cell membrane.

Course of the experiment

The cells were plated on the required plate or dish the day before transfection. The ap-
propriate amount of DNA was diluted in the medium without FCS and polyethylenimine
was added. The transfection mixture was vortexed, shortly centrifuged and incubated
for 20 min at room temperature. During incubation the complete medium from the cells
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was changed to a FCS-free medium. The transfection mixture was added to the cells
drop-wise and cells were incubated for 6 h. After incubation the medium was changed to
complete medium and cells were incubated for 24 to 48 h. Number of the cells (Neeys),
amount of DNA (mpy4) and volume of PEI reagent (Vpg) are listed in Table 2.8.

Culture vessel  Neeys  mpna (18] Veer K]

24-well plate  2x10% 1 3
6-well plate  1x10° 1-3 3
35-mm dish  1x10° 1-3 3

Table 2.8: Transfection complex preparation for different cell culture formats

C. Transient transfection of primary podocytes

The day before transfection 2x10* primary podocytes were plated into a 24-well plate
with a 10-mm coverslip. The cells were then transfected with 1 pg of plasmid and 2 pl
Lipofectamine 2000 in a total volume of 100 ul. After 4 h of incubation the medium
containing the transfection mixture was removed, and fresh medium was added. The
cells were incubated for another 48 h.

2.5.3 Induction of HtTA-1/LMX1B

The tet-off human HeLa cell line HtTA-1 expressing the human LMXI1B protein was
grown in DMEM containing 10% FCS, 200 pug/ml geneticin, 30 ng/ml doxycycline and
300 pg/ml hygromycin B. For the induction of LMX1B expression the cells were incubated
in doxycycline-free medium for a minimum of 4 days.

2.5.4 Generation of stable cell lines
Lentivirus production

The day before the lentivirus production 8x10% HEK293T cells were seeded into a 15 cm
plate in 25 ml DMEM/10% FCS. On the next day the medium was substituted with
20 ml of FCS-free DMEM. 15 pg of pLVPT-rt TR-KRAB-2SM2 containing the cDNA of
interest, 3.75 ug of VSV-G envelope expressing plasmid pMD2.G, 11.25 ug of the pack-
aging plasmid pCMVARS.2 were mixed in DMEM to a final volume of 1,380 pl. Then
120 pl of PEI (1 pg/ul) was added to the mixture and incubated for 10 min at room
temperature. Afterwards the mixture was added drop-wise to the cells, which were then
incubated for 6 h at 37°C in a COs-incubator. After incubation the medium was substi-
tuted with 30 ml of complete DMEM medium and the cells were incubated for another
48 h. Then the medium was transferred to a 30 ml tube and centrifuged (10 min, 4°C,
6000x g, “Avanti J-26 XP”, rotor Ja-25.50). The supenatant was transferred to a fresh
tube and centrifuged (2 h, 4°C, 75600x g, “Avanti J-26 XP”, rotor Ja-25.50). Then the
supernatant was removed and the pellet was resuspended in 300 ul of DMEM /10% FCS.
The pellet was incubated on ice. The next day 100 ul aliquots were frozen at -80°C.
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Virus titer estimation by flow cytometry

Coding sequences of Crctl, Abra or Arldc were cloned into pLVPT-rt TR-KRAB-2SM2.
The virus titer was determined by counting the percentage of GFP-positive cells by flow
cytometry. 1x10° of the mouse podocyte cell line per well were plated into a 24-well
plate using RPMI/10% FCS medium. After attachment of the cells to the plate (4 h
after plating) 1 ul of polybrene (8 pg/ml) and 50 pul and 10 pl of undiluted virus and
10 ul of 1:10 diluted virus were added to the cells. The next day the medium was changed
to fresh medium and cells were incubated for another 48 h in a COs-incubator. After
incubation the cells were trypsinized, washed in 1x PBS and finally resuspended in 1 ml
of 1x PBS for flow cytometry analysis. Flow cytometry was performed at the Department
of Genetics (Prof. Dr. Frank Sprenger, University of Regensburg) on CyFlow Space flow
cytometry system. 100,000 events were collected with Flow Max Software. Data were
analyzed with Flowing Software. Virus concentration was calculated from multiplicity of
infection (MOI) equation 2.2:
N,

MOI =—-In(1 —a) = N (2.2)
where a is the GFP positive fraction, N, — number of viral particles and N, — number of
cells.

Transduction of target cells

On the day of transduction the cells were plated at the desired density. Four hours after
plating viral particles at a MOI of 7 and polybrene at final concentration of 8 ng/ml were
added to the cells. The cells were incubated overnight and on the next day the medium
was replaced by fresh culture medium. The cells were incubated for another 2 to 4 days.

2.5.5 Measuring promoter activity by luciferase assay

HtTA-1/LMX1B cells were induced for LMX1B expression. On the 3rd day of induction
10° cells were plated into a 24-well plate. The next day cells were transfected with 0.5 pug
of Firefly-luciferase reporter vectors pGL3-Enhancer containing promoter fragments of
Abra. 24 h after transfection the growth medium was removed from the cells. Then
the cells were washed twice with 1x PBS and lysed with 200 pl of 1% Triton X-100/1x
PBS for 15 min. The cells were then collected and centrifuged (5 min, 15000 rpm, 4°C,
“HITACHI himac CT15RE”, rotor T15A61-1041). The supernatant was transferred to a
fresh 1.5 ml tube. Cell lysates were stored at -80°C.

Measurement of luciferase activity

Measurement of luciferase activity was performed on the microplate luminometer “Mi-
crolumat Plus LB86V up-version 2.0”. 20 ul of lysate was transferred to 96-well white
polystyrene plate. Measurements were performed automatically by addition of 100 ul of
Luciferase Assay Reagent I. The obtained data were normalized to the protein amount.

2.5.6 Immunofluorescence staining

Cells for immunofluorescence staining were grown on a 10 mm glass coverslip in a 24-well
plate. On the day the staining the cells were washed twice with ice cold 1x PBS and
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then fixed with 4% paraformaldehyde/1x PBS pH 7.4 for 20 min at room temperature.
Afterwards the cells were washed twice with ice cold 1x PBS and permeabilized and
blocked with 0.2% Triton X-100/2% BSA/1x PBS. The cells were incubated with the
primary antibody diluted in 1x PBS/2% BSA overnight at 4°C. On the next day the
cells were washed three times with 1x PBS and incubated with the secondary antibody
diluted in 1x PBS/2% BSA for 1 h at room temperature in the dark. The cells were then
washed three times with 1x PBS. The coverslip was mounted with a drop of mounting
solution on a microscope slide and covered with a cover slip. Specimens were stored in

the dark at 4°C.

2.5.7 Transmission electron microscopy studies
Photoconversion

105 conditionally immortalized human podocytes were plated into a 35 mm glass bottom
culture dish (MatTek Corporation). The next morning cells were transfected with 1 ug
of pminiSOG-C1/mCherry encoding Abra, Arldc and Cretl. 48 h after transfection the
cells were washed with 1x PBS and fixed with 2% glutaraldehyde in 0.1 M sodium
cacodylate buffer, pH 7.4 for 5 min at room temperature, and then incubated for 15 min
on ice. All of the next steps were performed on ice. Cells were washed twice with 0.1 M
sodium cacodylate buffer. Then the cells were incubated with blocking buffer (50 mM
glycine, 10 mM KCN, 10 mM aminotriazole, 0.002% hydrogen peroxide in 0.1 M sodium
cacodylate buffer) for 45 min. In the next step the cells were washed with 0.1 M sodium
cacodylate buffer. Diaminobenzidine tetrahydrochloride (DAB) was freshly diluted to
1 mg/ml in 0.1 M sodium cacodylate buffer, pH 7.4 and filtered through a 0.22 pm filter.
For photooxidation DAB solution was added to the cells placed on ice. Cells transfected
with pminiSOG-C1/mCherry were identified in the fluorescence microscope. A stream of
oxygen was continuously administered over the top the culture dish. The samples were
then illuminated by an intense light from a HBO 103W /2 mercury lamp for 10 min, using
a standard fluorescein isothiocyanate (FITC) filter.

Cell fixation for transmission electron microscopy

All the steps described in this paragraph were performed on ice. After photoconversion,
cells were removed from the microscope and washed five times with 0.1 M sodium ca-
codylate buffer (each time 1 min). Then the cells were post-fixed with 1% OsOy for
30 min, washed three times with 0.1 M sodium cacodylate buffer and left overnight in
0.1 M sodium cacodylate buffer. The next morning the cells were washed three times
with distilled water (each time 1 min). Then the cells were stained with 2% uranyl
acetate for 30 min and washed five times with distilled water. Finally the cells were
dehydrated in an ethanol gradient: 20% (2 min), 50% (2 min), 70% (2x 2 min), 90%
(2x 2 min), 100% (2 min) of ethanol on ice and finally 100% ethanol (2x 2 min) at
room temperature. The glass coverslip was separated from culture dish, washed twice
with pure acetone (2 min). In the last step the glass coverslip was embedded with 100%
epoxy resin (epon) and polymerized in an oven at 30°C for three days and then at 60°C
for another 2 days. After embedding the glass coverslip was removed and the plastic
block was cut into thin sections by a diamond knife in the ultramicrotome “Ultracut
E”. Each section was 70 nm thick. The electron microscopic pictures were taken in the
transmission electron microscope “EM Zeiss 902”.
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2.5.8 Fluorescence recovery after photobleaching
Principle of the method

The turnover rate of proteins involved in the regulation of the actin cytoskeleton was
analyzed by Fluorescence Recovery After Photobleaching (FRAP). The proteins under
investigation were fused to fluorescent tags such as GFP, Emerald or mCherry. Using a
strong excitation laser, the fluorescence of a tagged protein was bleached in the region of
interest (ROI). The fluorescence recovers when unbleached fluorescently-tagged proteins
from outside of the bleached region enter the ROI.

Course of the experiment

FRAP studies were performed on induced and non-induced HtTA-1/LMX1B cells and on
primary podocytes. On the 4th day after induction 105> Ht TA-1/LMX1B cells and 2x10*
primary podocytes were plated into a 6-well plate with a 22 mm glass coverslip. On the
next day cells were transfected with 1 ug of expression plasmids. On the subsequent day
the cells were washed twice with 1x PBS and measurements were performed in Ca?*-
buffer at 37°C. The fluorescence intensity of a region of interest (ROI) was monitored,
then the ROI was bleached and recovery of fluorescence over time was tracked. Pictures
were taken every 0.369 s. Every FRAP curve was normalized by setting the pre-bleach
intensity to 1. Approximately 60 curves were averaged and fitted using the function:

_t
y(t) = Al —e7), (2.3)
where A is the final value of the recovered fluorescence intensity, the time constant 7 is
the fitting parameter and ¢ is the time after bleaching. The recovery half-time t;/, was
obtained from 7 by using the equation 2.4:

tl/g =7In0.5 (24)

2.6 Working with kidneys

2.6.1 Isolation of primary podocytes

After anesthetization of mice, the abdominal cavity and thorax were opened. A syringe
with 40 ml of magnetic bead suspension at a concentration of 2x10° beads/ml was in-
serted into the left ventricle, the abdominal aorta was cut open below the renal arteries,
and the suspension was administered at a constant pressure of 60 mm Hg. The kidneys
were isolated, decapsulated and cut into small pieces which were digested with 1 mg/ml
collagenase A for 30 min at 37°C. Digested kidney pieces were pushed through a 500 pm
cell strainer and the filtrate was washed extensively with 1x PBS using a magnet. Fi-
nally, isolated glomeruli were plated in a cell culture flask containing complete growth
medium for primary podocytes.

2.6.2 Immunofluorescence
A. Immunofluorescence of frozen kidney sections

Kidney tissue in Tissue-Tek O.C.T. embedding compound was cut to 7 um thick sec-
tions using the cryostat “Leica CM3050s”. Sections were mounted on SuperFrost Plus
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microscope slides and dried at room temperature for 30 min. Slides were stored at -80°C.
Before proceeding sections were washed three times with 1x PBS and then blocked with
10% horse serum/1% BSA/1x PBS for 30 min. The primary antibody was diluted in
10% horse serum/1% BSA/1x PBS, added to the sections and incubated overnight at
4°C. The next morning sections were washed three times 15 min with 1% BSA/1x PBS.
The secondary antibody was diluted in 1% BSA/1x PBS applied to the section and in-
cubated for 90 min at room temperature. Finally, sections were washed three times with
1x PBS (15 min each washing), mounted in Mowiol and covered with a 22 mm cover
slip.

B. Immunofluorescence of paraffin-embedded kidneys

Kidney tissue embedded in paraffin was cut on the microtome “Leica RM2255” at a
thickness of 7 um and mounted onto microscope slides. The sections were dried at 37°C
for 2 days and then stored at room temperature. Kidney sections were deparaffinized and
rehydrated using the protocol presented in Table 2.9. As a next step the heat-mediated
epitope retrieval protocol was performed. Kidney sections were placed in 10 mM tri-
sodium citrate (dihydrate) buffer, pH 6.0 and autoclaved (120°C). Subsequently sections
were cooled to room temperature and the immunostaining was performed as described
previously in 2.6.2, A.

Solution Time of incubation
Xylene 10 min

Xylene (fresh) 10 min

100% isopropanol 2 min

100% isopropanol (fresh) 2 min

96% isopropanol 2 min

80% isopropanol 2 min

70% isopropanol 2 min

50% isopropanol 2 min

Distilled water 2 min

Table 2.9: Rehydration protocol
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Results

3.1 State of the art

3.1.1 Inducible podocyte-specific Lmx1b knock-out mice

In order to identify LMX1B-target genes studies were performed on inducible podocyte-
specific Lmx1b knock-out mice. These triple-transgenic mice carry three constructs. Fig-
ure 3.1 (A, B) shows a schematic diagram of this knock-out mouse. The P2.5-rtTA
cassette is only active in podocytes, it contains a reverse transcriptional transactivator
(rtTA) under control of a 2.5 kbp NPHS2 promoter fragment. Through the addition of
doxycycline as a structural analog of tetracycline, rtTA activates the transcription of Cre
recombinase, which is controlled by a specific Tet promoter. The expressed Cre recombi-
nase finally mediates the deletion of a loxP-flanked segment of Lmx1b which encodes the
homeodomain of Lmz1b (Gossen and Bujard, 1992).

