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PREFACE 1  
PREFACE 

The bacterial tryptophan synthase complex (TS) serves as a longstanding model 

for the investigation of substrate channeling and allosteric communication within 

elaborate enzyme complexes. It is a permanent αββα tetramer with the active sites of 

the α- and β-subunit being connected by a hydrophobic channel. The α-subunit 

catalyzes the aldolytic cleavage of indole-3-glycerol-phosphate (IGP) to 

glyceraldehyde-3-phosphate (GAP) and indole. The latter is channeled to the active 

site of the β-subunit, where it reacts with L-serine to L-tryptophan and water. Bi-

directional allosteric communication between the subunits results in the precise 

temporal coordination of the catalytic steps and ultimately prevents the release of 

intermediary formed indole during the TS reaction.  

The evolution of permanent TS is examined in Chapter 1. In order to identify 

early adaptations in TS evolution, the sequences of the α-subunit and β-subunit of 

the last common ancestor (LCA) were reconstructed. The properties of the 

reconstructed subunits are described.  

TrpB2 enzymes share a sequence identity of approximately 30 % with the β-

subunits of the permanent TS. As TrpB2 enzymes have a low affinity for L-serine, 

they were proposed to utilize another substrate in vivo. The substrate specificity of 

TrpB2 enzymes is examined in Chapter 2.  

TrpB2 enzymes encoded inside of the trp operon (TrpB2i) are the β-subunits of a 

transient, ligand-dependent TS. This complex has a different quaternary structure 

compared to the permanent TS. The properties of transient TS and the 

characteristics that make TrpB2 part of a transient TS are examined in Chapter 3.  

Subsequent to the main part, a Summary of the presented data in English and 

German as well as the sections for Materials, Methods, References, and 

Supporting Information can be found. The work is concluded by the 

Acknowledgements. 

 

 

 

 

 

 

 



2 EVOLUTION OF THE PERMANENT TS  
1 EVOLUTION OF THE PERMANENT TS 
 

1.1 Introduction 

 

1.1.1 The heterotetrameric tryptophan synthase complex 

Members of the InterPro enzyme families (Mitchell et al., 2015) IPR002028 and 

IPR006654 are the α- and β-subunits of a permanent heterotetrameric (αβ)2 

tryptophan synthase complex (TS). This enzyme complex serves as model system to 

understand the mechanisms underlying protein-protein interaction and allosteric 

regulation. The subunits, their assembly to the TS and the regulation of subunit 

activities will be discussed in this introduction, based on the available data for the 

enzymes from Escherichia coli, Salmonella typhimurium, Thermotoga maritima and 

Pyrococcus furiosus. If not stated otherwise, the assertions on permanent TS are 

assumed to apply to all known IPR002028-IPR006654 complexes. 

 

1.1.2 Catalyzed reactions 

The TS catalyzes the last two steps in tryptophan biosynthesis (Pan et al., 1997). 

The α-subunit catalyzes the aldolytic cleavage of indole-3-glycerol-phosphate (IGP) 

to indole and glyceraldehyde-3-phosphate (GAP) and the β-subunit catalyzes the 

condensation reaction of indole and L-serine to L-tryptophan and water (Figure 1).  

 
Figure 1:   Reactions catalyzed by the α- and β-subunits. 
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1.1.3 The reaction at the α-subunit 

The α-subunit is a general acid-base catalyst. The aldolytic cleavage reaction 

proceeds through an indolenine tautomer intermediate (Figure 2). 

 
Figure 2:   Enzymatic mechanism of the α-subunit. 
The C3-C3’ bond becomes aldolytically cleaved. In the α-subunit of S. typhimurium, Asp60 acts as B2 
and Glu49 acts as B1H and B3. Figure from (Kulik et al., 2005).  
 

The chemical balance lies on the side of the back reaction of indole and GAP to IGP 

(Weischet and Kirschner, 1976). 

 

1.1.4 The reaction at the β-subunit 

The β-subunit is a PLP dependent enzyme. The cofactor acts as electron sink in 

the course of the reaction (Barends et al., 2008). Main chemical steps of the reaction 

cycle are shown in Figure 3 (Schiaretti et al., 2004). 

 

 
Figure 3:   Enzymatic mechanism of the β-subunit. 
The cofactor PLP and the lysine of the enzyme (enzyme-NH2) are blue-colored. Substrates, 
intermediates, and products of the reaction are black-colored.  
 

Initially, the cofactor PLP is covalently bound as internal aldimine by an enzyme’s 

lysine. L-serine reacts with this internal aldimine to form diamine I. Subsequently, 

external aldimine I is formed. Dehydratization proceeds via quinoide I and leads to 
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the reactive aminoacrylate. A nucleophilic attack of the aminoacrylate by indole 

results in quinoide II, which is further converted to external aldimine II. L-tryptophan 

is subsequently released by its replacement with the enzyme’s lysine via 

intermediate diamine II. All chemical steps are reversible. The equilibrium between 

external aldimine and aminoacrylate is influenced by many factors including 

monovalent cations, complex formation, ligands bound at the associated α-subunit, 

pressure, co-solvents, chaotropic reagents and temperature (Ahmed et al., 1996; 

Ahmed and Miles, 1994; Fan et al., 1999; Fan et al., 2000; Hur et al., 2002; Miles, 

2001; Schiaretti et al., 2004). 

 

1.1.5 Subunits and subunit assembly 

Isolated monomeric α-subunits and dimeric β-subunits are stable and active 

enzymes. The subunits readily assemble to a permanent heterotetrameric complex 

with αββα stoichiometry (Creighton and Yanofsky, 1966; Goldberg et al., 1966). The 

catalytic efficiencies of the subunits are enhanced by complex formation (Lane et al., 

1984). Enzymatic parameters of the isolated α- and β-subunits in comparison to the 

enzymatic parameters of the α- and β-subunits in the TS are shown for the enzymes 

from E. coli and T. maritima (Table 1). 

 
Table 1:   Effect of complex formation on the α- and β-reactions. 

  α-reaction β-reaction 

E.
 c

ol
i 

kcat  0.034   s-1 

0.0016 s-1 
21 x ↑ 

2.7   s-1 

0.09 s-1 
                         30 x ↑ 

Km 0.14    mM 

0.48    mM 
  3 x ↓(IGP) 

0.43 mM 

0.95 mM 
  2 x ↓(L-serine) 

0.015 mM 

0.014 mM 
 +/-  (indole) 

T.
 m

ar
iti

m
a kcat  2.8       s-1 

0.174   s-1 
16 x ↑ 4      s-1 

1.9   s-1 
                           2 x ↑ 

Km 0.19    mM 

1.62    mM 
  9 x ↓(IGP) 

3.7   mM 

110  mM 
30 x ↓(L-serine) 

0.025 mM 

0.04   mM 
2 x ↓(indole) 

Enzymatic parameters of the α-reaction (IGP-cleavage) and of the β-reaction (condensation of indole 
with L-serine) were determined for the isolated subunits and for the subunits in the E. coli TS at 25° C 
and in the T. maritima TS at 80° C. Parameters for the isolated subunits are blue-colored and 
parameters for the subunits in the TS are black-colored. The changes in kcat and Km resulting from 
complex formation are indicated as fold increase (↑) and fold decrease (↓). Changes that increase the 
catalytic efficiency (kcat/Km) are green-colored. Km- and kcat-values were deduced from (Hettwer and 
Sterner, 2002). 
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The effect of complex formation on the enzymatic parameters differs for the enzymes 

from E. coli and T. maritima. The catalytic efficiencies of the β-subunits are equally 

increased by complex formation, but by different means. 

All TS share the structures of their subunits and the quaternary structure (Figure 

4). 

 
Figure 4:   Subunit assembly and quaternary structure. 
Cartoon representation of the TS quaternary structure from P. furiosus (1WDW). The α-subunits are 
orange-colored and the β-subunits are yellow-colored. The red arrow indicates the pathway of indole 
within the TS from the active site of the α-subunit to the active site of the β-subunit. 
 

The α-subunit has a (βα)8-barrel topology and the β-subunit has a PLP dependent 

fold type II topology. Within the TS, subunits are assembled in a nearly linear αββα-

arrangement and the active αβ-sites are connected by a hydrophobic tunnel (Hyde et 

al., 1988). The hydrophobic tunnel enables the transfer of indole from the active site 

of the α-subunit to the active site of the β-subunit (Pan et al., 1997). 

 

1.1.6 Allostery within the TS 

Indole is the product of the α-reaction and the substrate of the β-reaction. Such 

being the case, the TS catalyzes the reaction of IGP and L-serine to L-tryptophan, 

G3P and water (Figure 1). As a consequence of the coupled αβ-reaction, the α-

reaction becomes largely irreversible because the reaction product indole is removed 

by its reaction with L-serine, which shifts the chemical equilibrium towards formation 

of indole. The catalytic efficiency of the α-subunit is increased and the activity of the 

β-subunit is decreased by allosteric communication within the TS (Table 2). 
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Table 2:   Effect of allosteric communication on the α- and β-reactions. 

  α-reaction β-reaction 

E.
 c

ol
i 

kcat 0.7       s-1 

0.034   s-1 
21 x ↑ 0.7    s-1 

2.7    s-1 
  4 x ↓ 

Km 0.069   mM 

0.14     mM 
  2 x ↓ (IGP) 

0.34  mM 

0.43  mM 
   +/-     (L-serine) 

T.
 m

ar
iti

m
a kcat 2.07     s-1 

2.8       s-1 
   +/-    2.13  s-1 

4       s-1 
  2 x ↓ 

Km 0.016   mM 

0.19     mM 
12 x ↓ (IGP) 

0.13  mM 

3.7    mM 
28 x ↓ (L-serine) 

Enzymatic parameters of the α-reaction (IGP-cleavage), of the β-reaction (condensation of indole with 
L-serine) and of the αβ-reaction (conversion of IGP and L-serine to tryptophan) were determined for 
the E. coli TS at 25° C and for the T. maritima TS at 80° C. Parameters of the α- and β-reactions are 
blue-colored, parameters of the αβ-reaction are black-colored. The changes in kcat and Km are 
indicated as fold increase (↑) and fold decrease (↓). Changes that increase the catalytic efficiency 
(kcat/Km) are green-colored. Changes that decrease the catalytic efficiency (kcat/Km) are red-colored. 
Km- and kcat-values were deduced from (Hettwer and Sterner, 2002). 
 

The effect of allosteric communication differs considerably in the E. coli TS and in the 

T. maritima TS. Allosteric mechanisms, which lead to an increase in the activity of the 

α-reaction seem to have evolved in an ancestor of Enterobacteria. Whereas no 

detailed study on the allosteric communication in the E. coli TS is available, the 

reactions have been studied for the TS from the closely related Enterobacterium 

S. typhimurium (Figure 5).  
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Figure 5:   The coupled αβ-reaction in the S. typhimurium TS. 
Rate constants for the enzymatic steps within the S. typhimurium TS in the sodium-bound state were 
determined at 37° C and pH 8.7 by chemical quench-flow and stopped-flow methods (Anderson et al., 
1991). Intermediates of the β-reaction are spectroscopically detectable at the indicated wavelength(s) 
(Anderson et al., 1991; Schiaretti et al., 2004). Closed conformations of the subunits are indicated as 
αc and βc (Niks et al., 2013). 
 

Within the S. typhimurium TS, the formation of the aminoacrylate is accompanied by 

a conformational change of the β-subunit. This speeds up IGP-cleavage by 150 fold 

as the α-subunit is turned into the active conformation. Within the working TS, indole 

is rapidly channeled to the active site of the β-subunit. The passage of indole is 

tightly controlled by the channel-lining residue Phe280 (Janda et al., 2014; Ruvinov 

et al., 1995). A pre-steady-state burst of L-tryptophan formation at a rate of 33 s-1 

indicates that the steady-state turnover rate in the working TS is limited by the slow 

release of L-tryptophan at a rate of 8 s-1 under the investigated conditions (Anderson 

et al., 1991).  
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During catalysis, both subunits within the TS switch between an open 

conformation with low catalytic activity and a closed conformation with high catalytic 

activity (Leja et al., 1995; Miles, 2013). The temporal coordination of conformational 

changes regulates the formation of indole and the subsequent reaction to tryptophan 

during the TS reaction. The influence of ligand binding and enzymatic reactions on 

the subunit conformation and activity within the S. typhimurium TS is shown in Figure 

6. 

 

Figure 6:   Regulation of subunit activities within the S. typhimurium TS. 
(A) Binding of IGP and aminoacrylate formation (A-A) results in the TS with the subunits in the closed 
conformation. The access from the exterior to the active sites is restricted in the TS with the subunits 
in the closed conformation as indicated by the yellow circles. (B) Conformational changes trigger the 
bi-directional activation of the subunits during the catalytic cycle. In the case of the S. typhimurium TS, 
aminoacrylate formation at the β-subunit results in a 28-fold activation of the α-subunit and vice versa 
results IGP binding at the α-subunit in a 10-fold activation of the β-subunit. Figures are from (Dunn, 
2012). 

 

The S. typhimurium TS has been crystallized with both subunits in the open 

conformation as well as with both subunits in the closed conformation. For instance, 

both subunits are in the open conformation in the structure of the wild type TS and 

both subunits are in the closed conformation in the βK87T TS with bound GP and L-

serine. A comparison of both structures is shown in Figure 7. 
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Figure 7:   Conformational changes within the S. typhimurium TS. 
The structure of the wild type S. typhimurium TS (1BKS) and of the βK87T S. typhimurium TS with 
bound GP and L-serine (2TSY) are depicted as ribbon diagram. The α-subunits are green-colored and 
the β-subunits are lavender-colored. The moveable communication domain (COMM domain) of the β-
subunit is highlighted by red color. Hydrogen bonds are indicated by dashed lines and hydrogen 
bonding residues are shown as sticks. Figures are from (Miles, 2001). 
 

Different hydrogen bonding networks exist in the open conformation TS and in the 

closed conformation TS. For instance, the βLys167-αAsp56 salt-bridge, which 

provides the major pathway for allosteric communication, is only formed in the closed 

conformation TS (Fan et al., 2000; Rowlett et al., 1998). 

 

1.1.7 The TS as model system 

The TS became a model system for the investigation of interaction and allosteric 

communication within a protein complex as it is amenable to a detailed experimental 

characterization. For instance, complex formation and allosteric communication 

within the complex can be studied by measuring the effect on catalysis. Furthermore, 

the reaction intermediates and conformational changes can be detected 

spectroscopically. The structure of the S. typhimurium TS was studied in the absence 

and in the presence of ligands as it can be expressed and purified in large quantities 

and is crystallizable. From an engineer’s standpoint, the enterobacterial TS seems to 

be the ‘perfectly’ evolved extant TS. 
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1.1.8 Ancestral protein reconstruction 

How has this fine-tuning in the extant TS evolved? Extant proteins and protein 

complexes are the result of an evolutionary process, in which vertically transmitted 

genetic trait is subtly changed from generation to generation. Comparing the 

characteristics of all members of an enzyme family reveals ‘shared’ conserved 

features, which were most likely also present in the common ancestor, and 

‘exclusive’ features, which might or might not have been present in the common 

ancestor. In order to differentiate early and late adaptations in the evolution of an 

enzyme family, ancestral protein reconstruction is used. Recent developments in 

computational biology allow for the reliable reconstruction of protein ancestors, which 

have existed millions of years ago (Wilson et al., 2015; Yokoyama et al., 2014) or 

had even existed at the rise of the last common universal ancestor (LUCA) about 3.5 

billion years ago (Perez-Jimenez et al., 2011; Reisinger et al., 2014). Those 

reconstructions help to understand the evolution of protein-protein interactions 

(Finnigan et al., 2012) and protein-ligand interactions (Kuang et al., 2006). They also 

help to detect shifts in thermodynamics and conformational flexibility, which had 

occurred in the course of protein evolution and specification (Hart et al., 2014; Wilson 

et al., 2015). Basis for the protein reconstruction is a multiple sequence alignment 

(MSA) of representative extant proteins, which is subsequently used to calculate a 

most likely phylogenetic tree. Nodes within this tree represent ancestors of the 

connected leaves and the root of the tree represents the universal ancestor. The 

distribution of phyla and the root are not mandatorily identical in the phylogenetic tree 

of a certain protein family and in the universal tree of life due to the individual history 

of protein families and horizontal gene transfer events.  

 

1.2 Remarks 

The TS ancestor (LCA TS) was calculated by Prof. Dr. Rainer Merkl. Stopped-

flow experiments were done in collaboration with Dr. Sandra Schlee. 

 

1.3 Significance of this work 

The enterobacterial permanent TS is the result of a stringent evolutionary 

process yielding the efficient conversion of IGP to L-tryptophan without loss of 

intermediary formed indole. With tracing back its evolution one would be able to 
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identify ancient characteristics preceding the allosteric regulation in extant TS, to 

define the starting point in the development of modern TS and to gain information 

about the requirements of an ancient organism on this two-step catalysis. Recent 

proceedings in computational biology allow for the reconstruction of ancient enzymes 

and were successfully applied to resurrect an ancient TS. This work documents the 

high accuracy of state of the art computational enzyme reconstruction and provides 

first-time insights into the evolution of an allosteric regulated protein-protein 

interaction. 
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1.4 Results and discussion  
1.4.1 Reconstruction of an ancient LCA TS 

A phylogenetic tree was constructed using a multiple sequence alignment of 52 

extant TS sequences. The sequences were derived from the bacterial phyla of 

Chloroflexi, Deinococci, Nitrospirae, Verrucomicrobia, Proteobacteria and Firmicutes, 

and the archaeal phyla of Euryarchaeota (Figure 8).  

 
Figure 8:   Phylogenetic tree for the reconstruction of an ancient TS. 
The constructed tree was rooted by taking the phylogenetic relationship between extant TS into 
consideration. The location of LCA TS (Last Common Ancestor of Tryptophan Synthase Complexes) 
within the phylogenetic tree corresponds to the root of the constructed tree and is indicated by an 
orange-colored dot. 
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The evolution of permanent TS could be traced back to their first occurrence in a time 

before the diversification of Bacteria. Archaea have evolved an ‘alternative’ transient 

TS that is still conserved in Crenarchaeota (Ehrmann et al., 2010), but was replaced 

by the bacterial TS in Euryarchaeota (Merkl, 2007). According to the constructed 

phylogenic tree, this replacement in Euryarchaeota is the result of a horizontal gene 

transfer derived from an ancestor of Firmicutes. The hierarchy of bacterial phyla 

within the constructed TS tree is consistent with the global phylogenetic relationship 

of species (Ciccarelli et al., 2006), which is depicted in Figure 9. 

 
Figure 9:   Phylogenetic tree of life. 
A dataset of 150 sequenced bacterial species was used and 31 concatenated orthologs were 
considered for this phylogenetic reconstruction. The origin of Bacteria is indicated by a green-colored 
arrow. Phyla that had also been taken into account for the TS reconstruction are red-labeled (Letunic 
and Bork, 2007; Letunic and Bork, 2011).  
 

1.4.2 Cloning of LCA subunits 

The LCA TS sequence consists of the concatenated sequences of the LCA α-

subunit and LCA β-subunit. The corresponding genes were optimized for protein 

expression in E. coli and synthesized by Life Technologies (9.1). Genes were cloned 

into pET21a(+) at the NdeI/ XhoI restriction sites to allow for the expression of 

proteins with a C-terminal His6-tag (Figure 10).  
 
LCA α-subunit 
MNRIAEAFEELKKKGEKALIPFITAGDPDLETTLELVRALVEAGADIIELGIPFSDPLADGPTIQRASQRALASGTTLDKVFEMVREL

REKNTDVPIVFLTYYNPIFRYGIERFVKECAEAGVDGLIVPDLPPEEAADLAAAAEKYGVDLIFLVAPTSTDERIKMIAKHASGFVYC

VSVTGVTGARSEIAADLAELVSRIRKHTDLPIAVGFGISTPEQAAEVAQVADGVIVGSAIVKRIEENQDEEDIVEEVREFVRELREAV

KLEHHHHHH 
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LCA β-subunit 
MIGRFGKYGGQYVPETLMPALEELEEAYERAKNDPEFQAELEYYLRDYVGRPTPLYFAENLTKDLGGAKIYLKREDLNHTGAHKI

NNALGQALLAKRMGKKRVIAETGAGQHGVATATVAAMFGLECVVYMGAEDIERQALNVFRMKLLGAKVRPVTSGSRTLKDAINE

AMRDWVTNVEDTFYIIGSVVGPHPYPMMVRDFQSVIGEEARQQILEKEGRLPDAIVACVGGGSNAMGIFHPFIDDESVRLIGVEA

AGKGIETGKHAATLSAGRPGVLHGAMTYLLQDEDGQIIEAHSISAGLDYPGVGPEHAYLKDTGRAEYVSVTDDEALEAFQLLSRT

EGIIPALESSHAVAYAMKLAPELSKDQIIVVNLSGRGDKDVNTVARYLLGVELDLEHHHHHH 
 

Figure 10: Amino acid sequences of LCA subunits. 
Amino acids derived from the expression vector and the His6-tag are red-colored. The single 
tryptophan in the LCA β-subunit is green-colored.  
 

The closest related extant enzymes are the α-subunit from Clostridium arbusti (57 % 

sequence identity, 100 % coverage) and the β-subunit from Caldanaerobacter 

subterraneus (78 % sequence identity, 99 % coverage) according to the NCBI 

database (status as of 01/12/2015). The low sequence identity between the LCA α-

subunit and the closest related extant α-subunit reflects the fact that α-subunits are in 

general less conserved than β-subunits.  

 

1.4.3 Expression and purification of LCA subunits 

For expression of LCA subunits, E. coli T7 Express Iq was transformed with 

pET21a(+)-LCA-α and pET21a(+)-LCA-β, respectively. The cells were grown at 

37° C in LB with 150 µg/ ml ampicillin to OD600= 0.6. The media was supplemented 

with 20 µM PLP for the expression of the LCA β-subunit. Protein expression was 

induced by addition of 0.5 mM isopropyl-β-thiogalactopyranoside (IPTG). After 

growth over night at 20° C, cells were harvested by centrifugation, resuspended in 

100 mM potassium phosphate pH 7.5, 300 mM KCl and 10 mM imidazole (with 

20 µM PLP in the case of the LCA β-subunit) and disrupted by sonication. After a 

heat step (20 min, 70° C), the His6-tagged proteins were purified by metal chelate 

affinity chromatography using a HisTrap FF crude column. Proteins in 100 mM 

potassium phosphate pH 7.5 and 300 mM KCl were eluted by a linear gradient of 

imidazole (10- 1000 mM) and dialyzed against 100 mM potassium phosphate pH 7.5. 

The LCA subunits were at least 95 % pure as judged by SDS-PAGE (Figure 11).  
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Figure 11: Purity of LCA subunits. 
SDS-PAGE (12.5 % polyacrylamide) of the purified LCA subunits. Applied were (M) protein ladder and 
marker (LMW), (1) 15 µl LCA α-subunit (10 µM monomer concentration) and (2) 15 µl LCA β-subunit 
(10 µM monomer concentration). 
 

Monomeric LCA α- and β-subunits have a molecular weight of 29.9 kDa and 

43.6 kDa, respectively. This is consistent with their separation by SDS-PAGE. A 

solution of LCA β-subunit is yellow-colored, which confirms that the cofactor PLP is 

tightly bound. 

 

1.4.4 Structural integrity, thermal stability, and activity of LCA subunits 

The structural integrity of LCA subunits was analyzed by analytical size exclusion 

chromatography and far-UV circular dichroism (Figure 12). 

 
Figure 12: Structural integrity of LCA subunits. 
(A) Analytical size exclusion chromatograms of 50 µl LCA α- and β-subunit (10 µM monomer 
concentration). The subunits were applied on a S200 analytical column equilibrated with 50 mM 
potassium phosphate pH 7.5, 300 mM KCl. Elution was performed with a flow rate of 0.5 ml/ min at 
25° C. (B) Far-UV CD-spectra of 10 µM LCA α- and β-subunit (monomer concentration). Spectra were 
recorded in 50 mM potassium phosphate pH 7.5 from 195 nm to 250 nm (d= 1 mm). 
 

The proteins are compactly folded and elute as homogenous symmetric peaks from 

the analytical size exclusion column. The molecular weights that correspond to the 

elution times were calculated with a calibration curve of standard globular proteins 

(9.2). According to the calculated molecular weights, the LCA subunits have the 

same oligomeric state as extant α- and β-subunits. As such, the LCA α-subunit is a 

monomer (calculated: 33.5 kDa; expected for α: 29.9 kDa) and the LCA β-subunit is 
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a dimer (calculated: 80.4 kDa; expected for β2: 87.2 kDa) in solution. Both subunits 

have CD-spectra dominated by α-helical structures, which are virtually identical to the 

spectra of extant α- and β-subunits. The CD-spectrum of the β-subunit is influenced 

by the cofactor, which interferes with an accurate measurement of ellipticity below 

~205 nm. 

The thermal stability of the LCA subunits was investigated by thermal 

denaturation, which was followed by CD-spectroscopy and by DSC (Figure 13). 

 
Figure 13: Thermal stability of LCA subunits. 
(A) Thermal denaturation followed by CD-spectroscopy. The loss of ellipticity at 220 nm of 10 µM 
subunit (monomer concentration) in 50 mM potassium phosphate pH 7.5 was monitored from 60° C to 
105° C at a scan rate of 1° C/ min (d= 1 mm). The curves connecting the data points were LOESS 
smoothed. (B) Thermal denaturation followed by DSC. Changes in heat capacity of 15 µM subunit 
(monomer concentration) in 50 mM potassium phosphate pH 7.5 were detected from 45° C to 115° C 
at a scan rate of 1° C/ min using 50 mM potassium phosphate pH 7.5 as reference. The curves were 
baseline corrected. 
 

Thermal unfolding followed by CD-spectroscopy revealed that both LCA subunits 

retain approximately 50 % of ellipticity at 220 nm at a temperature of 105° C. The 

LCA α-subunit has - at least - two unfolding steps and the LCA β-subunit has one 

unfolding step within the operational temperature range. Thermal unfolding followed 

by DSC confirmed these findings and allowed to determine the apparent melting 

temperatures (Tm). The LCA α-subunit has Tm-values of 71° C and 102° C and the 

LCA β-subunit has a Tm-value of 99° C. Both subunits don’t aggregate at 115° C as 

indicated by the symmetry of unfolding signals.  

Due to their thermal stability and a presumable ‘hot’ environment in a time before 

the diversification of Bacteria, the enzymatic parameters of the LCA subunits were 

determined at the elevated temperature of 60° C (Figure 14). 
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Figure 14: Enzymatic parameters of isolated LCA subunits. 
(A) IGP-dependent LCA α-reaction. The reaction was started by the addition of IGP and followed at 
60° C by the absorbance change at 340 nm caused by the production of NADH. The reaction 
contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, 40 µM PLP, 6 mM NAD+, 20 mM arsenate, 
5.5 µM GAPDH and 20 µM LCA α-subunit (monomer concentration). (B) L-serine-dependent LCA β-
reaction. The reaction was started by the addition of 100 µM indole and followed at 60° C by the 
absorbance change at 290 nm. The reactions contained 100 mM potassium phosphate pH 7.5, 
180 mM KCl, 40 µM PLP, 2 µM LCA β-subunit (monomer concentration) and varying amounts of L-
serine. (C) Indole-dependent LCA β-reaction. The reaction was started by the addition of indole and 
followed at 60° C by the absorbance change at 290 nm. The reactions contained 100 mM potassium 
phosphate pH 7.5, 180 mM KCl, and 40 µM PLP, 100 mM L-serine and 0.05 µM LCA β-subunit 
(monomer concentration). Data points were fitted with a single rectangular hyperbolic function 
(Michaelis-Menten equation). 
 

