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Abstract. A lab-scale solar reactor, equipped with a porous CeO2 structure with dual-scale porosity for CO2 and H2O 

splitting, has been simulated and validated using available experimental results. The validated model was then used to 

scale-up the geometry to the MW scale and to investigate the benefits in the studied reactor. The larger reactors displayed 

partially better performance, but their potential was limited by the restricted thickness of the porous structure during 

scaling-up. This restriction accelerated the temperature uniformity in the CeO2 volume, followed by saturation and a 

steady-state effect with reduced O2 production. The validated model can be used for further reactor optimization, which 

should be addressed in combination with a dedicated plant design study for continuous carbon-neutral fuel production.  

INTRODUCTION 

     One of the main anthropogenic greenhouse gas emission sources is the transportation sector, which was 

responsible for approximately 23% of the total energy-related CO2 emissions in 2010 [1]. The transportation sector 

will continue to depend on conventional liquid fuels since their high energy density is ideal for the existing 

infrastructure [2], especially in the case of aviation. The European Union proposed an energy strategy for 2030, with 

the goal of 40% reduction in greenhouse gas emissions [3] compared to 1990 levels. Therefore, the sustainable 

production of aviation fuels will prove a substantial contributor to the emission reduction goal, since a complete 

infrastructure change by 2030 is unlikely. One of the available options for carbon-neutral aviation fuel production is 

through the production of renewable syngas by splitting CO2 and H2O using concentrated solar energy in a solar 

thermochemical process. The produced syngas is then further processed to hydrocarbons via the well-established 

Fischer-Tropsch synthesis. The splitting can be achieved under technically relevant conditions by using porous 

structures made out of redox active metal oxides, such as ceria (CeO2), which are placed in the cavity-receiver of a 

solar thermochemical reactor and which are cycled through a reduction step and an oxidation step, as in equations 

(1) and (2a), (2b), respectively [4,5]: 
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      Here δ is the non-stoichiometry of ceria. The reduction step is typically operated at temperatures around 1773-

1973 K [5,6]. The high-temperatures necessary for the porous structure to undergo this endothermic step are 

achieved by exposing the cavity-receiver to concentrated solar radiation. For the exothermic oxidation step, ceria is 
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cooled down to temperatures in the range of 1273 K - 873 K [5]. Two lab-scale thermochemical reactors have 

already been designed and tested [5,7]. The first configuration [7], which utilized a Reticulated Porous Ceramic 

(RPC) with single-scale porosity, has been successfully simulated using 3D CFD and has been validated according 

to the available experimental results [8,9]. In the second configuration [5], ceria is in the form of a dual-scale RPC 

which consists of a foam porosity in the mm-scale and a strut porosity in the μm-scale. The dual-scale RPC has been 

experimentally proven superior than the single-scale RPC [10] and the second reactor configuration achieved a 

record solar-to-fuel (s-t-f) energy conversion efficiency of 5.25 %, greatly outperforming the first configuration, 

which was at 1.73%. 

Despite the record lab-scale reactor performance, this technology has to be scaled up and achieve a substantial 

improvement in the solar-to-fuel energy conversion efficiency in order to be economically feasible and contribute to 

the EU climate goals. The design and operation of a dedicated plant that utilizes the solar reactor technology for 

continuous fuel production is challenging but it can be greatly accelerated through the use of validated simulation 

tools that can predict the behavior of larger scale reactors. In the present article, the second reactor configuration 

will be simulated and validated using the existing experimental results [5]. The validated model will then be used to 

scale-up the geometry to scales relevant in a fuel production plant, equal to 0.3, 1 and 3 MW, and their performance 

will be assessed using a 3D axisymmetric model. 

MODELLING METHODOLOGY 

   The solar reactor, presented in Marxer et al. (2017) [5], consists of a 75 mm deep and 100 mm inner diameter 

cavity-receiver with a 4 cm-diameter aperture in the front. The cavity contains a 25 mm-thick CeO2 RPC and is 

enclosed in the front by a 4 mm-thick quartz window. A layer of Al2O3 insulation is placed around the CeO2 RPC 

and an aluminum layer in the front face of the reactor acts as a radiation shield. The entire reactor is encased in an 

Inconel vessel. This geometry, as well as the scaled-up reactors, were all simulated as axisymmetric 3D geometries 

with a size equal to 1/8
th

 of the initial total volume. The smaller volume of the axisymmetric geometry allows the 

use of a finer mesh, thus leading to higher resolution without the corresponding computation time increase. 