3.1.2 Quadruple transgenic mice and “green podocytes”

The glomerulus contains three cell types: endothelial cells, mesangial cells, and podocy-
tes. The separation of podocytes with from other cells of the glomerulus was achieved
by crossing inducible podocyte-specific Lmz1b knock-out mice with a double-fluorescent
Cre reporter mouse containing the mT/mG cassette (Boerries et al., 2013) (Muzumdar
et al., 2007). Mice from this cross are called quadruple transgenic mice from here on.
Figure 3.1 (C) shows Cre-mediated recombination of the mT/mG cassette. Podocytes
from quadruple trangenic mice, where Cre recombination took place, express membrane-
targeted enhanced green fluorescent protein (mG) — “green podocytes”. On the other side,
podocytes from quadruple transgenic mice without Cre recombination, endothelial and
mesangial cells, express membrane-targeted tandem dimer Tomato (mT) — “red cells”.
The use of quadruple transgenic mice enabled to determine the filamentous actin content
described in Subsections 3.3.2 and 3.3.4, as well as to perform FRAP measurements
presented in Subsection 3.9.2; only in the recombined “green podocytes”.

The presence of the loxP-flanked Lmz1b allele, the rtTA cassette, the Cre cassette and
the mT /mG cassette were determined by PCR with primers presented in Subsection 2.1.8.
Results from genotyping analysis are demonstrated in Figure 3.2.

Inducible podocyte-specific Lmxz1b knock-out mice as well as quadriple transgenic
animals are healthy and have a normal lifespan without induction of Cre-mediated inac-
tivation of Lmax1b homeobox. Mice are viable up to two years. However, already after one

60
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A Inducible podocyte specific Lmx1b knock-out mouse

P2.5-itTA cassette ﬁ

| NPHS2 | HTA |

tetO-dependent Cre expression cassette

tetO | Cre recombinase |

y

loxP loxP
floxed Lmx7b cassette Upstream of exon 4 Downstream of exon 6
5 —I LIM-A LIM-B Homeobox | ] 3
Exon1 Exon2 ¢ Exon3 Exon4 * Exon5  Exoné Exon7 Exon8
B
Recombined Lmx1b o foxP
5[] Lma LM | ] 3
Exont Exon2 Exon3 Exon7 Exon8
C
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Figure 3.1: Generation of inducible podocyte-specific Lmz1b knock-out mice. (A) The
NPHS2-regulated reverse transcriptional transactivator (rtTA) protein is expressed exclu-
sively in podocytes. rtTA activates transcription of tetO-dependent Cre recombinase after
doxycycline binding. Finally, Cre recombinase mediates the removal of the lozP-flanked
homeobox of Lmxz1b. (B) Scheme of the Lmz1b gene after recombination. (C) Before Cre-
mediated recombination cells containing the mT/mG construct express membrane-targeted
tandem dimer Tomato (mT). Membrane-targeted green fluorescent protein (mG) is expressed
in the cells only after Cre recombination [modified from (Muzumdar et al., 2007)]. pA, lozP,
and Cre stands for polyadenylation sequences, sequences recognized and excised by Cre re-
combinase, and Cre recombinase, respectively.

week of induction of Lmz1b inactivation mice develop proteinuria as shown in Figure 3.3.

3.1.3 Microarray studies of glomeruli isolated from inducible
podocyte-specific Lmx1b knock-out mice
Fourteen-week-old female inducible podocyte-specific Lmz1b knock-out (Lmx1ble®/tor

rtTA, Cre) and control (Lmx1b!/%T 1tTA) mice were administered 2 mg/ml of doxy-
cycline for 0, 1, 3, 5 and 7 days (three animals per group). In vivo microarray stud-
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Figure 3.2: Results from genotyping of the quadriple transgenic heterozygous (Lmaz1 bt/ loz)
control and homozygous (Lmz1b"%/'°%) Lmz1b knock-out mice. PCR analysis of total ge-
nomic DNA for the presence of (A) the loxP-flanked Lmz1b allele, (B) the rtTA cassette
(188 bp), (C) the Cre cassette (613 bp) and (D) the mT/mG cassette (330 bp). The Lmz1b
wild-type allele is indicated by an arrowhead (220 bp) and the floxed allele is indicated by
an arrow (330 bp).

+/lox lox/lox
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Figure 3.3: Inactivation of Lmxlb leads to albuminuria already after 1 week. 1, 3, 10,
30 pg of bovine serum albumin (BSA) and 0.2 ul of urine of both genotypes were separated
on a 10% polyacrylamide gel and stained with amidoblack. Only homozygous Lmz1b mice
developed proteinuria. MW stands for protein molecular weight marker in kDa.

ies of glomeruli isolated from Lmax1b knock-out mice have shown a significant increase
of the mRNA levels of several genes in comparison to control mice (Burghardt et al.,
2013). Due to their time-course of induction and their common physiological function
three promising LMX1B target genes were chosen for further investigation. Two of them
encode proteins associated with the actin cytoskeleton, they are Abra (Actin-binding
Rho activating protein) and Arldc (ADP-ribosylation factor-like 4C). The third candi-
date of the studies, which shows a characteristic time-course of its mRNA levels in the
microarray, is Crctl (Cysteine-rich C-terminal 1). Currently there is no biological in-
formation available regarding this gene, making it attractive as a research object. The
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microarray data were confirmed by quantitative real-time PCR. Abra, Arldc and Cretl
mRNA levels were increased in Cre-positive glomeruli compared with control Cre-negative
glomeruli (Burghardt et al., 2013).

3.1.4 Stably transfected HeLa cell line synthesizing the human
LMX1B in an inducible manner — HtTA-1/LMX1B cells

Part of the experiments presented in this thesis were performed on a stably transfected
HeLa cell line synthesizing the human LMX1B protein in an inducible manner, called
HtTA-1/LMX1B from here on. The cell line was obtained by the stable transfection of
HtTA-1 cells with pUHD10-3/myc-LMX1B by Dr. Anne Rascle (Rascle et al., 2009). The
expression of the human LMX1B ¢DNA is regulated by the tetracycline transactivator
(tTA) consisting of the tet repressor (TetR) fused with the activating domain of virion
protein 16 (VP16) of herpes simplex virus. There is no LMX1B expression in the cells
growing in the medium containing doxycycline. On the other hand, in the doxycycline-free
growth medium tTA binds to seven tet-operator domains (tetO7) and the expression of
LMXI1B in the cells is activated (Kohan, 2008). Figure 3.4 shows the schematic diagram
of induction of the HtTA-1/LMXIB cell line and the Western blot analysis of protein
lysates from HeLa cells which were grown in the presence or absence of doxycycline in
the growth medium.

A HtTA-1/LMX1B B

| Promoter TetR I VP16
L J

/

LMX1B

tTA >
[ eor [ ow [ wxe | [ o7 [ ow LMX1B . GAPDH
No expression of LMX1B Expression of LMX1B .

Figure 3.4: Induction of the HtTA-1/LMX1B cell line. (A) Scheme of the tet-off system
[modified from (Kohan, 2008)]. The tetracycline-controlled transactivator (tTA) consists of
the tet repressor fused with the activating domain of virion protein 26 (VP16) of herpes sim-
plex virus. It is able to bind to seven copies of the tet operator thereby initiating transciption
of a cDNA of interest. On the other side, doxycycline blocks the binding of tTA to the tet
operator and transcription is stopped. (B) Protein lysates collected from HtTA-1/LMX1B
cells grown for 4 days in the presence (“+ Dox”) or in the absence (“- Dox”) of doxycy-
cline were separated on a 10% polyacrylamide gel. Subsequently, Western blot analysis was
performed with antibodies directed against human LMX1B. GAPDH was used as a loading
control. MW stands for protein molecular weight marker in kDa.

3.1.5 Promoter binding studies of the putative LMX1B target
genes

The binding of LMXI1B to its target genes is mediated by the central homeodomain
which specifically recognizes the so-called FLAT (FAR-linked AT-rich) elements. These
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elements were characterized for the first time in the promoter sequence of the rat insulin I
gene (German et al., 1992). FLAT elements can be subdivided into two versions: FLAT-E
(5'-TAATTA-3’") and FLAT-F (5-TTAATA-3")(Figure 3.5).

Functional studies using chromatin immunoprecipitation and luciferase reporter assay
revealed that LMX1B regulates the expression of NF-xB target genes, such as IL-6 and
IL-8 by binding to the FLAT-F elements within the proximal promoter of these genes in
HeLa cells (Rascle et al., 2009).

A FLAT (FAR linked AT-rich) elements

—>
| FAR element /l FLAT element X Insulin | |
| FLAT E |—| FLAT F |
B N
LMX1B
| FLAT element Target genes |

Figure 3.5: (A) Promoter structure of the rat insulin I gene with the Far and FLAT
elements [modified from (German et al., 1992)]. FLAT elements can be subdivided into
two versions: FLAT-E (5-TAATTA-3’) and FLAT-F (5-TTAATA-3’). (B) Scheme of the
transcriptional regulation of LMX1B target genes through binding of LMX1B to the FLAT
elements in the promoter region of its target genes.

To demonstrate that the observed changes in the mRNA levels of Abra, Arl4dc and
Crctl in the inducible podocyte-specific Lmz1b knock-out mice were caused by direct
LMX1B binding to the FLAT elements within the promoter regions of these genes, bioin-
formatical studies were initiated. Human and murine promoter regions were screened for
the presence of FLAT elements because it was planned to perform functional studies first
in the HtTA-1/LMXI1B cell line and then in the podocyte-specific Lmz1b knock-out mice.
However, finally studies were performed only in HtTA-1/LMX1B cells, because chromatin
immunoprecipitation assays were not sensitive enough to show Lmx1b promoter binding
in primary podocytes (Burghardt et al., 2013). 6,000 bp upstream of the transcriptional
start site were analyzed for the presence of FLAT elements by the UCSC genome browser
and NCBI. The results of the bioinformatical studies are presented in Table 3.1.

Dr. Tillmann Burghardt analyzed FLAT elements within the promoter regions by ap-
plying chromatin immonoprecipitation (ChIP) and electrophoretic mobility shift (EMSA)
assays in HtTA-1/LMX1B cells. He demonstrated that LMX1B binds to FLAT elements
located at positions -2,731 and -2,303 within the human ABRA promoter and to a FLAT
element located at position -5,417 of the human ARL4C promoter. These data were con-
firmed in a human podocyte cell line transiently transfected with an expression plasmid
for the human LMX1B protein (Burghardt et al., 2013).
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Abra Arldc Cretl
human mouse human mouse human mouse
F E F E F E F E F E F

=275 -372 -401 | -2,431 | -2,678 | -2,568 | -1,502 | -3,309 | -1,469 -3,529
-682 -636 -619 | -4,378 | -2,688 | -3,030 | -2,515 | -3,610 | -1,507 -5,156
-1,694 | -1,874 | -646 | -4,471 | -4,616 | -5,241 | -4,633 | -5,207 | -3,865
-2,303 | -2,411 | -652 -5,074 | -5,417 | -4,982 | -5,476 | -5,136
-2,731 -1,445 -5,576 -5,189
-4,771 -1,885
-5,164 -3,057
-3,113
-4,369
-5,371

Table 3.1: Identification of FLAT elements within the human and murine Abra, Arl4c and
Crctl promoter fragments. F stands for FLAT-F and E for FLAT-E elements.

3.2 Functional analysis of the putative LM X1B tar-
get genes

3.2.1 Optimization of the luciferase assay for promoter studies

To determine the consequence of LMX1B binding to the promoter fragments of its pu-
tative target genes, these fragments were isolated from human genomic DNA and cloned
into the pGL3-Basic luciferase reporter vector. The obtained constructs were studied us-
ing dual-luciferase reporter assays. Surprisingly, the data were impaired by unexpected
effects of LMX1B on the pGL3-Basic vector alone (data not shown). Bioinformatical
examination of the pGL3-Basic sequence revealed the presence of two FLAT-F elements
within the vector backbone. To overcome the problem, promoter fragments were sub-
cloned into the pGL4.10 Firefly luciferase reporter vector. pGL4 vector backbones were
developed with a reduced number of transcription factor binding sites. FLAT elements
within the vector backbone of the Firefly luciferase reporter vector pGL4.10 and the
Renilla luciferase normalization vector pGL4.74 were removed as well. Nonetheless, the
dual-luciferase reporter assay performance was impeded by unexpected effects of LMX1B
on the Renilla vector used for normalization. LMXI1B inhibits the expression of Re-
nilla vector by approximately 70% (Figure 3.6, A). This leads to the increased relative
Firefly luciferase activity of empty pGL4.10 vector in LMX1B-expressing HeLa cells (Fig-
ure 3.7, A). Therefore it was necessary to optimize the normalization method. The cells
were transfected only with the Firefly luciferase reporter vector pGL4.10. Firefly lu-
ciferase activity was measured by using the Luciferase Assay Reagent and then samples
were normalized to the relative mRNA level of the luciferase cDNA (luc2) by qPCR. The
relative mRNA level of Firefly luciferase cDNA measured by qPCR was decreased by
25% in LMX1B-expressing HeLa cells (Figure 3.6, B). However, no significant differences
were observed in the relative Firefly luciferase activity (Figure 3.7, B).
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Figure 3.6: Optimization of the luciferase assay for promoter studies. Stably transfected
HeLa cells inducibly producing LMX1B were transiently transfected with (A) the Firefly
luciferase reporter vector pGL4.10 and the Renilla luciferase normalization vector pGL4.74,
and (B) only the Firefly luciferase reporter vector pGL4.10. Histograms represent an average
of (A) Renilla luciferase activity measured with the dual-luciferase assay and of (B) relative
mRNA level of the Firefly luciferase cDNA (luc2) measured by qPCR. These data are the
mean values relative to control (=100%) £ SDs.
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Figure 3.7: Relative Firefly luciferase activity of an empty pGL4.10 vector. Stably trans-
fected HeLa cells inducibly producing LMX1B were transiently transfected with (A) the
Firefly luciferase reporter vector pGL4.10 and the Renilla luciferase normalization vector
pGL4.74, and with (B) the Firefly luciferase reporter vector pGL4.10 only. Histograms rep-
resent an average of relative Firefly luciferase activity of pGL4.10 normalized to (A) Renilla
luciferase activity measured with the dual-luciferase reporter assay or to (B) relative mRNA
levels of the Firefly luciferase cDNA (luc2) measured with qPCR. These data are the mean
luciferase activity values relative to the basal promoter activity (=1) + SDs.