Both subunits are catalytically active. As for extant subunits, the activity of the α-

subunit is low (kcat= 0.022 s-1). The activity of the LCA β-subunit (kcat= 4.8 s-1) is 

significantly higher than the activity of an enterobacterial β-subunit (Table 1).  

In summary, the thermal stability, oligomeric state and catalytic activity of the 

LCA subunits show that the reconstructed enzymes are thermostable and 

catalytically active. 

 

1.4.5 Subunit assembly and activity of subunits within the LCA TS 

Have the LCA enzymes already formed a complex in an early era of evolution 

before the diversification of Bacteria? To answer this question, a potential interaction 

between LCA α-subunit and LCA β-subunit was analyzed by analytic size exclusion 

chromatography and fluorescence titration (Figure 15). 



18 EVOLUTION OF THE PERMANENT TS  

 
Figure 15: Assembly of subunits to a LCA complex. 
(A) Analytical size exclusion chromatograms of 50 µl LCA α-subunit, β-subunit and αβ mixture (10 µM 
monomer concentration). The subunits were applied on a S200 analytical column equilibrated with 
50 mM potassium phosphate pH 7.5, 300 mM KCl. Elution was performed with a flow rate of 
0.5 ml/ min at 25° C. (B) Fluorescence titration of 2 µM LCA β-subunit (monomer concentration) with 
LCA α-subunit. The titration assay was performed in 10 mM potassium phosphate pH 7.5 at 25° C 
using a spectro-fluorimeter (d= 1 cm). Tryptophan was excited at 290 nm and the emission was 
detected at 340 nm. Data points were fitted with a quadratic function. (C) Time-dependent 
fluorescence change upon complex formation. 2 µM LCA β-subunit (syringe A) were mixed with 2 µM 
α-subunit (syringe B) in 10 mM potassium phosphate pH 7.5 in a stopped-flow instrument. Tryptophan 
was excited at 290 nm and the emission was detected with a 335 nm cut-off filter. Data was fitted with 
a single exponential function.  
 

An interaction between the LCA α-subunit and the LCA β-subunit is detectable by 

analytical size exclusion chromatography. The calculated molecular weight of the 

eluting LCA tryptophan synthase complex (LCA TS) indicates that it has a α2β2 

stoichiometry (calculated: 176.3 kDa; expected for α2β2: 147.0 kDa). Fluorescence 

titration confirmed the 1:1 stoichiometry of subunits in the LCA TS and showed that 

the Kd for the LCA TS is in the nanomolar range. The complex is slowly formed as 

indicated by stopped-flow analysis. This might be due to a rate-limiting 

conformational change, which precedes or accompanies complex formation. As 

complex formation might influence the enzymatic properties of the subunits, the 

enzymatic parameters of the α- and β-reactions within the LCA TS were 

subsequently determined (Figure 16).  
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Figure 16: Enzymatic parameters of LCA subunits within the TS. 
(A) IGP-dependent LCA α-reaction in the presence of β-subunit. The reaction was started by the 
addition of IGP and followed at 60° C by the absorbance change at 340 nm caused by the production 
of NADH. The reaction contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, 40 µM PLP, 6 mM NAD+, 
20 mM arsenate, 5.5 µM GAPDH, and 1 µM α- and β-subunits. (B) L-serine-dependent LCA β-
reaction in the presence of α-subunit. The reaction was started by the addition of 100 µM indole and 
followed at 60° C by the absorbance change at 290 nm. The reaction contained 100 mM potassium 
phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 2 µM LCA α- and β-subunits and varying amounts of L-
serine. (C) Indole-dependent LCA β-reaction in the presence of α-subunit. The reaction was started by 
the addition of indole and followed at 60° C by the absorbance change at 290 nm. The reactions 
contained 100 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 100 mM L-serine, and 
0.3 µM LCA α- and β-subunits. Data points were fitted with a single rectangular hyperbolic function 
(Michaelis-Menten equation). 
 

The catalytic parameters of both subunits are influenced by complex formation. An 

overview of changes induced by complex formation is given in Table 3. 
 
Table 3:   Effect of complex formation on the LCA α- and β-reactions. 

  α-reaction β-reaction 

LC
A

 

kcat  0.51   s-1 

0.022 s-1 
23 x ↑ 

0.86 s-1 

4.8   s-1 
                       6 x ↓ 

Km 0.083 mM 

0.21   mM 
  3 x ↓(IGP) 

1.2 mM 

1.3   mM 
  +/- (L-serine) 

0.015    mM 

0.0067 mM 
 2 x ↑(indole) 

Enzymatic parameters of the α-reaction (IGP-cleavage) and of the β-reaction (condensation of indole 
with L-serine) were determined for the isolated subunits and for the subunits in the LCA TS at 60° C. 
Parameters for the isolated subunits are blue-colored and parameters for the subunits in the TS are 
black-colored. The relative change in kcat and Km resulting from complex formation is indicated as fold 
increase (↑) and fold decrease (↓). Changes that increase the catalytic efficiency (kcat/Km) are green-
colored. Changes that decrease the catalytic efficiency (kcat/Km) are red-colored. Km- and kcat-values 
refer to the single active site.  
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The enzymatic parameters of the LCA α-subunit and extant α-subunits are similarly 

affected by complex formation. The kcat is increased and the Km
IGP is decreased upon 

complex formation.  

Contrary to extant β-subunits (Table 1), complex formation with the LCA α-

subunit leads to a reduction of the activity of the LCA β-subunit. However, the 

reaction of the α-subunit is slower than the reaction of the β-subunit within the LCA 

TS. 

 

1.4.6 Impairment of the β-reaction within the LCA TS 

The impairment of activity of the β-subunit within the LCA TS was not observed in 

those extant TS, which have been studied up to date. The reason underlying this 

impairment may be the restriction of substrate accessibility, a limitation in a catalytic 

step and/ or the restriction of product release brought about by complex formation. 

Those steps were thus analyzed in more detail by stopped-flow kinetics comparing 

the isolated β-subunit and the β-subunit complexed with the α-subunit (Figure 17 -

Figure 20). 

 

Binding of L-serine to the PLP-cofactor 

 
Figure 17: Binding of L-serine to the PLP-cofactor. 
Influence of TS formation on the binding of L-serine to the PLP-cofactor of the LCA β-subunit at 25° C. 
(A) Time course for the reaction of 80 mM L-serine (syringe A) with 20 µM β-subunit (syringe B) in 
50 mM EPPS/KOH pH 7.8. (B) Time course for the reaction of 80 mM L-serine (syringe A) with 20 µM 
α- and β-subunits (syringe B) in 50 mM EPPS/KOH pH 7.8. Time courses were followed by the 
increase in absorbance 420 nm. Data sets were fitted with single exponential functions. 
 

The binding of L-serine to PLP leads to the formation of the external aldimine, which 

was monitored by the increase in absorbance at 420 nm (first phase, Figure 17). The 

rate of L-serine binding is not substantially altered within the complex but the 

amplitude is reduced two-fold. The relatively large rate constants indicate that binding 
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of the substrate L-serine is not limiting for the reaction of the isolated LCA β-subunit 

and for the LCA β-subunit in the TS. The subsequent reaction of the external 

aldimine to the aminoacrylate leads to a decrease in absorbance at 420 nm, which is 

also observable in Figure 17. It was analyzed in more detail (Figure 18). 

 

Formation of aminoacrylate 

 
Figure 18: Formation of aminoacrylate. 
Influence of TS formation on the reaction of external aldimine to aminoacrylate at 25° C. (A) Time 
course for the reaction of 80 mM L-serine (syringe A) with 20 µM β-subunit (syringe B) in 50 mM 
EPPS/KOH pH 7.8. (B) Time course for the reaction of 80 mM L-serine (syringe A) with 20 µM α- and 
β-subunits (syringe B) in 50 mM EPPS/KOH pH 7.8. Time courses were followed by the decrease in 
absorbance at 420 nm. Data sets were fitted with single exponential functions. 
 

The amplitude is unaffected by complex formation. The rate of the dehydratization 

step, which is ascribed as the rate-limiting step in extant TS at low pH values, is 

increased by complex formation by a factor of three. This step might be rate-limiting 

for the isolated LCA β-subunit, but not for the LCA β-subunit in the TS. The observed 

rate is smaller than the kcat of the isolated β-subunit (Figure 14) determined by steady 

state measurements, as it has been measured at 25° C and not at 60° C.  
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Reaction of indole with the aminoacrylate 

 
Figure 19: Reaction of indole with the aminoacrylate. 
Influence of TS formation on the reaction of indole with the aminoacrylate at 25° C. (A) Time course 
for the reaction of 2 mM indole (syringe A) with 20 µM β-subunit (syringe B) in 50 mM EPPS/KOH pH 
7.8 and 40 mM L-serine. (B) Time course for the reaction of 2 mM indole (syringe A) with 20 µM α- 
and β-subunits (syringe B) in 50 mM EPPS/KOH pH 7.8 and 40 mM L-serine. Time courses were 
followed by the increase in absorbance at 476 nm. Data sets were fitted with single exponential 
functions. 
 

The conversion of the aminoacrylate to the quinoide II was monitored by the increase 

in absorbance at 476 nm (Figure 19). In the TS, the rate of the reaction of indole with 

the aminoacrylate is decreased, but the amplitude is unaffected by complex 

formation. The reaction is fast, which indicates that it is not rate-limiting for the 

reaction of the β-subunit in the TS. Complex formation seems to have no drastic 

effect on the accessibility of indole to the active site of the β-subunit. 

 

Release of L-tryptophan 

 
Figure 20: Reaction of L-tryptophan with the cofactor. 
Influence of TS formation on the reaction of L-tryptophan with the cofactor of the LCA β-subunit at 
25° C. (A) Time course for the reaction of 2 mM L-tryptophan (syringe A) with 20 µM β-subunit 
(syringe B) in 50 mM EPPS/KOH pH 7.8. (B) Time course for the reaction of 2 mM L-tryptophan 
(syringe A) with 20 µM α- and β-subunits (syringe B) in 50 mM EPPS/KOH pH 7.8. Time courses were 
followed by the increase in absorbance at 476 nm. Data sets were fitted with single exponential or 
double exponential functions. 
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The reverse reaction (binding of L-tryptophan and subsequent reaction to quinoide II) 

was monitored by the increase in absorbance at 476 nm (Figure 20). Within the TS, 

the reaction is dominated by a slow rate of 0.45 s-1.  

The conversion of the external aldimine to the aminoacrylate might be rate-

limiting for the isolated LCA β-subunit. Within the TS, this reaction is faster. Quinoide 

II formation and/ or L-tryptophan release might be rate-limiting for the complexed 

LCA β-subunit as the reverse reactions are negatively influenced by complex 

formation. Pre-steady-state data in dependency of substrate concentrations will be 

collected at 60° C to allow for a direct comparison with the steady-state data.  

 

1.4.7 Allosteric communication within the LCA TS 

The enzymatic parameters of extant subunits are also influenced by allosteric 

communication within the TS. Ligand binding and catalysis at one subunit thereby 

help to coordinate the catalytical steps at the other subunit. To analyze whether 

allosteric communication was already present in the ancestor of permanent TS, the 

enzymatic parameters of the coupled LCA TS-reaction were determined (Figure 21).  

 
Figure 21: Enzymatic parameters of the working TS. 
(A) IGP-dependent LCA TS-reaction. 100 µl reactions were started by the addition of IGP at 60° C in a 
thermocycler. The reactions contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, 40 µM PLP, 10 mM 
L-serine and 2 µM α- and β-subunits. Reactions were quenched with 50 µl 1N KOH. 100 µl of the 
quenched reactions were mixed with 100 µl methanol. The conversion to tryptophan was determined 
by reversed-phase HPLC using program 3. The program was adapted to a flow-rate of 0.5 ml/ min. 
Data points were fitted with a single rectangular hyperbolic function (Michaelis-Menten equation). 
(B) L-serine-dependent LCA TS-reaction. 100 µl reactions were started by the addition of 100 µM IGP 
at 60° C in a thermocycler. The reactions contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, 40 µM 
PLP, varying amount of L-serine and 2 µM α- and β-subunits. Reactions were quenched with 50 µl 1N 
KOH. 100 µl of the quenched reactions were mixed with 100 µl methanol. Tryptophan and indole were 
quantified by reversed-phase HPLC using program 4. The program was adapted to a flow-rate of 
0.5 ml/ min. Data points were fitted with a single rectangular hyperbolic function (Michaelis-Menten 
equation) and with a single hyperbolic decay function, respectively. 
 

The reaction of IGP to indole and the reaction of IGP to tryptophan both lead to an 

absorbance change at 290 nm. In order to quantify the amount of formed indole and 
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tryptophan, the reactions were thus quenched and analyzed by HPLC. At saturating 

concentrations of L-serine, only tryptophan is formed (Figure 21 A). At sub-saturating 

concentrations of L-serine, tryptophan and indole are formed (Figure 21 B). 

The changes in enzymatic parameters resulting from allosteric communication 

within the LCA TS are summarized in Table 4. 

 
Table 4:   Effect of allosteric communication on the LCA α- and β-reactions. 

  α-reaction β-reaction 

LC
A

 

kcat  0.18   s-1 

0.51   s-1 
  3 x ↓ 

0.15   s-1 

0.86   s-1 
    6 x ↓ 

Km 0.024 mM 

0.083 mM 
  4 x ↓(IGP) 

0.025 mM 

1.2     mM 
  48 x ↓(L-serine) 

Enzymatic parameters of the α-reaction (IGP-cleavage), the β-reaction (condensation of indole with L-
serine) and the αβ-reaction (conversion of IGP and L-serine to tryptophan) within the LCA TS were 
determined at 60° C. Parameters of the α- and β-reactions are blue-colored, parameters of the αβ-
reaction are black-colored.The relative changes in kcat and Km are indicated as fold increase (↑) and 
fold decrease (↓). Changes that increase the catalytic efficiency (kcat/Km) are green-colored. Changes 
that decrease the catalytic efficiency (kcat/Km) are red-colored. 
 

The reaction of IGP and L-serine to tryptophan proceeds at a slower rate than the 

single reactions within the TS. This might indicate that the reaction at either the α-

subunit or the β-subunit negatively influences one or more catalytic steps of the 

associated subunit. The reaction at the α-subunit leads to an increase in the affinity 

of the β-subunit for L-serine. This is similar as in the TS from T. maritima (Table 2) 

and might provide a mechanism that ensures the presence of L-serine at the β-

subunit when indole is formed at the α-subunit. 

 

1.4.8 Substrate channeling within the LCA TS 

Within extant TS, the αβ-active sites are connected by a hydrophobic tunnel. This 

tunnel allows for the transfer of indole from the α-subunit to the β-subunit and 

prevents the loss of intermediary formed indole by free diffusion. Is the hydrophobic 

tunnel within the permanent TS an ancient ‘invention’ driven by a stringent selection 

for the quantitative conversion of IGP to L-tryptophan? Within interconnected TS, 

external indole has to enter the active site of the α-subunit to get to the active site of 

the β-subunit. As such, binding of the α-subunit ligand GP should block the access to 

the active site of the β-subunit and should prevent external indole from being 

converted to tryptophan. In this work, the accessibility of nucleophiles to the active 
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site of the LCA β-subunit was investigated. It was evaluated how complex formation 

with the α-subunit and additional blockage by the α-subunit ligand GP influences 

accessibility. In a first step, the small nucleophile N-methylhydroxylamine (NMHA) 

was used as probe for the accessibility of the β-subunit active site. Its reaction with 

the aminoacrylate at the β-active site leads to a change in the absorption at 456 nm 

(Figure 22).  

 
Figure 22: Accessibility of NMHA to the active site of the LCA β-subunit. 
Influence of TS formation and GP binding on the reaction of NMHA with the aminoacrylate at the 
active site of the β-subunit at 25° C. (A) Time course for the reaction of 150 mM NMHA (syringe A) 
with 20 µM β-subunit in 50 mM EPPS/KOH pH 7.8 and 40 mM L-serine. (B) Time course for the 
reaction of 150 mM NMHA (syringe A) with 4 µM α- and β-subunits (syringe B) in 50 mM EPPS/KOH 
pH 7.8 and 40 mM L-serine. (C) Time course for the reaction of 150 mM NMHA (syringe A) with 4 µM 
α- and β-subunits (syringe B) in 50 mM EPPS/KOH pH 7.8, 40 mM L-serine and 100 mM GP. Time 
courses were followed by the increase in absorbance at 456 nm. Data sets were fitted with single 
exponential or double exponential functions. 
 

Neither complex formation nor binding of GP at the active site of the α-subunit 

significantly influences the reaction rate of NMHA with the aminoacrylate. This is 

consistent with the observation that the blockage by complex formation and GP is 

insufficient to prevent the passage of small nucleophiles to the active site of the β-

subunit (Dunn et al., 1990). However, a large nucleophile similar in size to indole 

should be efficiently prevented from entering the active site of the β-subunit by 

complex formation and GP binding if it has to pass through the active site of the α-

subunit to get to the active site of the β-subunit. Benzimidazole (BZI) was used as 

such a large nucleophilic probe as displacement of β-active site bound aniline by BZI 

can be monitored by the decrease in absorbance at 466 nm (Figure 23). 
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Figure 23: Accessibility of BZI to the active site of the LCA β-subunit. 
Influence of TS formation and GP binding on the reaction of BZI with the aniline-quinoide at the active 
site of the β-subunit at 25° C. (A) Time course for the reaction of 20 mM BZI (syringe A) with 10 µM β-
subunit (syringe B) in 50 mM EPPS/KOH pH 7.8, 100 mM anilinium chloride and 40 mM L-serine. (B) 
Time course for the reaction of 20 mM BZI (syringe A) with 10 µM α- and β-subunits (syringe B) in 
50 mM EPPS/KOH pH 7.8, 100 mM anilinium chloride and 40 mM L-serine. (C) Time course for the 
reaction of 20 mM BZI (syringe A) with 10 µM α- and β-subunits (syringe B) in 50 mM EPPS/KOH pH 
7.8, 100 mM anilinium chloride, 40 mM L-serine and 100 mM GP. Data sets were fitted with single 
exponential or double exponential functions. 
 

The significant decrease in the reaction rate upon complex formation and GP binding 

indicates that a large nucleophile has to enter the active site of the α-subunit to get to 

the active site of the β-subunit. Thus the αβ-connection is the most plausible physical 

pathway for indole in the LCA TS like it is in extant TS (Dunn et al., 1990).  

 

1.5 Conclusion 

Most enzymes reconstructed up to date are relatively young and are thus almost 

identical to their extant descendants (Chandrasekharan et al., 1996; Malcolm et al., 

1990; Stackhouse et al., 1990; Thomson et al., 2005). Only some enzymes have 

been reconstructed, which strikingly differ from their extant descendants. Among 

those are the 3-isopropylmalate dehydrogenase LeuB from the ancestor of Bacteria 

(Hobbs et al., 2012) and the imidazole glycerol phosphate synthase HisF from the 

last universal common ancestor (Reisinger et al., 2014). Those share only 76% 

respectively 78% sequence identity with their closest related extant enzymes.  
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In this work, the α- and β-subunits of the TS from the last common ancestor of 

Bacteria (LCA) were reconstructed. Those enzymes can be supposed to be active in 

the LCA due to their central role in primary metabolism. The presence of enzymatic 

activity thus serves as a reliable indicator for the reconstruction success. As the LCA 

α- and β-subunits are catalytically active, an accurate reconstruction was shown to 

be achievable even in the case of the LCA α-subunit, which shares only 57% 

sequence identity with the closest related extant α-subunit. A recent study on 

bacterial ancestral nucleoside diphosphate kinases showed that they were 

thermostable. This finding let the authors to the conclusion that the environmental 

temperature in the LCA era was ~80- 90° C (Akanuma et al., 2013). Consistently, the 

LCA α- and β-subunits are thermostable as well. 

The LCA α- and β-subunits form a complex. For the first time, an ancient enzyme 

complex was successfully reconstructed. The subunits within the complex influence 

each other during catalysis. This reveals an early bi-directional adaptation of 

enzymes within a complex and the ancient nature of allosteric communication. The 

rate of tryptophan synthesis of the LCA TS is similar to the rate found in ‘less 

evolved’ extant TS like the S. solfataricus TS (Leopoldseder et al., 2006). 

S. solfataricus is tryptophan prototroph, which testifies that a slow rate of tryptophan 

synthesis is sufficient for a slowly growing organism.   

The interconnection between the active sites allows for the channeling of 

intermediary formed indole in the LCA TS. Besides allosteric communication, 

metabolite channeling seems to have already already existed in an ancestor of 

Bacteria. This mechanism prevents that free indole is produced in proportion to 

tryptophan.  

The LCA TS has a strong IGP lyase activity in the absence of L-serine that has 

not been observed in extant TS. Such being the case, the LCA TS can synthesize 

indole or tryptophan in dependency of the intracellular concentration of L-serine, 

whereas extant TS can only act as tryptophan synthases. Consistently, it was 

proposed that ancestral enzymes are less specialized than extant enzymes (Jensen, 

1976). For instance, ancestral β-lactamases and α-glucosidases were shown to have 

broad substrate specificities (Risso et al., 2013; Voordeckers et al., 2012). The 

ancestral-type GAL1 was further shown to function as galactose phosphorylating 

enzyme and as regulatory protein, whereas modern-type GAL1 can only act as 

galactose phosphorylating enzyme (Conant and Wolfe, 2008; Meyer et al., 1991). 
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In the extant microorganism E. coli, the intracellular concentration of L-serine is 

approximately 100 µM (Bennett et al., 2009). Taken a similar concentration of L-

serine in the LCA into account, the depletion of L-serine would have resulted in an 

increase of the intracellular indole concentration. The occurrence of free indole might 

explain, why the LCA also contained a β-subunit homolog (Merkl, 2007), which 

utilizes free indole for the synthesis of tryptophan. Besides the utilization of free 

indole by other metabolic enzymes, indole might also have served as signaling 

molecule. It is presumed to be an universal inter-cellular signaling molecule (Bunders 

et al., 2011), which for instance regulates the transition from exponential to stationary 

phase in extant bacteria (Lelong et al., 2007). In the course of evolution, the TS might 

have specialized as tryptophan synthase and indole became exclusively synthesized 

by a tryptophanase in bacteria (Isupov et al., 1998; Ku et al., 2006) and by a IGP 

lyase in plants (Kulik et al., 2005). 

 

1.6 Ongoing research and future work 

Current investigations focus on the determination of the ligand-bound LCA TS 

structure. This structure should help to understand the molecular details underlying 

ancient inter-subunit communication. Protein crystals were obtained in several 

conditions of commercial screening kits (6.5), but their diffraction was insufficient for 

structural determination (>4 Å). Those conditions are currently optimized. As 

mentioned before, the LCA TS has to be characterized by pre-steady-state kinetics at 

60° C to allow for a direct comparison with the steady-state data. Microscopic rate 

constants for different steps in the catalytic mechanism, e.g. binding of L-serine, 

reaction of external aldimine to aminoacrylate, release of tryptophan, will be 

determined by varying ligand concentrations and interpreting concentration-

dependent secondary plots. Pre-steady-state measurements should also help to 

determine the rate-limiting step of the coupled TS reaction (conversion of IGP to 

tryptophan). For instance, the initial rate of IGP cleavage and tryptophan formation 

should indicate whether the release of tryptophan becomes more impaired in the 

working LCA TS or whether the α-reaction is rate-limiting for the overall reaction.  
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2 SUBSTRATE SPECIFICITY OF β-SUBUNIT 

HOMOLOGS 

 

2.1 Introduction 

 

2.1.1 Phylogenetic analysis of the TrpB enzyme family 

Analysis of sequenced genomes let to the identification of a group of enzymes 

that share a sequence identity of approximately 30 % with the β-subunit (TrpB1) of 

the permanent αββα tryptophan synthase complex (TS) (Merkl, 2007; Xie et al., 

2002). Accordingly, the β-subunit homologs were named TrpB2 enzymes. They were 

subdivided into TrpB2i enzymes, which are encoded within the trp operon, and 

TrpB2o and TrpB2a enzymes, which are encoded outside of the trp operon (Figure 

24).  

 
Figure 24: Phylogenetic tree of TrpB enzymes. 
The phylogenetic tree is based on a multiple sequence alignment (MSA) of bacterial and archaeal 
TrpB genes. Figure according to (Merkl, 2007). 
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2.1.2 Abundance and properties of TrpB2 enzymes 

trpB2i and trpB2a genes occur exclusively in Archaea that lack a trpB1 gene. As 

shown for ssTrpB2i from Sulfolobus solfataricus, TrpB2i is part of a transient TS with 

unusual αββ stoichiometry under physiological conditions (Ehrmann et al., 2010; 

Leopoldseder et al., 2006).  

In contrast, trpB2o genes are found in the genomes of Archaea, Bacteria and 

Eukarya in addition to a trpB1 gene. The trpB2o genes are transcribed (Yin et al., 

2010), but transcriptional regulation is hardly investigated and the genomic 

neighborhood of trpB2o is not conserved. For Methanothermobacter 

thermoautotrophicus, TrpB2o expression was shown to be regulated by L-tryptophan 

(Karr et al., 2008). However, TrpB2o enzymes are not part of a tryptophan synthase 

complex (TS) and no other interaction partner could be identified so far (Ehrmann, 

2011; Hettwer and Sterner, 2002; Hiyama et al., 2014). As a knockout of trpB2o 

doesn’t affect the ability of an organisms to grow in medium lacking L-tryptophan, 

TrpB2o enzymes were considered to be expandable for the biosynthesis of 

tryptophan in vivo (Ehrmann, 2011). 

All TrpB2 enzymes have in common a low catalytic efficiency kcat/Km
L-serine, due to 

a Km for L-serine in the high millimolar range (Figure 25). 

 
Figure 25: L-serine-dependent synthesis of tryptophan. 
The enzymatic parameters of TrpB1 from E. coli and of TrpB2 from T. maritima for the L-serine-
dependent synthesis of L-tryptophan are shown (Hettwer and Sterner, 2002). 
 

It had been proposed that those TrpB2 enzymes, which are not part of a TS, might 

act as indole salvage enzymes in vivo or might have a function apart from tryptophan 

biosynthesis. The hypothesis of TrpB2o as indole-salvage enzyme is challenged by 

its high Km for L-serine. No reaction apart from tryptophan synthesis was identified 

that is catalyzed by TrpB2o enzymes with reasonable catalytic efficiency (Ehrmann, 

2011; Hettwer and Sterner, 2002; Xie et al., 2002; Yin et al., 2010).  
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2.1.3 Hypothesis on the function of TrpB2 enzymes 

In order to identify the physiological function of TrpB2 enzymes, the strains 

S. solfataricus ∆trpB2a and T. kodakaraensis ∆trpB2o were used. A comparison with 

the corresponding wild-type strains revealed that the knockout strains thrive equally 

well in medium lacking tryptophan (Busch, 2010; Ehrmann, 2011). This confirmed 

that the TrpB enzyme, which is encoded within the trp operon (TrpB1 or TrpB2i) is 

sufficient for the biosynthesis of tryptophan in vivo. Comparing the metabolomes and 

proteomes of wild-type and knockout strains gave no clear-cut hint on the 

physiological role of ‘additional’ TrpB2 enzymes (Busch, 2010; Ehrmann, 2011). Thus 

‘additional’ TrpB2 enzymes may either have no unique function or are dispensable 

under the investigated conditions. The lack of a clear-cut phenotype asked for a 

different strategy for the functional annotation of TrpB2 enzymes. Within the last 

years, knowledge-based approaches, which combine computational and 

experimental methods were highly successful in functional annotation projects 

(Brown and Babbitt, 2012; Pandya et al., 2014; Zhao et al., 2013). Thus such an 

approach was also used for the functional annotation of TrpB2 enzymes. Information 

on the occurrence, catalytic mechanism, structure and conserved residues was 

combined for an initial in vitro screening with putative substrates. The substrate 

specificity was subsequently confirmed by X-ray crystallography and mutagenesis 

studies.  