However, because of the axisymmetric symmetry, buoyancy effects are disabled. The design and meshing of the 3D 

geometry were done with ANSYS DesignModeller and Meshing, respectively and the 3D simulations were 

performed using the commercial tool ANSYS CFX R17.1. 

    The main modelling methodology was established in previous works [8,9]. Only a brief summary is presented in 

this paper. In the fluid regions within the cavity, the local instantaneous form of the mass, the momentum and the 

total energy equations are solved [11]. The low velocity of the flow generated by Argon injection and/or pumping 

outflow is in the order of magnitude 10
-3

-10
-4

 m/sec, allowing the assumption of laminar flow conditions since the 

Reynolds number is below the transition threshold for the studied geometries. Thermal radiation was modelled using 

a Monte-Carlo (MC) approach, with 10
4
-10

7
 particles, increasing with the reactor scale. In order to focus the parallel 

MC particle trajectories in the aperture area, a lens domain, modelled as incompressible air with a high refractive 

index, was implemented in front of the window, similar to [8] and [9]. To ensure uniform radiation distribution 

within the cavity and on the irradiated surface, a coarsening rate of 4 was used in all cases. 

    The utilized model in the porous computational domain is a generalization of the Navier-Stokes equations 

combined with Darcy’s law. It is assumed that infinitesimal control volumes and surfaces are large relative to the 

interfacial spacing of the porous medium but small relative to the resolution scales [11]. The different elements of 

the simulated porous medium are treated as containing both fluid and solid regions, resulting in the coexistence of 

two separate phases with significantly different properties. As a result and because the thermal radiation is mainly 

absorbed by the solid regions, which are thus heated faster than the fluid regions, a non-thermal local equilibrium 

model is required, established by the use of two separate energy equations, one for the fluid phase, Eq. (3), and one 

for the solid phase, Eq. (4). The two separate energy equations are coupled with a convective heat transfer term, 

given in Eq. (5) as Qfs, with its magnitude estimated through the use of the convective heat transfer coefficient, hsf, 

and the specific surface area, Afs, between the two phases [11, 8, 9]. The incoming thermal radiation, after reaching 

the RPC surface, is partially absorbed while the remaining is scattered, reflected and emitted in the surroundings and 

deeper into the pores. Because of the optically thick RPC [8, 9, 12], this deeper penetration can be approximated as a 

diffusion process, modelled with the Rosseland approximation, by introducing the total radiative conductivity, given 

in Eq. (6), on the energy equation of the solid phase, given in Eq. (4) [11, 12]: 

 𝜀𝜌𝑓𝐶𝑝𝑓

𝜕𝑇𝑓

𝜕𝑡
+ (𝜀𝜌𝑓𝐶𝑝𝑓)𝐔 ∙ ∇𝑇𝑓 = 𝑘𝑓∇ ∙ ∇𝑇𝑓 + 𝑄𝑓𝑠 (3) 
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Here, ε refers to the total volume porosity of the RPC, 𝜌, 𝐶𝑝 and 𝑘 refer to the density, specific heat capacity and 

thermal conductivity of the fluid/solid porous parts, considered as Argon and CeO2 respectively, and 𝑘𝑟 is the 

radiative conductivity, introduced by the Rosseland approximation. In Eq. (6), σ is the Stefan-Boltzmann constant, 

neff is the effective refractive index for the dual-scale RPC and β is the extinction coefficient, taken from [5].  
The advantages of the dual-scale porosity are deeper radiation penetration, due to the mm-pore scale, combined 

with improved heat and mass transfer as well as chemical activity, caused by the increased surface area provided by 

the μm-pore scale [10]. To capture the benefit of the two distinct pore sizes, the use of effective properties is 

required. The effective heat transfer coefficient, hsf,eff, and specific surface area between the fluid and solid regions, 

Afs,eff, are used in the porous computational domain and are estimated through the contribution of each scale: 
 

