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Abstract— A new control law for joint-space impedance in
robots with variable impedance actuators is presented. The
objective is achieved using reduced information on high order
derivatives compared to standard approaches, therefore leading
to more reliable interactions with unknown environments. Most
importantly, the impedance characteristic is given by the real
stiffness and damping coefficients of each actuator, therefore
updating strategies of the latter directly modify the system
response obtained on the link side. The method is evaluated
both in simulations and experiments. Additionally, the control
law is also adapted for systems with series elastic actuators.

I. Introduction

In pursuing an era in which robots and humans can
interact, researchers have soon realized that these human
friendly robots need to look very different from the typical
industrial ones. Lightweight design and compliant features
are required in order to reach the expected performance
and safe interactions with unknown environments (espe-
cially with humans). To overcome the technological limit
reached with conventional rigid robotic actuation, both Series
Elastic Actuators (SEA) [1] and many Variable Impedance
Actuators (VIA) have been designed in the last decades to
achieve efficiency, robustness against external perturbations
and adaptability during interactions [2]. While in a SEA the
spring in the coupling mechanism between the motor and
the link is constant, in a VIA the compliant response of the
system is adjustable. Nevertheless, the challenging design
phase of the control laws for such complex systems has
led to closed-loop systems which are typically incapable of
satisfying all these objectives. As a viscoelastic element is
interposed between the motor and the actuated link, these
systems are underactuated. The control strategies, therefore,
require often the knowledge of the time derivatives of the
link position (e.g. the link acceleration and jerk) in order to
control the output of the system [3]. These values can be
obtained either through filtering or model based approaches.
It is clear that interactions with the environment are critical
for these controllers, since there will be discontinuities in
the acceleration signal and often the control gains have to
be considerably lowered with a consequent decrease in the
performance. This point has been recently addressed in [4].
Therein, it is shown how using a damper in parallel to a
spring, as in Fig. 1, can be beneficial to control the torque
produced by the actuator to a given desired value. This is the
case especially in presence of impacts between the robot and
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Fig. 1. Conceptual schematic of the type of VIA considered in the paper,
together with the indication of torque and position variables.

the environment, i.e. in case of discontinuous acceleration.
The authors compare the performance of such an actuator to
those of a more classic SEA and motivate the improvement
by the decreased relative degree of the torque error from
r = 2 for a SEA to r = 1 in case of additional physical
damping. Loosely speaking, the presence of the damper
provides a more direct way to influence the link, rather than
relying only on the spring. The results in [4] are not the
first ones on this topic. An excellent work is [5], which
points the reader to many related ones (e.g. [6]–[9]) and
describes the steps in the design of a SEA enhanced with
a variable damper. Moreover, the authors show that a VIA
with variable damping can outperform a SEA, looking at
force/torque exchange and energy consumption.

The work presented in [4] is the most closely related
to the approach proposed in this paper and the reader is
referred to [10], [11] for a review on torque control of SEAs.
Nevertheless, although the control law in [4] shares the same
objective as in this paper of tracking a desired trajectory
for the links, it still suffers from three main shortcomings,
which are addressed here. Firstly, it needs a direct feedback
of the link acceleration and uses high order derivatives of
the dynamic matrices. Therefore, such a control law is more
sensitive to noise and less computationally efficient than one
which is only feeding back the state of the robot. Secondly,
due to the cascaded structure of the closed-loop system, the
analysis carried on in [4] to show the asymptotic convergence
of the inner torque loop is not sufficient in order to draw
conclusions on the stability of the overall system; especially
in case of time-varying signals. Finally, it is unclear how the
physical spring and damper can be optimally used for the task
that the robot has to solve and, consequently, no insights are
provided on how to modify the value of the damping online
nor the impact of the time-variant damping on the stability.