 

2.2 Remarks 

Dr. Chitra Rajendran collected the X-ray data and solved the structure of 

ssTrpB2a with bound O-phospho-L-serine. Patrick Löffler modeled the ssTrpB2a 

structure and created sequence logos. Parts of this chapter have been published 

equally worded in (Busch et al., 2014). The publication was written by Prof. Dr. 

Reinhard Sterner and myself. 

 

2.3 Significance of this work 

The rapid increase in the number of sequenced genomes asks for the functional 

annotation of the encoded enzymes. A combined computational-structural approach 

was used to determine the function of the TrpB2 subgroup of the tryptophan 

synthase beta chain/ beta chain-like TrpB1-TrpB2 family. The results showed that 
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TrpB2 enzymes are O-phospho-L-serine-dependent tryptophan synthases, whereas 

TrpB1 enzymes catalyze the L-serine-dependent synthesis of tryptophan. A single 

residue is responsible for the different substrate specificities of TrpB1 and TrpB2. 

This was confirmed by mutagenesis studies and crystallographic analysis of a TrpB2 

enzyme with bound O-phospho-L-serine.   
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TrpB2 enzymes occur exclusively in Parvarchaeota, Korarchaeota and 

Crenarchaeota, but they co-occur with TrpB1 enzymes in phyla of all three domains 

of life. The widespread distribution of TrpB2 enzymes might indicate that they have 

arisen before the diversification of life. However, many archaeal, bacterial and 

eukaryotic lineages seem to have lost the trpB2 gene most probable due to the lack 

of a selectable advantage on their physiological function in the presence of trpB1. 

 

2.4.2 Comparison of conserved residues in TrpB1 and TrpB2 enzymes 

The detailed reaction mechanism of TrpB2 enzymes is unknown, and no crystal 

structure has been available for this group so far. In contrast, the structure-function 

relationship of the TrpB1 group is well understood, mainly based on studies of 

stTrpB1 from Salmonella typhimurium. Here, catalysis involves the formation of an 

external aldimine between the cofactor PLP and the substrate L-serine. In the first 

instance, the coordination of this intermediate in stTrpB1 was analyzed and 

compared to a most plausible coordination in a homology model generated for 

ssTrpB2a from S. solfataricus (Figure 27). 

 

Figure 27: Superposition of active sites of stTrpB1 and ssTrpB2a. 
The crystal structure of stTrpB1 from S. typhimurium and the modeled structure of ssTrpB2a from 
S. solfataricus were superimposed.The residues in close proximity to the L-serine bound cofactor 
(PLS) are shown as sticks. Residues of stTrpB1 are orange-colored, residues of ssTrpB2a are green-
colored and the PLP-L-serine aldimine is gray-colored. The role of the depicted residues are indicated 
as being analyzed for stTrpB1. 1-3(Hyde et al., 1988; Jhee et al., 1998; Rhee et al., 1997), 4(Brzovic et 
al., 1992), 5-6(Ferrari et al., 2003; Ferrari et al., 2001). 
 

The cofactor PLP is bound in the same position and the nitrogen of the pyridinium 

ring is coordinated by equivalent serine residues in stTrpB1 and ssTrpB2a, which 

indicates that both enzyme groups use the same cofactor chemistry. The specificity 

for using indole as nucleophile is determined by a glutamate residue, which is strictly 

 stTrpB1 ssTrpB2a 

binding of cofactor Ser235 Ser264 

cofactor chemistry 1-3 Ser377 Ser411 

nucleophile specificity 4 Glu109 Glu132 

amine specificity 5-6 Thr110 
Asp305 

Thr133 
Arg337 
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conserved in all TrpB enzymes. Moreover, both TrpB subfamilies utilize a threonine 

residue to coordinate the carboxyl moiety of bound L-serine. However, whereas the 

hydroxyl-group of L-serine is coordinated by an aspartate in TrpB1, all TrpB2 

enzymes have an arginine at that position (Figure 28).  

 
Figure 28: Sequence logos for the TrpB1 and TrpB2 enzyme group. 
Sequence logos were created by WebLogo (Crooks et al., 2004; Schneider and Stephens, 1990) 
using a multiple sequence alignment (MSA) of each 100 randomly selected TrpB1/TrpB2 sequences. 
The substrate specifying residue within the depicted section is highlighted by colour. 

 

The consequences of this difference for substrate specificity were analyzed by 

testing different TrpB enzymes for their ability to catalyze the conversion of indole 

with α-amino acids other than L-serine. For this purpose, the stTrpB1 enzyme from 

Salmonella typhimurium and various TrpB2 enzymes (ssTrpB2i and ssTrpB2a from 

Sulfolobus solfataricus, tmTrpB2o from Thermotoga maritima and atTrpB2o from 

Arabidopsis thaliana) were cloned, expressed and purified. 

 

2.4.3 Cloning of TrpB1 and TrpB2 enzymes  

sttrpB1 was amplified from pBR322-sttrpAB using the oligonucleotides AGC CAT 

ATG ACA ACA CTT CTC AAC CCC TAC/ CTG GTG CAA GCT TGA TTT CCC CTC 

GCG CTT TCA GGA TATC and inserted into pET24a(+) at the NdeI/ HindIII 

restriction sites.  

sstrpB2a was amplified from pET28a(+)-sstrpB2a (Leopoldseder et al., 2006) 

using the oligonucleotides TAA TAC GAC TCA CTA TAG GG/ CCG CAA GCT TCT 

CCT TAA ATA ACA C and inserted into pET24a(+) at the NdeI/ HindIII restriction 

sites.  

sstrpB2i cloning and insertion into pET28a(+) has been described before 

(Leopoldseder et al., 2006). 
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tmtrpB2o was amplified from pET21a(+)-tmtrpB2o (Hettwer and Sterner, 2002) 

using the oligonucleotides ACC GCA TAT GAG AAT TGT TGT GAA/ CCC AGG AAT 

TCA GGC TTT CAC ACG TAC GCT GT and inserted into pET28a(+) at the 

NdeI/ HindIII restriction sites.  
attrpB2o was amplified from cDNA of Arabidopsis thaliana Col-0. The yield of 

amplification product was increased by two subsequent PCR reactions. In the first 

round of PCR, the oligonucleotides GCA GCT TTG AGA TCT ACT CA/ TTA TGG 

GGC CAT TCG AGC TT were used. The amplification product was the template in a 

second round of PCR using the oligonucleotides CTA GCT TAA GAC ATA TGG 

CAG CTT TGA GA/ TTA TGG GGC CAT GGA TCC TTA AAC AAC A. The final 

amplification product was inserted into the pET28a(+) expression vector at the 

NdeI/ BamHI restriction sites.  

2.4.4 Expression and purification of TrpB1 and TrpB2 enzymes  

For expression of stTrpB1, E. coli T7 Express was transformed with pET24a(+)-

sttrpB. The cells were grown at 37° C in LB with 50 µg/ ml kanamycin to OD600= 0.5. 

Protein expression was induced by addition of 0.5 mM IPTG. After growth over night 

at 20° C, cells were harvested by centrifugation, resuspended in 25 ml/ l culture 

50 mM Tris/HCl pH 7.5, 150 mM NaCl and 10 mM imidazole, and disrupted by 

sonication. The His6-tagged protein was purified by metal chelate affinity 

chromatography using a HisTrap FF crude column. Proteins in 50 mM Tris/HCl 

pH 7.5 and 150 mM NaCl were eluted by a linear gradient of imidazole (10- 500 mM) 

and dialyzed against 50 mM Tris/HCl pH 7.5.  

The proteins ssTrpB2i, ssTrpB2a, ssTrpB2a and tmTrpB2o were expressed with 

a His6-tag and purified by a heat step and metal chelate affinity chromatography 

according to (Hettwer and Sterner, 2002) and (Leopoldseder et al., 2006).  

For expression of atTrpB2o, E. coli (DE3) was transformed with pET28a(+)-

attrpB2o. The cells were grown at 37° C in LB with 50 µg/ ml kanamycin to 

OD600= 0.5. Protein expression was induced by addition of 0.5 mM IPTG. After 

growth over night at 37° C, cells were harvested by centrifugation, resuspended in 

50 mM potassium phosphate pH 7.5, 300 mM KCl and 10 mM imidazole, and 

disrupted by sonication. The His6-tagged protein was purified by metal chelate affinity 

chromatography using a HisTrap FF crude column. Proteins in 50 mM potassium 

phosphate pH 7.5 and 300 mM KCl were eluted by a linear gradient of imidazole (10- 
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500 mM) and dialyzed against 50 mM potassium phosphate pH 7.5. The proteins 

were at least 90 % pure as judged by SDS-PAGE (Figure 29).  

 
Figure 29: Purity of TrpB1- and TrpB2-proteins. 
SDS-PAGE (12.5 % polyacrylamide) of purified TrpB-proteins. Applied were (M) protein ladder and 
marker (LMW), (1) 15 µl stTrpB1 (10 µM monomer concentration), (2) 15 µl ssTrpB2i (10 µM monomer 
concentration), (3) 15 µl ssTrpB2a (10 µM monomer concentration), (4) 15 µl tmTrpB2o (10 µM 
monomer concentration), (5) 15 µl atTrpB2o (10 µM monomer concentration). 
 

2.4.5 Screen for the synthesis of β-substituted tryptophans 

The ability of TrpB enzymes to catalyze the condensation reaction of L-threonine, 

D-threonine, DL-phenylserine or O-phospho-L-threonine with indole to a β-

substituted tryptophan derivative was analyzed by HPLC. Solely L-threonine is 

converted with indole to β-methyltryptophan, a known building block for the 

maremycine synthesis (Zou et al., 2013). The stereoselectivity of this reaction was 

analyzed by HPLC separation followed by fluorescence detection (Figure 30).  

 
 
 
 
 

Figure 30: Synthesis of β-methyltryptophan. 
Detection of β-methyltryptophan by HPLC. 10 µM TrpB enzyme were incubated with 500 µM indole 
and 250 mM L-threonine in 100 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP for 30 min 
at 40°C (stTrpB1, atTrpB2o) or 80°C (tmTrpB1, tmTrpB2o, ssTrpB2a, ssTrpB2i). The reactions were 
quenched with methanol and analyzed by HPLC using program 2. The retention time for 2S,3R-
methyltryptophan was 7.8 min and the retention time for 2S,3S-methyltryptophan was 9.1 min 
consistent with previous investigations (Zou et al., 2013). 
 

 stTrpB1 ssTrpB2i ssTrpB2a tmTrpB2o atTrpB2o 

relative yield / % 3 8 36 100 0 

ee (2S,3S/2S,3R) 17 73 98 99 0 
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All TrpB enzymes except atTrpB2o are able to synthesize β-methyltryptophan using 

L-threonine, albeit with low efficiency. TrpB2 enzymes seem to be stereoselective for 

the synthesis of 2S,3S-methyltryptophan. The low efficiency for the synthesis of β-

methyltryptophan indicates that this reaction is not of physiological relevance. The 

utilization of L-threonine as substrate may be an evolutionary relict, as TrpB enzymes 

and threonine synthases share a common ancestor (Parsot, 1987). 

 

2.4.6 Screen for the synthesis of tryptophan 

Next, the ability of TrpB enzymes to catalyze the condensation reaction of 

L-serine, D-serine, L-cysteine, D-cysteine, DL-diaminopropionate, O-acetyl-L-serine, 

O-phospho-L-serine or O-phospho-D-serine with indole to tryptophan was analyzed 

by HPLC (Table 5). 

 
Table 5:   Conversion of different amino acids to tryptophan. 

 stTrpB1 ssTrpB2i ssTrpB2a tmTrpB2o atTrpB2o 

L-serine +++ ++ - - - 

D-serine - - - - - 

L-cysteine - + - - - 

D-cysteine - - - - - 

DL-diaminopropionate - - - - - 

O-acetyl-L-serine ++ ++ - + - 

O-phospho-L-serine - +++ + +++ +++ 

O-phospho-D-serine - - - - - 
 

Conversion of 500 µM indole in 100 mM potassium phosphate pH 7.5, 180 mM KCl and 40 µM PLP 
with 2 mM of the indicated α-amino acid by 5 µM TrpB enzyme was analyzed after 30 min at 25° C 
(stTrpB1) or 60° C (ssTrpB2i, ssTrpB2a, tmTrpB2o, atTrpB2o) by HPLC using program 3. Symbols: 
+++: conversion of > 60 % indole, ++: conversion of 20-60 % indole, +: conversion of 10-20 % 
indole, -: conversion of < 10 % indole. 
 

Whereas stTrpB1 preferentially utilizes L-serine as substrate, all tested TrpB2 

enzymes have a preference for O-phospho-L-serine (OPS) as substrate. HPLC 

chromatograms for the OPS-dependent tryptophan synthesis are shown in Figure 31. 
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Figure 31: OPS-dependent synthesis of tryptophan. 
HPLC chromatograms for the OPS-dependent synthesis of tryptophan. 100 µl reaction mixtures 
contained 100 mM potassium phosphate pH 7.5, 180 mM KCl, 40 µM PLP, 500 µM indole, 2 mM OPS 
and 5 µM enzyme. After incubation for 30 min at 25° C (stTrpB1) or 60° C (ssTrpB2i, ssTrpB2a, 
tmTrpB2o, atTrpB2o), reactions were quenched by the addition of 400 µl methanol. Tryptophan was 
detected by HPLC using program 2. 
 

Next, the steady-state kinetic parameters of the TrpB2 enzymes for the OPS-

dependent synthesis of tryptophan were determined (Figure 32). 

 
Figure 32: Enzymatic parameters for the OPS-dependent synthesis of tryptophan. 
OPS-dependent TrpB2 reaction. The reactions were started by the addition of 100 µM indole and 
followed by the absorbance change at 290 nm. The reactions contained 100 mM EPPS/KOH pH 7.5, 
180 mM KCl, 40 µM PLP, varying amounts of OPS and TrpB2 protein. The reactions were measured 
(A) at 80° C with 2 µM tmTrpB2o, (B) at 60° C with 2 µM ssTrpB2a, (C) at 60° C with 1 µM ssTrpB2i 
and (D) at 30° C with 10 µM atTrpB2o. Data points were fitted with a single rectangular hyperbolic 
function (Michaelis-Menten equation). 
 

The determined parameters were compared with the published parameters for the L-

serine-dependent synthesis of tryptophan (Table 6). 
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Table 6:   Comparison of the OPS- and L-serine-dependent TS reaction. 

 L-serine-dependent reaction 

 kcat (s-1) Km
 (mM) kcat/Km (M-1s-1) 

tmTrpB2o 0.44 50.2 8.7 · 100 

ssTrpB2a 0.032 151 2.1 · 10-1 

ssTrpB2i 0.20 35 5.7 · 100 

atTrpB2o 0.016 35 4.5 · 10-1 

 OPS-dependent reaction 

 kcat (s-1) Km
 (mM) kcat/Km (M-1s-1) 

tmTrpB2o 0.414 0.316 1.3 · 103 

ssTrpB2a 0.015 0.014 1.1 · 103 

ssTrpB2i 0.300 0.015 2.0 · 104 

atTrpB2o 0.015 0.010 1.5 · 103 

 
Parameters for the L-serine-dependent reaction at 80° C (tmTrpB2o), 60° C (ssTrpB2a, ssTrpB2i) and 
30° C (atTrpB2o) are according to (Hettwer and Sterner, 2002), (Leopoldseder et al., 2006) and (Yin et 
al., 2010). Conditions for the OPS-dependent tryptophan synthase reaction: 100 mM EPPS/KOH pH 
7.5, 180 mM KCl, 40 µM PLP and 100 µM indole.  

 

The Km
OPS values of all TrpB2 lie within range of 10- 1000 µM, which is found for 

~60 % of enzymes in the KEGG database (Bar-Even et al., 2011). Since these 

values are much lower than their Km
L-serine values and as the corresponding turnover 

numbers kcat are similar, the catalytic efficiencies kcat/Km
OPS are higher by about 3- 4 

orders of magnitude than the catalytic efficiencies kcat/Km
L-serine. This indicates that 

TrpB2 enzymes catalyze the reaction of indole with OPS in vivo. This is a new role 

for OPS, which has been known up to now only as an intermediate of L-serine, 

L-cysteine and L-cystathionine biosynthesis (Helgadottir et al., 2007; Mino and 

Ishikawa, 2003). The coordination of OPS within the active site of a TrpB2 enzyme 

was subsequently analyzed by x-ray crystallography. 

 

2.4.7 Crystallization of ssTrpB2a 

ssTrpB2a was expressed with a His6-tag and purified by a heat step and metal 

chelate affinity chromatography according to (Hettwer and Sterner, 2002) and 

(Leopoldseder et al., 2006). Subsequently, it was further purified by preparative size 

exclusion chromatography and dialyzed against 10 mM HEPES pH 7.5 and 25 mM 

NaCl. Crystallization trials with ssTrpB2a were performed with the vapour diffusion 

method in 24 well plates at 18° C based on previously established conditions (O. 

Mayans, unpublished data). Drops contained 1 µl of ssTrpB2a (12.5 mg/ ml) in 
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10 mM HEPES pH 7.5 and 25 mM NaCl and 1 µl of reservoir solution. Equilibration 

was done against 500 µl reservoir solution. First crystals appeared after 1 week at 

18°C with 25 % PEG-4000, 0.1 M Tris/HCl pH 7.0 and 100 mM NaCl as reservoir 

solution (Figure 33). 

 
Figure 33: Crystallization of ssTrpB2a. 
(A) SDS-PAGE (12.5 % polyacrylamide) of ssTrpB2a. Applied were the elution fractions from 
preparative size exclusion chromatography. (B) Crystals of ssTrpB2a. The crystals appeared after 
1 week at 18° C with 25 % PEG-4000, 0.1 M Tris/HCl pH 7.0 and 100 mM NaCl as reservoir solution.  
Initially crystals appeared as clusters and were multicrystals. Seeding was used to 

produce bigger single crystals with 20-25 % PEG-4000, 0.1 M Tris/HCl pH 

7.0/7.5/8.0/8.5 and 100 mM NaCl as reservoir solution.  

 

2.4.8 Structure of ssTrpB2a with bound OPS 

After 1 month at 18°C, single crystals were collected, soaked with 200 mM O-

phospho-L-serine and flash frozen in liquid nitrogen. The data collection and 

refinement statistics are shown in Table 7. 
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Table 7:   Data collection and refinement statistics. 
Protein ssTrpB2a 

Wavelength (Å) 1.0 Å 

Unit cell (Å) 

(Space group) 

a=55.56  b=61.903 c=109.57 α=90 β=98.23 γ= 90 

SG P 1 21 1 

Total reflections 169446 (9645) 

Unique reflections 52794 (4406) 

Redundancy 3.2 (2.2) 

Resolution (Å) 1.94  

Completeness (%) 96.28 (81.64) 

I/σ(I)  8.22 (1.52) 

Rmerge  0.084 (0.64) 

Refinement  

Resolution (Å) 46.44  - 1.94 (2.00  - 1.94) 

Rwork / Rfree (%) 0.195 (0.298) / 0.252 (0.319) 

Av. B (Å2)  34.50 

Number of atoms  

  Non-hydrogen 6711 

  Water 216 

  ligands 41 

R.m.s.deviations  

  Bond (Å) 0.009 

  Angles (º) 1.14 

Ramachandran plot  

Residues in 

favourable (%) 

allowed (%) 

 

96 

2.4 

outliers (%) 1.6 

PDB code 4QYS 

 

The obtained structure of the ssTrpB2a dimer with external aldimine between PLP 

and OPS at one subunit and internal aldimine between PLP and Lys111 at the other 

subunit is depicted in Figure 34. 
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Figure 34: Structure of ssTrpB2a with bound OPS. 
(A) Crystal structure of the ssTrpB2a homodimer (PDB ID: 4QYS). The subunit with bound PLP is 
blue- colored, the subunit with the external aldimine between PLP and OPS (PLPS) is yellow-colored. 
Both subunits are shown as ribbon diagrams, and the ligands are shown as sticks. Electron densities 
for PLP (left panel) and PLPS (right panel) are indicated by a refined 2Fo-Fc map, contoured at 
0.586 e/ Å3 (2.01 rmsd). (B) The PLP-bound subunit with open conformation and the PLPS-bound 
subunit with closed conformation are superimposed. (C) View of the active sites of ssTrpB2a with 
bound PLP and PLPS. Side chains are shown as balls and sticks, and H-bonds are indicated by black 
dashes.  
The binding of OPS to the active site of ssTrpB2a leads to a conformational change 

from an open to a closed state. Such a conformational change upon substrate 

binding was also observed for stTrpB1 (Dunn et al., 2008). As predicted by homology 

modeling, the cofactor within the active site in the crystal structure is coordinated with 

hydrogen bonding interactions to Thr133, Ser264 and Ser411. Binding of OPS leads 

to a reorientation of Thr133 and Arg337, which facilitates the coordination of the 

carbonyl and the phosphate groups of PLPS. The role of the arginine in coordinating 

the phosphate group of bound O-phospho-L-serine was further investigated by its 

mutagenesis to aspartate in ssTrpB2a and atTrpB2o. 

 

2.4.9 Cloning of TrpB2 variants 

sstrpB2a-R337D was generated by QuikChange site-directed mutagenesis from 

pET28a(+)-sstrpB2a using the oligonucleotides TAT GCA GGT GGG CTA GAT TAT 

CAT GGA GTA GCC/ GGC TAC TCC ATG ATA ATC TAG CCC ACC TGC ATA. 



44 SUBSTRATE SPECIFICITY OF β-SUBUNIT HOMOLOGS  
attrpB2o-R350D was generated by QuikChange site-directed mutagenesis from 

pET28a(+)-attrpB2a using the oligonucleotides TGC CAT CCC ATG GTA ATC TAA 

TCC ACC GGC ATG/ CAT GCC GGT GGA TTA GAT TAC CAT GGG ATG GCA.  

2.4.10 Expression and purification of TrpB2 variants 

The proteins ssTrpB2a-R337D and atTrpB2o-R350D were expressed and 

purified like the wild-type proteins. Finally, they were dialyzed against 50 mM 

potassium phosphate pH 7.5. The proteins were at least 95 % pure as judged by 

SDS-PAGE (Figure 35).  

 
Figure 35: Purity of TrpB2 variants. 
SDS-PAGE (12.5 % polyacrylamide) of the purified TrpB proteins. Applied were (M) protein ladder and 
marker (LMW), (1) 15 µl ssTrpB2a (10 µM monomer concentration), (2) 15 µl ssTrpB2a-R337D 
(10 µM monomer concentration), (3) 15 µl atTrpB2o (10 µM monomer concentration), (4) 15 µl 
atTrpB2o-R350D (10 µM monomer concentration). 
 

2.4.11 Binding properties of TrpB2 variants 

Changes in substrate binding due to the replacement of Arg by Asp were 

analyzed by fluorescence titration. For the TrpB2 wild-type proteins, a significant 

change in fluorescence was only observed in the presence of OPS. In contrast, a 

significant change in fluorescence in the presence of L-serine was only observed for 

the Arg to Asp variants ssTrpB2a-R337D and atTrpB2o-R350D (Figure 36). 
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Figure 36: Binding properties of TrpB2 and TrpB2 variants. 
Binding of L-serine and OPS was followed by fluorescence detection at 520 nm after excitation at 
440 nm. The proteins (A) ssTrpB2a, (B) ssTrpB2a-R337D, (C) atTrpB2o and (D) atTrpB2o-R350D 
with a subunit concentration of 1 µM were titrated with amino acid at 25° C in 100 mM potassium 
phosphate pH 7.5. 
 

The replacement of Arg by Asp using site-directed mutagenesis results in the 

inversion of substrate binding from OPS to L-serine as indicated by fluorescence 

titration experiments. This confirms the significant role of Arg in TrpB2 enzymes in 

specifying for OPS as substrate. 

 

2.4.12 Divergent evolution in the cystein synthase family 

The tryptophan synthase family contains two subgroups (TrpB1 and TrpB2), 

which differ in their substrate specificities (L-serine and OPS) but catalyse the 

synthesis of the same product. A similar case was found for the cysteine synthase 

family CysM/CysK. It shares the same fold with the tryptophan synthase enzyme 

family and also catalyzes a β-replacement reaction via the same α-aminoacryl 

intermediate (Burkhard et al., 1999). Recent investigations revealed that some 

CysK2 and CysM cysteine synthases use OPS instead of O-acetyl-L-serine as 

substrate (Agren et al., 2008; Mino and Ishikawa, 2003; Nakamura et al., 2012; Oda 

et al., 2005). Like in TrpB2 enzymes, the coordination of the phosphate leaving group 

seems to be accomplished by an arginine residue in CysK2 enzymes (Oda et al., 
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2005). In the organism Mycobacterium tuberculosis, even three cystein synthases 

were identified, which differ in their substrate specificity (Figure 37). 

 
Figure 37: Divergence of substrate specificity in the cysteine synthase family. 
The cysteine synthases CysM, CysK1 and CysK2 share a sequence identity of ~30 %. Their substrate 
specificities and catalysed reactions are indicated. Figure from (Schnell et al., 2014). 
 

A selective advantage for maintaining several homologous cysteine synthases may 

be a better fine-regulation of the metabolism and the connection of one particular 

metabolic pathway with multiple other pathways. 

 

2.5 Conclusion 

The ability of TrpB2 to synthesize tryptophan in vivo was recently analyzed using 

the hyperthermophile Thermococcus kodakaraensis, which can be genetically 

manipulated (Sato et al., 2005; Sato et al., 2003). T. kodakaraensis has a tkTrpB1 

enzyme, which is part of the permanent αββα tryptophan synthase complex and a 

tkTrpB2o enzyme that does not interact with the α-subunit. A T. kodakaraensis 

∆trpB1 strain was created, which lacks TrpB1 activity and has an insufficient TrpA 

activity due to the missing activation by the binding partner. However, ∆trpB1 thrived 

equally well as the wild-type strain in minimal medium supplemented with indole in 

oder to compensate for the lacking TrpA1 activation (Hiyama et al., 2014). The 

natural source of indole for TrpB2o enzymes is unknown up to date.  