3.2.2 Transcriptional regulation of the human IL6, ABRA and
ARL/C genes by LMX1B

Luciferase reporter assays were performed in the HtTA-1/LMXI1B cells transiently trans-
fected with the constructs presented in Figure 3.8, A. To prove the correctness of the
method the human IL6 promoter fragment, which has shown 3-fold activation by LMX1B,
was subcloned into the pGL4.10 Firefly luciferase reporter vector — hIL6.wt (Rascle et al.,
2009). The human /L6 promoter fragment contains one FLAT-F element located at po-
sition -140. In the present studies the human /L6 promoter has shown 2-fold activation
by LMX1B. The observed discrepancy between the present data and the previous stud-
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Figure 3.8: Effect of LMX1B on the human IL6, ABRA and ARL/C promoter fragments
in stably transfected HeLa cells inducibly producing human LMX1B. (A) Schematic illus-
tration of the Firefly reporter constructs with human IL6, ABRA and ARL4C promoter
fragments containing FLAT-E (grey boxes) and FLAT-F (blue boxes) elements. Crossed
boxes correspond to FLAT elements which have shown LMX1B binding (Burghardt et al.,
2013) and which were mutated for these studies. hIL-6.wt, hABRA.wt, hARL4C.wt stands
for constructs containing wild type promoter fragments, hABRA.FLAT and hARL4C.FLAT
point mutations in the FLAT elements. (B) Firefly luciferase activity expressed relative to
basal promoter activity (=1). Histograms represent an average of at least two independent
experiments which were performed in triplicates (mean £+ SD). Data were normalized to the
relative expression of the luciferase cDNA (luc2) measured by qPCR. Here ns stands for
data not significant, and * stands for P<0.05 (Student’s t test).
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ies could be explained by the use of the pGL4.10 backbone. Dr. Anne Rascle used the
pGL3-Basic vector and performed dual-luciferase reporter assays, i.e. normalization was
carried out with the Renilla vector.

The human ABRA (hABRA.wt) and ARL4C (hARL4AC.wt) promoter fragments un-
der investigation contain FLAT elements which in chromatin immunoprecipitation and
gel shift assays showed interaction with LMX1B (Burghardt et al., 2013). This FLAT-
F element within the human ABRA promoter and FLAT-E element within the human
ARL4C promoter fragment are located at position -2,302 and -5,416, respectively. The
relative Firefly luciferase activity under control of the human ABRA and ARL4C pro-
moter fragments (hABRA.wt and hARL4C.wt) have shown a moderate, but not signifi-
cant, downregulation by LMX1B in the HtTA-1/LMX1B cell line.

The effects of three point mutations in the FLAT-F element within the human ABRA
promoter (5-TATTAA-3" — 5-TCTAGA-3’) and of two point mutations in the FLAT-E
element within the human ARL/C promoter (5-TAATTA-3" — 5-TGATGA-3’) were
analyzed by luciferase reporter assay (hABRA.FLAT and hARL4C.FLAT constructs in
Figure 3.8, respectively). Promoter constructs bearing mutated FLAT elements have
shown stronger inhibitory effects by LMX1B.

The data obtained lead to two hypotheses presented in Figure 3.9. In the first scenario
LMXI1B interacts with another transcription factor which downregulates the expression
of a target gene. When LMX1B binds to FLAT elements, it is able to inhibit the activity
of the other transcription factor (Figure 3.9, A). On the other hand, when the LMX1B
binding elements are mutated, LMX1B can no longer bind to the promoter region and
inhibit the other transcription factor, which as a result leads to a higher inactivation
of the target genes (Figure 3.9, B). In the second scenario LMX1B blocks the access of
another transription factor to the promoter (Figure 3.9, C). However, when the FLAT
elements are mutated and LMX1B cannot bind, the other transcription factor is able
to bind to the promoter and this negatively regulates the expression of the target genes
(Figure 3.9, D).

First scenario Second scenario
A l C jF
LMX1B iF > LMX1B \ —
| FLAT | 7 Target genes | | FLAT | Target genes
LMX1B 1 D LMX1B 1
\ TF > ‘ TF —>
| “ | 7 Target genes | | “ | Target genes |

Figure 3.9: Hypotheses regarding the regulation of the human ABRA and ARL4C genes
by LMXI1B. (A) In the first scenario binding of LMX1B to the FLAT elements leads to
the inhibition of another transcription factor (TF) which downregulates the expression of a
target gene. (B) When the LMX1B binding elements are mutated, LMX1B can no longer
inhibit the other transcription factor which in turn causes a downregulation of the target
genes. (C) In the second scenario LMX1B blocks access of another transription factor to its
target promoters. (D) When the FLAT elements are mutated, the other transcription factor
is able to bind to the promoter and negatively regulate expression of the target genes.
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3.3 Protein localization studies

The main goal of this part of the project was to identify the role of the putative LMX1B
target genes in the development of nail-patella syndrome. A crucial piece of information
concerns the subcellular localizations of the corresponding proteins and their interaction
with the actin cytoskeleton in primary podocytes and in an immortalized human podocyte
cell line. For this purpose cDNAs of Abra, Arl4c, and Crctl were fused with a HA-epitope
tag and miniSOG, thus giving us the opportunity to visualize the proteins by confocal
and electron microscopy.

3.3.1 Subcellular localization of proteins encoded by putative
LMX1B target genes in primary podocytes

The Kozak and HA-tag sequences were cloned upstream of the murine Abra, Arl4dc and
Crctl ¢cDNAs into the mammalian expression plasmid pcDNA3 (5-Kozak-HA-cDNA-
stop-3’). Primary podocytes were transiently transfected with the described expression
vectors. Two days after transfection, podocytes were stained with a mouse anti-HA
antibody and with an anti-mouse secondary antibody labeled with DyLight 405. Primary
podocytes were co-stained with rhodamine-phalloidin in order to visualize F-actin.

Abra showed co-localization with actin filaments in primary podocytes (Figure 3.10,
A-C), but neither Arl4c nor Cretl co-localized with F-actin (Figure 3.10, D-J). Instead,
immunofluorescence analysis of Arl4dc and Crctl showed staining in the cytoplasm of
primary podocytes. Additionally, Arl4c demonstrated membrane-associated localization,
predominantly at regions exhibiting membrane ruffling. The protein was localized at the
distal ends of actin filaments (Figure 3.10, D-F). Crctl showed association at membrane
ruffles above cortical actin (Figure 3.10, H-J).

3.3.2 Abra, Arldc, and Crctl lead to the increased formation of
F-actin

To determine the functional significance of LMX1B target genes on the actin cytoskele-
ton, primary podocytes isolated from quadruple transgenic Lmaxlb heterozygous mice
were transiently transfected with expression plasmids for Abra, Arldc and Crctl. The
cells were co-stained with rhodamine-phalloidin (described in Subsection 3.3.1). The
phalloidin fluorescence which corresponds to the content of F-actin was quantified us-
ing ImageJ software. Primary podocytes transfected with expression plasmids for Abra,
Arlde, and Crctl showed stronger phalloidin fluorescence in comparison to podocytes
transfected with the empty pcDNA3 vector (control). Thus, phalloidin fluorescence in
cells transfected with expression plasmids for Crctl, Abra, and Arldc increased by 26%,
31%, and 41% compared to control, respectively (Figure 3.11). This experiment demon-
strated that Abra, Arldc, and Cretl lead to the increased formation of filamentous actin
(Burghardt et al., 2013).

3.3.3 Subcellular localization of wild-type and mutant Arl4dc
proteins in primary podocytes

ARL4C belongs to the family of GTP-binding proteins and cycles between an active GTP-
bound and an inactive GDP-bound state. To study the significance of different forms of
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Figure 3.10: Subcellular localization of Abra, Arldc and Crctl in primary podocytes. Pri-
mary podocytes were transiently transfected with an expression vector encoding HA-tagged
murine Abra, Arl4c and Crctl. Subsequently, cells were stained with a mouse anti-HA an-
tibody and with an anti-mouse secondary antibody labeled with DyLight 405 (A, D, H).
Primary podocytes were co-stained with rhodamine-phalloidin in order to visualize F-actin
(B, E, I). Arrowheads illustrate Abra co-localization with F-actin. Arrows indicate localiza-
tion of Arldc and Crctl. Scale bars, 20 pm.
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Figure 3.11: Quantification of F-actin in primary podocytes transiently transfected with
expression plasmids for Abra, Arldc, and Crctl. The studied proteins lead to the increased
formation of F-actin. The control was transiently transfected with the empty vector and
equals 1. Data shown are mean values + SDs. * stands for P<0.05 (Student’s t test).

Arl4e, primary podocytes isolated from quadruple transgenic Lmx1b heterozygous mice
were transiently transfected with constructs expressing 1) the wild-type protein (Arlde
wt), 2) the inactive GDP-bound or dominant-negative form (Arldc T27N) and 3) the
active GTP-bound or constitutively active form (Arldc Q71L). All Arldc proteins were
fused with the enhanced yellow fluorescent protein (EYFP) (Engel et al., 2004).

The wild-type Arldc-EYFP (Arldc wt) fusion protein showed cytoplasmic localization
with no signal in the nucleus (Figure 3.12, A). This protein demonstrated also a punctate
distribution within the cytoplasm and a membrane-associated localization, especially at
lamellipodia and filopodia (Figure 3.12, A). The dominant-negative Arl4c mutant (Arldc
T27N) was distributed solely in the perinuclear region as small vesicular structures (Fig-
ure 3.12, D). The constitutively active Arldc mutant (Arldc Q71L) similarly to the wild-
type protein (Arldc wt) localized throughout the cytoplasm with additional distribution
to lamellipodia (Figure 3.12, H). No colocalization was observed for wild-type and mutant
Arldc and F-actin (Figure 3.12, C, F, J).

3.3.4 Mutant Arld4c proteins lead to the greater formation of
F-actin

The cellular distribution of wild-type and constituvely active forms of Arl4c might indi-
cate that Arldc interacts with the cytoskeleton (Engel et al., 2004). To determine the
functional significance of wild-type and mutant forms of Arldc on the actin cytoskele-
ton primary podocytes isolated from quadruple transgenic Lmx1b heterozygous mice
were transiently transfected with plasmids expressing 1) the wild-type (Arldc wt), 2) the
inactive GDP-bound (Arl4c T27N) and 3) the active GTP-bound (Arldc Q71L) Arldc-
EYFP fusion proteins and were co-stained with rhodamin-phalloidin to visualize F-actin.
The phalloidin fluorescence was quantified using ImageJ software. Primary podocytes
transfected with expression plasmids for wild-type and mutant Arld4c proteins showed
stronger phalloidin fluorescence in comparison to the non-transfected podocytes (con-
trol). Phalloidin fluorescence in cells transfected with the expression plasmids for the
wild-type form of Arldc, the dominant-negative form of Arldc (T27N), and constitutively
active (Arldc Q71L) Arldce increased by 21%, 30% and 64% compared to control, re-
spectively. This experiment confirmed the previously described effect of Arldc on the
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Figure 3.12: Subcellular localization of wild-type (Arldc wt), dominant-negative
(Arldc T27N) and constitutively active (Arldc Q71L) forms of Arl4c-EYFP fusion proteins
in primary podocytes. Primary podocytes were transiently transfected with an expression
vector encoding different forms of EYFP-tagged Arldc (A, D, H) and subsequently co-stained
with rhodamine-phalloidin (B, E, I). Arrows demonstrate protein localization. Scale bars,
20 pm.
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actin cytoskeleton. Futhermore, dominant-negative (Arldc T27N) and constitutively ac-
tive (Arldc Q71L) Arldc mutant proteins lead to the greater stiffness of the actin cy-
toskeleton (Figure 3.13).
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Phalloidin fluorescence
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Control  Arl4c wt Arl4c Arl4c
T27N Q71L

Figure 3.13: Quantification of F-actin in primary podocytes transiently transfected with
expression plasmids for wild type (Arldc wt), dominant-negative (Arldc T27N) and consti-
tutively active (Arldc Q71L) forms of Arldc. All 3 proteins lead to the increased formation
of F-actin. The control represents non-transfected cells and equals 1. Data shown are mean
values + SDs. * stands for P<0.05.

3.3.5 Ultrastructural localization of Abra, Arl4c and Crctl in
a human podocyte cell line

To visualize the proteins under investigation by transmission electron microscopy the re-
cently described miniSOG technique (“mini Singlet Oxygen Generator”) was applied (Shu
et al., 2011). Initially we encountered the difficulty that the green fluorescence emitted
by the miniSOG protein was gone within a few seconds after excitation. A fellow PhD
student, Benjamin Salecker, facilitated the search for transfected cells by subcloning the
mCherry ¢cDNA upstream of miniSOG (5-mCherry-miniSOG-cDNA-3’).