 Effective Property=
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ε
Property
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+
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ε
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     Here εRPC-Single, εStrut, and ε are the mm-scale, μm-scale, and total porosity, respectively. Equation (7) was derived 

from the dual-scale porosity equation presented in Ackermann et al. (2017) [6]. To approximate the aforementioned 

diffusion-like process within the pores, the irradiated interface of the porous computational domain was modeled as 

opaque as part of the boundary conditions of the radiative heat transfer. The high temperature reached there, due to 

the intense radiation, will cause an enhanced convective and radiative contribution affecting and being magnified by 

both pore scales. The combined diffusive and convective heat transfer was accounted for by using the effective heat 

transfer coefficient, hsf,eff, at the opaque interface to estimate the magnitude of the heat transfer effects between the 

two phases. On the contrary, at the back interface of the porous computational domain, diffusion is exhausted 

through absorption while convection is minimized due to temperature equilibrium. There, conduction is the 

dominant heat transfer mechanism and it is assumed that the contribution of the μm-scale pores is negligible for 

conduction purposes. As a result, the mm-scale heat transfer coefficient, hsf,mm-scale, is used. While this approach, 

based on a continuous porous domain with effective properties, differs from the one presented in [6], which is based 

on direct pore-level simulation (DPLS), and there is a 5% deviation in the estimated contribution of the μm-scale 

pores, it allows the approximation of the higher complexity of the dual-scale structure in the more generalized 

porous model. 

Flow Conditions and Post-Process Analysis 

      During the simulated reduction step, in order to capture the flow conditions that take place within the cavity, a 

source of fluid is introduced in each element of the porous domain when its temperature is above 1200 K [10], with 

the amount of fluid released derived from the experimental production of O2 [5]. The same value was used to 

calculate the outflow of the pump, operated to purge the produced fluid and keep a constant pressure within the 

cavity. As in the experiments, Argon was injected through a small opening at the front side of the cavity. To avoid 

two separate species in the fluid phase, the fluid released at each source point and flowing out of the cavity is 

assumed to be a single species, Argon. 

The direct implementation of the O2 chemical release, coupled with the fluid dynamics, is not stable. Therefore, 

a post processing methodology is used to estimate the O2 released and thus the solar-to-fuel energy conversion 

efficiency. The temperature of each ceria element for each minute, over the duration of the reduction step, is 

extracted and used to calculate the change in the non-stoichiometry, Δδ, through the equation presented in 

Ackermann et al. (2017) [6]. For the calculation, the oxygen partial pressure, PO2, is assumed fixed and equal to one 

third the initial cavity pressure. The PO2 is estimated from the pressure difference reached during the experimental 

reduction, which is caused by the remnants of O2 within the cavity [5]. The estimated amount of O2 is calculated 

from Eq. (8) [13] and is directly linked to the amount of fuel (here assumed pure CO) produced during the re-

oxidation step. From the chemical formulas, Eq. (1) and (2), and assuming full re-oxidation of ceria for every cycle, 

the amount of CO produced is twice the amount of released O2 and thus the solar-to-fuel energy conversion 

efficiency can be calculated from the same formula as in the experimental setup [5]:  
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Where M.W.Ceria is the molar weight of ceria, nCO is the number of moles of CO produced, ΔHCO is the higher 

heating value of CO, Qsolar is the radiative input during reduction and Qpump and Qinert are the energy penalties due to 

pumping and inert gas consumption, respectively. 

MODEL VALIDATION 

A single reduction step of the 3.5 kW reactor was simulated. Transient terms are solved using a second order 

backward Euler, while the advection term uses a high resolution scheme. The pressure within the cavity was fixed at 

10 mbar. The radiative input power, measured at the aperture, as well as the flow conditions were all expressed in 

corresponding axisymmetric values. A steady-state solution, operated until the average RPC temperature was above 

800 K, was used as the initial condition for the unsteady computation of the reduction step, corresponding to the 

state of the reactor at the end of a general oxidation step. Reduction lasted until an average RPC volume temperature 

of around 1773 K was reached. The available experimental results for the respective geometry, presented in Marxer 

et al. (2017) [5], are used to validate the simulated results. The average volumetric temperature evolution of the 

RPC, compared to the nominal reactor temperature from [5], is presented in Fig. 1(a). Also shown on the same 

figure is the estimated and experimental O2 production rate during reduction. The state of the reactor at the end of 

the reduction step can be seen in Fig. 1(b). 
 