The transcription of some trpB2 genes was shown to be similarly regulated as 

trpB1 (Hiyama et al., 2014; Karr et al., 2008). These findings suggest that TrpB2 

enzymes act as tryptophan synthases in vivo and primordially evolved for the 
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catalysis of the last step in tryptophan biosynthesis. Interestingly, several organisms 

harbouring TrpB2i or TrpB1 enzymes still possess TrpB2o or TrpB2a proteins. The 

presence of two TrpB2 enzymes seems to be a minor advantage as indicated by the 

uneven distribution of TrpB2a in closely related Sulfolobales (TrpB2a is present in 

S. solfataricus and S. tokodaii but absent in S. acidocaldarius). In contrast, 

differences of TrpB1 and TrpB2 in substrate specificity and affinity may provide a 

selective advantage by helping to regulate the intracellular concentration of free 

indole. The specific reason is unclear, however it is known that indole is involved in 

various biological processes like biofilm formation (Hu et al., 2010), cell cycle control 

(Chant and Summers, 2007; Chattoraj, 2007) and regulation of gene expression 

(Mueller et al., 2009; Wang et al., 2001). 
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3 THE QUATERNARY STRUCTURE OF TRANSIENT 

TS 

 

3.1 Introduction 

3.1.1 Structure of the permanent TS 

The enterobacterial TS is a permanent αββα heterotetrameric complex that is 

known for its sophisticated allosteric communication and regulation. It consists of two 

α-subunits (TrpA1) and a dimer of β-subunits (TrpB1). The structure of the TS from 

S. typhimurium was solved more than two decades ago (Hyde et al., 1988). It 

displays a nearly linear arrangement of the subunits and has a length of 

approximately 150 Å (Figure 38). 

 

stTrpA1 (α-subunit of the permanent TS):  
MERYENLFAQLNDRREGAFVPFVTLGDPGIEQSLKIIDTLIDAGADALELGVPFSDPLADGPTIQNANLRAFAAGVTPAQCFEMLALIREKHPTIPIGLLMYANL
VFNNGIDAFYARCEQVGVDSVLVADVPVEESAPFRQAALRHNIAPIFICPPNADDDLLRQVASYGRGYTYLLSRSGVTGAENRGALPLHHLIEKLKEYHAA

PALQGFGISSPEQVSAAVRAGAAGAISGSAIVKIIEKNLASPKQMLAELRSFVSAMKAASRA 
 
stTrpB1 (β-subunit of the permanent TS): 
MTTLLNPYFGEFGGMYVPQILMPALNQLEEAFVSAQKDPEFQAQFADLLKNYAGRPTALTKCQNITAGTRTTLYLKREDLLHGGAHKTNQVLGQALLAKRMGKS

EIIAETGAGQHGVASALASALLGLKCRIYMGAKDVERQSPNVFRMRLMGAEVIPVHSGSATLKDACNEALRDWSGSYETAHYMLGTAAGPHPYPTIVREFQRMIGEE

TKAQILDKEGRLPDAVIACVGGGSNAIGMFADFINDTSVGLIGVEPGGHGIETGEHGAPLKHGRVGIYFGMKAPMMQTADGQIEESYSISAGLDFPSVGPQHAYLN

SIGRADYVSITDDEALEAFKTLCRHEGIIPALESSHALAHALKMMREQPEKEQLLVVNLSGRGDKDIFTVHDILKARGEIX 
 
Figure 38: Quaternary structure of the permanent TS. 
The structure of the S. typhimurium TS (2J9X) is depicted as ribbon diagram. The α-subunits are 
orange-colored and the β-dimer is brown-colored. The bound ligands GP and L-serine are depicted as 
red spheres. The amino acid sequences of the α- and β-subunits are indicated. Residues located 
within 4 Å of the hetero-oligomer interface are highlighted by size and color. 
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Several parts of both subunits contribute to the protein-protein interface. The relative 

orientation of the subunits results in the interconnection of the αβ-active sites. This 

interconnection allows for the channeling of indole during the conversion of IGP to 

tryptophan (Huang et al., 2001; Raboni et al., 2005). The catalytic efficiencies of both 

subunits are affected by complex formation and allosteric regulation within the TS. 

 

3.1.2 Structure of the transient TS 

Recently, the TrpA1 and TrpB1 homologs ssTrpA2 and ssTrpB2i were identified 

as α- and β-subunits of a TS in the Crenarchaeon S. solfataricus. The interaction 

between the subunits is ligand-dependent, and the observed αββ stoichiometry 

testifies to a pronounced negative cooperativity for binding of the second α-subunit 

(Ehrmann et al., 2010). Moreover, the quaternary structure of the S. solfataricus TS 

strikingly differs from that of the S. typhimurium TS (Figure 39). 

 

 
ssTrpA2 (α-subunit of the transient TS):  
MEMGKMLVVYMTLGYPNVQSFKDFIIGAVENGADILELGIPPKYAKYDGPVIRKSYDKVKGLDIWPLIEDIRKDVGVPIIALTYLEDWVDQLENFLNMIKDVKLDGILFPDL
LIDYIDDLDKIDGIIKNKGLKNVIFTSPSVPDLLIHKVSKISDLFLYYGVRPTTGVPIPVSVKQLINRVRNLVENKLIVGFGLSSESDLRDALSAGADGIAIGTVFI

EEIERNGVKSAINLVKKFRAILDEYKX 
 
ssTrpB2 (β-subunit of the transient TS): 
MVKEDEILPKYWYNIIPDLPKPLPPPRDPQGAYFSRIDLLRSILPKEVLRQQFTIERYIKIPEEVRDRYLSIGRPTPLFRAKRLEEYLKTPARIYFKYEGAT 

PTGSHKINTAIPQAYFAKEEGIEHVVTETGAGQWGTAVALAASMYNMKSTIFMVKVSYEQKPMRRSIMQLYGANVYASPTNLTEYGRKILETNPQHPGSLGIAMSEAIEYALKN 
EFRYLVGSVLDVVLLHQSVIGQETITQLDLLGEDADILIGCVGGGSNFGGFTYPFIGNKKGKRYIAVSSAEIPKFSKGEYKYDFPDSAGLLPLVKMITLGKDYVPPPIYAGGLRYH 
GVAPTLSLLTKEGIVEWREYNEREIFEAAKIFIENQGIVPAPESAHAIRAVVDEAIEARKNNERKVIVFNLSGHGLLDLSNYESMMKRLNGNG 
 
Figure 39: Quaternary structure of the transient TS. 
The structure of the S. solfataricus TS (O. Mayans, unpublished data) is depicted as ribbon diagram. 
The α-subunits are blue-colored and the β-dimer is light blue-colored. The bound ligands GP and L-
serine are depicted as red spheres. The amino acid sequences of the α- and β-subunits are indicated. 
Residues located within 4 Å of the heterooligomer interface are highlighted by size and color. 
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As a consequence of the high protein concentration used for crystallization, the 

obtained structure displays a non-physiological αββα stoichiometry. Several parts of 

the α-subunit, but only one N-terminal part of the β-subunit contribute to the protein-

protein interface. The residues within the interface are not sufficiently well resolved to 

gain insights into the interactions between single residues at the protein-protein 

interaction surface.  

 

3.1.3 The non-interacting enzyme ssTrpB2a 

S. solfataricus also contains an additional ssTrpB2a, which is encoded by a gene 

located outside of the trp operon. It shares a sequence identity of ~54 % with 

ssTrpB2i. In contrast to ssTrpB2i, ssTrpB2a does not bind to ssTrpA2 under any 

applied experimental conditions (Ehrmann et al., 2010; Leopoldseder et al., 2006). It 

is not obvious whether a lack of selective pressure on ssTrpB2a had prevented its 

evolution to become part of a transient TS or whether an interaction with ssTrpA2 

was lost in the course of evolution. 

 

3.2 Remarks 

Parts of this chapter had been published equal worded in (Busch et al., 2014). 

This chapter also contains data from Dietmar Dewitz (Dewitz, 2013), Patricia Seidel 

(Seidel, 2012) and Michael Schupfner (Schupfner, 2011; Schupfner, 2014). Details 

are indicated in the following text. This data was included in this work to draw as 

complete a picture as possible on transient TS.  

 

3.3 Significance of this work 

In the first part of this work, the interaction between ssTrpA2 and ssTrpB2i was 

investigated in more detail. This investigation revealed that the transient TS is formed 

with equal propensity in the presence of different ssTrpB2i ligands and that the 

transfer of indole within the transient TS is similarly efficient as the transfer within the 

permanent TS. 

Up to date, solely the inside of the trp operon encoded ssTrpB2i was identified as 

part of a transient TS. In the second part of this work, several non-trp operon 

encoded TrpB2 enzymes were identified as candidates for forming a transient TS 
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based on the observable co-evolution in the family of α-subunits. Indeed, the co-

evolved enzymes tvTrpA2 and tvTrpB2a from T. volcanium were shown to form a 

weak, ligand-dependent TS. Guided by the structure of the transient ssTrpA2-

ssTrpB2i complex from S. solfataricus, the N-terminal part of TrpB2 enzymes was 

identified to determine the interaction with TrpA2. This was validated by transferring 

the N-terminal sequence stretches stemming from ssTrpB2i or tvTrpB2a to 

ssTrpB2a, which cannot interact with either ssTrpA2 or tvTrpA2. Dependent on the 

origin of the N-terminal stretch, the resulting chimeric proteins gained the ability to 

interact with either ssTrpA2 or tvTrpA2. This indicates that the ability and specificity 

for a protein-protein interaction can be readily transferred between those proteins.  
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3.4 Results and discussion 
 

3.4.1 Cloning of subunits of a transient and a permanent TS 

sstrpA2 cloning and insertion into pET28a(+) has been described in 

(Leopoldseder et al., 2006). 

sstrpB2i was amplified by overlap extension PCR to remove the internal XhoI 

restriction site and the stop codon at the 3’ end of the gene from pET28a(+)-sstrpB2i 

(Leopoldseder et al., 2006) using the oligonucleotides GTG CTG CTG ATG TAC 

ATA TGG TAA AAG AAG AC/ ATC GAT TCT GGA GAA ATA GGC ACC and GGT 

GCC TAT TTC TCC AGA ATC GAT/ CCG CTC GAG CCC ATT TCC ATT. The final 

amplification product was cloned into pET21a(+) at the NdeI/ XhoI restriction sites.  

sttrpA1 was amplified from synpBR322-sttrpAB by PCR using the 

oligonucleotides AGC CAT ATG GAA CGC TAC GAA AAT TTA/ GTG GTG CAA 

GCT TAT GCG CGG CTG GCG GCT TTC. The amplification product was inserted 

into pET28a(+) at the NdeI/ HindIII restriction sites. 

sttrpB1 cloning and insertion into pET24a(+) has been described in Chapter 2. 

 

3.4.2 Expression and purification of subunits of a transient and a 
permanent TS 

The protein ssTrpA2 was purified by a heat step and metal chelate affinity 

chromatography as described (Hettwer and Sterner, 2002; Leopoldseder et al., 

2006).  

For expression of ssTrpB2i, Escherichia coli CodonPlus (DE3) RIPL cells were 

transformed with pET21a(+)-sstrpB2i. The cells were grown at 37° C in LB-medium 

with 20 µM PLP, 30 µg/ ml chloramphenicol, and 150 µg/ ml ampicillin overnight in 

the absence of IPTG. Cells were harvested by centrifugation, resuspended in 25 ml/ l 

culture 10 mM potassium phosphate pH 7.5, 300 mM KCl, 20 µM PLP and 10 mM 

imidazole, and disrupted by sonication. After a subsequent heat step (30 min at 

70° C), the His6-tagged proteins were purified by metal chelate affinity 

chromatography. Proteins in 10 mM potassium phosphate pH 7.5 and 300 mM KCl 

were eluted by a linear gradient of imidazole (10-1000 mM). Fractions containing 

sufficiently pure protein were dialyzed against 10 mM potassium phosphate pH 7.5. 

The protein was further purified by ion exchange chromatography as described 
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(Leopoldseder et al., 2006) and dialyzed against 100 mM potassium phosphate 

pH 7.5.  

For expression of stTrpA1, E. coli BL21 Rosetta was transformed with 

pET28a(+)-sttrpA1. The cells were grown at 37° C in LB with 50 µg/ ml kanamycin to 

a density of OD600= 0.5. Protein expression was induced by the addition of 0.5 mM 

IPTG. After growth over night at 20° C, cells were harvested by centrifugation, 

resuspended in 25 ml/ l culture 50 mM Tris/HCl pH 7.5, 150 mM NaCl and 10 mM 

imidazole, and disrupted by sonication. The His6-tagged proteins were purified by 

metal chelate affinity chromatography. Proteins in 50 mM Tris/HCl pH 7.5 and 

150 mM NaCl were eluted by a linear gradient of imidazole (10- 500 mM). The 

proteins were dialyzed against 50 mM Tris/HCl pH 7.5. The subunits were 

approximately 95 % pure as judged by SDS-PAGE (Figure 40). 

 

 
Figure 40: Purity of S. solfataricus and S. typhimurium TS subunits. 
SDS-PAGE (12.5 % polyacrylamide) of the purified TS subunits. Applied were (M) protein ladder and 
marker (LMW), (1) 15 µl ssTrpA2 (10 µM monomer concentration), (2) 15 µl ssTrpB2i (10 µM 
monomer concentration), (3) 15 µl stTrpA1 (10 µM monomer concentration), (4) 15 µl stTrpB1 (10 µM 
monomer concentration). 
 

3.4.3 Influence of different ligands on the transient TS 

It has been shown that the transient ssTrpA2-ssTrpB2i TS is formed in the 

presence of the ssTrpB2i ligand L-serine and various ssTrpA2 ligands that mimic the 

substrate, the transition state or the product of the α-subunit (Ehrmann et al., 2010). 

In order to determine the requirements of a ssTrpB2i ligand for the interaction with 

ssTrpA2, SPR measurements were undertaken in the presence of GP and the 

ssTrpB2i ligands L-serine, O-phospho-L-serine, glycine, or O-sulfo-L-serine (Figure 

41). 
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Figure 41: Ligand-dependency of the TrpA2-TrpB2i interaction. 
SPR measurements for the interaction between ssTrpA2 and ssTrpB2i in the presence of different 
ligands. ssTrpA2 was covalently immobilized on flow cell 2 of a CM5 sensor chip using EDC/NHS 
chemistry. The ligand in 10 mM sodium acetate buffer pH 4.83, was injected to obtain a final signal of 
~220 response units (RU). Interactions were measured at 25° C at a flow rate of 30 μl/ min using 
various concentrations of ssTrpB2i as analyte in HBS-EP+, 60 mM GP, and 0.05 % (w/v) sodium 
azide in the presence of (A) 1 M L-serine, (B) 10 mM OPS, (C) 1 M L-serine or (D) 10 mM O-sulfo-L-
serine. The binding surface was regenerated after each injection with HBS-EP+. Kd values were 
determined by using a steady-state binding model. 
 

The affinity between ssTrpA2 and ssTrpB2i is identical, independent of the used 

ssTrpB2i ligand. These results indicate that the ssTrpA2-ssTrpB2i complex is formed 

with equal propensity, no matter of whether the β-substituent of the ssTrpB2i ligand is 

–H, -CH2OH, -CH2OSO3
- or -CH2OPO3

2-. The Kd for the transient complex formed in 

the presence of GP and O-phospho-L-serine was confirmed by ITC (Figure 42). 
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Figure 42: The TrpA2-TrpB2i interaction in the presence of GP and OPS. 
ITC measurement for the interaction between ssTrpA2 and ssTrpB2i in the presence of GP and OPS. 
Prior to the measurement, the proteins were dialyzed against HBS-EP+, 60 mM GP, 10 mM OPS, and 
0.05 % (w/v) sodium azide. The titration was conducted at 25° C by injecting 24 aliquots of 1.6 μl 
containing 188 μM ssTrpA2 into 200 μl containing ssTrpB2i at a subunit concentration of 21 μM. The 
thermodynamic parameters were calculated by a one site binding model implemented in the ITC 
Origin software. 
 

The association constant K is the inverse of the dissociation constant Kd and is 

proportional to the free enthalpy ∆G (∆G= -R·T·lnK). The stoichiometry N of 0.57 

indicates the formation of a αββ TS. The Kd value for this TS is 2.1 µM and the ∆G 

value is -32 kJ/ mol. The thermodynamic parameters equals those determined for the 

interaction in the presence of L-serine and GP (N= 0.59, Kd= 1.8 µM, 

∆G= -32 kJ/ mol; (Ehrmann, 2011)). 

The data indicate that changes at the β-substituent during the TS reaction have 

no influence on complex stability. Most plausible, the complex remains stable 

throughout the whole catalytic cycle until tryptophan is released from the β-subunit. 

 

3.4.4 Channeling within the transient TS 

The activity of the α-subunit is enhanced by the liganded β-subunit within the 

S. solfataricus TS. This ensures that IGP is only cleaved to a significant amount 

when formed indole can be subsequently converted to tryptophan. The X-ray 

structure of the S. solfataricus TS indicates that the active sites of the α-subunit and 
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the β-subunit are interconnected by a hydrophobic tunnel. This interconnection might 

allow the channeling of intermediary formed indole (Figure 43). 

 

 
Figure 43: Putative pathway of indole within the TrpA2-TrpB2i type TS. 
The structure of the S. solfataricus TS (O. Mayans, unpublished data) is depicted as ribbon diagram. 
The α-subunits are blue-colored and the β-dimer is light blue-colored. The bound ligands GP and L-
serine are depicted as red spheres. The putative way of indole is indicated by a red arrow. The 
numbers refer to the entry point of indole (1), the putative path of indole within the enzyme complex (2) 
and the point of indole-to-tryptophan conversion (3). 

 

An interconnection is characterized by a defined entry point at the α-subunit active 

site (1), a tight tunnel between the active sites (2) and a defined exit point at the β-

subunit active site (3). Such being the case, the interconnection was probed 

regarding these three aspects: First, the accessibility of free indole to the β-active site 

was determined in dependency of the α-subunit ligand GP (blocking approach). 

Second, the amount of intermediary formed indole that escapes the complex was 

quantified (capturing approach). Third, the amount of indole was determined, which is 

converted to tryptophan by the associated β-subunits (competition approach). 

 

Blocking approach 
In tightly connected TS, external indole has to pass through the active site of the 

α-subunit to reach the active site of the β-subunit and to be subsequently converted 

to tryptophan. In the S. typhimurium TS, GP is able to block the active site of the α-

subunit and thus prevents the conversion of external indole to tryptophan (Ahmed et 

al., 1991; Dunn et al., 1990). The effect of GP on tryptophan synthesis was validated 

for the S. typhimurium TS and was also determined for the enzymes from 

S. solfataricus. The results are depicted in Figure 44. 

 



THE QUATERNARY STRUCTURE OF TRANSIENT TS 57  

 
Figure 44: Effect of GP on the synthesis of tryptophan. 
The TrpB-reaction was measured with 2 µM TrpB-protein and 4 µM TrpA-protein in 100 mM KP 
pH 7.5, 180 mM KCl, 40 µM PLP, 100 µM indole, 200 mM L-serine, and various concentrations of GP 
at 25° C (stTrpA1/stTrpB1) or at 60° C (ssTrpA2/ssTrpB2i).  
 

GP binding to the S. typhimurium TS strongly compromises the synthesis of 

tryptophan from free indole. For the enzymes from S. solfataricus, GP binding 

induces TS formation and also compromises the synthesis of tryptophan by free 

indole. Most plausible, the connection between the active sites is the preferred route 

to the β-site for indole in both TS. However, it cannot be ruled out that tryptophan 

synthesis is limited by a different mechanism in the S. solfataricus TS. 

 

Capturing approach 
In tightly connected TS, indole formed at the active site of the α-subunit is not a 

free intermediate and does not diffuse and thus get trapped in an overlaid organic 

solvent. Such being the case, no indole is trapped by toluene during the conversion 

of IGP to tryptophan by the Neurospora crassa TS (Yanofsky and Rachmeler, 1958). 

A similar approach was used to probe for the presence of free diffusible indole during 

the conversion of IGP to tryptophan by the S. typhimurium TS and the S. solfataricus 

TS. Hexane was used as organic solvent as it has a low water solubility (0.0003 % 

w/w) and is able to solubilize indole. The applicability of this approach was validated 

by monitoring the amount of indole that is trapped during the enzymatic cleavage of 

IGP. Subsequently, the amount of indole being trapped during the S. typhimurium TS 

reaction and during the S. solfataricus TS reaction was quantified (Table 8). 
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Table 8:   Detection of indole released during the TS reaction. 
 

A indole in aqueous phase/ µM indole in organic phase/ µM Σ indole/ µM 

5 min 1.05 ± 0.13 2.99 ± 0.25 4.04 

10 min 3.44 ± 0.57 4.14 ± 0.39 7.58 

30 min 11.75 ± 0.13 7.67 ± 0.54 19.42 

B tryptophan in aqueous phase/ µM indole in organic phase/ µM ratio tryptophan/ indole 

5 min 113.83 ± 1.40 0.26 ± 0.10 438 

10 min 220.91 ± 1.26 0.47 ± 0.04 470 

30 min 348.44 ± 3.91 0.79 ± 0.03 441 

80 min 325.89 ± 30.63 0.71 ± 0.09 459 

C tryptophan in aqueous phase/ µM indole in organic phase/ µM ratio tryptophan/ indole 

5 min 18.23 ± 4.65 0.07 ± 0.04 260 

10 min 34.77 ± 6.55 0.18 ± 0.01 193 

30 min 134.79 ± 3.64 0.62 ± 0.01 217 

80 min 399.95 ± 12.76 1.08 ± 0.12 370  
Reactions were performed in 150 µl volumes with 100 mM EPPS/KOH, pH 7.5, 180 mM KCl, 40 µM 
PLP, and 500 µM IGP with (A) 0.1 µM stTrpB1 and 0.1 µM stTrpA1, (B) 0.1 µM stTrpB1, 0.1 µM 
stTrpA1 and 200 mM L-serine and (C) with 20 µM ssTrpB2i, 20 µM ssTrpA2 and 200 mM L-serine. 
The reactions in 24 well plates were overlaid with 1.5 ml hexane and incubated at 40° C in a water 
bath for the indicated times. Indole in the organic phase was quantified spectroscopically after 
derivatization with p-dimethylaminocinnamaldehyde (DMACA). Indole and tryptophan in the aqueous 
phase were quantified by HPLC using program 1. The concentration of the two tryptophan synthases 
differ by a factor of 200 in order to compensate for the different enzymatic activities at the given 
temperature. 
 

The S. typhimurium TS has a weak aldolase activity in the absence of L-serine. Free 

indole is equally distributed in the aqueous and the organic phase as diffusion does 

not result in a thermodynamic equilibrium distribution within the observed time scale. 

Such being the case, only half the amount of released indole can be detected in the 

organic phase. Taking this into account, approximately 0.5 % of indole occurs as free 

intermediate during the S. typhimurium TS reaction. Consistently, Anderson et al. 

observed that less than 1 % of intermediately formed indole is released during the 

conversion of IGP to L-tryptophan by the S. typhimurium TS (Anderson et al., 1991). 

Similarly, just about 1 % of formed indole is released in the S. solfataricus TS 

reaction. This low quantity of free indole indicates a rapid and efficient conversion of 

indole to tryptophan in the S. typhimurium TS and in the S. solfataricus TS. 

 

Competition approach 
In tightly connected TS, indole formed at the active site of the α-subunit remains 

bound within the enzyme complex till it is converted to tryptophan by the associated 

β-subunit. Consequently, another indole-utilizing enzyme should not compete with 
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In the presence of 14C-L-serine and OPS, stTrpB1 uses 14C -serine for the synthesis 

of 14C-tryptophan and ssTrpB2i uses OPS for the synthesis of tryptophan. The 

substrate preference is sufficiently high to distinguish, whether indole is converted to 

tryptophan by stTrpB1 or by ssTrpB2i. 

To determine the amount of 14C-labeled and non-14C-labeled tryptophan in a mixture, 

they were separated by HPLC followed by absorbance detection and by an online 

scintillation counter. The absorbance parallels the total amount of tryptophan and the 

radio-signal parallels the amount of radioactive labeling. The ratio of UV signal to 

radio-signal was initially determined for labeled tryptophan, which had been 

synthesized by the S. typhimurium TS. The HPLC profile is shown in Figure 47. 
 

 
Figure 47: HPLC analysis of 14C-labeled tryptophan. 
Elution profile of 14C-labeled tryptophan followed by absorbance detection at 280 nm (blue trace) and 
radio-detection (red trace). A 10 µl reaction containing 0.1 µM stTrpB1, 0.1 µM stTrpA1, 100 mM 
EPPS/KOH pH 7.5, 180 mM KCl, 40 µM PLP, 500 µM IGP, 300 µM 14C-L-serine (3.4 mCi/ mmol) and 
10 mM OPS was incubated at 40° C. The reaction was quenched by the addition of 20 µl methanol. 
20 µl of the mixture were analyzed by HPLC using program 4. 
 

Reaction mixtures with the TS and a TrpB-enzyme with different substrate specificity 

were analyzed at several points of time and the ratio of 14C-labeled tryptophan to 

non-14C-labeled tryptophan was determined. The results are summarized in Table 9. 
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Table 9:   Quantification of synthesized tryptophan. 
 

A TS from S. typhimurium and ssTrpB2i                                             L-serine*, OPS and IGP 

 A 280 nm radiosignal A 280 nm/ radiosignal % labeled tryptophan 

5 min 217.64 1958.97 0.11 98 

10 min 379.25 3242.79 0.12 93 

30 min 852.58 6977.98 0.12 89 

 

B TS from S. solfataricus and stTrpB1                                                L-serine*, OPS and IGP 

 A 280 nm radiosignal A 280 nm/ radiosignal % labeled tryptophan 

5 min 845.23 1158.06 0.73 15 

10 min 1822.90 1606.00 1.14 10 

30 min 2384.24 1865.39 1.28 8  
(A) 10 µl reactions containing 0.1 µM stTrpB1, 0.1 µM stTrpA1, 50 µM ssTrpB2i, 100 mM EPPS/KOH, 
pH 7.5, 180 mM KCl, 40 µM PLP, 500 µM IGP, 300 µM 14C-L-serine (3.4 mCi/mmol) and 10 mM OPS 
were incubated at 40° C. (B) 10 µl reactions containing 20 µM ssTrpB2i, 20 µM ssTrpA2, 20 µM 
stTrpB1, 100 mM EPPS/KOH, pH 7.5, 180 mM KCl, 40 µM PLP, 500 µM IGP, 300 µM 14C-L-serine 
(3.4 mCi/mmol) and 10 mM OPS were incubated at 40° C. The reactions were quenched at the 
indicated time points by the addition of 20 µl methanol. 20 µl of the mixture were analyzed by HPLC 
using program 4. Elution was followed by absorbance detection at 280 nm and radio-detection.  
 

In both TS, indole formed at the α-subunit is mainly converted to tryptophan at the 

associated β-subunit. Thus the S. typhimurium TS and S. solfataricus TS are similar 

efficient in transferring intermediary formed indole to the active site of the associated 

β-subunit.  

In summary, both TS prevent the emergence of free indole, which is not 

subsequently converted to tryptophan. 

Common features in distant related complexes with different quaternary 

structures indicate a high selective pressure for developing these features at an early 

stage of evolution. The main driving force in the evolution of TS seems to be the 

prevention of free indole. This might have been important to prevent cross talks with 

indole-dependent cell signaling pathways and to prevent indole from diffusing 

through the cell membrane.  
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3.4.5 Phylogenetic analysis of the TrpA enzyme family 

Are just TrpB2i enzymes or also other TrpB2 enzymes part of a transient TS? To 

answer this question, putative transient TS were identified by the analysis of the TrpA 

enzyme family under the premise that protein-protein interactions are the result of 

protein co-evolution (Pazos and Valencia, 2008). A sequence similarity network 

(SSN) of InterPro family IPR002028 (v.48) was calculated (Atkinson et al., 2009; 

Gerlt et al., 2015). It is depicted in Figure 48. 