Conditionally immortalized human podocytes were transiently transfected with ex-
pression plasmids for Abra, Arldc and Crctl fused with mCherry-miniSOG. The sub-
cellular distribution of the miniSOG-tagged proteins was equivalent to that of the HA-
tagged proteins and is illustrated in Figure 3.14. In addition to the expected pattern,
small punctate structures were detected within the cytoplasm of podocytes expressing
Arl4c and Cretl. These proteins fused with a HA-tag, which is 36 times smaller than the
mCherry-miniSOG tag, did not show such a pattern. The HA-tag consists of 9 amino
acids which correspond to 1.1 kDa. On the contrary, the mCherry-miniSOG tag consists
of 362 amino acids and has a mass of 39.8 kDa. Therefore, it is possible that the Arldc
and Crctl fused with a larger tag are improperly folded.

Two days after transfection the podocytes were illuminated by an intense light from
a mercury lamp for 10 min, using a standard fluorescein isothiocyanate filter. Photo-
conversion of fluorescent miniSOG protein generates singlet oxygen which catalyzes the
polymerization of diaminobenzidine tetrachloride (DAB) into an osmiophilic polymer re-
solvable by electron microscopy (Shu et al., 2011). After photoconversion the podocytes
were fixed and 70 nm thick sections were cut for further electron microscopic examination.
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Figure 3.14: Subcellular localization of mCherry-miniSOG-tagged Abra, Arldc and Cretl
in a human podocyte cell line. Arrowheads demonstrate protein localization. Scale bars,
10 pm.

Abra. A human podocyte cell line transfected with miniSOG-tagged Abra showed
tremendous accumulation of an osmiophilic polymer at filamentous structures in the
cytoplasm (Figure 3.15, A, C), thus confirming the previously described subcellular lo-
calization of HA-tagged Abra (Subsection 3.3.1). Actin filaments are known to be the
smallest component of the cytoskeleton with a diameter of about 7 nm (Cooper, 2000).
Electron microscopic images taken with a higher magnification illustrate filaments which
might demonstrate Abra associated with actin (Figure 3.15, E). Interestingly, the exami-
nation of other ultrathin sections derived from the same podocyte revealed the membrane-
associated distribution of Abra (Figure 3.15, B and D). No expression of Abra was de-
tected in filopodia (Figure 3.15, F).

Arl4c. Expression of HA-tagged Arldc in primary podocytes and subsequent staining
with fluorescently labeled phalloidin showed no co-localization of Arldc with filamentous
actin (Subsection 3.3.1). However, electron microscopic studies of miniSOG-tagged Arldc
expressed in a human podocyte cell line revealed the polarized distribution of Arldc
at actin-like filamentous structures in the periphery of the cell (Figure 3.16, A-C). De-
tailed examination of other ultrathin section derived from another podocyte revealed a
membrane-associated distribution of Arl4c at filopodia (Figure 3.16, D), supporting the
previously described subcellular localization of HA-tagged Arldc in primary podocytes
(Subsection 3.3.1).

Crctl. Similarly to Abra and Arldc, miniSOG-tagged Crctl showed the membrane-
associated localization at filopodia (Figure 3.17, A, B, D). A strong signal was observed
at the site of contact with the neighboring cell (Figure 3.17, C). Additionally, filamentous
structures were detected under the cell membrane of filopodia (Figure 3.17, B, D).

Non-transfected human podocytes. The transmission electron microscopy stud-
ies of non-transfected human podocytes did not reveal any specific localization of os-
miophilic polymer. Images taken at a higher magnification illustrate fiber-like struc-
tures, however the signal intensities are weaker than those of the Abra-, Arldc- and
Crctl-expressing conditionally immortalized human podocytes (Figure 3.18, C, E). De-
tailed examination of the plasma membrane and filopodia of non-transfected cells did not
show similar intensity of osmiophilic polymer in comparison to the transfected cells (Fig-
ure 3.18, D, F).
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Figure 3.15: MiniSOG-tagged Abra in a human podocyte cell line showed (A, C, E)
filamentous structures in the cytoplasm and (B, D) a membrane-associated localization. (C)
and (D) are images taken with higher magnification of portions of (A) and (B), respectively.
Red arrows illustrate the localization of the osmiophilic polymer. Images were taken by
transmission electron microscopy.
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Figure 3.16: MiniSOG-tagged Arl4c in a human podocyte cell line shows (A-C) filamen-
tous structures at the periphery of the cell and (D) a membrane-associated localization at
filopodia. (B) is an image taken with higher magnification of portion of (A). Red arrows
illustrate the localization of the osmiophilic polymer. Images were taken by transmission
electron microscopy.
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Figure 3.17: MiniSOG-tagged Crctl in a human podocyte cell line shows a membrane-
associated localization (A-D). Moreover, filamentous structures were detected under the cell
membrane of filopodia (B, D). Red arrows illustrate the localization of the osmiophilic poly-
mer. Red asterisk in panel (C) indicates the Crctl-expressing cell, whereas the neighboring
cell was not transfected. Images were taken by transmission electron microscopy.
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Figure 3.18: Transmission electron micrographs taken from non-transfected human
podocytes. Detailed examination of the (A, C, E) cell membrane and cytoplasm, (B, D) cell-
cell contact and (G) filopodia. Red arrows illustrate non-specific osmiophilic polymer pre-
cipitates.
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3.4 Actin polymerization studies

In Subsection 3.3.2 it was demonstrated that primary podocytes transiently transfected
with expression plasmids for Abra, Arl4c and Crctl contain higher levels of filamentous
actin. Moreover, primary podocytes isolated from Lmx1b knock-out mice have shown
increased levels of filamentous actin as well (Burghardt et al., 2013). To further analyze
the effects of LMXI1B and its target genes on the actin cytoskeleton, filamentous (F)
and globular (G) actin fractions were purified and F- to G-actin ratio was determined.
Preliminary studies were performed in the HtTA-1/LMXI1B cell line (Subsection 3.4.1).
Further examinations of the F- to G-actin ratio in primary podocytes failed because it was
not possible to isolate a sufficient number of cells. Additionally, studies in conditionally
immortalized murine podocytes transiently transfected with expression plasmids for Abra,
Arl4ce, and Cretl were performed (Subsection 3.4.2).

3.4.1 LMX1B has no effect on the F- and G-actin content in
the HtTA-1/LMX1B cell line

HtTA-1/LMX1B cells were treated with 0.3 uM and 1 uM of latrunculin A, which inhibits
the polymerization of actin by binding to G-actin. Subsequently cells were stained with
Acti-stain 488 fluorescent phalloidin to visualize F-actin. The effect of latrunculin A on
the actin cytoskeleton of Ht TA-1/LMX1B cells was evident already 30 min after treatment
(Figure 3.19, A).

The functionality of the assay was confirmed by immunoblotting F- and G-actin frac-
tions purified from the latrunculin A-treated cells and subsequent quantification of the
immunoblot signals. As expected, the F- to G-actin ratio in HtTA-1/LMX1B cells treated
with latrunculin A was significantly reduced. 30 min after treatment with 0.3 uM and
1 uM latrunculin A the F- to G-actin ratio was reduced 2- and 5-fold in comparison to
the ethanol-treated control cells, respectively (Figure 3.19, B-C).

The effect of LMX1B on the F- to G-actin ratio was analyzed in HtTA-1/LMX1B cells
which were grown in the presence or absence of doxycycline for 4 days. The expression
of LMX1B did not cause any significant changes on the actin cytoskeleton organization
in the cells examined (Figure 3.20).

3.4.2 The expression of Abra, Arld4c, and Crctl has no effect on
the F- to G-actin ratio in a murine podocyte cell line

A murine podocyte cell line was treated with 0.2 uM and 1 uM of latrunculin A for 30 min
and 2 h. After 30 min of treatment slight changes in the actin polymerization were visible.
However, depolymerization of the actin cytoskeleton was more prominent after 2 h of
treatment with the toxin (Figure 3.21, A). Therefore, to demonstrate functionality of the
assay in conditionally immortalized murine podocytes, cells were treated with 0.2 uM and
1 uM of latrunculin A for 2 h. Treatment of conditionally immortalized murine podocytes
with 0.2 uM and 1 puM latrunculin A for 2 h reduced the F- to G-actin ratio 1.6- and
3.8-fold in comparison to the ethanol-treated control cells, respectively (Figure 3.21, C).

In order to investigate the influence of putative LMX1B target genes on the actin
cytoskeleton, conditionally immortalized murine podocytes were transiently transfected
with expression plasmids for Abra, Arl4c and Crctl. Filamentous and globular actin frac-
tions were purified and immunoblot signals were quantified. Murine podocytes expressing
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Figure 3.19: Influence of latrunculin A (LA) on the actin cytoskeleton in HtTA-1/LMX1B
cells. The cells were treated with 0.3 uM and 1 uM latrunculin A for 30 min. (A) F-actin
was visualized by staining with Acti-stain 488 fluorescent phalloidin. (B) The immunoblot
illustrating filamentous (F) and globular (G) actin fractions purified from latrunculin A-
treated HtTA-1/LMXI1B cells. (C) Densitometric analysis of F- to G-actin ratio relative to
control treated with ethanol (=1). Data were collected from one experiment. MW stands
for protein molecular weight marker in kDa. Scale bars, 10 pm.

Abra showed a 19% increase in the F- to G-actin ratio, in contrast to podocytes express-
ing Arldc and Cretl which showed a reduction in the F- to G-actin ratio by 12 % and
25 %, respectively (Figure 3.22). However, the observed changes were not statistically
significant.

3.5 Expression of recombinant Abra, Arl4c and Crctl
proteins in Escherichia coli

The complete coding sequences for murine Abra and Crctl, and the incomplete cod-
ing sequence for murine Arldc (from 396 to 576 bp) were cloned into the bacterial ex-
pression vector pET21a. Expression of recombinant proteins was induced by isopropyl-
1-thio-4-D-galactosidase (IPTG) in different strains of Escherichia coli — BL21(DE3),
BL21(DE3)pLysS and Rosetta(DE3)pLysS at 25°C and 37°C for 1 h, 2 h, 4 h and
overnight. Bacterial lysates were separated on a polyacrylamide gel. The optimized
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Figure 3.20: LMX1B has no effect on the F- to G-actin ratio in stably transfected HeLa cells
inducibly producing LMX1B. HtTA-1/LMX1B cells were grown in the presence or absence
of doxycycline for 4 days. (A) The immunoblot illustrating the filamentous (F') and globular
(G) actin fractions collected from HeLa cells without (“-LMX1B”) or with (“+LMX1B”)
LMX1B expression. (B) Densitometric analysis of F- and G-actin fractions collected from
HeLa cells from four independent experiments. n=12 per group, where n refers to the number
of analyzed F- and G-actin fractions. All data are presented as mean + SDs. Here ns stands

for data not significant, and MW stands for protein molecular weight marker in kDa.

parameters for the highest protein expression induced by IPTG are summarized in Ta-

ble 3.2.
Protein | Bacterial strain | Time of induction | Temperature
Abra | Rosetta(DE3)pLysS o/n 37°C
Arldc | Rosetta(DE3)pLysS 2h 37°C
Crctl BL21(DE3)pLysS o/n 37°C

Table 3.2: Optimized parameters for the highest expression of recombinant Abra, Arldc
and Crctl induced by IPTG

Recombinant proteins were purified from the bacteria on Ni?*-charged His-Bind resin.
Purified proteins were separated on polyacrylamide gels and analyzed with an anti-His-
Tag monoclonal antibody (Figure 3.23). The predicted molecular weights including the
N-terminal T7-Tag and the C-terminal His-Tag of Abra, Arldc and Crectl are 43.2 kDa,

8.5 kDa and 13.1

kDa, respectively.

After the purification of proteins Prof. Dr. Rainer Deutzmann identified Abra and
Arldc peptide sequences by mass spectrometry. Crctl peptide sequences were not iden-

tified because of the high cysteine contents within the sequence.

comprising the T7-tag, was found in the Crctl protein by mass spectrometry.

Only one peptide,
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Figure 3.21: Latrunculin A-treated murine podocytes showed significant F-actin depoly-
merization. (A) Murine podocytes were treated with 0.2 uM and 1 uM latrunculin A for
30 min and 2 h and then stained with Acti-stain 488 fluorescent phalloidin to visualize
F-actin. Control cells were treated with ethanol. (B) The representative immunoblot il-
lustrating the filamentous (F) and globular (G) actin fractions collected from the murine
podocyte cell line treated with 0.2 uM and 1 uM for 2 h. (C) Densitometric analysis of F-
and G-actin fractions purified from latrunculin A-treated murine podocytes relative to con-
trol (=1). Data were collected from three independent experiments. n=3 per group, where
n refers to the number of F-actin and G-actin fractions analyzed. All data are presented as
mean + SDs. MW stands for protein molecular weight marker in kDa. Scale bars, 10 pum.

3.6 Generation, affinity purification, and characteri-
zation of rabbit antibodies directed against Abra,
Arldc, and Crctl

To generate polyclonal antibodies rabbits were immunized with the purified recombinant
Abra, Arldc and Cretl proteins described in Section 3.5 (two rabbits each, six rabbits
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Figure 3.22: The expression of Abra, Arl4c and Crctl has no effect on the F- to G-
actin ratio in a murine podocyte cell line. (A) Representative immunoblot illustrating the
effects of Abra, Arldc and Crctl on filamentous (F) and globular (G) actin fractions, which
were collected from the murine podocyte cell line transiently transfected with expression
plasmids for Abra, Arldc, and Crctl. Control cells were transfected with empty pcDNAS3.
(B) Densitometric analysis from three independent experiments. n=8-9 per group, where
n refers to the number of analysed F-actin and G-actin fractions. All data are presented as
mean £ SDs.
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Figure 3.23: Expression and purification of recombinant murine (A) Abra, (B) Arldc and
(C) Crctl proteins expressed in Escherichia coli. (MW) protein molecular weight marker
in kDa, (lane 2) bacterial lysate before induction by 1 mM IPTG, (Lane 3) crude bacterial
lysate after induction, (Lane 4) recombinant proteins purified from bacterial lysate by column
chromatography using Ni?*-charged His-Bind resin, and (Lane 5) Western blot analysis of
the recombinant proteins with an anti-His-Tag monoclonal antibody.
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in total). The obtained antisera were tested in COS-7 cells transiently transfected with
expression plasmids for Abra, Arl4c and Crctl. Abra and Arl4c were detected with the
antisera, but not Crctl (Figure 3.24). The expected molecular weights including the
N-terminal HA-Tag of Abra, Arldc and Crctl are 42.4 kDa, 22.2 kDa and 12.3 kDa,
respectively.