The control objective in this work is to guarantee that in
a system composed of joints as sketched in Fig. 1, where
the motors are connected to the links through a spring and
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a variable damper, the links follow a desired trajectory.
It is also required that the closed-loop system exhibits a
compliant behavior during physical interaction. Therefore,
the controller will realize a link-side impedance. To this end,
several contributions are presented in this paper, that can be
summarized as follows. The link-side impedance is defined
by the values of the real damper and spring of the VIA,
rather than virtual ones introduced by the control action (like
in conventional strategies). Standard approaches completely
reshape by control action the intrinsic torque produced by the
VIA [3], [4], [11]. Therefore, after convergence of the torque
error, the physical stiffness and damping have no influence
on the link-side behavior. In contrast, the proposed approach
uses the control action only to provide the feedforward terms
necessary to track a desired trajectory, while the feedback
action is realized through the parameters of the VIA. This is
a key aspect of this work, as it results in two important con-
sequences. Firstly, changes of the intrinsic parameters of the
VIA directly modify the closed-loop system response. This
topic is still not well investigated in the robotic community
and it is an important contribution of this paper. Secondly,
compared to conventional approaches, the acceleration of the
links appears only as a dependency in the derivative of the
feedforward term, hence it is not amplified by any controller
gains. Moreover, the torque error in the inner torque loop
of the control action will be shown to converge in finite
time to zero, by applying sliding-mode techniques proposed
recently in the control community [12]. As a result, after a
finite-time, the closed loop is reduced to a classic rigid-body
dynamics. Finally, a variation of the controller is presented
for systems in which the damping element is missing, i.e.
for classic SEA.

The paper is organized in two main parts. In Section II,
the design idea and theoretical contribution are presented;
while in Section III the controller is evaluated in simulations
and experiments. Finally, Section IV summarizes the work.

A. Notation and model

The considered robotic systems are modeled by the nonlin-
ear differential equations (reduced elastic-joint model [13]):

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + JT
e (q)we , (1a)

Bθ̈ + τ = τm + τ f , (1b)

τ = D(t)
(
θ̇ − q̇

)
+ K

(
θ − q

)
, (1c)

where θ, θ̇ ∈ Rn (n is the number of joints) are the motor
positions and velocities, which constitute together with link
positions and velocities q, q̇ ∈ Rn the whole state of the robot.
It is used M ∈ Rn×n to denote the symmetric and positive
definite link-side inertia matrix, C ∈ Rn×n a Coriolis matrix
satisfying Ṁ = C + CT and g ∈ Rn the gravity torque vector.
On the motor side, B ∈ Rn×n is the constant diagonal inertia
matrix of the motors. The torques τm ∈ R

n produced by the
motors are an input to the system, together with the external
torques given by τe = JT

e we, where the external wrenches are
stacked in we ∈ R

6m, m is the number of links in contact and

Je ∈ R
n×6m the correspondent Jacobian matrix. Finally, τ f ,

τ ∈ Rn are the perturbing torques and the torques applied to
the links, respectively. The latter are the sum of the torques
produced by the springs and the dampers, being K ∈ Rn×n

the constant diagonal joint stiffness matrix and D ∈ Rn×n the
variable diagonal joint damping matrix.

The input of the system is allowed to be discontinuous.
In this case, the differential equation with locally bounded
Lebesgue-measurable right-hand side is understood in the
sense of Filippov [14] and the absolutely continuous solu-
tions satisfy the differential inclusion almost everywhere.

II. The split torque controller

The control goal is to track a desired trajectory for free
motions, i.e. for we = 0 then q→ qd as t → ∞. Additionally,
the closed-loop system compliance should dictate the devia-
tion from the desired trajectory during physical interactions.

A. Actuators with adjustable joint damping

To derive the first controller proposed in this paper, the
model (1) is firstly rewritten (omitting the dependencies) as

Mq̈ +
(
C + D

)
q̇ + Kq + g = τθ + JT

e we , (2a)

Bθ̈ + τθ − Dq̇ − Kq = τm + τ f , (2b)

τθ = Dθ̇ + Kθ , (2c)

in which it has been used the identity τ = τθ − Dq̇− Kq, i.e.
the torque τ has been split in the terms depending only on
the motors and those depending only on the links (hence the
name split torque control). It is easily verified that if

τθ = τd := g + Mq̈d +
(
C + D

)
q̇d + Kqd , (3)

then it is realized the classic joint-space impedance [15]:

M ¨̃q +
(
C + D

)
˙̃q + Kq̃ = JT

e we , (4)

where q̃ := q − qd denotes the position error. Compared
to conventional methods, the impedance characteristic is
given by the link-side inertia and the real parameters of the
actuator, rather than virtual values introduced by the control
action. Therefore, an adjusting law for the variable damping
matrix D(t) directly reflects in a correspondent change of
the link-side impedance behavior and system response. Since
enforcing (4) guarantees the solution of the control objective,
in the remainder of the paper the goal is to choose τm

such that (3), i.e. τθ = τd, is satisfied. To create an inner
torque loop that realizes this new objective, the first step is
to remove the effect of the links in (2b), by choosing

τm = −Dq̇ − Kq + u , (5)

which leads to

Bθ̈ + τθ = u + τ f , (6)

where now the new control input u ∈ Rn has to be chosen
in such a way that (3), and therefore (4), is satisfied.
Differentiating (2c) with respect to time, it follows:

θ̈ = D−1
(
τ̇θ − Ḋθ̇ − Kθ̇

)
. (7)



Choosing u = BD−1
[
z −

(
Ḋ + K

)
θ̇
]

and substituting (7) into
(6) leads to

τ̇θ + DB−1τθ = z + DB−1τ f , (8)

where once again z ∈ Rn is a new control input. In order to
achieve a generalized super-twisting algorithm [16] for the
torque error (which guarantees its finite-time convergence by
means of a continuous control input), the control action for
the system (8) is chosen as

z = τ̇d + DB−1τd − T |τ̃|
1
2 sgn(τ̃) + σ , (9a)

σ̇ = −S sgn(τ̃) − Pτ̃ , (9b)

where τ̃ := τθ −τd denotes the torque error, while the diago-
nal matrices S, T, P ∈ Rn×n are positive definite and satisfy
the set of inequalities given in [16] (see also section II-C).
Both |τ̃|

1
2 and sgn(τ̃) have to be understood as element-wise

applications of the correspondent operator. Finally, taking
into account the expressions of the intermediate control
input, the final control law is:

τm = τd − Dq̇ − Kq +

+ BD−1
[
τ̇d − T |τ̃|

1
2 sgn(τ̃) + σ −

(
Ḋ + K

)
θ̇
]
,

(10a)

σ̇ = −S sgn(τ̃) − Pτ̃ , (10b)

which leads to the closed loop system

M ¨̃q +
(
C + D

)
˙̃q + Kq̃ = τ̃ + JT

e we , (11a)

˙̃τ = −DB−1τ̃ − T |τ̃|
1
2 sgn(τ̃) + s , (11b)

ṡ = −S sgn(τ̃) − Pτ̃ + ρ2 , (11c)

having defined: s := σ + ρ3, ρ2 := ρ̇3 and ρ3 := DB−1τ f .
Considerations about the stability of the closed-loop system
will be drawn in section II-C. It is important to highlight that,
unlike other control laws for SEA and VIA, (10) contains
no direct feedback of the link acceleration, i.e. q̈ does not
directly appear in (10), but only as a dependency of the
derivative of the Coriolis matrix in τ̇d. This is part of the
reason why the control law results highly insensitive to the
availability of q̈ in section III.

Since the control action contains a term which is inversely
proportional to the damping, it is not applicable for SEA.
In the introduction it was mentioned that SEA can be
outperformed by actuators with a variable damping [4], [5].
Nevertheless, a specialization of the control law is presented
in section II-B for the latter class of systems.

B. Application to series elastic actuators

In this section, the model under consideration is:

Mq̈ + Cq̇ + Kq + g = τθ + JT
e we , (12a)

Bθ̈ + τ = τm + τ f , (12b)

τ = K
(
θ − q

)
, (12c)

in which, with a slight abuse of notation, τθ = Kθ. Having
the model in this form, one can easily verify that if

τθ = τd := g + Mq̈d + Cq̇d − D ˙̃q + Kqd , (13)

then the joint impedance (4) is realized. Unlike in the
previous section, this time τm = τ + BK−1u, so that (12b)
reduces to a double integrator. At this point, a higher order
super-twisting algorithm scheme can be adopted. To achieve
the continuous singular terminal sliding mode algorithm [12]
for the torque error, it is made the choice