 

 
Figure 48: SSN of the TrpA enzyme family. 
Enzymes with a sequence identity of >80 % are depicted as single knots (rep-note: 80). Knots that 
share a sequence identity of >36 % are connected. The two major groups were named TrpA1 and 
TrpA2 based on experimental data for some of the containing members (TrpA1 from S. typhimurium, 
T. kodakaraensis, T. maritima and TrpA2 from S. solfataricus). 
 

Interestingly, TrpA2 enzymes also occur in organisms that lack a TrpB2i enzyme. As 

such, the organism Thermoplasma volcanium contains only a TrpB2a enzyme, which 

is encoded by a gene outside of the trp operon. The apparent co-evolution asked for 

probing the interaction between tvTrpA2 and tvTrpB2a. The protein tvTrpA2 contains 

a solvent exposed cysteine at position 195, which was mutated to serine to prevent 

the formation of artificial dimers. The resulting tvTrpA2-C195S variant is named 

tvTrpA2* throughout the text. The cloning, expression and purification of tvTrpA2* 

and tvTrpB2a had also been described before (Dewitz, 2013).  
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3.4.6 Cloning of tvTrpA2* and tvTrpB2a 

tvtrpA2 was amplified by PCR from genomic DNA of T. volcanium strain GSS1 

using the oligonucleotides ATT AGG ATC CAT GAA GCC ATT TGT ATA TTT CAC 

TCT CG/ ATA TAG TCG ACT TAG TGA TGA TGA TGA TGA TGG GAT GCC CCC 

AAA ATA TCA T and inserted into pMAL-c2(+) at the SalI/ BamHI restriction sites. 

QuikChange Mutagenesis with the oligonucleotides GGC ATA CGT AAC AAG TCT 

ACG ATA GCT AAG ATC/ GAT CTT AGC TAT CGT AGA CTT GTT ACG TAT GCC 

was subsequently performed to obtain pMAL-c2(+)-tvtrpA2*.  

tvtrpB2a was amplified by PCR from genomic DNA of T. volcanium strain GSS1. 

The yield of amplification product was increased by two subsequent PCR reactions. 

In the first round of PCR, the oligonucleotides GGG ATG GTA GAT TCT AAA GA/ 

AAA AAC GAT AGT AGC GGT TG were used. The amplification product was used 

as template in a second round of PCR with the oligonucleotides ACG CCA TAT GAT 

AAG AAT CGA TCT AAA GCA AGA CG/ GTG CTC GAG TTC AAA ATG CAT TGC 

CTC TGC A and inserted into pET24a(+) at the NdeI/ XhoI restriction sites.  

 

3.4.7 Expression and purification of tvTrpA2* and tvTrpB2a 

For expression of MBP-tvTrpA2*, E. coli T7 Express cells were transformed with 

pMAL-c2(+)-tvtrpA2*. The cells were grown at 37° C in LB with 20 mM potassium 

phosphate, pH 7.5 and 150 µg/ ml ampicillin to OD600= 0.5. Protein expression was 

induced by addition of 0.5 mM IPTG. After growth overnight at 13° C, cells were 

harvested by centrifugation, resuspended in 25 ml/ l culture 100 mM potassium 

phosphate pH 7.5 and 500 mM KCl and disrupted by sonication. The supernatant 

was loaded on a Ni2+-chelate affinity column at a flow rate of 0.5 ml/ min, which had 

been equilibrated with 100 mM potassium phosphate pH 7.5 and 500 mM KCl. 

Bound proteins were incubated with 50 µg/ ml trypsin. After on-column cleavage for 

2 h at room temperature, maltose binding protein (MBP) and trypsin were washed 

from the column. Elution of bound tvTrpA2* was performed at room temperature with 

a linear gradient of imidazole (10- 1000 mM). Fractions containing sufficiently pure 

protein were dialyzed against 100 mM potassium phosphate pH 7.5.  

For expression of tvTrpB2a, E. coli T7 Express Rosetta was transformed with 

pET24a(+)-tvtrpB2a. The cells were grown at 37°C in sorbitol betaine medium with 

20 µM PLP and 75 µg/ ml kanamycin to OD600= 0.5. Protein expression was induced 
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by addition of 0.5 mM IPTG. After growth overnight at 37° C, cells were harvested by 

centrifugation, resuspended in 25 ml/ l 50 mM potassium phosphate pH 7.5 and 

300 mM KCl, disrupted by sonication, and subjected to a heat step (75° C for 

20 min). The His6-tagged proteins were purified by metal chelate affinity 

chromatography. Proteins in 50 mM potassium phosphate pH 7.5 and 300 mM KCl 

were eluted by a linear gradient of imidazole (0- 1000 mM). Fractions containing 

sufficiently pure protein were dialyzed against 100 mM potassium phosphate pH 7.5. 

The proteins were approximately 90 % pure as judged by SDS-PAGE (Figure 49). 

 
Figure 49: Purity of tvTrpA2* and tvTrpB2. 
SDS-PAGE (12.5 % polyacrylamide) of the purified proteins. Applied were (M) protein ladder and 
marker (LMW), (1) 15 µl tvTrpA2* (10 µM monomer concentration) and (2) 15 µl tvTrpB2a (10 µM 
monomer concentration). 
 

3.4.8 Activity of tvTrpA2* and tvTrpB2a 

The turnover numbers and the Michaelis constants of the isolated tvTrpA2* and 

tvTrpB2a proteins were determined by steady-state enzyme kinetics (Figure 50).  
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Figure 50: Enzymatic parameters of tvTrpA2* and tvTrpB2a. 
(A) IGP-dependent tvTrpA2*-reaction. The reaction was started by the addition of IGP at 40° C. The 
reaction contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, 40 µM PLP, 6 mM NAD+, 20 mM 
arsenate, 5.5 µM GAPDH and 0.5 µM tvTrpA2*. The conversion of IGP to indole was determined by 
reversed-phase HPLC using program 3. (B) OPS-dependent tvTrpB2a-reaction. The reaction was 
started by the addition of 100 µM indole and followed at 60° C by the absorbance change at 290 nm. 
The reactions contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, 40 µM PLP, 0.5 µM tvTrpB2a 
(monomer concentration) and varying amounts of L-serine. (C) Indole-dependent tvTrpB2a-reaction. 
The reaction was started by the addition of indole and followed at 60° C by the absorbance change at 
290 nm. The reactions contained 100 mM EPPS/KOH pH 7.5, 180 mM KCl, and 40 µM PLP, 10 mM 
OPS and 0.5 µM tvTrpB2a β-subunit (monomer concentration). Data points were fitted with a single 
rectangular hyperbolic function (Michaelis-Menten equation). 
 

The reactions were measured at 40° C due to the heat-lability of tvTrpA2*. The 

activity of tvTrpA2* was too low to allow the measurement by a spectro-photometer. 

Instead, reactions were quenched and analyzed by HPLC. The data showed that 

tvTrpA2* and tvTrpB2a are poor catalysts with very low kcat-values. The KM
OPS of 

tvTrpB2a in the micromolar range confirms that TrpB2 enzymes are OPS-dependent 

tryptophan synthases.  

 

3.4.9 Probing the formation of a transient TS 

Size-exclusion chromatography was used to study the ligand-dependency of the 

interaction between tvTrpA2* and tvTrpB2a (Figure 51).  
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Figure 51: Influence of ligands on the interaction between tvTrpA2* and tvTrpB2a. 
Analytical size exclusion chromatograms of 50 µl tvTrpA2*, tvTrpB2a and tvTrpB2a/tvTrpA2* mixture 
(7 µM, monomer concentration). Samples were applied on a Superdex S75 column equilibrated with 
10 mM potassium phosphate pH 7.5, 100 mM KCl, 0.05 % sodium azide (A) in the absence of ligand, 
(B) in the presence of 60 mM GP, (C) in the presence of 1 M L-serine and (C) in the presence of 
60 mM GP and 1 M L-serine. Elution was performed at 25° C with a flow rate of 0.35 ml/ min and 
followed by measuring the absorbance at 280 nm. 
 

Complex formation between tvTrpA2* and tvTrpB2a was only detectable in the 

presence of the tvTrpA2* ligand GP and the tvTrpB2a ligand L-serine. A ligand-

dependency for TS formation was also observed for the proteins ssTrpA2 and 

ssTrpB2i from S. solfataricus (Ehrmann et al., 2010) and thus seems to be a general 

feature of TrpA2-TrpB2 type complexes. The tvTrpA2*-tvTrpB2a interaction was 

quantified by SPR in the presence of GP and L-serine as well as in the presence of 

GP and OPS (Figure 52). 
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Figure 52: Quantification of the tvTrpA2*-tvTrpB2a interaction. 
SPR measurements for the quantification of the tvTrpA2*-tvTrpB2a interaction. The tvTrpA2* protein 
was covalently immobilized on flow cell 2 of a CM5 sensor chip using EDC/NHS chemistry. 10 µg/ ml 
protein in 10 mM sodium acetate pH 4.92 were injected to obtain a signal for bound protein of ~60 
response units (RU) and a final signal of ~200 response units (RU). Interactions were measured at 
25° C at a flow rate of 30 µl/ min using various concentrations of tvTrpB2-protein as analyte in HBS-
EP+, 60 mM GP, and 0.05 % (w/v) sodium azide in the presence of (A) 1 M L-serine or (B) 10 mM 
OPS. The binding surface was regenerated after each injection with HBS-EP+. Thermodynamic 
dissociations constants (Kd values) were determined by using a steady-state binding model. Data is 
from (Schupfner, 2014).  
 

SPR measurements showed that the interaction between tvTrpA2* and tvTrpB2a is 

very weak with a Kd in the two-digit micromolar range. The weak interaction might 

indicate a relaxed selection pressure for the evolution or for the maintainance of this 

protein-protein interaction. However, the weak interaction might provide high 

specificity in vivo.  

 

3.4.10 Specificity of the subunit interaction within transient TS 

The specificity of TrpA2 enzymes for their interaction with the co-evolved partner 

was confirmed by the inability of ssTrpB2a to interact with ssTrpA2 or with tvTrpA2* 

(Figure 53). 
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Figure 53: ssTrpB2a does not interact with ssTrpA2 or tvTrpA2*. 
Analytical size exclusion chromatograms of 30 µl ssTrpB2a, ssTrpB2a/ssTrpA2 and 
ssTrpB2a/tvTrpA2* (8 µM, monomer concentrations). Samples were applied on a Superdex S75 
column being equilibrated with 10 mM potassium phosphate, pH 7.5, 100 mM KCl, 0.05 % sodium 
azide, 60 mM GP, 1 M L-serine. Elution was performed at 25° C with a flow rate of 0.35 ml/ min and 
followed by measuring the absorbance at 280 nm. 

 

3.4.11 Identification of a common interface within transient TS 

The observed differences in complex formation indicate that the quaternary 

structures of TrpA2-TrpB2 type TS and TrpA1-TrpB1 type TS might differ. Indeed, 

the recently solved structure of the ssTrpA2-ssTrpB2i complex with bound GP and 

L-Ser revealed considerable differences in the relative orientation of the α- and β-

subunits compared to the stTrpA1-stTrpB1 complex from S. typhimurium (O. 

Mayans, unpublished data). According to the crystal structures, three sequence 

stretches of stTrpB1 directly interact with stTrpA1, whereas only a single N-terminal 

sequence stretch of ssTrpB2i directly interacts with ssTrpA2 (see Figure 38 and 

Figure 39). In order to test whether this stretch is necessary and sufficient for the 

binding of TrpB2 proteins to TrpA2, the ability to convert non TrpA2-interacting TrpB2 

proteins into TrpA2-interacting proteins by exchanging N-terminal residues was 

probed. For this purpose, ssTrpB2a was chosen, which is structurally similar to 

ssTrpB2i (O. Mayans, unpublished data) but does not interact with either ssTrpA2 or 

tvTrpA2* (Figure 53). 

In a first step, a sequence alignment of ssTrpB2i, tvTrpB2a, and ssTrpB2a was 

generated. Subsequently, the N-terminal residues of ssTrpB2a were exchanged with 

the corresponding residues of ssTrpB2i or tvTrpB2a. In ss/ss-Chimera 1 and 

ss/ss-Chimera 2, 30 and 37 N-terminal residues of ssTrpB2a were replaced by the 

corresponding residues of ssTrpB2i. In tv/ss-Chimera 1 and tv/ss-Chimera 2, 8 and 

26 N-terminal residues of ssTrpB2a were replaced by the corresponding residues of 

tvTrpB2a (Figure 54). 
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CAA GTT GGA AGA CCG/ GCT AGT TAT TGC TCA GCG G and inserted into 

pET24a(+) at the NdeI/ HindIII restriction sites. 

 

3.4.13 Expression and purification of chimera TrpB2 proteins 

For expression of ss/ss-Chimera 1 and ss/ss-Chimera 2, E. coli CodonPlus (DE3) 

RIPL cells were transformed with pET24a(+)-ss/ss-chimera 1, and pET24a(+)-ss/ss-

chimera 2. The cells were grown at 37°C in LB-medium with 20 µM PLP, 30 µg/ ml 

chloramphenicol, and 75 µg/ ml kanamycin overnight in the absence of IPTG. Cells 

were harvested by centrifugation, resuspended in 25 ml/ l culture 10 mM potassium 

phosphate pH 7.5, 300 mM KCl, 20 µM PLP and 10 mM imidazole, and disrupted by 

sonication. The His6-tagged proteins were purified by metal chelate affinity 

chromatography. Proteins in 10 mM potassium phosphate pH 7.5 and 300 mM KCl 

were eluted by a linear gradient of imidazole (10- 1000 mM). Fractions containing 

sufficiently pure protein as judged by SDS-PAGE were dialyzed against 100 mM 

potassium phosphate pH 7.5 and subjected to a heat step (30 min at 70° C for ss/ss-

Chimera 1, 30 min at 60° C for ss/ss-Chimera 2) (Schupfner, 2011).  

For expression of tv/ss-Chimera 1 and tv/ss-Chimera 2, E. coli CodonPlus (DE3) 

RIPL cells were transformed with pET24a(+)-tv/ss-chimera 1 and pET24a(+)-tv/ss-

chimera 2. The cells were grown at 37°C in LB with 20 µM PLP and 75 µg/ ml 

kanamycin to OD600= 0.5. Protein expression was induced by addition of 0.5 mM 

IPTG. After growth overnight at 37° C, cells were harvested by centrifugation, 

resuspended in 25 ml/ l 10 mM potassium phosphate pH 7.5, 300 mM KCl, 20 µM 

PLP and 10 mM imidazole, and disrupted by sonication. The His6-tagged proteins 

were purified by metal chelate affinity chromatography. Proteins in 10 mM potassium 

phosphate pH 7.5 and 300 mM KCl were eluted by a linear gradient of imidazole (10- 

1000 mM). Fractions containing sufficiently pure protein were dialyzed against 

100 mM potassium phosphate pH 7.5 (Schupfner, 2014). The proteins were at least 

90 % pure as judged by SDS-PAGE (Figure 55). 
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Figure 55: Purity of TrpB2 chimeras. 
SDS-PAGE (12.5 % polyacrylamide) of the purified proteins. Applied were (M) protein ladder and 
marker (LMW), (1) 10 µl ss/ss-Chimera 1 (12 µM monomer concentration), (2) 10 µl ss/ss-Chimera 2 
(12 µM monomer concentration), (3) 10 µl tv/ss-Chimera 1 (12 µM monomer concentration), and 
(4) 10 µl tv/ss-Chimera 2 (12 µM monomer concentration). 
 

3.4.14 Structural integrity, thermal stability, and activity of chimera TrpB2 
proteins 

Highly symmetrical size exclusion chromatography profiles demonstrated that all 

chimeras are homogenous proteins. Their structural integrity was further confirmed 

by far-UV circular dichroism (Figure 56). 

 
Figure 56: Structural integrity of TrpB2 chimeras. 
(A) Size exclusion chromatography profiles. 50 µl of 10 µM protein were applied to a Superdex 75 
column being equilibrated with 100 mM potassium phosphate pH 7.5, 300 mM KCl (15 µM monomer 
concentration). Elution was performed at 25° C with a flow rate of 0.5 ml/ min, and followed by 
measuring the absorbance at 280 nm. (B) Far-UV circular dichroism (CD) spectra of 7 µM protein 
(monomer concentration) in 100 mM potassium phosphate pH 7.5. Spectra were recorded at 25° C 
using a spectro-polarimeter (d= 1 mm). Data is from (Schupfner, 2014) and (Seidel, 2012). 
 

All chimeras display elution times between the wild-type proteins ssTrpB2a and 

ssTrpB2i, which had been shown to be dimers (Leopoldseder et al., 2006). The CD-

spectra of the TrpB proteins are influenced by the cofactor, which interferes with an 

accurate measurement of ellipticity below ~205 nm. 

The conformational stability of the proteins was tested by thermal melting measured 

by CD (Figure 57).  
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Figure 57: Thermal stability of TrpB2 chimeras. 
Thermal denaturation followed by CD-spectroscopy. The loss of ellipticity of 7 µM of protein (monomer 
concentration) in 100 mM potassium phosphate, pH 7.5 was monitored from 60° C to 110° C with a 
rate of 1° C/ min. The apparent Tm values are 100° C for ssTrpB2a, > 100° C for ssTrpB2i, 93° C for 
tvTrpB2a, 89° C for ss/ss-Chimera 1, 75° C for ss/ss-Chimera 2, 98° C for tv/ss-Chimera 1, and 97° C 
for tv/ss-Chimera 2. Data was fitted by a two-state model as far as possible. Data is from (Schupfner, 
2014) and (Seidel, 2012).  
 

The unfolding transitions were cooperative and yielded apparent Tm-values between 

73° C for ss/ss-Chimera 2 and about 95° C for ss/ss-Chimera 1, tv/ss-Chimera 1, and 

tv/ss-Chimera 2.  

The catalytic activity of the chimeras was analyzed by steady-state enzyme 

kinetics. The deduced KM
L-serine and kcat values are depicted in Figure 58.  

 
Figure 58: Enzymatic parameter of TrpB2 chimeras. 
L-serine-dependent TrpB2 reactions. The reactions were started by the addition of 100 µM indole and 
followed at 60° C by the absorbance change at 290 nm. The reactions contained 100 mM potassium 
phosphate pH 7.5, 180 mM KCl, 40 µM PLP, varying concentrations of L-serine and (A) 2 µM ss/ss-
Chimera 1, (B) 2 µM ss/ss-Chimera 2, (C) 3 µM tv/ss-Chimera 1, or (D) 3 µM tv/ss-Chimera 2 . Data 
for tv/ss-Chimera 1 and tv/ss-Chimera 2 is from (Schupfner, 2014). 
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In summary, the data show that all produced chimeras are properly folded and active, 

which proves that changes at the N-terminus do not perturb the overall structure or 

catalysis. 

 

3.4.15 Analysis of chimera TrpB2 proteins for their ability to form a 
transient TS 

Surface plasmon resonance (SPR) experiments were performed to assess 

whether the chimeras can bind to ssTrpA2 and tvTrpA2*. No interaction could be 

detected between ss/ss-Chimera 1 and ssTrpA2, and between tv/ss-Chimera 1 and 

tvTrpA2*, respectively. However, the formation of ss/ss-Chimera 2-ssTrpA2 and 

tv/ss-Chimera 2-tvTrpA2* complexes could be detected (Figure 59).  

 
Figure 59: TrpA2-TrpB2 chimera interaction detected by SPR. 
SPR measurements for the quantification of the TrpA2-Chimera interaction. SPR measurements were 
performed on a Biacore X100 optical biosensor. The TrpA2 protein was covalently immobilized on flow 
cell 2 of a CM5 sensor chip using EDC/NHS chemistry. (A)10 µg/ ml ssTrpA2 in 10 mM sodium 
acetate, pH 4.83 and (B) 10 µg/ ml tvTrpA2* in 10 mM sodium acetate, pH 4.92 were injected to obtain 
a signal for bound protein of ~60 response units (RU) and a final signal of ~200 response units (RU). 
Interactions were measured at 25° C at a flow rate of 30 µl/ min using various concentrations of 
TrpB2-chimera as analyte in HBS-EP+, 60 mM GP, and 0.05 % (w/v) sodium azide in the presence of 
10 mM OPS. The binding surface was regenerated after each injection with HBS-EP+. 
Thermodynamic dissociations constants (Kd values) were determined by using a steady-state binding 
model. Data for tv/ss-chimera 2 is from (Schupfner, 2014). 
 
Activity titrations further showed that the enzymatic activity of ssTrpA2 is enhanced 

by ss/ss-Chimera 2 to the same extent as by ssTrpB2i. Likewise, the enzymatic 

activity of tvTrpA2* is enhanced by tv/ss-Chimera 2, albeit to a lower extent 

compared to tvTrpB2a (Figure 60).  
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Figure 60: Effect of TrpA2-TrpB2 chimera interaction on the TrpA2 activity. 
(A) ssTrpA2 or (B) tvTrpA2* was titrated with increasing concentrations of TrpB2 proteins or 
Chimeras 2 in 100 mM EPPS/KOH, pH 7.5, 180 mM KCl, 40 µM PLP, 6 mM NAD+, 20 mM arsenate, 
1 M L-serine, 5.5 µM glyceraldehyde-3-phosphate dehydrogenase. The reaction was started by the 
addition of 100 µM IGP and followed at 60° C (activation of ssTrpA2-reaction) or 40° C (activation of 
tvTrpA2*-reaction) by the absorbance change at 340 nm caused by the production of NADH. Initial 
velocities were plotted as a function of added TrpB2, and the binding affinities were determined by 
fitting the data points with a hyperbolic function. Data for the activation of the tvTrpA2* reaction is from 
(Schupfner, 2014). 
 
The apparent Kd values of the activity titrations in the double digit micromolar range 

are similar to the values determined by the SPR measurements (Table 10). 

 
Table 10: Affinities as detected by SPR and activity titration. 

protein-protein interaction Kd
SPR (µM) Kd

titration (µM) 

ssTrpB2i ssTrpA2   2.4   1.4 

ss/ss-Chimera 2 ssTrpA2 38.6 10.8 

tvTrpB2a tvTrpA2* 27.9 28.4 

tv/ss-Chimera 2 tvTrpA2* 57.9 61.6 

Reaction conditions for the SPR measurements at 25 °C: HBS-EP+ buffer with 0.05% sodium azide 
and 60 mM GP in the presence of 10 mM OPS. Reaction conditions for the activity titration of TrpA: 
100 mM EPPS/KOH, pH 7.5, 180 mM KCl, 40 µM PLP, 6 mM NAD+, 20 mM arsenate, 1 M L-serine, 
5.5 µM tmGAPDH. The reaction was started by the addition of 100 µM IGP and followed at 60 °C 
(ssTrpA2) or 40 °C (tvTrpA2*) by the absorbance change at 340 nm caused by the production of 
NADH.  
These data show that the N-terminal parts of ssTrpB2i and tvTrpB2a are sufficient for 

the formation of a TS with the activation of the corresponding α-subunits (ssTrpA2* or 

tvTrpA2*). 

 

3.5 Conclusion 

Whereas in many cases the quaternary structure of protein complexes can be 

inferred with the assumption that interfaces of homologous subunits are highly 

conserved (Zhang et al., 2010), distantly related homologues may differ in their 

interaction geometrically although they have the same in vivo function (Russell et al., 

2004). Geometrically different interfaces were for example found between the two 
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signaling proteins CheY and CheA P2 from E. coli and of Thermotoga maritima. 

Whereas similar regions are involved in the formation of the CheY-CheA P2 complex, 

the relative orientation of the subunits differ in these complexes (Park et al., 2004). 

Moreover, different quaternary structures have been published for the three 

anthranilate synthase complexes from S. typhimurium, Serratia marcescens and 

S. solfataricus, although they all consist of homologous TrpG and TrpE subunits 

(Knöchel et al., 1999; Morollo and Eck, 2001; Spraggon et al., 2001). TS provide 

another case of quaternary structure plasticity as different regions of TrpB1 and 

TrpB2, as well as of TrpA1 and TrpA2 are involved in complex formation, which 

enable elaborate allosteric communication during catalysis. Permanent TrpA1-TrpB1 

complexes as found in E. coli and S. typhimurium are characterized by a hydrogen-

bond network between residues of the α- and β-subunits. Allosteric communication is 

mainly transmitted by the interaction of two loops of the α-subunit with the COMM 

domain of the β-subunit, which forms the basis for the bi-directional activation of the 

subunits within the complex and enables the transition between an open and closed 

state (Osborne et al., 2003; Pan and Dunn, 1996). Contrary, transient TrpA2-TrpB2 

complexes as found in S. solfataricus and T. volcanium are only formed during 

catalysis and have a quaternary structure that differs from that of the TrpA1-TrpB1 

complexes. The transient TS remains formed during the conversion of IGP to 

tryptophan.  

Like in permanent TS, the activity of the α-subunit is enhanced and indole is 

channeled to the active site of the β-subunit in transient TS. Substrate channeling is 

also found in several non-related enzyme complexes like the carbamoyl phosphate 

synthetase and the glutamine phosphoribosylpyrophosphate amidotransferase 

(Huang et al., 2001). Thus it is a common strategy to prevent the free diffusion and/ 

or the hydrolysis of an intermediately formed metabolite. 

Crystal structure analysis revealed that within the TrpA2-TrpB2 complex of 

S. solfataricus, solely an N-terminal part of the β-subunit interacts with the α-subunit 

(O. Mayans, unpublished data). This finding indicates that the N-terminal part of the 

β-subunit might be a suitable module for the design of artificial ligand-dependent 

protein-protein interactions. The creation of chimeric proteins is a general strategy to 

combine functional modules. This strategy was for instance used to design a novel 

DNA-binding protein, which consists of two domains of the endonucleases I-DmoI 

and I-CreI (Chevalier et al., 2002; Kortemme and Baker, 2004). Furthermore, it was 
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used to create proteins, which consist of an interacting domain and an effector 

domain of different signaling pathways. Fusing the phospho-tyrosine recognition 

domain Grb2 or ShcA to the death effector domain of Fadd was so shown to lead to 

receptor tyrosine kinase mediated apoptosis (Howard et al., 2003). In the present 

work, the N-terminus of TrpA2-interacting TrpB2 proteins was transferred to a non 

TrpA2-interacting TrpB2a protein. This transfer is sufficient to enable the formation of 

ligand-dependent complexes and the regulation of TrpA2 activity within this complex. 

This finding demonstrates that homologous proteins can be recruited to a certain 

metabolic pathway by the transfer of an interaction module. 
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IMPLICATION FOR TS EVOLUTION 

A model for the evolution of TrpB was proposed by Merkl (2007) taking the 

following criteria into account: First TrpB1 and TrpB2 have evolved only once as 

indicated by conserved indels, second TrpB2 is distributed in all three domains of life 

and third TrpB1 does not occur in several Archaea (Figure 61). 

 

 
 Figure 61: Model of TrpB evolution. 
This model is based on the most plausible explanation for the present distribution of TrpB2 enzymes. 
Stars mark events of genomic rearrangements, circles represent ancient predecessors. HGT stands 
for horizontal gene transfer. Figure is according to (Merkl, 2007).  
 

Accordingly, the easiest way to explain the distribution of TrpB enzymes in extant 

organisms is an ancient duplication of TrpB2. Whereas one copy was passed on 

unmodified, the other copy became the TrpB1 enzyme in the ancestor of Bacteria 

and developed into the TrpB2i enzyme in the ancestor of Archaea. The TrpA enzyme 

co-evolved to TrpA1 and TrpA2 to gain the exclusive interaction with TrpB1 and 

TrpB2i, respectively. In Euryarchaeota, TrpA1 and TrpB1 replaced the original TrpA2 

and TrpB2i by a horizontal gene transfer event. 