To eliminate multiple nonspecific bands detected by Western blot using anti-Abra
and anti-Arl4c antibodies it was decided to affinity-purify the rabbit antisera. Affinity
purification eliminated nonspecific bands by Western blot (Figure 3.25). Moreover, the
background signal detected by immunofluorescence staining was significantly reduced.
Figures of cells stained with the crude antisera are not presented. For further studies of
Crctl a commercial goat anti-Crectl antibody was used.

Prior to the examination of kidney sections with anti-Abra, anti-Arl4c and anti-Crctl
antibodies immunofluorescence stainings of a murine podocyte cell line transiently trans-
fected with expression plasmids for HA-tagged Abra, Arldc and Crctl were performed.
Transfected podocytes were double-stained with an anti-HA antibody and with anti-Abra,
anti-Arl4c and anti-Cretl antibodies. The proper subcellular distribution of the proteins
and co-localization of signals from the immunostainings are shown in Figure 3.26.

3.7 Expression of endogenous Abra, Arl4c and Crctl
after the podocyte-specific inactivation of Lmx1b

Three-month-old female inducible podocyte-specific Lmaz1b knock-out (Lmx1b!®/%% rtTA,
Cre) and control (Lmx1b!*/%°* 1tTA) mice were administered 2 mg/ml doxycycline for
7 days. Animals were perfusion-fixed and their kidneys were embedded in paraffin and
in Tissue-Tek O.C.T. Paraffin-embedded (Figure 3.27) and frozen (Figure 3.28) kidney
sections were stained with our own anti-Abra and anti-Arl4c antibodies as well as with
the commercial anti-Crctl antibodies.

The anti-Abra antibodies recognized an epitope in some cells of the glomerulus in
paraffin-embedded kidney sections. However, no differences in the expression level of
Abra between induced triple-transgenic and control animals were observed (Figure 3.27).
No distinct signal for endogenous Abra in frozen kidney sections stained with the anti-
Abra antibody was observed (Figure 3.28). Immunofluorescence stainings of paraffin-
embedded and frozen kidney sections with the anti-Arl4c antibodies were not successful
(Figures 3.27 and 3.28). The endogenous Crctl protein was significantly induced in the
glomeruli of the induced podocyte-specific Lmxz1b knock-out mice (Figures 3.27 and 3.28).

3.8 Paxillin expression is affected in conditionally
immortalized murine podocytes expressing Abra
and Crctl, but not Arl4c

Burghardt et al. demonstrated that primary podocytes isolated from inducible podocyte-
specific Lmx1b knock-out mice better adhere to a laminin-coated surface than podocytes
from control mice (Burghardt et al., 2013). However, the focal contact area of primary
podocytes with or without an inactivated Lmx1b gene examined by immunofluorescence
staining with an anti-paxillin antibody showed no difference (Burghardt et al., 2013).
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Figure 3.24: Titration of the rabbit antisera. 12 pg of total protein lysates extracted
from COS-7 cells transiently transfected with the empty pcDNA3 vector (Ctrl.) or with
pcDNA3 plasmids encoding Abra, Arl4c and Crctl were separated on 15 % polyacrylamide
gels. Separated proteins were transferred to a PVDF membrane. The membranes were
first incubated with rabbit antisera diluted 1:300, 1:1,000 and 1:3,000 and then with HRP-
conjugated anti-rabbit antibodies. Tested antisera obtained from rabbit 1 (A, C, E) or
rabbit 2 (B, D, F). MW stands for protein molecular weight marker in kDa. Red asterisks
correspond to the expected size of the proteins of interest.
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Figure 3.25: Titration of affinity-purified (A) anti-Abra and (B) anti-Arl4c antibodies.
20 ug of total protein lysates extracted from COS-7 cells transiently transfected with empty
pcDNA3 vector (Ctrl.) or with pcDNA3 plasmids encoding Abra and Arldc were separated
on 12 % polyacrylamide gels. Separated proteins were transferred to a PVDF membranes.
The membranes were first incubated with purified anti-Abra and anti-Arl4c rabbit antibodies
diluted 1:30, 1:100, 1:300 and 1:1,000 and then with HRP-conjugated anti-rabbit antibodies.
MW stands for protein molecular weight marker in kDa.

To investigate the influence of the putative LMX1B target genes on paxillin expression,
conditionally immortalized murine podocytes were transiently transfected with expression
plasmids for Abra, Arldc, and Cretl. Protein samples from cells were separated on a 10%
polyacrylamide gel and then transferred to a PVDF membrane. The membrane was
then incubated with anti-paxillin and anti-GAPDH antibodies. Surprisingly, paxillin
expression was increased in transfected podocytes regarding to the control. Thus, Abra
and Crctl induced the expression of paxillin 1.7-fold and Arl4c induced the expression of
paxillin 1.3-fold (Figure 3.29).

3.9 Turnover of proteins involved in the formation
of the actin cytoskeleton and focal adhesions

In several experiments Burghardt et al. demonstrated that LMX1B affects the organi-
zation of the actin cytoskeleton. For example, fibronectin-coated nanobeads attached to
primary podocytes from Lmz1b knock-out mice moved significantly less than the beads at-
tached to podocytes from control mice. Additionally, Lmz1b-deficient primary podocytes
showed stronger phalloidin staining. Furthermore, primary podocytes isolated from in-
ducible podocyte-specific Lmx1b knock-out mice adhered better to a laminin-coated sur-
face than podocytes from control mice (Burghardt et al., 2013).

In view of these facts, the turnover of proteins involved in the regulation of the actin
cytoskeleton and focal adhesions could provide essential pieces of information. For this
purpose several proteins were investigated by Fluorescence Recovery After Photobleach-
ing (FRAP). Initially FRAP studies were performed in stably transfected HeLa cells in-
ducibly producing LMX1B (Subsection 3.9.1). After the identification of proteins which
showed significant changes in their turnover studies were continued in primary podocytes
isolated from quadruple transgenic mice (Subsection 3.9.2).
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Figure 3.26: Immunofluorescence stainings of a murine podocyte cell line transiently
transfected with expression plasmids for (A-C) Abra, (D-F) Arldc and (G-I) Cretl fused
with a HA-tag. Cells were stained with (A) anti-Abra, (D) anti-Arlde, (G) anti-Cretl and
(B, E, H) anti-HA-tag antibodies. Arrows show co-localization of the signal from the different
antibodies. Scale bars, 10 pm.

3.9.1 FRAP studies in the HtTA-1/LMX1B cell line

Currently approximately 150 proteins involved in the formation of the actin cytoskeleton
and focal adhesions are known (Zaidel-Bar et al., 2007). To study the effects of LMX1B on
the actin cytoskeleton, the mobilities of several proteins such as a-actinin-1, a-actinin-4,
actin, focal adhesion kinase (FAK), non-muscle myosin 9 heavy chain (MYH9), pax-
illin, talin, utrophin, vasodilator-stimulated phosphoprotein (VASP), vinculin and zyxin
were studied using FRAP. Experiments were performed in the HtTA-1/LMXI1B cell line
grown in the presence or absence of doxycycline for 4 days. HtTA-1/LMXI1B cells were
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Figure 3.27: Staining for endogenous Abra, Arldc and Crctl in paraffin-embedded kidney
sections. Kidneys were isolated from inducible podocyte-specific Lmz1b knock-out and con-
trol (Lmx1b‘®/l0 1tTA) mice administered 2 mg/ml doxycycline for 7 days. Sections were
stained with anti-Abra, anti-Arl4c and anti-Crctl antibodies. Scale bars, 20 pm.
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Figure 3.28: Staining for endogenous Abra, Arldc, and Crctl in frozen kidney sec-
tions. Kidney were isolated from inducible podocyte-specific Lmx1b knock-out and control
(Lmx1b‘®/1% 1+t TA) mice administered 2 mg/ml doxycycline for 7 days. Scale bars, 20 wm.
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Figure 3.29: Paxillin expression is significantly affected in conditionally immortalized
murine podocytes expressing Abra and Crctl, but not Arldc. 10 ug of total protein lysates
extracted from conditionally immortalized murine podocytes transiently transfected with
an empty pcDNA3 vector (Control) or with pcDNA3 plasmids encoding Abra, Arl4dc and
Crctl were separated on a 10% polyacrylamide gel. Separated proteins were transferred to
a PVDF membrane. The membranes were incubated with mouse anti-paxillin and rabbit
anti-GAPDH antibodies and then with HRP-conjugated anti-mouse and anti-rabbit anti-
bodies, respectively. Representative immunoblots stained with (A) anti-paxillin and (B)
anti-GAPDH antibodies. GAPDH was used as a loading control. (C) Histograms represent
an average from at least three independent experiments made in triplicates (mean £+ SDs).
MW, ns and * stands for protein molecular weight marker in kDa, data not significant and
P<0.05 (Student’s t test), respectively.

transiently transfected with the expression plasmids for the cytoskeletal proteins. On
the next day, the region of interest in the transfected cells was bleached and recovery
of fluorescence was tracked over time. A single exponential equation was fitted to ev-
ery measurement and three kinetic parameters — the recovery half-time t; /5, the mobile
fraction (MF) and the rate constant for the exchange of molecules between the bleached
region and the surrounding area (K) were analyzed (Table 3.3).

The results obtained from HtTA-1/LMXI1B cells transiently transfected with expres-
sion plasmids for a-actinin-1, a-actinin-1 and actin showed a similar tendency. In the
presence of LMX1B the turnover of these proteins was faster. LMX1B significantly accel-
erated the recovery half-times of a-actinin-1, a-actinin-4, and actin by 35%, 19% and 48%,
respectively. The rate constant for the exchange of molecules between the bleached region
and the surrounding area increased 1.6-, 1.2-, and 1.5-fold for a-actinin-1, a-actinin-4 and
actin, respectively. No significant changes were observed in the mobile fractions of all
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tested cytoskeletal proteins. LMX1B showed no effect on the mobility of focal adhesion
kinase, non-muscle myosin 9 heavy chain, paxillin, talin, utrophin, vasodilator-stimulated
phosphoprotein, vinculin and zyxin in the HtTA-1/LMX1B cell line. The relative recov-
ery half-times of proteins involved in the regulation of the actin cytoskeleton in HtTA-
1/LMX1B and the recovery curves of normalized fluorescence intensities are presented in
Figure 3.30 and Figure 3.31, respectively.

t1/2 [S] MF [%] K [l/S
LMX1B + — + - + —
a-actinin-1 | 3.5 | 5.4 | 72.3 | 78.6 | 0.27 | 0.17
a-actinin-4 | 6.3 | 7.7 | 72.3 | 69.0 | 0.13 | 0.11

Actin 1.4 | 2.7 | 8.9 | 84.3 | 0.62 | 0.42
FAK 0.7 | 0.7 | 80.7|77.6 | 1.59 | 1.69
MYH9 11.3 | 13.5 | 66.5 | 65.0 | 0.09 | 0.07
Paxillin 2.2 | 20 16937221047 0.49
Talin 0.8 | 0.9 | 688|719 1.50 | 1.31
Utrophin | 2.5 | 2.2 | 764 | 79.1 | 0.31 | 0.35
VASP 1.1 ] 0.9 | 796 | 80.5 | 1.12 | 1.26
Vinculin 3.2 | 40 | 62.7|71.8]0.3210.29
Zyxin 1.6 | 1.8 | 83.8 | 82.9 | 0.66 | 0.55

Table 3.3: Kinetic parameters of focal adhesion proteins and proteins associated with the
actin cytoskeleton obtained from FRAP measurements in the HtTA-1/LMX1B cell line. “+7,
data obtained from Hela cells with LMX1B expression, “-”, data obtained from Hela cells
without LMX1B expression, t;/, denotes the recovery half-time, MF, the mobile fraction
shown as percentage of total fraction (sum of mobile and immobile fractions 100%), and
K, the rate constant for the exchange of molecules between the bleached region and the
surrounding area. FAK, MYH9 and VASP stands for focal adhesion kinase, non muscle
myosin heavy chain 9, and vasodilator-stimulated phosphoprotein, respectively.

3.9.2 FRAP studies in primary podocytes isolated from quadru-
ple transgenic mice

Due to the effect of LMX1B on the mobility of a-actinin-1, a-actinin-4 and actin in
HtTA-1/LMXI1B cells, these proteins were subsequently analyzed in primary podocytes.
Glomeruli isolated from quadruple transgenic Lmx1b heterozygous mice (Control) and
Lmz1b homozygous mice (KO) administered 2 mg/ml of doxycycline for 7 days were cul-
tured for 5 days to allow the outgrowth of podocytes. Then podocytes were transiently
transfected with expression plasmids for a-actinin-1, a-actinin-4 and actin. 2 days after
transfection, the region of interest in the transfected cells was bleached and recovery of
fluorescence was tracked over time. A single exponential equation was fitted to every
measurement and three kinetic parameters — the recovery half-time t; /5, the mobile frac-
tion (MF) and the rate constant for the exchange of molecules between the bleached
region and the surrounding area (K) — were analyzed (Table 3.4).