 

 
(a) (b) 

FIGURE 1. (a) The simulated and experimental [5] temperature and O2 evolution. (b)  The state of the 3.5 kW reactor at the 

end of the reduction step, which lasted until the RPC volume temperature of 1773 K was reached. 

 

The exposed RPC surface is gradually heated up to an average area temperature of 1892 K after 630 seconds and 

the resulting end-state temperature difference across the RPC is around 147 K. Part of the incoming radiation is 

reflected from the ceria surface onto the conical surface of the Al2O3 insulation within the cavity, causing it to reach 

an average temperature of 1925 K at the end of the reduction step. Considering that the maximum operating 

temperature suggested for Al2O3 is around 2073 K [14], continuous daily operation at such high temperatures and 

with no heat recovery (i.e. cooling) mechanism will cause severe thermal stress and eventually damage the 
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insulation. The installation of a thin ceria layer in this section would both protect the insulation while also capturing 

useful heat for O2 production, since the temperature reached there is high enough to maintain the reduction reaction. 

The comparison of the temperature evolution in the RPC, between simulated and experimental results, presents a 

temperature difference of around 130 K throughout the reduction duration. Furthermore, the simulated case reaches 

the 1773 K temperature limit much sooner than the experimental case. It is expected that this difference is caused by 

different reactor temperature measurement strategies: while in the simulation, the average RPC volume temperature 

can be easily obtained, in the experiment it is expected that the temperatures are rather measured at the back of the 

RPC. This assumption agrees with the delay in temperature increase at the beginning of the irradiation. 

Regarding the O2 production rate, the experimental O2 evolution starts sooner and reaches a plateau when the 

heating rate slows down. On the contrary, the estimated O2 evolution in the simulation is much slower at the earlier 

stages but keeps increasing until the completion of the reduction step with a similar rate as the experimental results. 

The estimated O2 release is lower than the experimental production, a result which would lead to under-prediction of 

the s-t-f energy conversion efficiency. Overall this leads to a conservative estimation of the reactor performance. 

Despite not achieving a perfect accuracy, the simulation is able to capture correctly the heat and mass transfer, as 

well as the chemical effects (i.e. O2 release) that take place during the thermal reduction of ceria. Most importantly, 

the simulated geometry is able to reproduce the heating up and O2 production  trends and give a realistic depiction of 

the reactor’s behavior during reduction in very acceptable computational times, facts that make simulations a 

valuable tool for design and scaling-up studies, such as the ones presented in this paper. Accuracy of the simulations 

could be greatly improved by more precise boundary conditions, temperature measurement location, and improved 

modelling. 

SCALE-UP STUDY 

The presented lab-scale geometry has been scaled up to three larger designs, 0.3, 1 and 3 MW, scales that could 

be relevant in a fuel production plant. There are two important reactor characteristics to consider for scaling-up: The 

first is the aperture area, A, that determines the operating concentration ratio, defined as C=
P

𝐼∙𝐴
, where P is the 

operating power, measured at the aperture, and I=1 kW m
-2

 [7]. In the lab scale geometry this ratio was 2785 suns 

and to objectively assess the performance of the larger geometries more accurately, this ratio should remain at 

similar levels. In the scaled-up geometries, the aperture has a diameter of 0.37, 0.676, and 1.171 m, yielding a 

concentration ratio of 2790, 2786, and 2786 for the operating power of 0.3, 1, and 3 MW, respectively. 

The mass of ceria and the shape of the RPC is the second important characteristic. To have a direct comparison 

between the different geometries, the RPC thickness remained fixed at 25 mm for every scale. To increase the mass 

load of ceria, the cavity was expanded by keeping the 
𝐷𝑒𝑝𝑡ℎ

𝑊𝑖𝑑𝑡ℎ
 ratio fixed and equal to the lab-scale geometry. 

Expansion continued until the ceria mass ratio between the large and small scale geometries was the same as the 

power ratio between the two, i.e.: massCeO2-Large-scale = 
𝑃𝐿𝑎𝑟𝑔𝑒−𝑠𝑐𝑎𝑙𝑒

3.5 𝑘𝑊
 ∙ massCeO2-3.5 kW. The mass of the RPC for the 

investigated geometries, as well as the cavity characteristics, can be seen in Table 1. The material properties and 

RPC structure characteristics are assumed to be unaffected by the scaling-up process. 