The present work confirms and refines this model. It reveals that all TrpB 

enzymes act as tryptophan synthases under physiological conditions. An early 

divergent evolution of TrpB1 and TrpB2 enzymes is most likely as the enzymes differ 

in substrate specificity and in their complex formation behavior. Whereas TrpB1 

enzymes use L-serine for the synthesis of tryptophan and form a permanent TS with 

TrpA1, TrpB2 enzymes use OPS for the synthesis of tryptophan and form a transient, 

ligand-dependent TS with TrpA2. Evolution of an interaction of TrpB2 with TrpA2 is 

conceivable, as only an N-terminal part is required for the protein-protein interaction. 
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Like in permanent TS, the quaternary assembly allows for the efficient transfer of 

indole between the active sites. However, the rate of tryptophan synthesis of the 

transient TS is rather low. This might be the reason for its replacement by the 

permanent TS in Euryarchaeota. Phylogenetic analysis indicate that this replacement 

is the result of a horizontal gene transfer event from an ancestor of Firmicutes. The 

characterization of the newly emerging permanent TS that had most probably existed 

in the last common ancestor of Bacteria revealed that the transfer of indole between 

the active sites and the activation of the α-subunit in the TS had already existed at 

the rise of permanent TS. The rate of tryptophan synthesis of permanent TS might 

have initially paralleled that of transient TS. However, its evolution towards a more 

efficient catalysis might explain its widespread distribution in extant organisms. The 

TrpB2 enzyme, which lacks the ability to form a TS, might primarily utilize free indole 

as substrate. Its importance for extant organisms seems to be minor as indicated by 

its disappearance in multiple phyla. 
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4 SUMMARY 

The permanent tryptophan synthase complex (TS) serves as a model system for 

the investigation of sophisticated protein-protein interactions. The permanent TS 

consists of a dimer of β-subunits and two α-subunits, which are located at both sites 

of the dimer, resulting in a αββα arrangement. The α-subunit catalyzes the aldolytic 

cleavage of indole-3-glycerol-phosphate (IGP). Glyceraldehyde-3-phosphate (G3P) is 

released whereas indole is channeled through a hydrophobic tunnel to the active site 

of the β-subunit. There, it reacts with L-serine in a PLP-dependent condensation 

reaction to L-tryptophan and water. The quaternary assembly of the permanent TS 

enables the bi-directional activation of the subunits within the complex. This ensures 

the coordination of IGP cleavage and condensation of indole and L-serine to 

tryptophan.  

The effects of complex formation and allosteric communication on the enzymatic 

parameters of the subunits differ in detail in diverse extant organisms. We were 

interested in the questions how these differences reflect the evolutionary history and 

which characteristics a primordial TS might have featured. In order to answer these 

questions, a phylogenetic tree was constructed using concatenated αβ-sequences. 

The α- and β-sequences corresponding to the root of this tree are the most probable 

predecessor of permanent TS in the last common ancestor (LCA). The LCA α- and β-

subunits were separately expressed in E. coli. Steady-state kinetics revealed that the 

LCA α-subunit is comparably active as extant α-subunits whereas the LCA β-subunit 

has a higher activity compared to extant β-subunits. A strong interaction between the 

LCA subunits with a Kd in the nanomolar range was detected by fluorescence 

titration. The formation of a LCA TS with αββα stoichiometry was verified by 

analytical size exclusion chromatography. Complex formation results in a significant 

increase of the activity of the α-subunit and a slight decrease of the activity of the β-

subunit. The slow rate of tryptophan-release might be the rate-limiting step of the β-

subunit in the LCA TS as indicated by stopped-flow experiments. Different 

accessibilities of isolated and complexed β-subunits indicated that a hydrophobic 

tunnel between the active sites had already existed in the LCA TS. Mutual adaptation 

of the subunits, which results in a more efficient catalysis of tryptophan and the 

specialization as tryptophan synthase, seems to have evolved recently to scope with 

the elevated need of fast-growing organisms for tryptophan. 



80 SUMMARY  
The TrpB enzyme family consists of the large group of TrpB1 enzymes (β-

subunits of permanent TS) and the smaller group of TrpB2 enzymes. The sequence 

identity between the groups is less than 30 %, which indicates an early divergent 

evolution in the TrpB enzyme family. The active site of both groups differs in one 

position, which is an aspartate in all TrpB1 enzymes and an arginine in all TrpB2 

enzymes. Whereas TrpB1 has a specificity for L-serine, TrpB2 uses O-phospho-L-

serine (OPS) for the synthesis of tryptophan. The importance of the conserved 

arginine for the preference of OPS as substrate was validated by structural analysis 

of a TrpB2 enzyme with bound OPS and mutagenesis studies.  

The TrpB2 group is further subdivided into TrpB2i enzymes, which are encoded 

within the trp operon, and TrpB2a and TrpB2o enzymes, which are encoded outside 

of the trp operon. It had been previously shown that a transient, ligand-dependent TS 

with αββ stoichiometry is formed by ssTrpB2i and ssTrpA2 in S. solfataricus. The 

influence of ssTrpB2i ligands on the stability of the transient TS was investigated. It 

turned out that the β-substituent of a bound amino acid at the active site of ssTrpB2i 

does not influence the interaction with ssTrpA2. This indicates that chemical 

transformations at the β-subunit have no influence on the TS stability. Like in 

permanent TS, the active sites of the α- and β-subunits seem to be connected by a 

hydrophobic tunnel. Indications for the existence of the hydrophobic tunnel are: 1) the 

GP-bound α-subunit prevents the conversion of external indole to tryptophan, 2) only 

little indole is released during the TS reaction and 3) the main amount of indole 

formed at the α-subunit is immediately converted to tryptophan by the associated β-

subunit. These notions argue for the early divergence in the TS evolution.  

The phylogeny of transient TS was investigated by a sequence similarity network 

(SSN) of the TrpA enzyme family. It revealed that TrpA2 enzymes also exist in 

organisms like Thermoplasma volcanium, which have only TrpB2a, encoded outside 

of the trp operon. This indicates that tvTrpA2 and tvTrpB2a form a transient, ligand-

dependent TS. This hypothesis was validated by analytical size exclusion 

chromatography and SPR. A comparison of the structures of the permanent TS from 

S. typhimurium and the transient TS from S. solfataricus shows that they differ in the 

quaternary assembly of the subunits. While in the permanent TS three parts of 

stTrpB1 contribute to the interaction with stTrpA1, only one N-terminal part of 

ssTrpB2i interacts with ssTrpA2 in the transient TS. The transfer of this N-terminal 

part of ssTrpB2i or tvTrpB2a is sufficient to convert the non-interacting ssTrpB2a into 



SUMMARY 81  
an enzyme, capable of interacting with and activating an α-subunit (ssTrpA2 or 

tvTrpA2). This finding illustrates conservation in structure and conformational 

flexibility present within the family of TrpB2 enzymes. 
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5 ZUSAMMENFASSUNG 

Der permanente Tryptophansynthase Komplex (TS) dient als Modellsystem zur 

Untersuchung von hochentwickelten, sich wechselseitig regulierenden Protein-

Protein Interaktionen. Der permanente TS besteht aus einem Dimer von β-

Untereinheiten und zwei an beiden Seiten des Dimers assoziierten α-Untereinheiten, 

welche eine αββα-Anordnung ergeben. Die α-Untereinheit katalysiert die aldolytische 

Spaltung von Indol-3-glycerolphosphat (IGP). Während das bei dieser Reaktion 

entstandene Glycerinaldehyd-3-phosphat (G3P) aus dem Komplex diffundiert, 

gelangt Indol durch einen hydrophoben Tunnel innerhalb des Komplexes zum 

aktiven Zentrum der assoziierten β-Untereinheit. Dort wird es mit L-Serin in einer 

PLP-abhängigen Kondensationsreaktion zu Tryptophan umgesetzt. Die Anordnung 

der Untereinheiten erlaubt neben der Ausbildung eines hydrophoben Tunnels die 

wechselseitige Regulation der Aktivitäten beider Untereinheiten. Hierdurch wird 

gewährleistet, dass die Bildung von Indol und dessen Umsetzung zu Tryptophan 

miteinander verknüpft sind.  

Die Auswirkungen von Komplexbildung und allosterischer Kommunikation auf die 

enzymatischen Parameter unterscheiden sich im Detail bei den Untereinheiten aus 

verschiedenen rezenten Organismen. Daher stellt sich die Frage, welche 

Charakteristika ein ursprünglicher TS hatte und welche Merkmale erst im Laufe der 

Artenentwicklung entstanden. Zur Beantwortung dieser Frage wurde ein 

Stammbaum ausgehend von konkatenierten αβ-Sequenzen erstellt. Die der Wurzel 

des Stammbaums entsprechenden α- und β-Sequenzen stellen den mutmaßlichen 

TS im letzten gemeinsamen Vorfahren der Bakterien (LCA) dar und können somit als 

Ursprungspunkt in der Evolution des permanenten TS angesehen werden. Die 

entsprechenden LCA α- und β-Untereinheiten ließen sich separat löslich in E. coli 

exprimieren. Steady-state Kinetiken zeigten, dass die monomere LCA α-Untereinheit 

eine mit rezenten α-Untereinheiten vergleichbare Aktivität hat und die dimere β-

Untereinheit eine im Vergleich zu rezenten β-Untereinheiten erhöhte Aktivität 

aufweist. Durch Gelfiltrationsexperimente und Fluoreszenztitrationen wurde eine 

starke Interaktion zwischen den Untereinheiten unter Bildung eines LCA TS mit 

αββα-Stöchiometrie nachgewiesen. Die Komplexbildung führt zur deutlichen 

Erhöhung der katalytischen Effizienz der LCA α-Untereinheit und zu einer leichten 

Verringerung der Aktivität der LCA β-Untereinheit. Pre-steady-state Kinetiken deuten 
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darauf hin, dass die Aktivität der β-Untereinheit im LCA TS durch eine verlangsamte 

Tryptophan-Freisetzung limitiert sein könnte. Die unterschiedliche Zugänglichkeit von 

freier bzw. komplexierter LCA β-Untereinheit für ein großes Nukleophil zeigte, dass 

die aktiven Zentren im LCA TS genau wie in rezenten TS durch einen Tunnel 

verbunden sind. Eine wechselseitige Anpassung der Untereinheiten mit einer daraus 

resultierenden Erhöhung der katalytischen Effizienz der Gesamtreaktion sowie eine 

Spezialisierung auf die alleinige Funktion als Tryptophansynthase erfolgte 

wahrscheinlich erst zu einem späteren Zeitpunkt in der TS Evolution. Möglicherweise 

wurde diese Entwicklung getrieben vom großen Bedarf an Tryptophan in schnell 

wachsenden Organismen. 

Die TrpB Enzymfamilie besteht aus der großen Gruppe der TrpB1 Enzyme 

(β-Untereinheiten der permanenten TS) und aus der kleineren Gruppe der TrpB2 

Enzyme. Eine Sequenzidentität von unter 30 % zwischen TrpB1 und TrpB2 deutet 

auf eine frühe divergente Evolution in der TrpB Enzymfamilie hin. In den aktiven 

Zentren ist an einer bestimmten Position bei TrpB1 ein Aspartat und bei allen TrpB2 

ein Arginin konserviert. Durch HPLC Analysen konnte O-Phospho-L-Serin (OPS) als 

Substrat von TrpB2 Enzymen identifiziert werden. Die Strukturanalyse eines TrpB2 

Enzyms mit gebundenem OPS verdeutlicht die Koordination der Phosphatgruppe 

durch das konservierte Arginin. Die Substratspezifität-determinierende Rolle dieses 

Restes wurde durch Mutationsanalysen bestätigt. Somit konnte TrpB2 die Funktion 

der OPS abhängigen Tryptophansynthase zugeordnet werden.  

Die TrpB2 Gruppe ist unterteilt in TrpB2i Enzyme, welche innerhalb des trp 

Operon kodiert werden, und TrpB2a und TrpB2o Enzyme, welche außerhalb des trp 

Operons kodiert werden. Für ssTrpB2i aus S. solfataricus konnte vorangehend 

gezeigt werden, dass es mit der α-Untereinheit dieses Organismus (ssTrpA2) einen 

transienten, ligandenabhängigen TS mit αββ-Stöchiometrie bildet. Die Abhängigkeit 

der Interaktion von ssTrpB2i Liganden wurde in der vorliegenden Arbeit eingehend 

untersucht. Dabei stellte sich heraus, dass der β-Substituent der gebundenen 

Aminosäure keinen Einfluss auf die Interaktion mit ssTrpA2 hat. Dies deutet darauf 

hin, dass der Komplex während der gesamten Katalyse mit den dabei stattfindenden 

Änderungen am β-Substituenten der gebundenen Aminosäure bestehen bleibt. Wie 

bei permanenten TS sind wahrscheinlich auch bei transienten TS die aktiven Zentren 

der α- und β-Untereinheiten miteinander verbunden, da 1) die Reaktion von 

externem Indol zu Tryptophan durch die GP-gebundene α-Untereinheit behindert 
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wird, 2) nahezu kein Indol aus dem Komplex entweicht und 3) der Großteil von dem 

an der α-Untereinheit gebildeten Indol an der assoziierten β-Untereinheit zu 

Tryptophan umgesetzt wird. Dies lässt vermuten, dass es sich bei transienten TS 

und permanenten TS um die Produkte einer divergenten Evolution handelt.  

Um die Gesamtheit von in der Natur vorkommenden transienten TS zu 

identifizieren, wurde eine phylogenetische Analyse der TrpA Enzymfamilie 

unternommen. Hier zeigte sich, dass ssTrpA2 Teil einer größeren Untergruppe ist. 

Diese beinhaltet auch TrpA2 Enzyme, welche in Organismen wie Thermoplasma 

volcanium vorkommen, die nur das außerhalb des trp Operons kodierte TrpB2a 

Enzym besitzen. Dies legt nahe, dass tvTrpA2 und tvTrpB2a einen transienten, 

ligandenabhängigen Komplex bilden. Diese Vermutung konnte durch Gelfiltration und 

SPR bestätigt werden. Der Vergleich der Kristallstrukturen des transienten TS aus 

S. solfataricus und des permanenten TS aus S. typhimurium zeigt, dass diese sich in 

ihrer Quartärstruktur unterscheiden. Während im Fall des permanenten TS drei 

Bereiche von stTrpB1 die Interaktionsfläche bilden, ist beim transienten TS nur ein N-

terminaler Bereich von ssTrpB2i in direktem Kontakt mit der entsprechenden α-

Untereinheit. Die Übertragung dieses Bereichs aus ssTrpB2i oder tvTrpB2a ist 

ausreichend, um aus dem nicht-interagierenden ssTrpB2a Enzym die β-Untereinheit 

eines transienten TS zu machen, welche die assoziierte α-Untereinheit (ssTrpA2 

bzw. tvTrpA2) aktiviert. Dies verdeutlicht die Konserviertheit in der Struktur und in der 

konformationellen Flexibilität innerhalb der Gruppe der TrpB2 Enzyme. 
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6 MATERIALS 
 

6.1 Instrumentation 

Autoclave: 

Series EC Stream Sterilizers  WEBECO, Selmsdorf 

Balances: 

 MC1      SARTORIUS, Göttingen 

 PL3000     METTLER TOLEDO, Gießen 

SI-114     DENVER INSTRUMENT, Göttingen 

Biacore-X100(+)     GE HEALTHCARE, München 

CD spectro-polarimeter J-815   JASCO GmbH, Groß-Umstadt 

Cell Densitiy Meter Ultrospec 10   GE HEALTHCARE, München 

Centrifuges: 

 Centrifuge 5810R    EPPENDORF, Hamburg 

 Centrifuge 5415D    EPPENDORF, Hamburg 

 Centrifuge 5415R    EPPENDORF, Hamburg 

 Sorvall RC 2B, 5C plus   DU PONT Instruments, Bad Homburg 

Avanti J-26 XP    BECKMAN COULTER, Krefeld 

Chromatographic devices: 

 1200 HPLC system    AGILENT, Böblingen 

 ÄKTA basic better    GE HEALTHCARE, München 

 ÄKTA prime     GE HEALTHCARE, München 

 ÄKTA purifier 10    GE HEALTHCARE, München 

 LaChrome HPLC system   MERCK-HITACHI, Darmstadt 

 columns: 

 Gemini-NX 3 µm C18 110A 150x3 mm PHENOMENEX, Aschaffenburg 

HisTrap FF 5 ml    GE HEALTHCARE, München 

Kromasil 3 µm C18 4x250 mm column  BISCHOFF, Leonberg 

MonoQ 5/50 GL    GE HEALTHCARE, München 

Superdex 75 pg HiLoad 16/60 GE HEALTHCARE, München 

Superdex 75 pg prep grade 26/600 GE HEALTHCARE, München 

Superdex 200 10/300 GL   GE HEALTHCARE, München 

Computer 
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Dell Optiplex Systems   DELL Inc., Round Rock, USA 

Cyclone phosphor-imager    PACKARD BioScience, Meriden, USA 

Fluorescence spectrometer FP-6500  JASCO GmbH, Groß-Umstadt 

Freezer -80° C     MDF-U72V, SANYO, Tokyo, Japan 

Freezer -20° C LIEBHERR, Nussbaumen  

Gas burner, Gasprofi 2SCS   WLD-TEC GmbH, Göttingen 

Gel electrophoresis system: 

Agarose gel electrophoresis chamber  

Agarose electrophoresis unit HOEFER Pharmacia Biotech, USA 

SDS electrophoresis chamber 

  Mighty Small II   HOEFER Pharmacia Biotech, USA 

  Multi Gel Caster Assembling GE HEALTHCARE, München 

gel apparatus 

Glass pipettes and glassware   FISCHER SCIENTIFIC, Schwerte 

       NOVOGLAS, Bern, Swiss 

       SCHOTT, Mainz 

Heating block-Thermostat HBT-2 131  HLC, Bovenden 

Incubator      BINDER GmbH, Tuttlingen 

Magnetic stirrer: 

 MR0, MR2000    HEIDOLPH, Kehlheim 

 MR1, MR3001 (heatable)   HEIDOLPH, Kehlheim 

MicroCal VP-DSC     MALVERN Instruments, Malvern, UK 

MicroCal VP-ITC     MALVERN Instruments, Malvern UK 

Microliter pipettes Research    EPPENDORF, Hamburg 

Microplate reader Infinite M200 Pro  TECAN, Austria 

Microwave HMT 842C    BOSCH, Nürnberg 

Mosquito LCP roboter    TTP LABTECH, Melbourn, UK 

Multi-Doc-It Digital Imaging System  UVP Inc., USA 

PCR-cycler: 

 Mastercycler personal   EPPENDORF, Hamburg 

 Mastercycler gradients   EPPENDORF, Hamburg 

Peristaltic pump, Miniplus 2 GILSON Medical Electronics, France 

pH-Meter Level1 INOLAB, Weilheim 

PhosphorImager Film FLA-3000 FUJIFILM, Tokyo, Japan 
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Plate shaker Rocking Platform   BIOMETRA, Göttingen 

Power supply unit: 

 Power Pack P25    BIOMETRA, Göttingen 

Power Supply EPS 301   GE HEALTHCARE, München 

Quartz cuvettes 

101-QS (layer thickness 10 mm) HELLMA GmbH & Co. KG, Müllheim 

105-QS (layer thickness 10 mm) HELLMA GmbH & Co. KG, Müllheim 

110-QS (layer thickness 10 mm) HELLMA GmbH & Co. KG, Müllheim 

Shaking incubator: 

 Certomat H     BRAUN Biotech, Melsungen 

 Certomat BS-1    BRAUN Biotech, Melsungen 

 Multitron     INFORS HT, Bottmingen, Swiss 

SX20 Stopped-flow spectrometer  APPLIED Photophysics, Surrey, UK  

Ultrafree-20 nanopore water system  MILLIPORE, Eschborn 

Ultrasonic system, Branson Sonifier 250 D HEINEMANN, Schwäbisch Gmünd 

UV-light table Reprostar    CAMAG Chemie Erzeugnisse, Berlin 

UV-Vis spectral photometer V650  JASCO GmbH, Groß-Umstadt 

UV-Vis Biophotometer    EPPENDORF, Hamburg   

Vakuum pump ME 2C    VACUUMBRAND, Wertheim 

Vortex Genie 2     SCIENTIFIC IND., Bohemia, USA 

 

6.2 Consumables 

Easy-Xtal plates  QIAGEN, Hilden 

Centrifugal Filter Device     

Amicon Ultra-15 (mwco: 10 kDa)  Millipore, Bedford, USA 

NAP-5, -10, -25 columns    GE HEALTHCARE, München 

Dialysis tubing Visking, 27/32, 14 kDa  ROTH GmbH &Co, Karlsruhe 

Disposable syringes, Omnifix® 60 ml   BRAUN Biotech, Melsungen 

Filter paper      WHATMAN, Maidstone, England 

Membrane filter ME24 Ø47 mm; 0.2 µm  SCHLEICHER&SCHUELL, Dassel 

Microtiter plates, Vis, 96 well, flat bottom GREINER, Nürtingen 

Nitrocellulose filter (Ø13 mm)   MILLIPORE, Eschborn 

Parafilm „M“ Laboratory Film   PECHINEY, Menasha, USA 

Pasteur pipettes     HIRSCHMANN, Ebermannstadt 



88 MATERIALS  
PCR-tubes 0.2 ml     PEQLAB, Erlangen 

Petri dish 94/16      GREINER bio-one, Nürtingen 

Pipette tips       SARSTEDT, Nümbrecht 

Plastic cuvettes 

½ microcuvettes, UV-transparent  SARSTEDT, Nümbrecht 

1ml cuvettes     SARSTEDT, Nümbrecht 

Plastic tubes:15 ml, 50 ml    SARSTEDT, Nümbrecht 

Reaction vessels 1.5 ml, 2 ml   ROTH, Karlsruhe  

       EPPENDORF, Hamburg 

Reaction vessel with screw-cap, 2 ml  SARSTEDT, Nümbrecht 

Syringe filter, pore size 0.2 µm, 0.45 µm RENNER GmbH, Daunstadt  

 

6.3 Chemicals 

All chemicals used were graded p.a. and purchased from the companies listed 

below. 

ALFA AESAR    Karlsruhe 

APPLICHEM GmbH   Darmstadt 

BIO101 Inc.     Carlsbad, USA 

BIO-RAD LABORATORIES   Hercules, USA 

BIOZYM     Hess. Oldendorf 

BODE CHEMIE    Hamburg 

BOEHRINGER MANNHEIM  Mannheim 

CARL ROTH GMBH & Co. KG  Karlsruhe 

DIFCO      Dreieich 

FLUKA     Neu-Ulm 

GE HEALTHCARE    München 

GERBU Biotechnik GmbH   Gailberg 

GIBCO/BRL      Eggestein 

MERCK      Darmstadt 

MP BIOCHEMICALS   Illkirch, France 

NATIONAL DIAGNOSTICS   Simerville, USA 

OXOID      Wesel 

RIEDEL-DE HAEN     Seelze 
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ROCHE DIAGNOSTICS    Mannheim 

ROTH      Karlsruhe 

SERVA      Heidelberg  

SIGMA-ALDRICH     Deisenhofen 

VWR      Leuven, Belgium 

 

IGP was synthesized and purified according to Bolz (Bolz, 2006). 

 

6.4 Kits for molecular biology 

GeneJET Plasmid Miniprep Kit   MBI FERMENTAS, St.-Leon-Rot 

GeneJET Gel Extraction Kit  MBI FERMENTAS, St.-Leon-Rot 

 

6.5 Kits for protein crystallization 

Additive Screen     HAMPTON RESEARCH, Aliso Viejo, USA 

MIDAS     MOLECULAR DIMENSIONS, Suffolk, UK 

PEG Rx     HAMPTON RESEARCH, Aliso Viejo, USA 

ProPlex     MOLECULAR DIMENSIONS, Suffolk, UK 

 

6.6 Enzymes 

Alkaline phosphatase (CIP)   NEW ENGLAND BIOLABS, Frankfurt a. M. 

DNA polymerases 

GoTaq    PROMEGA, Mannheim 

Phusion High-Fidelity  NEW ENGLAND BIOLABS, Frankfurt a. M. 

Pwo ROCHE DIAGNOSTICS, Mannheim 

Restriction endonucleases   NEW ENGLAND BIOLABS, Frankfurt a. M. 

T4-DNA ligase    MBI FERMENTAS, St.-Leon-Rot 

Trypsine MERCK, Darmstadt 

 

6.7 Bacterial strains 

E. coli Turbo (NEW ENGLAND BIOLABS, Frankfurt a. M.) 

F' proA+B+ lacIq ∆(lacZ)M15/fhuA2 ∆(lac-proAB) glnV gal R(zgb-210::Tn10) Tets endA1 
thi-1 ∆(hsdS-mcrB)5 
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E. coli Turbo cells are T1-phage resistant. As the recA function of the strain is intact, 

E. coli Turbo cells grow fast and form visible colonies after 8 h incubation at 37° C. 

 

E. coli BL21(DE3) (Studier & Moffat, 1986) 

hsdS gal [λcl ts857 cnd1 hsdR17 racA1 endA1 gyrA96 thi1 relA1]    

E. coli BL21(DE3) cells carry a gene for T7 RNA polymerase on their chromosome, 

which is used for gene expression in pET systems.  

 

E. coli BL21-CodonPlus(DE3) RIPL (STRATAGENE, La Jolla, USA) 

B F– ompT hsdS(rB
– mB

–) dcm+ Tetr gal λ(DE3) endA Hte [argU proL Camr] [argU ileY 
leuW Strep/Specr] 

E. coli BL21-CodonPlus (DE3) contains extra copies of rare-codon tRNAs. They 

enable the efficient heterologous expression of proteins from genes, which lack the 

codon usage of E. coli. The cells have a pACYC plasmid with extra copies of the 

argU and proL tRNA genes, and a pSC101 plasmid with extra copies of the argU, 

ileY und leuW tRNA genes. The pACYC-plasmid confers resistance to 

chloramphenicol and the pSC101-plasmid confers resistance to streptomycin and 

spectinomycin. 

 

E. coli BL21(DE3) T7 Express Iq (NEW ENGLAND BIOLABS, Frankfurt am Main) 

fhuA2 lacZ::T7gene1 lon ompT gal sulA11 dcm R(zgb-210::Tn10--TetS) endA1 ∆(mcrC-
mrr)114::IS10 R(mcr-73::miniTn10--TetS)2) lacIq (CamR) 

E. coli BL21(DE3) T7 Express Iq cells are derivatives of E. coli BL21(DE3), which 

have the gene for T7 polymerase in the lac operon. They are phage T1 resistent due 

to a deletion of fhuA2. The cells exhibit tetracycline resistance. 

 

E. coli T7 Express Rosetta (research group of Prof. Dr. R. Sterner) 

fhuA2 lacZ::T7gene1 lon ompT gal sulA11 dcm R(zgb-210::Tn10--TetS) endA1 ∆(mcrC-
mrr)114::IS10 R(mcr-73::miniTn10--TetS)2) [argU argW glyT ileX, leuW metT proL thrT 
thrU tyrU Camr] 
This expression strain was constructed in the research group of Prof. Dr. R. Sterner. 