φ = ˙̃τ + T2 |τ̃|
2
3 sgn(τ̃) , (14a)

u = τ̈d − T1 |φ|
1
2 sgn(φ) + σ , (14b)

σ̇ = −T3 sgn(φ) , (14c)

where the diagonal matrices T1, T2, T3 ∈ R
n×n are positive

definite and satisfy the set of inequalities given in [12]. Fi-
nally, taking into account the expressions of the intermediate
control variable, the final control input is:

τm = τ + BK−1
(
τ̈d − T1 |φ|

1
2 sgn(φ) + σ

)
(15)

which leads to the closed loop system

M ¨̃q +
(
C + D

)
˙̃q + Kq̃ = τ̃ + JT

e we , (16a)

¨̃τ = −T1 |φ|
1
2 sgn(φ) + s , (16b)

ṡ = −S sgn(φ) + ρ2 , (16c)

having defined: s := σ + ρ3, ρ2 := ρ̇3 and ρ3 = KB−1τ f .
As expected, an additional derivative of the desired torque
is used in this case compared to (10). Moreover, the control
law in this section, unlike (10), contains a direct feedback
of link acceleration and jerk due to the term D ˙̃q in τd.

C. Stability analysis

The stability properties of the closed-loop systems (11)
and (16) in case of free motion (we = 0), are easily derived
thanks to the finite-time convergence of the torque error.

Proposition 1: Let qd(t) be a smooth desired trajectory. If
τ f has a known global Lipschitz constant, such that

∣∣∣ρ2

∣∣∣ < δ2
for some constant δ2 ≥ 0, then for we = 0 the system (11)
is uniformly globally asymptotically stable, provided that the
mean value D̄ of D(t) and the positive definite diagonal gain
matrices are sufficiently large.

Proof: Rewriting D(t) as D(t) = D̄+∆D(t) and defining
ρ1 := ∆D(t)B−1τ̃, (11b) and (11c) can be written as

˙̃τ = −D̄B−1τ̃ − T |τ̃|
1
2 sgn(τ̃) + s + ρ1(t, τ̃) , (17a)

ṡ = −S sgn(τ̃) − Pτ̃ + ρ2(t) , (17b)

where
∣∣∣ρ1

∣∣∣ ≤ δ1 |τ̃| for some constant δ1 ≥ 0. This has
the exact same form as the modified second order sliding
mode (SOSML) in [16], for which robust, global finite-
time stability of (τ̃,σ) = (0, 0) is guaranteed if S i, Pi,
Ti and D̄iB−1

i satisfy the inequalities given in [16], where
the subscript denotes the i - th entry on the diagonal. In
particular, two sets of inequalities are provided for the gains
of the SOSML, which can always be solved for every δ1 > 0,
δ2 > 0. For the specific case in (17), using Fi := D̄iB−1

i , the



two sets of inequalities reduce to

Ti > 2
√
δ2

D̄i > 2 max(∆Di)

Pi > max
(

9
4

T 2
i F2

i

S i − δ2
+ 2F2

i +
3
2

Fiδ1 , Fi
F2

i + 3Fiδ1 + 1
2δ

2
1

Fi − 2δ1

)
S i > max

(
δ2 ,

( 1
2 Tiδ1)2 + 2F2

i δ2 − 4T 2
i F2

i + T 2
i Fiδ1

2Fi(Fi − 2δ1)

)
.

The stability properties of the whole system follow from
its simple cascaded structure and the finite-time convergence
of the always bounded torque error. For t > T (i.e. when
τ̃ = 0), it is well known that (4) is exponentially stable in
case of free motion [15], since the constant K and the time-
variant D(t) are positive definite. Finally, for t > T it holds:

τθ = τd =⇒ θ̇ = −D−1K
(
θ − K−1 τd

)
, (18)

meaning that θ is a filtered version1 of K−1 τd. This also
shows that there is no unstable zero dynamics, recalling the
boundedness of the dynamic matrices [17] and of τd.