TABLE 1. The dimensions and ceria mass load of the studied scaled-up geometries. 

Scale-Up Cases Cavity Depth [m] Cavity Width [m] CeO2 Mass [ton] 

0.3 MW 0.825 1.1 0.145 

1 MW 1.53 2.04 0.49 

3 MW 2.67 3.56 1.478 
 

The Al2O3 insulation surrounding the RPC had a fixed thickness of 0.17 m for all scaled-up cases. The resulted 

window, mounted on the front aluminum insulation with a height of 0.17 m, has a diameter of 0.71, 1.02, and 1.51 m 

in the 0.3, 1, and 3 MW geometries, respectively. Such a large window, subject to intense radiation on one side and 

sub-atmospheric and high-temperature conditions on the other, could suffer great mechanical stress and might be a 

limiting factor for large scale geometries. Consequently, optimized cooling techniques are required to reduce the 

thermal stress on the window. Finally, the entire reactor is enclosed by a 7 mm thick Inconel vessel. Specific 

scaling-up methodology for the insulation material was not considered and the presented dimensions consist in an 

initial estimate. Thicker or thinner insulation would affect the heating up and/or cooling down time of the reactor 

and should be addressed in combination with heat capture and recycle mechanisms in a plant design study. 



The used scaling-up methodology is not an optimization for the large-scale geometries. Instead, it is useful as a 

direct comparison between the different scales that operate at the same conditions and as an indication of what 

scaling-up can provide for the studied geometry. 

Scaling-Up Benefit 

One reduction step was simulated with all geometries, including the lab-scale geometry, operated at nominal 

power. The pressure within the cavity for all cases was assumed as 1 mbar and Argon injection was not used, since 

in a fuel production plant, operating at lower PO2 to boost the O2 release from ceria while minimizing the energy 

penalties due to inert gas consumption would be highly beneficial for the plant efficiency. Pressure levels below 1 

mbar seem currently not realistic [15]. Reduction lasted until 1% of the RPC volume reached 2073 K, representing a 

maximum high-temperature limit for increased s-t-f energy conversion efficiency and yield while simultaneously 

respecting the physical and chemical stability limits of the material. The resulting efficiency is presented in Fig. 2a. 

The 0.3 MW geometry outperforms the larger scale geometries, with the exception of the first few reduction 

minutes. Furthermore, the lab-scale geometry also reaches a higher s-t-f efficiency than the 1 and 3 MW geometries. 

These results are contrary to the expectation that the larger the scale, the higher the performance and the benefit will 

be. A deeper investigation is crucial to determine the reason for this behavior. 
 

  
(a) (b) 

FIGURE 2. (a) The solar-to-fuel energy conversion efficiency of the different cases, operating at nominal power, 1 mbar 

pressure and no Argon injection. (b) The heat absorbed by the RPC, expressed as percentage of the total supplied heat during 

reduction. 

 

The scaling-up methodology considers an increase in all dimension and operating ratios proportional to the 

scale-up magnitude. The constant 
𝐷𝑒𝑝𝑡ℎ

𝑊𝑖𝑑𝑡ℎ
 ratio in the cavity and the 

𝑃

𝑚
 scale-up constraint ensured that the incident 

radiation absorbed by the irradiated ceria surface (kWm
-2

) and the total heat per mass of ceria (Jkg
-1

) would be quasi 

constant in the three large-scale geometries. This proportionality however was not enforced in the RPC thickness, 

result which significantly altered the heating-up behavior and the performance of the three scale-up cases in 

comparison with the lab-scale geometry. Specifically, the three large-scale geometries have a much lower ratio of 

power input to irradiated surface area, equal to 76.9±2 kWm
-2

, compared to the lab-scale geometry, which was at 

111.4 kWm
-2

. This is a direct consequence of restricting the RPC thickness, instead of proportionally increasing it 

with the cavity, during the  scaling-up process, since in order to keep the 
𝑃

𝑚
 constraint, the large-scale cavity, and 

thus the irradiated surface, should expand further compared to a direct 1-to-1 scaling-up approach based on the lab-

scale reactor. As a result, comparing the three large-scale geometries with the lab-scale results is inconclusive to 

evaluate the scale-up benefit. Instead, this benefit can be evaluated more precisely by comparing solely the 

performance of the three large-scale cases which share quasi-similar design and operational characteristics. 
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(a) (b) (c) 

FIGURE 3. The average temperature evolution of the irradiated surface, volume and back surface of the RPC for the (a) 0.3, 

(b) 1, and (c) 3 MW cases, respectively. 