Similarly to the results obtained from stably transfected HeLa cells inducibly produc-
ing LMX1B, mobilities of the proteins of interest were faster in the presence of LMX1B.
The recovery half-times of a-actinin-1 and actin in podocytes from Lmx1b heterozygous
mice (Control) were accelerated by 30% and 28%, respectively. However, the recovery
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Figure 3.30: Relative recovery half-times of proteins involved in the regulation of the
actin cytoskeleton in HtTA-1/LMXI1B cells. The half-time to full recovery measured in cells
without LMX1B expression equals 1. Histograms represent an average of at least three
independent experiments (mean + SDs). Here ns stands for data not significant, and *
stands for P<0.01 (Student’s t test).

half-time of a-actinin-4 was increased only by 12%. As expected, the rate constant
for the exchange of molecules between the bleached region and the surrounding area
increased 1.2-; 1.3-, 1.5-fold for a-actinin-1, a-actinin-4 and actin, respectively. Surpris-
ingly, the mobile fraction of a-actinin-1 in Lmzlb-deficient podocytes decreased 13.7%
relative to control podocytes. Mobile fractions of a-actinin-4 and actin showed no sig-
nificant changes. The relative recovery half-times of proteins involved in the regulation
of the actin cytoskeleton in primary podocytes and the recovery curves of normalized
fluorescence intensities are presented in Figure 3.32 and Figure 3.33, respectively.

£12 5] MF [%] K 1/
Control | KO | Control | KO | Control | KO
a-actinin-1 8.4 12.0 59.2 42.5 0.11 0.09
a-actinin-4 7.8 8.9 54.2 56.7 0.12 0.09
Actin 6.2 8.6 74.0 73.3 0.15 0.10

Table 3.4: Kinetic parameters of a-actinin-1, a-actinin-4 and actin obtained from FRAP
measurements in primary podocytes isolated from quadruple transgenic Lmz1b heterozygous
mice (Control) and Lmz1b homozygous mice (KO). t/5 denotes the recovery half-time,
MF, the mobile fraction shown as percentage of total fraction (sum of mobile and immobile
fractions 100%), and K, the rate constant for the exchange of molecules between the bleached
region and the surrounding area.
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Figure 3.31: Turnover of proteins involved in the regulation of the actin cytoskeleton
and focal adhesions in HtTA-1/LMX1B cells. Recovery curves of normalized fluorescence
intensities of (A) EGFP-tagged a-actinin-1, (B) EGFP-tagged a-actinin-4, (C) EGFP-
tagged actin, (D) mEmerald-tagged focal adhesion kinase (FAK), (E) mEmerald-tagged
non-muscle myosin 9 heavy chain (MYH9), (F) mCherry-tagged paxillin, (G) mEmerald-
tagged talin, (H) GFP-tagged utrophin, (I) mEmerald-tagged vasodilator-stimulated phos-
phoprotein (VASP), (J) venus-tagged vinculin and (K) mCherry-tagged zyxin in the HtTA-
1/LMX1B cell line with (black) and without (red) LMX1B expression. Every curve was
normalized by setting the pre-bleach intensity to 1. Approximately 60 recovery curves were
analyzed. Data were collected from at least three independent experiments.
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Figure 3.32: The relative recovery half-times of proteins involved in the regula-
tion of the actin cytoskeleton in primary podocytes isolated from quadruple transgenic
Lmz16%/' (Lmz1b KO) and Lmz1bt/* (Control) mice. The half-time to full recovery
measured in primary podocytes obtained from Lmaz1bt/!o® (Control) mice equals 1. His-
tograms represent an average of at least three independent experiments (mean + SDs). Here
ns stands for data not significant, and * stands for P<0.01 (Student’s t test).
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Figure 3.33: Turnover of proteins involved in the regulation of the actin cytoskeleton in
primary podocytes isolated from quadruple transgenic mice. Recovery curves of normalized
fluorescence intensities of (A) mCherry-tagged a-actinin-1, (B) a-actinin-4, and (C) actin in
primary podocytes isolated from quadruple transgenic Lma1btor/low (Lmz1b KO — red) and
Lmaz1bt/lox (Control — black) mice. Every curve was normalized by setting the pre-bleach
intensity to 1. Approximately 30 recovery curves were analyzed. Data were collected from
at least three independent experiments.
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Discussion

Approximately 40% of NPS patients suffer from renal symptoms which result from a
thickened glomerular basement membrane and foot process effacement (Sweeney et al.,
2003; Witzgall, 2008; Lemley, 2009). More than 140 mutations in the LMX1B gene have
been identified in patients with NPS. Roughly 18% of these mutations are concentrated
in the homeodomain which mediates the binding of LMX1B to its target genes (Bongers
et al., 2002). As reported previously, LMX1B regulates the transcription of several genes,
including the Colja3, the Colja4, the Cd2ap, and the Nphs2 genes which code for the
a3 and a4 chains of collagen IV in the GBM, for the CD2-associated protein, and for
podocin, respectively (Morello et al., 2001; Miner et al., 2002). However, the expression
of podocin and of the a3 and a4 chains of collagen IV is not altered in the constitutive
podocyte-specific Lmz1b knock-out mice (Suleiman et al., 2007) and in kidney biopsies
from NPS patients (Heidet et al., 2003). In order to understand the molecular mechanisms
which lead to the development of NPS, it is necessary to answer the following question:
which genes are regulated by LMX1B? In search for the downstream targets of LMX1B,
microarray studies of glomeruli isolated from inducible podocyte-specific Lmz1b knock-
out mice were performed. This analysis revealed that the expression of several genes
was altered in Lmx1b knock-out mice, compared with findings for control mice, following
the administration of doxycycline (Burghardt et al., 2013). For further investigation
three promising LMX1B target genes, which have shown an upregulation after Lmz1b
inactivation, were chosen: Abra, Arljc and Crctl.

4.1 Effect of LM X1B on its putative target genes

Previous reports demonstrated that LMX1B is able to regulate transcription of its target
genes by binding to the adenine and thymine-rich sites in the promoter region, the FLAT
elements (German et al., 1992; Morello et al., 2001; Miner et al., 2002; Rohr et al., 2002;
Rascle et al., 2009). Bioinformatic studies of 6-kbp promoter fragments of the putative
LMX1B target genes led to the identification of several FLAT elements (Table 3.1). Ad-
ditionally, the recruitment of LMX1B to FLAT elements within the ABRA and ARL/C
promoter regions was demonstrated by ChIP and EMSA assays (Burghardt et al., 2013).
To understand how LMX1B regulates the transcription of these genes, luciferase assays
of reporter constructs bearing FLAT elements, which have shown binding of LMX1B,
were performed. In HtTA-1/LMXIB cells ABRA and ARLAC expression were mod-
estly reduced by LMX1B (Subsection 3.2.2). The previously described microarray data
demonstrated that in the mouse kidney LMX1B negatively regulates expression of the

95
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same genes (Burghardt et al., 2013), but the effects in the mouse were stronger. The
discrepancies between the data obtained from the two approaches could be explained for
example by: (a) the difference of LMX1B cofactors in the mouse kidney and in HtTA-
1/LMX1B cell line, (b) the investigated promoter fragments contained only a short region
possibly without other regulatory regions of DNA necessary for their correct transcrip-
tion, and (c) the absence of histones in the reporter constructs. Surprisingly, mutations
in the FLAT sequence within the investigated promoter fragments caused stronger in-
hibitory effects by LMX1B. Collectively, the obtained data lead to two hypotheses. In
the first scenario LMX1B collaborates with the other transcription factor which down-
regulates the expression of a target gene. When LMXI1B binds to the FLAT elements
within its target genes, it inhibits the activity of a transcriptional repressor. Mutations
in the FLAT element impede the binding of LMX1B to its target genes so that LMX1B
is no longer able to inhibit the transcriptional repressor. Thereby, a higher inactivation
of LMX1B downstream targets is caused. In another scenario, the binding of LMX1B to
the FLAT element blocks the access to the promoter by the other transcription factor.
However, when the FLAT element is mutated and LMX1B is not able to bind it, the
other transcription factor binds to the promoter and negatively regulates expression of
the target genes (Figure 3.9).

4.2 Subcellular and ultrastructural localization of
Abra, Arl4dc and Crctl

The subcellular localization of proteins provides key insights into their function, interac-
tion and cellular signaling pathways (Stadler et al., 2013). Among the various possibilities
to visualize the proteins under investigation, the immunofluorescence technique was cho-
sen. Therefore the coding sequences of mouse Abra, Arldc and Crctl were fused to the
human influenza hemagglutinin (HA) epitope tag (Pati, 1992) and expressed in primary
podocytes. In this study, Abra was associated with actin stress fibers (Subsection 3.3.1)
as previously demonstrated (Arai et al., 2002), suggesting that Abra provides structural
support for cells. However, neither Arl4c nor Crct were associated with actin filaments.
Instead they were distributed diffusely in the cytoplasm of primary podocytes (Subsec-
tion 3.3.1). Additionally, Arl4c demonstrated a membrane-associated localization, pre-
dominantly at regions exhibiting membrane ruffling. The protein accumulated at the ends
of actin filaments, similarly to focal adhesion proteins. Arldc is known to interact with the
focal adhesion protein paxillin via ARNO, also known as cytohesin-2 (Torii et al., 2010).
Therefore, this implies that Arldc plays a role in cell attachment and spreading. Because
Arl4c belongs to the family of small GTPases (Jacobs et al., 1999), its subcellular distri-
bution depends on binding to GTP or GDP. Additional studies on Arldc fused with EYFP
demonstrated that the wild-type form and the constitutively active GTP-bound mutant
of Arldc were associated with the plasma membrane in filopodia and lamellipodia, while
the inactive GDP-bound Arl4c mutant was detected in the perinuclear region of the cell
as small vesicular structures (Subsection 3.3.3). The data obtained are in agreement with
previous findings showing distinct subcellular distributions for Arldc (Engel et al., 2004).
Engel et al. proposed a possible involvement of Arl4c in actin filament assembly and/or
reorganization (Engel et al., 2004). The overexpression studies of Crctl demonstrated for
the first time its membrane-associated localization at lamellipodia above cortical actin
(Subsection 3.3.1), where it may initiate actin polymerization.
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The ultrastructural localization of proteins in cells and tissues became possible due to
the invention of the immunogold labeling technique by Faulk and Taylor in 1971 (Faulk
and Taylor, 1971). However, this technique has several limitations. For example, it is
necessary to generate high-affinity and highly selective antibodies. Strong fixation, which
is necessary for optimal preservation of ultrastructure and visibility of cellular organelles,
can hamper the diffusion of antibodies and gold particles (Hermann et al., 1996; Zhu
et al., 2011). Substitution of gold particles by eosin resulted in improved penetration of
eosin-conjugated antibodies, but cell permeabilization was still necessary (Deerinck et al.,
1994). The discovery of genetically encoded tags such as ReAsH (Gaietta et al., 2002)
or miniSOG (Shu et al., 2011) significantly improved the ultrastructural visualization of
proteins in cells. Therefore, to visualize Abra, Arldc and Crctl by transmission electron
microscopy, it was decided to use the miniSOG tag. Unexpectedly, localization of trans-
fected cells with a fluorescence microscope encountered one difficulty: green fluorescence
emitted by the miniSOG protein was gone within a few seconds after excitation. This
problem was solved by a fellow PhD student, Benjamin Salecker, who subcloned the
mCherry ¢cDNA upstream of miniSOG (5-mCherry-miniSOG-cDNA of interest-3’).

miniSOG-fused Abra, Arldc, and Crctl were successfully localized by transmission
electron microscopy in a human podocyte cell line. The data indicate that the proteins
can be detected at several intracellular sites. Abra was localized at actin-like filamentous
structures in the cytoplasm, thus confirming the previously described data obtained from
confocal microscopy. Additionally, the membrane-associated distribution of Abra was
detected at lamellipodia, possibly at the leading edge of the cell. Arldc was localized
at actin-like filamentous structures, but possibly at the trailing edge of the cell. These
findings suggest a role for Abra and Arl4c in cell migration. However, to gain a better
understanding of the role played by these proteins in cell migration, additional studies,
such as the spatio-temporal regulation of Abra and Arl4c activity in motile cells, need to
be performed. Arl4c and Crctl have shown a membrane-associated distribution at filopo-
dia. Moreover, Crctl was localized to actin-like filamentous structures at cell protrusions
and at sites of contact to the neighboring cell (Subsection 3.3.5). These data indicate
that in podocytes Crctl links membrane proteins of foot processes to the slit diaphragm.

The results of the subcellular and ultrastructural localization of Abra, Arldc and
Crctl by confocal and electron microscopy suggest their functional involvement with
the actin cytoskeleton. The present study confirmed the specific association of Abra
with F-actin (Figure 3.10, C), where it may stimulate formation and/or stabilization of
microfilaments (Arai et al., 2002). Additionally, Abra, Arldc and Crctl have shown a
localization near the plasma membrane where they may also play a role in actin poly-
merization (Wang, 1985). In summary, these findings suggest that LMX1B controls two
different sets of proteins through their transcriptional regulation: one set initiates actin
formation at plasma membrane, and the other stabilizes F-actin once it is formed (Fig-
ure 4.1).

4.3 Regulation of the actin cytoskeleton by LMX1B
and its target genes

A number of glomerular diseases originating from podocyte dysfunction involve the actin
cytoskeleton. Upon podocyte injury the coordinated parallel bundles of actin filaments
change into an interwoven network and the expression of actin increases (Shirato et al.,
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Figure 4.1: Scheme of subcellular and ultrastructural localization of Abra, Arldc and Cretl.
Abra (green ellipses) is associated with actin stress fibers and with membrane at lamellipodia.
Arldc (red ellipses) is are associated with membrane at lamellipodia and filopodia. It is
localized at the ends of F-actin filaments. Additionally, Arldc is possibly associated with
a cortical actin. Crctl (blue ellipses) is associated with membrane at lamellipodia above
the cortical actin and at filopodia. Moreover, it is distributed at actin-like filamentous
structures at cell protrusions and at sites of contact to the neighboring cell. In summary,
LMXI1B controls two different set of proteins through their transcriptional regulation: one
set initiates actin polymerization at plasma membrane, and the other, stabilizes F-actin.