Similar considerations are valid for the system (16). Nev-
ertheless, the conditions that the gains have to satisfy are
much more complex [12].

D. Practical considerations

By removing the feedforward term τ̇d in (10), τ̇d can be
seen as an additive term to the perturbation ρ2. Unfortunately,
this makes ρ2 state-dependent and therefore it cannot be a
priori guaranteed to have a global Lipschitz constant. In the
current state, the control law already has the advantage of
using no direct feedback of the link acceleration and it proved
to perform well even when setting τ̇d = 0 both in simulations
and experiment (see Section III).

An adjustable spring in the VIA, can be useful when the
robot is required to perform different tasks, but unlike the
damper that can be adjusted within the task, adaptations of
the springs have to be done between tasks. This is due to
the design choice of solving the joint tracking problem by
enforcing the link-side behavior (4), which allows to have a
time-varying damping, but requires a constant stiffness [15].

III. Validation

The same system setup, gain values and desired trajectory
for the link were considered both in the experiments and
in the simulations. The latter were used to compare the
proposed control laws to different existing approaches. Since
the control laws in the literature typically aim at driving the
torque τ in (1) to a desired value (rather than τθ), in this
section, the torque error will be redefined as τ − τ∗d, where

τ∗d := g + Mq̈d + Cq̇d − D ˙̃q − Kq̃ , (19)

for both the VIA and SEA case and it has the same value
as the previously defined τ̃.

1The filter response is modified by a change in D(t).

Motor

Spring-Damper

Spring

Link

End-stop

Fig. 2. Experimental setup. The link is at q = 0, which is used as initial
position. The end-stop to the right is located near to q = 0 and it is used
for the impact experiment.

TABLE I
System parameters

Motor inertia Link inertia Stiffness Damping Max torque
B M K D |τm |

1.53 kg·m2/s2 2.60 kg·m2/s2 416.16 N·m/rad 37.29 N·m·s/rad 100 N·m

A. Experiments

The experiments were conducted on a modular test setup
for VIA similar to the one used in [4] and it is illustrated
in Fig. 2. Three major components can be recognized: the
motor, the link and the coupling mechanism between the two.
The link is simply a rigid body equipped with a position
sensor. As motor, a DLR LWR actuator module was used.
It consists of a brushless DC motor, a harmonic drive gear
(1:100), a position sensor and a torque sensor. The velocity
is obtained differentiating the position signal. The maximum
absolute value of the torque that can be generated by the
module is 100 Nm. A current control loop allows the motor
to produced the required value of the torque τm. Finally, the
coupling mechanism, modelled as a parallel spring-damper
combination, is implemented by two counteracting elements.
The first is a conventional steel spring, while the second is
a recently designed spring-damper element, shown in Fig. 3.
In there, two air chambers which together realize a nearly
linear spring can be recognized, as well as two additional oil-
filled chambers, which realize instead the viscous damper.
The damping coefficient is adjustable via a servo controlled
valve. The values of the parameter of the test setup are
summarized in Table I. Additionally, two significant parasitic
effects are present. One is the friction torque generated by
the harmonic drive gear, which was estimated to be in the
range of 6 Nm. The other is the friction generated by the
seals of the spring-damper element, which is also roughly
in that range. Finally, the torque controller was executed at
3kHz on a COTS computer with Linux Prempt-RT, which
connects to the sensors and the drive via Ethercat R©.

The experiments consisted in tracking the desired link
trajectory shown in orange at the bottom of Fig. 4. The
link, initially close to the end-stop at nearly q = 0, is
asked to move at −0.2 rad. After the initial step, the desired
trajectory is sinusoidal and it is followed by a second step.



Fig. 3. The spring-damper element. The elasticity is realized by the active
air chamber (1) and the linearizing air chamber (2). The viscous effect is
due to the motion of the piston rod (5) pushing oil through the valve (4)
between the chambers (3) and (6). Finally, the servo (7) allows to adjust
the damping coefficient by acting on the variable throttle valve (4).
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Fig. 4. Resulting joint position and torque tracking in the experiment. The
deviation of q from the desired value qd between around 7.4 s and 9 s is
due to the interaction forces with the end-stop.