Originating from E. coli T7 expression cells, the strain contains an additional pRARE 

plasmid from E. coli Rosetta(DE3)pLysS. The plasmid encoded tRNA for rarely used 

codons encoding Gly, Arg, Ile, Leu and Pro. Besides the tetracycline resistance, the 

cells exhibit, due to the pRARE plasmid, accessory chloramphenicol resistance. 
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6.8 Vectors 

6.8.1 pET vectors 

Genes inserted into the multiple clonig site (MCS) of pET vectors (plasmid for 

expression by T7 RNA Polymerase) are transcribed by the RNA-polymerase of the 

phage T7 (Studier et al., 1990). The expression of genes takes place in special 

E. coli strains, which carry a chromosomal copy of the T7 RNA polymerase. The 

expression of the T7 RNA polymerase gene proceeds under the control of the 

lacUV5 promotor operator and is induced by the addition of IPTG. The gene for the 

lac-repressor (lacI), which is required for suppression of gene expression in the 

absence of induction, is located on the plasmid and is constitutively expressed. The 

pET21a(+) vector encodes an optional C-terminal (His)6-tag sequence and confers 

ampicillin resistance. The pET24a(+) vector encodes an optional C-terminal (His)6-

tag sequence and confers kanamycin resistance.The pET28a(+) vector encodes an 

optional N-terminal (His)6-tag sequence and confers kanamycin resistance. 

 

6.8.2 pMAL-c2 vector 

Genes are inserted into the multiple cloning site (MCS) of pMAL-c2 (di Guan et 

al., 1988). The MCS is downstream of malE to allow for the expression of fusion 

proteins with the maltose binding protein (MBP). Gene expression proceeds under 

the control of the Ptac promotor operator and is induced by the addition of IPTG. 

 

6.9 Sequencing primers 

Primers were obtained from METABION (Martinsried). 

5' T7Promotor 
5’- TAA TAC GAC TCA CTA TAG GG -3’ 

3' T7Terminator 
5’- GCT AGT TAT TGC TCA GCG G -3’ 

5' malE  
5’- GGT CGT CAG ACT GTC GAT GAA GCC-3’ 

3' M13/pUC 
5’- CGC CAG GGT TTT CCC AGT CAC GAC -3’ 
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Glycerol (87 %) autoclaved and stored at RT 

IPTG stock solution  0.5 M IPTG dissolved in water, filter-sterilized, and 

stored at -20° C 

MgCl2 1 M MgCl2 dissolved in water, filter-sterilized, and 

stored at RT 

MgSO4 1 M MgSO4 dissolved in water, filter-sterilized, and 

stored at RT 

TFB I-buffer 100 mM KCl, 50 mM MnCl2, 30 mM KAc, 10 mM 

CaCl2, 15 % glycerol; stock solutions for the single 

components were stored at 4° C. A volume of 100 ml 

TFBI-buffer was prepared prior to use. 

TFB II-buffer 100 mM Tris/HCl, pH 7.0, 10 mM KCl, 75 mM CaCl2, 

15 % glycerol; stock solutions for the single 

components were stored at 4° C. A volume of 100 ml 

TFBII-buffer was prepared prior to use. 

10 x TB-Phosphate 2.31 g KH2PO4 (acid, 0.17 M) and 12.54 g K2HPO4 

(base, 0.72 M) dissolved in water (total volume of 

100 ml), autoclaved, and stored at RT 

 

6.11.2 Buffers and solutions for molecular biology 

PCR dNTP solution (2 mM) A solution of dNTP’s (2 mM of each A, C, G, and T) 

was prepared and stored at -20° C. 

Agarose (1 %) 5 g agarose dissolved in 500 ml 0.5 x TBE, boiled 

and stored at 60° C 

Ethidium bromide solution  10 mg/ ml ethidium bromide (EtBr) 

Sucrose color marker 60 % (w/v) sucrose, 0.1 % (w/v) bromphenol blue, 

0.1 % (w/v) xylencyanole FF dissolved in 0.5 x TBE; 

TBE (5 x) 445 mM boric acid, 12.5 mM EDTA, 445 mM Tris 

(resulting pH-value: 8.15) 

 

6.11.3 Buffers and solutions for SDS-PAGE 

Ammonium persulfate (APS) solution 10 % (w/v) APS solution; filter-sterilized, and 

      stored at -20° C 
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Coomassie staining solution 0.2 % (w/v) Coomassie Brilliant Blue G-250 

and R-250, 50 % (v/v) ethanol, 10 % (v/v) 

HAc; filtered and stored at RT; protected 

from light 

Buffer for SDS-PAGE resolving gel 0.4 % (w/v) SDS, 1.5 M Tris-HCl pH 8.8 

Buffer for SDS-PAGE stacking gel 0.4 % (w/v) SDS, 0.5 M Tris/HCl pH 6.8 

SDS-PAGE electrophoresis buffer  0.1 % (w/v) SDS, 0.025 M Tris, 0.2 M glycine 

(resulting pH-value: 8.5) 

SDS-PAGE sample buffer (5 x) 5 % (w/v) SDS, 25 % (w/v) glycerol, 

12.5 % (v/v) β-mercaptoethanol, 0.025 % (w/v) 

bromphenol blue, 1.25 M Tris/HCl pH 6.8 

 

6.12 Bacterial growth media 

For sterilization, the medium was autoclaved for 20 min at 121° C and 2 bar. For 

selective media, the corresponding antibiotics were added after cooling down of the 

medium to 60° C in terms of a filter-sterilized, 1000-fold concentrated stock solution. 

 

Betaine sorbitol medium 0.5 % (w/v) yeast extract, 0.5 % (w/v) NaCl, 

1.0 % (w/v) tryptone, 2 % (v/v) glycerol, 0.4 g/ l 

betaine, 9.2 % (w/v) sorbitol. After 

autoclaving, 50 mM K2HPO4, 1 % glucose 

(w/v) and 10 mM MgCl2 were added prior to 

use. 

Luria-Bertani (LB) medium 0.5 % (w/v) yeast extract, 1.0 % (w/v) NaCl, 

1.0 % (w/v) tryptone 

LB agar     LB medium plus 1.5 % (w/v) Bacto-Agar 

SOB medium  0.5 % (w/v) yeast extract, 0.05 % (w/v) NaCl, 

2.0 % (w/v) tryptone. After autoclaving, 10 mM 

MgSO4, 10 mM MgCl2 and 2.5 mM KCl (each 

filter-sterilized) were added prior to use. 

SOC medium SOB medium was supplemented with 20 mM 

glucose (filter-sterilized) following 

autoclavation. 
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6.13 Software 

ÄKTA Unicorn Version 5.01 (318) © GE HEALTHCARE 

Biacore X100 Control Software 2.0 © GE HEALTHCARE 

Biacore X100 Evaluation Software 2.0 © GE HEALTHCARE 

CLC main workbench 6.0   ©CLC BIO 

Corel Draw X7    © COREL Corp. 

CS ChemDraw Ultra 11.0    © CAMBRIDGESOFT 

Cytoscape 3.2.1    (Shannon et al., 2003) 

Endnote Version X4   © WINTERTREE Software Inc. 

HPLC Multi-HSM-Manager  © HITACHI 

Jalview 2.6.1     (Waterhouse et al., 2009) 

MS Office 2007    © MICROSOFT CORPORATION 

Origin 7     © ORIGINLAB 

OptiQuant 02.50    © PACKARD Instruments Co. 

PyMO 0.99rc6    © DELANO SCIENTIFIC LCC. 

Gina Star 4.07    © RAYTEST 

SigmaPlot 12.0    © SPSS Inc. 

Spectra Manager 1 and 2   © JASCO 

WinCoot (version 0.6.2)   (Emsley et al., 2010) 
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7 METHODS 
 

7.1 Preparation of instrumentation and solutions 

All thermostable solutions and media were autoclaved for 20 min at 121° C and 

2 bar prior to use. Glassware and consumables were autoclaved and subsequently 

dried at 50° C in a compartment drier. Additionally, glassware was sterilized at 

200° C for 4 h. Heat-labile solutions were prepared in stock solutions and filtered, 

either via a membrane filter with a pore size of 0.2 µm by use of a vacuum pump, or 

by using a syringe filter with a pore size of 0.2 µm or 0.45 µm. Solutions for 

chromatographic systems were degassed for at least 30 min in a desiccator prior to 

use. 

 

7.2 Microbiological methods 

7.2.1 Cultivation and storage of E. coli strains 

E. coli strains were cultivated while shaking at 140 rpm (1 liter cultures) or 

220 rpm (5, 50 and 250 ml cultures), respectively. Cells were grown in LB-medium 

unless otherwise stated. For plasmid-harboring strains the medium was 

supplemented with antibiotics (150 µg/ ml ampicillin, 30 µg/ ml chloramphenicol, 

75 µg/ ml kanamycin, 12.5 µg/ ml tetracycline). To obtain single colonies, the cell 

suspension was plated on agar plates containing the adequate antibiotics, and 

incubated overnight at 37° C. For temporary storage, plates and suspensions were 

sealed and stored at 4° C. Glycerol cultures were prepared for long-term storage. For 

this purpose an aliquot of an overnight culture was mixed in a 1:1 ratio with 87 % 

glycerol, and stored in a sterile screw cap reaction vessel at -80° C. 

 

7.2.2 Preparation of chemically competent E. coli cells 

For the preparation of chemically competent E. coli cells (Inoue et al., 1990), 

500 ml SOB medium was inoculated with the respective overnight culture to an OD600 

of 0.1, and cultured at 37° C and 220 rpm until an OD600 of 0.6 was reached. The 

culture was incubated on ice for 15 min, transferred into 50 ml tubes, and cells were 

harvested by centrifugation (EPPENDORF Centrifuge 5810R, 4000 rpm, 10 min, 
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4° C). The cell pellet was resuspended in 100 ml ice-cold TFB I buffer and 

centrifuged a second time under the same conditions as stated above. The resulting 

pellet was resuspended in 10 ml ice-cold TFB II-buffer. Immediately after 

resuspension, 100 µl aliquots of the cell suspension were transferred to 1.5 ml 

reaction vessels on ice and stored at -80° C. 

 

7.2.3 Transformation of chemically competent E. coli cells 

For transformation of chemically competent cells, a 100 µl aliquot was thawed on 

ice, and about 100 ng plasmid DNA (maximum volume: 20 µl) were added. Following 

incubation on ice for 5 min, cells were placed for 45 s in a 42° C heat block, and 

subsequently chilled on ice for 5 min. A volume of 900 µl LB-medium was added, and 

cells were incubated for 1 h at 37° C in a shaker at 220 rpm to develop antibiotic 

resistance. Finally, dilutions of the cell suspension were plated on LB agar plates 

containing the appropriate antibiotics for selection. 

 

7.3 Molecular biology methods 

7.3.1 Isolation and purification of plasmid DNA from E. coli 

Purification of plasmid DNA was done according to the principle of alkaline cell 

lysis (Le Gouill et al., 1994). Bacterial cell cultures are lysed by adding SDS and 

sodium hydroxide. The suspension is subsequently neutralized by addition of 

ammonium acetate; proteins and genomic DNA precipitated, whereas circular 

plasmid DNA remains in solution. For analytical isolation and purification of plasmid 

DNA from E. coli, the mini preparation kit from FERMENTAS (GeneJET Plasmid 

Miniprep Kit) was used. For this purpose 5 ml from overnight cell cultures were 

harvested by centrifugation (EPPENDORF 5415D, 13200 rpm, 1 min, RT). The 

isolation of plasmid DNA was performed according to the protocol supplied by the 

manufacturer. Bound plasmid DNA was eluted from the silica column by 50 µl sterile 

water. The recovered plasmid DNA was stored at -20° C. 

 

7.3.2 Determination of DNA concentration 

The DNA concentration was spectroscopically determined at a wavelength of 

260 nm. According to Lambert-Beer’s law an OD260 value of 1 (with 



98 METHODS  
0.1%A260 = 20 cm2 mg-1 and a pathlength of 1 cm) corresponds to a DNA concentration 

of 50 µg/ ml dsDNA (35 µg/ ml RNA and 33 µg/ ml ssDNA, respectively). Thus, the 

DNA concentration can be calculated as follows: 

cdsDNA=
A260·50·f

1000
 

Equation 1:   Determination of DNA concentration. 
cdsDNA concentration of double stranded DNA (µg/ µl) 
A260 absorbance at 260 nm 
f dilution factor 
 

A pure DNA solution should not show measurable absorption above 300 nm, and its 

OD260/OD280 quotient should be at least 1.8. 

 

7.3.3 Agarose gel electrophoresis 

DNA fragments are separated by agarose gel electrophoresis according to their 

length. DNA becomes visible under UV-light in the presence of the DNA intercalating 

dye ethidium bromide (Sharp et al., 1973). For preparation of agarose gels 1 % (w/v), 

agarose was dissolved in 0.5 % TBE buffer by boiling in the microwave. Following 

cooling down to 50- 60° C, 0.2 µl of an ethidium bromide stock solution (10 mg/ ml) 

per ml agarose was added. The solution was cast into a gel chamber, and a comb 

was inserted. Following solidification, the gel was covered with 0.5 % TBE buffer, and 

the comb was removed. The DNA samples were supplemented with DNA loading 

dye if required and pipetted into the gel pockets. The electrophoresis was performed 

at a voltage of 190 V for about 20 min. The negatively charged DNA migrates to the 

anode, whereby DNA fragments are retarded to a different extent by the agarose 

matrix. The fragments were detected under UV-light (λ= 302 nm) and documented 

using the Imager Multi-Doc-It Digital Imaging system. The size of fragments was 

estimated by the GeneRule 1 kb Plus DNA Ladder (Fermentas). If needed, the 

fragments were excised from the agarose gel with a scalpel and transferred to a 

reaction vessel. DNA was extracted using the GeneJET Gel Extraction Kit 

(FERMENTAS) according to the protocol supplied by the manufacturer. The isolated 

DNA was eluted in 30 µl sterile water and stored at -20° C. 
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7.3.4 Enzymatic manipulation of dsDNA 

7.3.4.1 Cleavage of dsDNA by restriction endonucleases 

Type II restriction endonucleases were applied, which bind to a palindromic 

recognition sequence (restriction site) and cleave dsDNA specifically (Wilson and 

Murray, 1991). These restriction enzymes generate single stranded overhangs 

(sticky ends), which contain 3’-hydroxyl and 5’-phosphate ends. For analytical 

cleavage, a maximum of 1 µg DNA was incubated at 37° C in the appropriate buffer 

with 20 U of each restriction enzyme for about 1 h in a volume of 50 µl. For 

preparative cleavage, 2 µg or the entire amount of PCR product and 2 µg of vector 

DNA were digested with 20 U of each restriction enzyme in a volume of 50 µl at 

37° C for 1 h. The volume of added restriction endonuclease in the reaction mixture 

should not exceed 10 % of the total volume, as the activity of enzymes is influenced 

by glycerol, a component of the enzyme storage solution. The fragments were 

purified by agarose gel electrophoresis for subsequent ligation. 

 

7.3.4.2 Ligation of DNA fragments 

For ligation, digested vector and insert were mixed at an estimated molar ratio of 

1:3 and ligated in a total volume of 20 µl with 1 U T4 DNA ligase (FERMENTAS or 

NEB) in the buffer supplied by the manufacturer, either overnight in a thermal cycler 

at 16° C or for 1 h at RT. Subsequently, competent E. coli cells were chemically 

transformed with the ligation mixture. 

 

7.3.5 Amplification of DNA fragments by polymerase chain reaction 
(PCR) 

The polymerase chain reaction (PCR; (Mullis and Faloona, 1987; Saiki et al., 

1988) is used to amplify a specific DNA fragment in vitro. This is achieved by cyclic 

repetition of the denaturation of the double-stranded DNA, followed by the 

hybridization (annealing) of primers (synthetic oligonucleotides that flank the DNA 

sequence of interest) and enzymatic DNA synthesis (extension). The DNA fragment 

is exponentially amplified. The reaction was performed in a total volume of 50 µl in a 

thermal cycler (lid temperature 110° C). The standard reaction mixture contained 5-

100 ng of template DNA, 2.5 U GoTaq DNA polymerase, 5 x Green GoTaq reaction 

buffer [contains 7.5 mM MgCl2 (final concentration: 1.5 mM MgCl2) and loading 
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buffer], 0.2 mM dNTP mix, and 1 µM of each primer. The accuracy of amplification 

was enhanced by the presence of 2.5 U Pwo polymerase, which has a 3’ ->5’ 

proofreading activity. The standard PCR program was as follows: 

step temperature (°C) duration 

1. Initialization step 95 3 min 

2. Denaturation 95 45 s 

3. Annealing TA 45 s 

4. Extension 72 1 min/ kb 

5. Finale elongation 72 10 min 

6. Final hold 16 ∞ 

 

Steps 2 to 4 were repeated 30 times. 

The optimum melting temperature Tm and annealing temperature TA of the primers 

were calculated according to Equation 2 and Equation 3 (Chester and Marshak, 

1993): 

Tm=69,3+0,41·ሺ%GCሻ-
650
n

 

Equation 2:   Calculation of the melting temperature of oligonucleotides. 
Tm melting temperature of primers (° C) 
%GC GC-content of primers (%)  
n number of nucleotides in the primer 
 
 

TA= ൬Tm1+Tm2

2 ൰ -3°C 

Equation 3:   Calculation of the optimum annealing temperature of a primer. 
TA  annealing temperature (° C) 
Tm1 & Tm2  melting temperatures of the primers (° C) 
 

The optimum annealing temperature was also experimentally determined using a 

thermal cycler with gradient function (EPPENDORF Mastercycler gradient). To this 

end, different PCRs with annealing temperatures between 50° C and 70° C were set 

up in parallel, and the yields of the amplification products were determined. 

If applicable, the yield of the amplification product was increased by using two 

consecutive round of PCR. In a first round, perfectly matching short primers were 

used. The PCR product was purified and served as template in a second round using 

standard cloning primers. 
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7.3.6 Colony PCR 

To verify the success of cloning, an insert screening was performed by colony 

PCR. Transformants grown on selective LB agar were added to the PCR mixture by 

picking a single colony with a pipette tip and transferring small quantities of cells to 

the reaction mixture. The cells were subsequently disrupted in the initial denaturation 

step at 95° C, and the released DNA was used as template in the following 

amplification cycles. Vector-specific amplification primers were generally used. The 

standard reaction mixture included 1 U GoTaq DNA polymerase, 5 x Green GoTaq 

reaction buffer, 0.2 mM dNTP-mix, 1 µM of each primer, and water to a final volume 

of 20 µl. The amplification was performed according to the amplification protocol 

described in 7.3.5. 

 

7.3.7 QuikChange site-directed mutagenesis (QCM) 

The QuikChange site-directed mutagenesis method allows for the efficient 

introduction of point mutations, insertions and deletions in any type of dsDNA 

plasmids. It is performed using Pfu DNA polymerase, which replicates both plasmid 

strains with high fidelity due to its 3’→5’ proofreading activity.  

The technique originally developed by STRATAGENE (La Jolla, USA) was 

modified according to a protocol published by (Wang and Malcolm, 1999) using a 

two-stage mutagenesis protocol (Figure 63). For introduction of point mutations 

complementary mutagenic primers with up to 35 bases in length and 12-15 bases of 

template complementary sequence on both sides of the mismatch were used. Pfu 

DNA polymerase extends and incorporates mutagenic primers during temperature 

cycling and generates a mutated plasmid containing staggered nicks. To avoid 

unproductive primer dimer formation, two separate primer extension reactions were 

performed initially. In the second step both primer extension reactions are combined 

and linearly amplified. The methylated DNA template is digested by treatment of the 

product with DpnI. E. coli cells are transformed with the nicked vector DNA carrying 

the desired mutations, and the nicks are sealed by the DNA repair apparatus of the 

cells.  
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7.3.8 Overlap extension PCR 

Site-directed mutagenesis by overlap extension PCR (OE-PCR) uses two 

complementary mutagenic primers with a length of 25-35 bp that are complementary 

to the target DNA (Ho et al., 1989). The first two separate PCRs generated two 

overlapping fragments, using a set of mutagenic primer and flanking primer each. 

The gel-purified fragments are used as templates in combination with the flanking 

primers to amplify the entire gene. The amplification was carried out according to the 

standard protocol. For an illustrating scheme see Figure 64. 

 

Figure 64: Scheme for standard OE-PCR. 
In the first step the 5’ and 3’ fragments are amplified in two separate PCRs with a gene flanking primer 
and an overlapping primer using the target DNA as template (1). In the second step the fragments 
served as template and the full length construct is amplified using the flanking primers (2). 
 

7.3.9 DNA sequencing  

All constructs generated and used in this work were sequenced to validate the 

sequences. The determination of nucleotide sequences was performed by the 

company Geneart (part of Life Technologies, Regensburg). Samples for sequencing 

orders at Genart contained 100-300 ng DNA and 1.25 µM of sequencing primer in a 

total volume of 8 µl. The generated .ABI files were analyzed by the program CLC 

main workbench  

 

7.3.10 Gene synthesis  

Gene sequenzes for the reconstructed enzymes were optimized for expression in 

E. coli and synthesized by the company Geneart (part of Life Technologies, 

Regensburg). Genes were sent as inserts in a standard cloning vector from the 

manufacturer.  
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7.4 Protein biochemistry methods 

7.4.1 Protein expression 

7.4.1.1 Protein expression in analytical scale 

To detect for the overexpression and solubility of heterologous produced protein 

in E. coli, small-scale expression test were done (‘test expression’). To this end, 

50 ml LB medium were supplemented with the appropriate antibiotics, inoculated with 

an overnight culture of a single colony to an OD600 of 0.1, and incubated at 37° C and 

220 rpm. At an OD600 value of 0.4- 0.6, the cultures were induced by adding IPTG to 

a final concentration of 0.5 mM. Following incubation at various temperatures for 4 h 

to overnight, the cells were centrifuged (EPPENDORF Centrifuge 5415R, 8000 rpm, 

5 min, 4° C). The cells were resuspended in 100 µl of 100 mM potassium phosphate 

buffer and disrupted by sonication (amplitude 20 %, 20 s). Following centrifugation 

(EPPENDORF Centrifuge 5415R, 13200 rpm, 10 min, 4° C), the supernatant 

(containing soluble protein) was saved, and the pellet (containing insoluble protein) 

was resuspended in an equal volume of the resuspension buffer. Aliquots of the 

supernatant (S) and the resuspended pellet (P) were supplemented with SDS sample 

buffer (5 x), and incubated for 5 min at 95° C. Subsequently, a volume of 5- 10 µl of 

both S and P was analyzed by SDS-PAGE. The expression conditions were 

optimized by using different E. coli host strains, by varying of the expression medium, 

and by utilizing different tags and/ or fusion partners. 

 

7.4.1.2 Protein expression in preparative scale 

For purification of proteins in preparative scale, 2- 16 x 1 l medium (in 3 l baffled 

flasks) was supplemented with the corresponding antibiotics and additives. The 

medium was inoculated with a freshly prepared overnight E. coli culture to an OD600 

value of 0.1. Cells were grown according to the optimized conditions determined by 

analytical expression tests (7.4.1.1). 

 

7.4.2 Protein purification  

For large-scale protein purification, the cells were collected by centrifugation 

(BECKMAN COULTER centrifuge, Avanti J-26 XP, 4000 rpm, 20 min, 4° C). 

Collected cells were resuspended in buffer (25 ml/ l) and disrupted by sonication 
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(HEINEMANN branson sonifier 250 D, amplitude 50 %, 2 x 2 min, 30 sec 

puls/ 30 sec pause). The cell depris was removed by centrifugation (SORVALL 

RC5B, SS34 rotor, 14000 rpm, 30 min, 4° C). Application of a heat step, metal affinity 

chromatography, ion exchange chromatography and preparative size exclusion 

chromatography were used for protein purification. Subsequently, the buffer was 

exchanged by dialysis or NAP columns. The proteins were concentrated by 

ultrafiltration (MILLIPORE, Amicon 15 kDa cut-off) and directly used or stored 

at -80° C.  

 

7.4.2.1 Heat step 

Heterologous expressed thermostable proteins were purified by a heat step. For 

this purpose, the solution of soluble proteins was heated in a waterbath. Aggregated 

host cell proteins were subsequently removed by centrifugation (SORVALL RC5B, 

SS34 rotor, 14000 rpm, 30 min, 4° C).  

 

7.4.2.2 Metal affinity chromatography (IMAC) 

The column HisTrap FF crude (GE HEALTHCARE; CV: 5 ml, pressure limit: 

0.3 MPa) was used for metal affinity chromatography. The column consists of 

sepharose 6 (FastFlow) and covalent linked iminodiacetic acid (IDA)-type chelator. 

IDA coordinates the divalent metal ion Ni2+, which specifically interacts with histidine 

residues. As such, proteins with N-terminal or C-terminal hexahistidine tags are 

retained on the column. Bound proteins are eluted by increasing concentrations of 

imidazole, which competes with the histidines for binding to the immobilized Ni2+ 

ions. Protein samples were steril filtered (0.45 µm) and applied on the HisTrap FF 

crude column in an Äkta chromatographic system. The following programs were used 

for protein purification and coupled on-column cleavage/ protein purification by IMAC: 
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Purification by IMAC 

flow rate 4 ml/ min 

equilibration 2 CV binding buffer 

sample application 50- 400 ml protein solution in resuspension buffer* 

wash 14 CV binding buffer 

elution 
15 CV gradient from 0- 75 % elution buffer**;            
2 ml fractions were collected 

final wash-out 5 CV elution buffer** 

reequilibration 3 CV binding buffer 
 

On-column cleavage and purification by IMAC 

Flow rate 0.5 ml/ min for sample application,                          
4 ml/min for all other steps 

equilibration 2 CV binding buffer 

sample application 50- 200 ml protein solution in resuspension buffer* 

wash 16 CV binding buffer 

on-column cleavage 
1 CV 50 µg/ ml trypsin solution in binding buffer; 
incubation for 2 h at room temperature 

wash 5 CV elution buffer** 

elution 
15 CV gradient from 0- 75 % elution buffer**;            
2 ml fractions were collected 

final wash-out 5 CV elution buffer 

reequilibration 3 CV binding buffer 
 * if not stated otherwise, resuspension buffer and binding buffer were identical 
** the elution buffer is identical with the binding buffer except for the imidazol concentration   
The buffer compositions are mentioned in the main text. 
 

The elution of protein was monitored by following the absorbance at 260, 280 and 

420 nm. The eluted fractions were analyzed by SDS-PAGE. For storage, the column 

was washed with 5 CV water and 3 CV 20 % ethanol. 

 

7.4.2.3 Ion exchange chromatography (IEX) 

Ion exchange chromatography is based on the competition of charged molecules 

(proteins and salt ions) for interaction with immobilized ion exchange groups of 

opposite charge. In the first stage, charged molecules are reversibly absorbed by the 

immobilized support material. Subsequently, bound molecules are eluted by a 
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gradient of steadily increasing ionic strength or a pH-gradient. The charge of the 

protein is mainly dependent on the amino acids with charged side chains. In the 

acidic or neutral pH-range the amino groups, mainly those of Lys, Arg and His, are 

protonated and the protein exposes cationic behavior, whereas in a neutral or basic 

pH-range, the carboxyl groups of Asp and Glu residues are negatively charged and 

consequently the protein is anionic. Ion exchange chromatography can be subdivided 

into cation exchange chromatography, in which positively charged ions bind to a 

negatively charged resin, and anion exchange chromatography, where negatively 

charged ions bind to a positively charged resin. In this work, the anion exchange 

column MonoQ 5/50 GL (GE HEALTHCARE, CV: 1 ml) was used. Protein samples 

were centrifuged (SORVALL RC5B, SS34 rotor, 14000 rpm, 30 min, 4° C) and 

applied on the column in an Äkta chromatographic system. The following program 

was used: 

 

flow rate 2 ml/ min 
equilibration 2 CV 10 mM potassium phosphate pH 7.5 

sample application protein in 10 mM potassium phosphate pH 7.5 

wash 3 CV 10 mM potassium phosphate pH 7.5 

elution 
10 CV gradient from 0- 100 % 10 mM potassium 
phosphate pH 7.5 with 1M KCl 

final wash-out 3 CV 10 mM potassium phosphate pH 7.5, 1M KCl 

reequilibration 3 CV 10 mM potassium phosphate pH 7.5 
 

The elution of protein was monitored by following the absorbance at 260, 280 and 

420 nm. The eluted fractions were analyzed by SDS-PAGE. For storage, the column 

was washed with 5 CV water and 3 CV 20 % ethanol. 