1996; Kerjaschki, 2001). Foot process effacement in the podocyte-specific Lmz1b knock-
out mice is obvious. However, primary podocytes isolated 1 week after the inactivation of
Lmax1b demonstrated a decreased motility and an increased formation of F-actin. These
data suggest a possible role of LMX1B in the dysregulation of the actin cytoskeleton by in-
creasing its stiffness (Burghardt et al., 2013). To determine whether the putative LMX1B
targets regulate the actin cytoskeleton, primary podocytes were transiently transfected
with expression plasmids for Abra, Arl4c and Crctl and stained with phalloidin. Trans-
fected podocytes showed a stronger fluorescence (Subsection 3.3.2), indicating that the
proteins under investigation lead to the increased formation of F-actin (Burghardt et al.,
2013). These findings are consistent with published studies demonstrating the role of
Abra in the stimulation of F-actin formation (Arai et al., 2002) and the importance of
Arl4c in the rearrangement of actomyosin (Matsumoto et al., 2014).

Overexpression of constitutively active Arldc, Arldc Q71L, significantly stimulated the
formation of F-actin. Surprisingly, overexpression of dominant-negative Arldc, Arldc T27N,
also stimulated the formation of F-actin, though to a smaller extent (Subsection 3.3.4).
The data obtained can be explained by the fact that Arl4c T27N, which is predicted to be
in the GDP-bound form, possibly loses its nucleotide (Macia et al., 2004). Biochemical
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studies of another small GTP-binding protein, Arf6, by Macia et al. revealed that the
Arf6 T27N mutant cannot be used to mimic the GDP-bound form. This mutant cannot
bind GDP and was unstable (Macia et al., 2004). Macia et al. suggested that other small
G-proteins could suffer from a similar problem. Therefore, to investigate the cellular
functions of Arl4c can be used alternative dominant-negative mutant which carries the
T44N mutation.

A
Arldc Q71L
F-actin 1

B
Arldc T27N Arldc Q71L
F-actin 1 F-actin 111

Figure 4.2: Regulation of F-actin formation by Arldc mutant proteins. Two mutants of
Arlde, Arldc T27N and Arl4c Q71L, mimic the GDP- and GTP-bound forms, respectively.
(A) According to expectations only the activation of Arldc (Arldc Q71L) leads to the in-
creased formation of F-actin. (B) In the present study both the dominant-negative and the
constitutively active mutant forms of Arldc displayed increased F-actin formation, suggesting
that Arl4c T27N, which is predicted to be in the GDP-bound form, loses its nucleotide. The
dominant-negative mutant, Arldc T27N, stimulated the formation of F-actin to a smaller
extent (1) in comparison to constitutively active Arldc Q71L (T11).

The actin cytoskeleton is crucial in mediating cell shape changes as well as in maintain-
ing stable cell shape. It is able to behave either fluid-like to accommodate structural rear-
rangements, or solid-like to preserve cell shape (Norstrom and Gardel, 2011). The transi-
tion between fluid- and solid-like behavior is associated with changes in the concentration
of cross-linker protein(s) and of F-actin, and modulations of F-actin length (Stricker et al.,
2010). Therefore, to determine the possible reason for the formation of a stiffer actin cy-
toskeleton after the inactivation of Lmxlb or after the expression of Abra, Arl4dc and
Crctl, the F- to G-actin ratio was examined. The expression of LMX1B and its targets
did not cause any significant changes in the polymerization of F-actin in HtTA-1/LMX1B
cells and in a murine podocyte cell line, respectively (Subsections 3.4.1 and 3.4.2). The
estimation of the F- to G-actin ratio in primary podocytes failed because it was not possi-
ble to isolate a sufficient number of cells. Alternatively, to measure G-actin fluorescently
labelled deoxyribonuclease I (DNasel) can be used for further experiments (Cramer et al.,
2002; Flavahan et al., 2005). Assuming that LMX1B and its targets have no influence on
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the F- to G-actin ratio in primary podocytes as well, the observed increase in F-actin level
may result from the decrease in cell size. In fact, podocytes which expressed LMX1B
target genes were significantly smaller than the control podocytes (data not shown).
However, it remains unknown whether the cells were shrunken or the total cell volume
was decreased. A reduction in intracellular space was likely associated with an increased
density of microfilaments. As a result it could lead to increased phalloidin intensity. Al-
together these data suggest that LMX1B causes changes in podocyte morphology which
lead to the F-actin reorganization and generation of stiffer actin cytoskeleton with no
alterations in net F- to G-actin ratio. The proposed scheme for the formation of a stiffer
actin cytoskeleton by LMX1B and its target genes is shown in Figure 4.3.

Lmx1b-deficient or Abra-, Arl4c-
or Crctl- expressing podocyte
(Cell B)

Control podocyte (Cell A)

N

F-actin G-actin

F-actin intensity of cell A < F-actin intensity of cell B

F/G-actin ratio of cell A = F/G-actin ratio of cell B

Figure 4.3: Scheme for the generation of a stiffer actin cytoskeleton by LMX1B and its
target genes. LMXI1B causes changes in podocyte morphology which lead to the F-actin
reorganization with no alterations in net F- to G-actin ratio. Possibly LMX1B and its target
genes increase the stiffness of actin filaments by cross-linking them to thick, tightly packed
bundles.

Previously it was demonstrated that the stiffness of actin filaments is enhanced by
actin-associated proteins such as a-actinin and filamin (Esue et al., 2009). Therefore to
comprehend better the mechanisms of regulation of the actin cytoskeleton by LMX1B
and its target genes, the expression of these proteins in Lmz1b-deficient podocytes can
be examined in detail in the future.

4.4 Glomerular distribution of Abra, Arl4c and Crctl
after the podocyte-specific inactivation of Lmx1b

For studying the glomerular distribution of Abra, Arl4c and Crctl after the podocyte-
specific inactivation of Lmaz1b, immunofluorescence analysis of kidney sections were per-
formed. Because commercial specific antibodies were unavailable, these antibodies were
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generated.

To produce recombinant Abra, Arldc and Crctl, the complete coding sequences for
murine Abra and Crctl and the incomplete for murine Arldc (132 to 192 amino acids)
were cloned into the expression vector pET-21a. The recombinant proteins were solu-
bilized from inclusion bodies and then purified on Ni?*-charged His-Bind resin. As was
demonstrated by Western blot analysis, the recombinant proteins were detected with
an anti-His-Tag antibody. However, only Abra was detected at the predicted molecular
weight of approximately 43 kDa. Arldc and Crctl, which are predicted to be 8.5 kDa and
13.1 kDa proteins, respectively, migrated slightly higher on polyacrylamide gels. Addi-
tional upper bands for Arl4dc and Crctl of approximately 17 kDa and 26 kDa, respectively,
which correspond to twice the molecular weight predicted, were detected as well. The
upper bands could be explained by either 1) an incomplete reduction of the samples or
2) the possible dimerization of the proteins. Peptide sequences of Abra and Arldc, in-
cluding the upper band of Arldc, were identified by mass spectrometry. Crctl peptide
sequences were not identified by mass spectrometry probably because of the high cysteine
contents within the sequence. Only one peptide, comprising the T7-tag, was found for
the Crctl protein (Section 3.5). The identification of the His-tag and the T7-tag sug-
gests that the purifed recombinant protein is Crctl. In the final step two rabbits were
immunized with each protein preparation.

The specificity of the antisera was validated by Western blot (Bordeaux et al., 2010).
The anti-Abra and anti-Arl4c antibodies were able to recognize the respective antigens in
transiently transfected COS-7 cells (Section 3.6). However, the anti-Crctl antibody was
not able to recognize Crctl and for further studies a commercial goat anti-Crct1 antibody
was used. Because in Western blots multiple nonspecific bands were observed, it was
decided to affinity-purify the rabbit antisera before further applications. After this step
the specificity of antibodies was validated again by Western blot. Additionally the proper
distribution of Abra, Arldc, and Crctl was demonstrated by double immunofluorescence
stainings of a murine podocyte cell line transiently transfected with expression plasmids
for HA-tagged Abra, Arldc and Crctl with an anti-HA and anti-Abra, anti-Arldc and
anti-Crct1l antibodies (Section 3.6).

The analysis of paraffin-embedded kidney sections revealed that Abra was located in
some cells of the glomerulus. However, no differences in the expression level of Abra
after the podocyte-specific inactivation of Lmz1b were observed. No distinct signal for
Abra in frozen kidney sections stained with the anti-Abra antibody was observed (Sec-
tion 3.7). The difference in the results obtained with tissues embedded according to
two different protocols could be explained by using heat-mediated epitope retrieval of
paraffin-embedded kidney sections. This step breaks protein cross-linkages formed dur-
ing perfusion with paraformaldehyde, thus “unmasking” the epitope of interest (Leong
and Leong, 2007).

Immunofluorescence stainings of paraffin-embedded and frozen kidney sections with
the anti-Arldc antibodies were not successful (Section 3.7). If Arldc is present in the
kidneys, then possible reason for not being detected could be post-translational modifi-
cations of Arldc, the inability of the anti-Arldc antibodies to penetrate into the tissue,
or low expression levels of Arldc. The use of other antibodies that recognize other Arldc
epitopes may solve the problem.

Examination of paraffin-embedded and frozen kidney sections stained with the anti-
Crctl antibodies revealed that the expression of Crctl was markedly increased in the
glomeruli of the inducible podocyte-specific Lmz1b knock-out mice compared with control
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kidney sections (Section 3.7). To further clarify the exact glomerular localization of Crctl,
double-immunofluorescence stainings must be performed with the anti-Crctl antibody
and podocyte markers like nephrin, podocin, CD2-associated protein, podocalyxin (Koop
et al., 2003), WT-1, vimentin, synaptopodin, or a-actinin-4 (Testagrossa et al., 2013),
endothelial cells markers like CD31 or CD34 (Takano et al., 2007), and with mesangial
cells marker like a-smooth muscle actin (a-SMA) (Takano et al., 2007) .

4.5 Influence of the putative LMX1B target genes
on cell-matrix contacts

Structural and functional anomalies in the glomerular filtration barrier including podocyte
foot process effacement lead to proteinuria (Bains et al., 1997; Zhang and Huang, 2012).
During proteinuria podocytes detach from the basement membrane (Whiteside et al.,
1989; Whiteside et al., 1993; Mundel and Shankland, 2002). The exact molecular mech-
anisms behind this are not completely understood. Koukouritaki et al. demonstrated an
enhanced expression of paxillin in experimental nephrotic syndrome, suggesting its possi-
ble role in regulating the adhesion of podocytes to the GBM (Koukouritaki et al., 1998).
Burghardt et al. observed that more podocytes grew out of freshly isolated glomeruli after
the inactivation of Lmz1b. In a replating assay, primary podocytes isolated from inducible
podocyte-specific Lmx1b knock-out mice better adhered to a laminin-coated surface than
podocytes from control mice (Burghardt et al., 2013). However, the focal contact area of
primary podocytes with or without an inactivated Lmz1b gene examined by immunoflu-
orescence staining with an anti-paxillin antibody showed no difference (Burghardt et al.,
2013). To get a better insight on the role of the putative LMX1B target genes on cell-
matrix contacts, protein lysates of conditionally immortalized murine podocytes tran-
siently transfected with expression plasmids for Abra, Arl4dc and Crctl were analyzed by
Western blot for paxillin expression. Surprisingly, paxillin expression was significantly
affected in podocytes expressing Abra and Crctl, but not Arl4c (Section 3.8).

It was demonstrated previously that the activation of RhoA modulates actin polymer-
ization which is initiated by the recruitment of paxillin-vinculin complexes and FAK to cell
adhesomes (Zhang et al., 2012). Moreover, it is known that Abra activates RhoA (Arai
et al., 2002) while Arldc inhibits this small GTPase protein (Matsumoto et al., 2014).
Therefore the differences in the effect of Abra and Arl4c on paxillin expression could
be explained by their opposite effect on RhoA. It would be interesting to confirm this
hypothesis and to examine additionally whether Crctl and LMX1B could be implicated
in the regulation of RhoA.

Taken together, these observations suggest a possible role of Abra and Crctl in the ini-
tiation of actin polymerization and/or enhanced podocyte adhesion via paxillin. From the
experiments shown here we cannot conclude whether RhoA is involved in this pathway.
Therefore, additional studies must be performed such as assessment of RhoA activation,
Western blot with antibodies directed against other cell adhesion proteins, as well as re-
plating and migration assays of murine podocytes transiently transfected with expression
plasmids for Abra, Arl4c and Crctl to corroborate such a hypothesis.
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4.6 Role of LMX1B in the regulation of cell-matrix
adhesion dynamics

Podocyte foot processes are highly dynamic structures and their motility must be finely
regulated in order to maintain the correct function of the glomerular filtration bar-
rier (Peti-Peterdi and Sipos, 2010; Welsh and Saleem, 2011; Noris and Remuzzi, 2012).
Changes in their dynamics, such as hyper- or hypomotility, can lead to foot process ef-
facement (Wang et al., 2012; Kistler et al., 2012). Focal adhesion proteins such as a3[f1-
integrin, actin, talin, vinculin and a-actinin enable podocytes to attach to the glomerular
basement membrane and play an essential role in the regulation of actin cytoskeleton
dynamics and cell motility (Lauffenburger and Horwitz, 1996; Smoyer et al., 1997).