This time, being the desired position at 0.1 rad, i.e. beyond
the end-stop, an impact will occur. Finally, the last step in the
desired trajectory brings the link back to q = −0.2 rad. The
original desired trajectory was filtered to obtain a sufficiently
smooth signal together with its time derivatives. The tracking
performances of the controller for both the torque and link
position are shown in Fig. 4. The peaks in the desired torque
(corresponding to the discontinuities in the original desired
position signal) have been left out from the figure to have a
better scaling of the signals. Fig. 5 shows a magnified view
of the link and motor velocities at the impact with the end-
stop. The VIA joint reduces the effects of the impact on the
motor, noticeable by the smoother and reduced oscillations.

In the second experiment, unlike in the previous one and
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Fig. 5. Magnified view of the motor and link velocities at the impact with
the end-stop. The effects of the impact on the motor are effectively reduced.
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Fig. 6. Different settling time of the system with a varying D, unlike the
behaviour obtained with a constant value in all the other tests.

all the simulations in Section III-B, the value of D is not kept
constant as in Table I, but changes as in Fig. 6. A substantial
difference in the settling time to the steps in qd is obtained,
as the system goes from being overdamped to underdamped.
Also, the variation of D does not affect the response of the
system once it is already perfectly tracking the reference.

B. Simulation

The performances of the closed-loop systems (11) and (16)
are compared to the control law in [4] and the cascaded
torque control in [11], respectively. The gains in the first
case were taken from [4], with S ,T and P chosen such that
a similar control input is obtained, shown in the top plot of
Fig. 7. The tracking performances are similar, but a faster
convergence is obtained with the split torque controller both
for the steps and the sinusoidal part in the desired trajectory.
Similar considerations hold for the SEA version, although
in this case the improvement is observable only for the
sinusoidal part in Fig. 8. Note that the end-stop, being not
perfectly rigid, is slightly compressed by the end-effector.

The sensitivity of the split torque control and the one in
[4] to the availability of the high order derivatives (i.e. q̈
and τ̇d) is also tested by setting these values to zero and
keeping all the gains unchanged. In real world scenarios,
these terms could be noisy or wrongly estimated, therefore it
is an important feature of the controller to show insensitivity
to their values. The value of τ̇d was indeed set to zero in the
previously described experiments. As Fig. 9 clearly shows,
the tracking obtained with the control law proposed in this
paper (top plot) shows no noticeable difference, while the
tracking capabilities are highly compromised with the one
in [4]. Although both approaches theoretically request the
same signals, the split torque control law is, in this case, far
less sensitive than the other to their precise availability.

IV. Conclusion

The paper walks the reader through the derivation of a
novel control law for VIA with adjustable damping. The
main goal is the realization of a joint-space impedance
which is defined by the intrinsic springs and dampers in the
actuators. The motivation is to efficiently exploit the presence
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Fig. 7. Compared simulations of the split torque controller and the one in
[4], labeled as 1 and 2 respectively. Although the gains were tuned to get a
similar control output (top plot), a faster and better convergence is obtained
with the split torque controller.
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Fig. 8. Compared simulations of the system (16) and the cascaded structure
in [11], labeled as 1 and 2 respectively. While the split torque controller
achieves perfect tracking, this is not the case with the controller in [11].
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Fig. 9. Compared simulations of the split torque controller and the one in
[4], labeled as 1 and 2 respectively. The values of q̈ and τ̇d were set to zero
to test the sensitivity of the controllers to the availability of these signals.
The split torque controller clearly outperforms the other in this case.

of such actuators in the robotic system and possibly minimize
the control effort. Relying on a modified version of the super-
twisting algorithm for the inner torque control loop, the
controller is less sensitive to information on the higher order
derivatives of the state of the robot as compared to other
control laws found in the literature. Such a feature renders
the controller well suited for robotic systems interacting with
an unknown environment (e.g. for human-robot interaction).
Lastly and most importantly, the appearance of the physical
parameters in the realization of the joint impedance allows
for a very intuitive and easy strategy for their adaptation; a
topic still not well investigated in the robotic community.
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