7.4.2.4 Preparative size exclusion chromatography (SEC) 

Size exclusion chromatography is based on the principle of a reverse molecular 

sieve. When the mobile phase passes through the porous support material at a 

constant flow rate, small molecules are able to diffuse into the pores, while larger 

molecules are excluded. As a consequence, small molecules are retarded with 

respect to larger molecules, which cause proteins to be separated according to their 

size. In this work, preparative gel filtration was performed with the ÄKTA prime (GE 

HEALTHCARE) at 4° C, using a Superdex 75 pg prep grade 26/600 column (GE 
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HEALTHCARE, CV: ~320 ml). The column consists of highly cross-linked porous 

agarose beads (mean particle size: 34 µm) to which dextran has been covalently 

bound. Protein samples were centrifuged (SORVALL RC5B, SS34 rotor, 14000 rpm, 

30 min, 4° C) and applied on the column by a 10 ml sample loop. Proteins were 

eluted with 1.2 CV of the same buffer at a flow rate of 1 ml/ min (back pressure: max. 

0.3 MPa). The run was recorded using a manual plotter, which measured the 

absorbance at 280 nm. The fraction collector was started at the beginning of the 

elution, and fractions of 4 ml volume were collected.  

7.4.3 Buffer exchange by dialysis or NAP columns 

In order to exchange the buffer of a protein solution or to remove salt, dialysis 

was performed two times for at least 4 hours against a 100-fold volume excess of 

buffer at 4° C in the cold room. A dialysis tubing (Visking) with a molecular cut-off of 

14 kDa was used, which retains the protein while low molecular substances can pass 

through the dialysis tubing. If applicable, small volumes of protein solutions were 

desalted or buffers were exchanged prior to biophysical analysis using Sephadex G-

25 DNA Grade NAP columns (GE HEALTHCARE) according to the protocol supplied 

by the manufacturer. 

 

7.4.4 Concentrating protein solutions 

Protein solutions were concentrated using Amicon Ultra-15 centrifugal filter 

devices (MILLIPORE; molecular cut-off: 10 kDa) by centrifugation (Eppendorf 

Centrifuge 5810R, 4000 rpm, 4° C) according to the instructions of the manufacturer. 

 

7.4.5 Storage of purified proteins 

Purified and concentrated proteins were frozen in liquid nitrogen either dropwise 

or as 100 µl aliquots in PCR reaction vessels and stored at -80° C. 

 

7.5 Analytical methods 

7.5.1 Protein concentration determination by absorption spectroscopy 

The aromatic amino acids tryptophan, tyrosine and phenylalanine as well as 

disulfide bonds (cystine) absorb UV-light in a wavelength interval between 250 and 
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300 nm. The molar extinction coefficient at 280 nm (ɛ280) can be determined from the 

amino acid composition according to Equation 4 (Pace et al., 1995).  

ε280= ෍ Trp·5500+ ෍ Tyr·1490+ ෍ Cystine·125 

Equation 4:   Determination of the molar extinction coefficient ɛ280. 
ɛ280 molar extinction coefficient at 280 nm (M-1cm-1) 
 

The specific extinction coefficient can be calculated according to Equation 5. 

0.1%Aଶ଼଴ = கమఴబ୑୛ 

Equation 5:   Determination of the specific extinction coefficient 0.1%A280. 
0.1%A280 specific extinction coefficient at 280 nm (cm2/ mg) 
MW molecular weight of the protein (g/ mol) 
 

Using Lambert-Beer’s law, the protein concentration can be determined by 

measuring the absorbance at 280 nm (Equation 6): Aଶ଼଴= 0.1%Aଶ଼଴ ∙  c ∙  d 

c = 
A280

A280
0.1% ·d 

  
Equation 6:   Determination of the protein concentration by using 0.1%A280. 
A280 absorbance at 280 nm 
c concentration (mg/ ml) 
d pathlength (cm) 
0.1%A280 specific extinction coefficient at 280 nm (cm2/ mg) 
 

Absorbance spectra were recorded between 220 and 350 nm. The absorbance 

maximum should be at 278 nm and the A280/ A250 ratio should be at least 1.8 for a 

pure protein solution. Protein without cofactor should not absorb light above 300 nm. 

The concentration of TrpB proteins was measured with the Bradford assay due to the 

light absorption of bound cofactor PLP.  

 

7.5.2 Bradford assay 

The Bradford assay is also used for the quantification of proteins in aqueous 

solutions. The assay contains Coomassie Brillant Blue G250, which predominately 

binds to cationic, nonpolar and hydrophobic regions of proteins. The absorption 

maximum is shifted from 465 nm to 595 nm when the dye binds to protein. The 

change in absorbance at 595 nm is linear in a protein range of 1.2 to 10.0 µg/ ml. For 



110 METHODS  
the determination of protein concentrations, 200 µl of Bradford-reagent (BIORAD) 

were added to 800 µl of diluted protein solution. After 5 min incubation at room 

temperature, the absorbance was measured at 595 nm using diluted Bradford 

reagent as blank. The protein concentration was calculated by a linear regression 

standard curve of BSA according to Equation 7. 

c = 
A595

m 
  

Equation 7:   Determination of the protein concentration by the Bradford assay. 
c concentration (mg/ ml) 
A595 absorption at 595 nm 
m slope of standard curve 
 

7.5.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins are denatured by the detergent sodium dodecyl sulfate (SDS) and 

negatively charged proportional to their molecular weights. SDS binds to the protein 

in a ratio of approximately one molecule SDS per 1.4 amino acid residues. The net 

charge of proteins can be neglected compared to the negative charge of the bound 

SDS, which results in an approximately uniform mass to charge ratio. As a 

consequence, electrophoretic mobility depends only on the sieve effect of the gel: the 

migration speed is inversely proportional to the logarithm of mass (Laemmli, 1970). 

Table 11 shows the composition of the 12.5 % SDS gels used in this work.  
Table 11: Composition of a 12.5 % SDS-PAGE gel. 
Amount specification applies to 13 gels. 

 resolving gel (12.5 %) stacking gel (6 %) 
resolving/stacking gel buffer   19.5 ml   7.38 ml 

acrylamide-SL (30 %)   26.2 ml     5.9 ml 

H2O 31.58 ml 15.95 ml 

TEMED 0.089 ml 0.029 ml 

APS (10 %) 0.195 ml 0.089 ml 
 

Samples were supplemented 1:4 with 5 x SDS-PAGE sample buffer and denatured 

at 95° C for 5 min. Gel pockets were loaded with 5- 20 µl of sample, and gels were 

run at 50 mA and 300 V for about 30 min. Subsequently, gels were stained with SDS-

PAGE staining solution with a detection limit of Coomassie Brilliant Blue dye G-250 

at around 200-500 ng protein/ mm2. Gels were swayed for 10 min in the staining 
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solution and excess dye was removed by repeatedly boiling in water (microwave 

900 W). 

 

7.5.4 Analytical size exclusion chromatography 

Apparent molecular weights of proteins and protein complexes were determined 

by analytical size exclusion chromatography. Proteins are separated according to 

their size. The retention volume decreases approximately linear with the logarithm of 

the molecular weigth. Globular calibration proteins were used for a standard curve in 

order to determine the apparent molecular weights. In this work, a Superdex 75 

10/300 GL or a Superdex 200 10/300 GL (GE HEALTHCARE) was used with a 

LaChrom (MERCK-HITACHI) or with an Äkta Basic 10 better (GE HEALTHCARE) 

chromatographic device. Protein samples were centrifuged (SORVALL RC5B, SS34 

rotor, 14000 rpm, 30 min, 4° C) and applied on the pre-equilibrated column. The 

elution was followed by absorbance measurement at 280 nm (LaChrom) or at 260, 

280 and 420 nm (Äkta Basic 10 better).  

 

7.5.5 Analytical reversed-phase chromatography 

Reverse-phase (RP) chromatography is used for the separation of analytes 

according to their polarity. The stationary phase of RP columns consist of silica 

particles, which are modified by long-chain hydrocarbons. Analytes are retained on 

the column by hydrophobic interaction with the stationary phase. They are eluted by 

a decrease in the polarity of the mobile phase. Commonly, a gradient with increasing 

concentration of organic solvent is used for the separation of analytes. In this work, 

reactions mixtures were separated by C18 RP HPLC columns using a 1200 HPLC 

system (Agilent). Elution conditions were optimized to obtain base-line separation of 

analytes and flow-rates were adjusted to maintain a typical operation pressure 

between 50 and 200 bar. The following programs were used: 
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Program 1 
solvent A:    0.2 % (w/v) sodium bicarbonate in water 

solvent B:    methanol 

flow-rate:   0.25 ml/ min 

column temperature: 25° C 

column:   Gemini-NX 3 µm C18 110A 150x3 mm (PHENOMENEX) 

sample:   reaction mixture quenched with methanol 

 

time/ min 0 3 33 43 45 60 
% B 5 5 100 100 5 5 

 

The retention time was 16 min for tryptophan and 28 min for indole. Calibration 

curves for indole and tryptophan were done with samples of known concentrations. 

 
 
Program 2 
solvent A:    water 

solvent B:    acetonitrile 

flow-rate:   0.6 ml/ min 

column temperature: 25° C 

column:   Zorbax Eclipse 5 µm C18 150x4.6 mm (AGILENT) 

sample:   reaction mixture quenched with methanol 

 

time/ min 0 15 30 35 40 60 
% B 5 40 100 100 5 5 

 

The retention time was 7.8 min for 2S,3R-methyltryptophan and 9.1 min for 2S,3S-

methyltryptophan. 
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Program 3 
solvent A:    0.1 % (v/v) formic acid in water 

solvent B:    0.1 % (v/v) formic acid in acetonitrile 

flow-rate:   0.35 ml/ min 

column temperature: 25° C 

column:   Gemini-NX 3 µm C18 110A 150x3 mm (PHENOMENEX) 

sample:   reaction mixture quenched with methanol 

 

time/ min 0 30 25.8 29.4 33.0 45.0 
% B 5 5 98 98 5 5 

 

The retention times was 10.2 min for tryptophan and 19.6 min for indole.  

 

 

Program 4 
solvent A:    0.2 % (w/v) sodium bicarbonate in water 

solvent B:    methanol 

flow-rate:   0.25 ml/ min 

column temperature: 25° C 

column:   Kromasil 5 µm C18 250x4 mm column (BISCHOFF) 

sample:   reaction mixture quenched with methanol 

 

time/ min 0 3 33 43 45 60 
% B 5 5 100 100 5 5 

 

The retention time was 26.4 min for tryptophan. 

 
The elution was followed by a diode array detector in a range of 210 to 500 nm and 

by a fluorescence detector in an emission range of 300 to 450 nm after excitation at 

278 nm. The elution of labeled analytes was also followed by online scintillation 

counting with a Ramona Star detector (RAYTEST). 
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7.5.6 Thin layer chromatography (TLC) 

Thin layer chromatography is a convenient technique for the separation of 

multiple samples in parallel. The stationary phase consists of absorbent material, 

which is immobilized on a glas or an aluminium plate. Samples are spotted on the 

plate, which is subsequently placed in a chamber with liquid mobil phase. Initially, the 

spots are not in direct contact with the mobil phase. During the chromatographic 

process, the mobil phase is dawn up the plate by capillary force. Compounds co-

migrate with the mobile phase in dependency of their interaction with the stationary 

phase and in dependency of their solubility in the mobile phase. The separation is 

terminated before the solvent front reaches the top of the stationary phase. After 

visualization of the separated spots, the retention factor (Rf) is calculated according 

to Equation 8. 

 

Rf = 
a
b

  
Equation 8:   Determination of the retention factor Rf. 
a distance from start to center of the spot 
b distance from start to solvent front 
 

7.5.7 Phosphorimaging 

Radioactive labeled analytes on a TLC plate can be visualized by their ability to 

excite phosphor material. The stored energy is released as blue-light luminescence 

by excitation with visible light. In this work, a PhosphorImager Film FLA-3000 

(FUJIFILM) was exposed over night and the luminescence was read in a Cyclone 

phosphor-imager (PACKARD biosciences). 

 

7.5.8 Colorimetric assay for indole quantification 

Indole was derivatized with an aldehyde-containing reagent and quantified by 

absorbance measurement. Ehrlich reagent and Kovacs reagent (both utilizing p-

dimethylaminobenzaldehyde) turned out to be insufficiently sensitive for the detection 

of tiny amount of indole. Thus a p-dimethyl-aminocinnamaldehyde (DMACA) based 

reagent was used instead. The following procedure was used for the quantification of 

indole in a hexane solution: DMACA reagent was prepared by solving 0.234 g p-

dimethylaminocinnamaldehyde in 78 ml ethanol, adding 10 ml concentrated HCl and 
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adjusting the volume to 100 ml as been described (Turner, 1961). The indole 

containing hexan solution (1.5 ml) was thoroughly mixed with 150 µl DMACA reagent 

and incubated at room temperature for 30 min. The derivatization reaction is shown 

in Figure 65. 

 

Figure 65: Reaction of DMACA with indole. 
 

100 µl of the aqueous phase were subsequently transferred into a 96 well plate. The 

absorbance was measured at 640 nm using a M200 infinite pro plate reader 

(TECAN). A standard curve was made with equally treated indole samples of known 

concentration to quantify the amount of indole in the hexane solution. 

 

7.5.9 Isothermal titration calorimetry (ITC) 

Isothermal titration calorimetry is a method to determine the thermodynamic 

parameters for the interaction between protein and protein or ligand in solution. 

Changes in enthalpy upon addition of a titrant to the sample are detected with high 

accuracy as they are compensated by electric power in order to maintain equal 

temperatures of the sample cell and the reference cell. Binding affinities, enthalpy 

changes and binding stoichiometries can be deduced from the compensation power 

of the titration steps. A MicroCal iTC200 system (MALVERN) was used in this work. 

Prior to measurements, sample and titrant were dialyzed against the same buffer and 

degassed for at least 30 min. The recorded data was analyzed by Origin 7. 

 

7.5.10 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry is a method to determine the thermal stability of 

proteins in solution. The calorimeter contains the sample cell for a solution of protein 

in buffer and the reference cell for a solution of buffer. The temperature in both cells 

is equally increased during the measurement. Protein conformation changes and 
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protein unfolding result in a temperature difference between the sample cell and the 

reference cell, which is compensated by electric power. The melting temperature Tm 

of a protein is deduced from the changes in heat capacity within a temperature 

range. A MicroCal VP-DSC system (MALVERN) with an operational temperature 

range of -10° C to 130° C was used in this work. The recorded data was analyzed by 

Origin 7. 

 

7.5.11 Circular dichroism spectroscopy (CD) 

Circular dichroism spectroscopy in the far-UV range is used to analyze the 

secondary structure of proteins. Right- and left- circular polarized light are absorbed 

to a different extent when passing through a solution of chiral molecules. As a result, 

the circular dichroism (CD) signal over the corresponding wavelengths can adopt 

positive and negative values. Different secondary structure elemens like α-helix, β-

sheet and random coil have characteristic CD spectra in the range of 170 - 250 nm. 

In this work, CD spectra were recorded from 195 to 250 nm with a quartz cuvette 

(1 mm, HELLMA) in a spectro-polarimeter J-815 (JASCO). The data was normalized 

to obtain the molecular ellipticity per amino acid according to Equation 9. 

 

θMRW = 
θobs · 100 · MRW

β · d
=

θobs · 100 · MW
β · d · NA

=
θobs · 105

c · d · NA
 

Equation 9:   Calculation of normalized ellipticity per amino acid residue. 
θMRW average ellipticity per amino acid (deg · cm2 · dmol-1) 
θobs measured ellipticity (mdeg) 
MRW mean residue weight (kDa) 
β protein concentration (mg/ ml) 
c protein concentration (µmol/ l) 
d thickness of cuvette (cm) 
MW molecular weight of protein (kDa) 
NA number of amino acids  
 

The change in ellipticity at 220 nm with increasing temperatures was observed to 

determine the thermostability of proteins. For proteins with cooperatve unfolding in 

the operational temperature range, data points were fitted with a two-state model 

according to Equation 10. 

 



METHODS 117  
Fu= 

yn-y
yn- yu

  

Equation 10: Two-state model of unfolding. 
Fu fraction of unfolded protein 
yn signal of native protein 
yu signal of denatured protein 
y measured signal 
 

7.5.12 Fluorescence spectroscopy 

In fluorescence spectroscopy, samples are illuminated by light of a specific 

wavelength. Light absorption leads to the excitation of electrons in the fluorophore 

and part of the excitation energy is emitted as light. This light is red-shifted relative to 

the excitation light. Fluorescence emission spectra are specific for a certain 

fluorophore and are influenced by the environment of the fluorophore. Protein 

fluorescence might change in response to an interaction with proteins or ligands. In 

this work, tryptophan fluorescence and PLP fluorescence were used as probes to 

quantify protein-protein and protein-ligand interactions by fluorescence spectroscopy. 

Data points for a high-affinity interaction were fitted with a quadratic function 

(Reinstein et al., 1990), as shown in Equation 11.  

F=F0+ሺFmax-F0ሻ·0,5·ቐ൬1+
L0+KD

E0
൰ - ቆ൬1+

L0+KD

E0
൰2

-4·
L0

E0
ቇ0,5ቑ 

 
Equation 11: Quadratic function for Kd determination. 
F measured fluorescence intensity 
F 0 initial signal 
F max signal at saturation 
L 0 concentration of ligand 
E 0 concentration of enzyme 
 

7.5.13 Surface plasmon resonance spectroscopy (SPR) 

A surface plasmon resonance (SPR) sensor was used as optical mass detector. 

At a specific resonance angle, monochromatic light leads to an evanescence field 

into the opposite medium when it is reflected by a metal layer. Changes in the 

refractive index of this medium affect the resonance angle and can be detected by a 

position specific diode array detector. The change in resonance angle is proportional 

to the mass of biomolecules in the medium. A signal of 1000 response units (RU) 

corresponds to a shift of 0.1° in the resonance angle. This is for instance caused by 

binding of 1 ng/mm2 protein to a CM5 chip surface. In this work, a CM5 sensor chip 
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was used in a two flow-cell operating Biacore X100. The sensor chip has a 

carboxylmethylated (CM) dextran surface immobilized on a gold layer. The protein of 

interest is covalently linked to the surface of the samples flow cell. Hereto the 

carboxyl-group is activated as NHS ester by a treatment with 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) and N-Hydroxysuccinimide (NHS). The 

amines of an added ligand (protein solution in a low ion, moderate low pH and 

amine-free buffer) react subsequently with the NHS ester and form a covalent amid 

bound. Remaining NHS ester is de-reacted by treatment with ethanolamine. Samples 

of an analyte are applied in running buffer. Binding to the immobilized ligand leads to 

a shift in the resonance angle, which is detected as response units. The plot of 

response units versus time is termed sensogram and is used to determine the affinity 

of an analyte-ligand interaction. Bound analytes are removed to regenerate the 

surface between after each analyte application. The data was analyzed by the 

implemented software. 

 

7.5.14 Pre-steady-state enzyme kinetics 

Rapid (‘pre steady-state) kinetics were analyzed by stopped-flow. This technique 

enables the mixing of solution from two syringes by a pneumatic device. Mixing in an 

observation chamber occurs within milliseconds and triggers the spectroscopic 

detection. A SX20 stopped-flow spectrometer (APPLIED photophysics) equipped 

with detectors for absorption and fluorescence was used. Both syringes were filled 

with 1.5 ml of solution and equal amounts were mixed for the measurements. Data 

was fitted with a single exponential function (Equation 12) or two phase exponential 

function (Equation 13). 

 

A= a · e-kt + c 
 
Equation 12: Single exponential function. 
A measured signal 
a amplitude 
k reaction rate 
t time 
c plateau 
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A= a1 · e-k1t + a2 · e-k2t + c 
 
Equation 13: Double exponential function. 
A measured signal 
a1,a2 amplitudes 
k1, k2 reaction rates 
t time 
c plateau 
 

7.5.15 Steady-state enzyme kinetics 

TrpA and TrpB kinetics 
The TrpA reaction is the reversible aldolytic cleavage of indole-3-glycerol- 

phosphate to glyceraldehyde-3-phosphate and indole. The reaction was usually 

measured in a coupled enzymatic assay (Creighton, 1970). Glyceraldehyde-3-

phosphate is oxidized to 1-arseno-3-phosphoglycerate by the helper enzyme 

glyceraldehyde-3-phosphate dehydrogenase from T. maritima in the presence of 

arsenate. The coupled reduction of NAD+ to NADH/H+ was monitored by the increase 

in absorption at 340 nm (∆ε(NADH/H+-NAD+) = 6.22 mM-1cm-1). The reaction is 

irreversible as 1-arseno-3-phosphoglycerate is rapidly hydrolyzed to arsenate and 

3-phospho-glycerate. 

The TrpB reaction is the condensation reaction of indole and L-serine or OPS to 

tryptophan. The reaction can be monitored by the increase in absorption at 290 nm 

(∆ε(tryptophan-indole) = 1.89 mM-1cm-1) (Faeder and Hammes, 1970). 

Steady-state kinetic parameters were determined by fitting the experimental data 

of the saturation curves to a hyperbolic function (Michaelis-Menten equation; 

Equation 14).  

v = 
vmax· S
KM+ S

 

Equation 14: Michaelis-Menten equation. 
v: initial velocity 
vmax: maximum velocity 
S: substrate concentration 
KM:  Michaelis constant 
 

7.6 Protein crystallization and X-ray structure determination 

Data collection and X-ray structure determination was performed in collaboration 

with Dr. Chitra Rajendran (research group of Prof. Dr. Christine Ziegler, University of 

Regensburg).  
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7.6.1 Protein crystallization 

Protein crystallization was performed by hanging drop vapor diffusion methods. 

To explore various conditions, initial crystal screening was done using commercially 

available crystallization kits containing 96 unique conditions. Initial crystal screening 

was performed using an automatic robotic system Crystallization conditions were 

manually refined applying an one or two variable (precipitant concentration, additive, 

pH, protein concentration) grid screen.  

 

7.6.2 Data collection 

Single crystals were transferred to a cryo protectant solution and flash frozen in 

liquid nitrogen. Diffraction data was collected on-site at the Swiss Light Source (SLS; 

at Paul Scherrer Institute, Villigen, Switzerland).  
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9.1 Sequences of LCA trpA and LCA trpB 

LCA trpA 

 
LCA trpB 

 
 



134 APPENDIX  
9.2 Calibration curve 

 
Calibration of S200 column 

 
y = -2.632x + 29.286 
 

Protein MW (Da) log MW V (ml) 
Thyroglobulin 668000 5.82 12.58 
Ferritin 440000 5.64 14.46 
Aldolase 158000 5.20 15.68 
Conalbumin 75000 4.88 16.37 
Ovalbumin 43000 4.63 16.97 
Ribonuclease A 13700 4.14 18.50 
 
Blue Dextran   8.16 ml 
Bed Volume 23.56 ml 
 
The calibration curve was done by Mona Linde. 
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9.3 Organisms with TrpA2 enzyme 
Pyrobaculum calidifontis (strain JCM 11548 / VA1). 

Thermoplasmatales archaeon A-plasma. 

Metallosphaera yellowstonensis MK1. 

Thermoproteus uzoniensis (strain 768-20). 

Caldivirga maquilingensis (strain ATCC 700844 / DSM 13496 / JCM 10307/ IC-167). 

Ignisphaera aggregans (strain DSM 17230 / JCM 13409 / AQ1.S1). 

Metallosphaera sedula (strain ATCC 51363 / DSM 5348).|Metallosphaera cuprina (strain Ar-4). 

Sulfolobales archaeon AZ1. 

Thermoplasmatales archaeon Gpl. 

Pyrobaculum aerophilum (strain ATCC 51768 / IM2 / DSM 7523 / JCM 9630/ NBRC 100827). 

Ferroplasma acidarmanus fer1. 

Pyrobaculum sp. 1860. 

Ignicoccus hospitalis (strain KIN4/I / DSM 18386 / JCM 14125). 

Thermoproteus tenax (strain ATCC 35583 / NBRC 100435 / JCM 9277 / Kra1). 

Candidatus Caldiarchaeum subterraneum. 
Pyrobaculum arsenaticum (strain DSM 13514 / JCM 11321).|Pyrobaculum oguniense (strain DSM 13380 / 
JCM 10595 / TE7). 
Pyrobaculum islandicum (strain DSM 4184 / JCM 9189).|Pyrobaculum neutrophilum (strain DSM 2338 / JCM 
9278 / V24Sta)(Thermoproteus neutrophilus). 
Acidianus hospitalis (strain W1).|Candidatus Acidianus copahuensis. 

Sulfolobus tokodaii (strain DSM 16993 / JCM 10545 / NBRC 100140 / 7). 

Picrophilus torridus (strain ATCC 700027 / DSM 9790 / JCM 10055 / NBRC100828). 

Thermoplasma volcanium (strain ATCC 51530 / DSM 4299 / JCM 9571 / NBRC15438 / GSS1). 
Sulfolobus islandicus (strain L.S.2.15 / Lassen #1).|Sulfolobus islandicus (strain M.14.25 / Kamchatka 
#1).|Sulfolobus islandicus (strain M.16.27).|Sulfolobus islandicus (strain Y.G.57.14 / Yellowstone 
#1).|Sulfolobus islandicus (strain Y.N.15.51 / Yellowstone #2).|Sulfolobus islandicus (strain M.16.4 / 
Kamchatka #3).|Sulfolobus solfataricus (strain 98/2).|Sulfolobus islandicus (strain L.D.8.5 / Lassen 
#2).|Sulfolobus islandicus (strain REY15A).|Sulfolobus islandicus (strain HVE10/4).|Sulfolobus islandicus 
LAL14/1.|Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 /P2). 
Sulfolobus acidocaldarius N8.|Sulfolobus acidocaldarius Ron12/I.|Sulfolobus acidocaldarius (strain ATCC 
33909 / DSM 639 / JCM 8929 /NBRC 15157 / NCIMB 11770).|Sulfolobus acidocaldarius SUSAZ. 
Aeropyrum pernix (strain ATCC 700893 / DSM 11879 / JCM 9820 / NBRC100138 / K1). 

Thermoplasmatales archaeon E-plasma. 

Pyrolobus fumarii (strain DSM 11204 / 1A). 
Vulcanisaeta distributa (strain DSM 14429 / JCM 11212 / NBRC 100878 /IC-017).|Vulcanisaeta moutnovskia 
(strain 768-28). 
Caldisphaera lagunensis (strain DSM 15908 / JCM 11604 / IC-154). 
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