Burghardt et al. demonstrated that LMX1B affects actin cytoskeleton organiza-
tion and dynamics. For example, Lmaz1b-deficient primary podocytes showed stronger
phalloidin staining. Additionally, fibronectin-coated nanobeads attached to primary
podocytes from Lmxlb knock-out mice moved significantly less than beads attached to
podocytes from control mice. Furthermore, Lmx1b-deficient primary podocytes adhered
better to a laminin-coated surface than podocytes from control mice (Burghardt et al.,
2013). In view of these facts, the further analysis of the role of LMX1B in the dynamics
of the podocyte actin cytoskeleton is essential in deciphering the molecular mechanisms
that lead to proteinuria and foot process effacement in nail-patella syndrome. For this
purpose the turnover of several proteins involved in the regulation of the actin cytoskele-
ton and focal adhesions was investigated by Fluorescence Recovery After Photobleaching
(FRAP).

The data revealed that LMX1B was required to accelerate the dynamics of a-actinin-
1, a-actinin-4 and actin, but not that of focal adhesion kinase, non-muscle myosin heavy
chain ITA, paxillin, talin, utrophin, vasodilator-stimulated phosphoprotein, vinculin or
zyxin in HtTA-1/LMXI1B cells (Subsection 3.9.1). There were only very small immobile
fractions of the proteins, suggesting that these focal adhesion proteins are highly dynamic.
The mobile and immobile fractions as well as the rate constant for the exchange of
molecules between the bleached region and the surrounding area were not significantly
affected by LMX1B (Subsection 3.9.1). In accordance with previous studies (Lavelin
et al., 2013), we demonstrated that all proteins of interest were recovered in less than
one or only a few seconds. Thus, Lavelin et al. demonstrated that FAK, paxillin, talin,
VASP, vinculin and zyxin in HeLa cells showed a comparable half-time of recovery of
about 0.5-2 s (Lavelin et al., 2013). In contrast, utrophin in oocytes and «-actinin-
1 in fibroblasts demonstrated slower recovery half-times of approximately 39.3 s, and
5 min, respectively (Burkel et al., 2007; Edlund et al., 2001). In endothelial cells actin
is exchanged in focal adhesions with a half-time of more than 1 min (Le Dévédec et al.,
2012), while at the leading edge of HeLa cells with approximately 5 s (Lorente et al., 2014).
The differences in dynamics of all proteins of interest can be explained by the origin of
HtTA-1/LMX1B cell line derived from a cervical cancer. Lorente et al. suggested that
a high level of actin dynamics is a common characteristic of some cancer cells and is
essential for its invasion and metastasis (Lorente et al., 2014). In fact, the investigations
of the turnover of a-actinin-1, a-actinin-4 and actin in primary podocytes isolated from
quadruple transgenic mice demonstrated decreased protein dynamics, however within a
similar range, from 6 to 8 s (vs. from 1 to 6 s). The inactivation of Lmxz1b lead to
the decreased mobility of these proteins. However, the changes in the turnover of a-
actinin-4 were not statistically significant. Surprisingly, the mobile fraction of a-actinin-
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1 in Lmaz1b-deficient podocytes decreased 13.7% relative to control podocytes. Mobile
fractions of a-actinin-4 and actin showed no significant changes (Subsection 3.9.2).

These studies demonstrated for the first time that the protein turnover of a-actinin-1
and actin was notably affected by the inactivation of Lmax1b. The dynamics of these
proteins was significantly decreased. However, LMX1B did not induce changes in the
dynamics of a-actinin-4, which is known to cause focal segmental glomerulosclerosis (Ka-
plan et al., 2000). Taken together, these results support the idea that LMX1B is involved
in the regulation of actin cytoskeleton (Burghardt et al., 2013). By decreasing the mo-
bility of a-actinin-1 and actin, LMX1B may strengthen the linkage between podocytes
and the extracellular matrix. Additionally, it stabilizes F-actin at the cell edge. The next
questions to be addressed are: does LMXI1B regulate the dynamics of a-actinin-1 and
actin via its target genes, and is it essential for focal adhesion assembly and disassembly
as well?

4.7 Summary

The main purpose of this work was to clarify the molecular pathway(s) regulated by
LMXI1B. Therefore the putative LMX1B target genes, which are upregulated after the
inactivation of Lmx1b, were characterized. Bioinformatic studies of 6-kbp long promoter
fragments of the putative LMX1B target genes led to the identification of LMX1B binding
elements (FLAT elements) within the ABRA and ARL/C promoter regions which were
then analyzed using luciferase reporter assays. Their importance was verified by site-
directed mutagenesis studies.

Essential information was obtained from the subcellular localization of the correspond-
ing proteins and their interaction with the actin cytoskeleton in primary podocytes and in
an immortalized human podocyte cell line. For this purpose Abra, Arldc and Crctl were
fused with a HA-epitope tag and miniSOG. This allowed us to visualize the proteins by
confocal and electron microscopy. Additionally the regulation of the actin cytoskeleton
by LMX1B and its target genes was investigated.

To localize Abra, Arl4c and Crctl in the kidney, it was necessary to produce rabbit
antibodies directed against these proteins. Therefore, recombinant Abra, Arl4c and Cretl
proteins were generated in Fscherichia coli and polyclonal antibodies were produced.

To determine the role of LMX1B for the maintenance of the podocyte actin cytoskele-
ton, several proteins involved in the formation of the actin cytoskeleton including actin,
a-actinin-1, a-actinin-4, focal adhesion kinase, non-muscle myosin heavy chain ITA, pax-
illin, talin, utrophin, vasodilator stimulated phosphoprotein, vinculin and zyxin were
chosen for fluorescence recovery after photobleaching (FRAP) studies.

Figure 4.4 demonstrates a scheme detailing the effects of Lmax1b inactivation and
summarizes the data obtained in this work. The inactivation of Lmaz1b in adult mice
resulted in proteinuria and foot process effacement one week later (Burghardt et al.,
2013). This was associated with the increase in the mRNA levels of Abra, Arldc and
Crctl. The inactivation of Lmz1b and overexpression of Abra, Arldc and Cretl caused
an increased stiffness of the actin cytoskeleton. Moreover, Lmz1b inactivation affected
the dynamics of a-actinin-1 and actin.
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Figure 4.4: Scheme detailing the effects of Lmz1b inactivation. One week of inactivation
of Lmz1b in adult mice resulted in proteinuria with foot process effacement (Burghardt
et al., 2013). This was associated with the increase in the mRNA levels of Abra, Arldc
and Crctl. The inactivation of Lmz1b and overexpression of Abra, Arldc and Crctl caused
stiffness of actin cytoskeleton by increasing F-actin. Moreover, Lmx1b inactivation affected
the dynamics of a-actinin-1 and actin.

4.8 Perspectives

The transfection effeciency of HtTA-1/LMX1B cells and conditionally immortalized murine
podocytes was approximately 20 %. Additionally, HtTA-1/LMXI1B cells probably are
missing some cofactors which are present in podocytes. To facilitate further investiga-
tions, the generation of a murine podocyte cell line which expresses LMX1B targets is
necessary. During this PhD project attempts to generate these cell line were performed.
However, the transduction of a murine podocyte cell line with lentiviruses was not success-
ful. The pLVPT-rtTR-KRAB-2SM2 lentiviral vector containing the cDNA of interest has
a significant disadvantage since it has no mammalian selection marker. The additional
selection of transduced cells is necessary to avoid the amplification of non-transduced
cells.

The physiological significance of the identified LMX1B target genes can be studied by
RNA interference. Therefore, the lentiviral vectors coding for several anti-Arldc shRNAs
were generated. Unfortunately, these vectors were not tested during this PhD thesis.

Current techniques which are used to visualize the actin-associated proteins generated
some artifacts during fixation, permeablization, and immunofluorescence staining (Arcan-
geletti et al., 1997). Fluorescence recovery after photobleaching, which was applied in
this work, allows to observe the dynamics of these proteins in living cells. To provide both
spatial and temporal information on protein dynamics in focal adhesions the simultane-
ous fluorescence loss in photobleaching (FLIP)-FRAP can be used (Mattern et al., 2004;
Le Dévédec et al., 2012). A key question for future investigations concerns the assem-
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bly and disassembly of focal adhesions. To this end, time-lapse microscopy can be used.
Primary podocytes can be treated with the Rho-kinase inhibitor Y-27632 and reorganiza-
tion of focal adhesions can be monitored. On the other hand, removal of the Rho-kinase
inhibitor will allow to observe the de novo formation of focal adhesions (Lavelin et al.,
2013).
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Glossary

A

A — Adenine or adenosine

Asgo — Absorbance at 260 nm

aa — Amino acid

ABD - Actin binding domain

ABLIM — Actin binding LIM domain protein
ABRA - Actin-binding Rho activating protein
Amp — Ampicillin

APS — Ammonium persulfate

ARF6 — ADP-ribosylation factor 6

ARL4C — ADP-Ribosylation Factor-Like 4C
ARNO — Arf nucleotide-binding site opener
ATP — Adenosine 5-triphosphate

B

BAP — Bacterial alkaline phosphatase
bp — Base pair
BSA - Bovine serum albumin

C

C — Cytosine or cytidine

CaCl, — Calcium chloride

CBP - Cyclic AMP-responsive element binding protein [(CREB)-binding protein]
CD31 — cluster of differentiation 31

cDNA - Complementary deoxyribonucleic acid
CD2AP — CD2-associated protein

ChIP - Chromatin immunoprecipitation
CNBr - Cyanogen bromide

CRCT1 - Cysteine-rich C-terminal 1

Cre — Cre recombinase

C-Terminus — Carboxy-terminus

D

DEAE — Diethylaminoethyl
DF - Dilution factor
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DMEM - Dulbecco’s modified Eagle (or minimum essential) medium
DMSO - Dimethyl sulfoxide

DNA — Deoxyribonucleic acid

DNase — Deoxyribonuclease

Dox — Doxycycline

DRP - Dystrophin-related protein

DTT - Dithiothreitol

dNTP — Deoxynucleotide triphosphate

E

ECL - Enhanced chemiluminescence

EDTA — Ethylenediaminetetraacetic acid

EGF - Epidermal growth factor

EGFR — Epidermal growth factor receptor

EGTA - Ethylene glycol-bis(2-aminoethylether)-N,N N’ N’-tetraacetic acid
et al. (lat. “et alia”) — and others

e.g. (lat. “ezempli gratia”) — for example

F

Fab — Fragment antigen-binding

FAK - Focal adhesion kinase

FACS — Fluorescence-activated cell sorting

FP — Foot process

FCS — Fetal calf serum

FITC - Fluorescein isothiocyanate

FLAT — Far-linked adenine and thymine-rich
FRAP — Fluorescence recovery after photobleaching
FSGS — Focal segmental glomerulosclerosis

G

G — Guanine or guanosine

GAP - GTPase-activating protein

GAPDH - Glyceraldehyde-3-phosphate dehydrogenase
GBM - Glomerular basement membrane

GDP — Guanosine diphosphate

GEF - Guanine nucleotide exchange factor

GTE — Glucose, Tris base and EDTA containing buffer
GTP — Guanosine-5’-triphosphate

H
H,O — Water
HC1 - Hydrochloric acid

HEPES - (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
His — Histidine
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HRP — Horseradish peroxidase
I

i.e. (lat. “id est”) — that is

IF — Immunofluorescence

IgG — Immunoglobulin G

IPTG — Isopropyl-1-thio--D-galactosidase

K

Kan — Kanamycin
kb — Kilobase
KCl1 — Potassium chloride

kDa — Kilodalton
Ky,PO, — Dipotassium phosphate

L

LB Medium — Lysogeny broth medium
LMX1B — LIM homeobox transcription factor 1 beta

M

mADb — Monoclonal antibody
MAPK - Mitogen activated protein kinase
MgCl, — Magnesium chloride

mRNA — Messenger RNA
MTRF — Myocardin-related transcription factor

N

NaAc — Sodium acetate

NaHCO3; — Sodium bicarbonate

NaCl - Sodium chloride

NaF — Sodium fluoride

NaOH - Sodium hydroxide

NMMHC-ITA — Non-muscle myosin heavy chain ITA
NPS — Nail-patella syndrome

nt —Nucleotide

N-Terminus — Amino-terminus

@)

OD;59 — Optical density at 550 nm
Oligo(dT) — Oligodeoxythymidylic acid

P
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PAGE — Polyacrylamide gel electrophoresis
PBS — Phosphate-buffered saline

PCR — Polymerase chain reaction

PEI - Polyethylenimine

PMSF - Phenylmethanesulfonyl fluoride
PTK2 — Protein tyrosine kinase 2

Q

qPCR - Quantitative polymerase chain reaction
R

Racl — Ras-related C3 botulinum toxin substrate 1

RhoA - Ras homolog gene family, member A

RNA - Ribonucleic acid

RNase — Ribonuclease

ROI - Region of interest

RPMI - Roswell Park Memorial Institute

rpm — Revolutions per minute

RT-PCR — Reverse transcriptase polymerase chain reaction

S

SD - Standard deviation

SDS — Sodium dodecyl sulphate

SRF — Serum response factor

STARS - Striated muscle activator of Rho signalling
ss — Single stranded

T

T — Thymine or thymidine

TAE — Tris/acetate/EDTA (buffer)

Tcfa —T-cell factor 4

TE - Tris/EDTA (buffer)

TEMED — NN N’ N’-Tetramethylethylenediamine
Tet — Tetracycline

tetO — Tetracycline-Operator

T,, — Melting temperature

Tris — Tris(hydroxymethyl)aminomethane

U
U — Unit

UV — Ultraviolet
UTR - Untranslated region
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\%

V — Volt
VASP - Vasodilator stimulated phosphoprotein
vol — Volume

A%Y%
WB — Western Blot

WT-1 - Wilms tumor 1
Wnt3a - Wingless-type MMTYV integration site family, member 3A
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