 

The quasi-similar ratio of power input to irradiated surface area in the three large-scale geometries translates into 

a comparable heating-up rate in the irradiated RPC surface, seen in Fig. 3. Noticeably, the larger the reactor size, the 

higher the heat absorbed by the RPC, absorption which is expressed as the percentage of the total supplied heat to 

the reactor during the reduction step in Fig. 2(b). This heat absorption is used to heat up the deeper parts of the RPC 

and, in combination with a comparable heating rate in the irradiated surface for all three cases, translates into a much 

faster heating rate in the RPC volume and back surface at the two larger scales. Subsequently, temperature 

uniformity across the RPC volume is reached faster for each consecutive scale-up. While this behavior is desirable 

to minimize the thermal stress on the RPC, unfortunately it is also associated with a steady-state effect where the 
dT

dt
 

gradient is minimized, easily observable in the heating-up behavior of the 1 and 3 MW geometries. This gradient 

drives the reduction reaction, thus a steady-state is associated with saturation effect and limited O2 production from 

the exhausted RPC. As a result, the performance of the larger reactors is hindered and the smaller geometries can 

outperform them. It is important to also notice the heating-up rate of the 0.3 MW case, which almost achieves the 

ideal behavior: a gradual heating rate of the RPC volume over the entire reduction duration, spending only a 

minimum amount of time in a steady-state. The smaller scale of this geometry possibly allows its RPC to still be 

within the acceptable thickness limits to avoid a saturated ceria volume. 

Conclusively, steady-state effects should be considered in larger scale reactors and it is crucial for their 

performance to ensure that the implemented RPC is able to perform as expected, by achieving a gradual heating rate 

throughout its intended reduction duration. This becomes more pressing at each consecutive scale-up. Further 

improvements on the performance of the reactor should be mainly focused on design optimization and improved 

distribution of CeO2 within the cavity. Design optimizations can be defined using a dedicated optimization tool. 

Improved CeO2 distribution is possible through the implementation of a thin ceria layer on the conical Al2O3 section. 

This layer will protect the insulation from extreme temperatures while also increasing the total O2 production, since 

the resulting temperature in the Al2O3 is high enough to drive the reduction reaction. 

It should be mentioned again that the scaling-up methodology has the purpose of defining the benefit associated 

with scaling-up the solar reactor technology and should not be interpreted as a potential assessment of the different 

scales. It is evident from the performance of the 0.3 MW case that large-scale reactors have the potential for 

increased s-t-f energy conversion efficiency values but there are setbacks that should be avoided. The results 

presented in this paper can serve as a guideline for such restrictions as well as an indication for further reactor 

improvements and optimization. 

Even though optimization of the solar reactor is crucial to achieve commercial implementation, it should be 

addressed in combination with a plant design study, as well as an economic and environmental impact study. As part 

of an interconnected system, the reactor has several different optimization possibilities, with each one affecting and 

being affected by the larger plant system. This potential plant system might have distinct goals, such as maximizing 

fuel production and/or environmental/economic impact, rather than maximizing the solar-to-fuel energy conversion 

efficiency of the reactor sub-system. Depending on the results of these studies, the reactor can be optimized for fast 

and flexible redox cycles or longer cycles with maximum O2/Syngas yield per cycle, with different optimization 

methodologies examined for each case. For a plant simulation a more simplified model will be needed to analyze the 

reactor performance for different design and operational conditions with less computational effort. This would help 
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defining the optimum operational parameters for the reactor, which can be integrated in the validated 3D model for 

further optimization, detailed investigation during operation and addressing problematic instances in the reactor 

level. 

CONCLUSIONS 

The validated simulation of the solar reactor with a dual-scale RPC can capture the heating up and O2 release 

trends, making it an important tool for the design of larger scale geometries, relevant in a fuel production plant. The 

simulated scaled-up geometries, equal to 0.3, 1 and 3 MW, display a higher solar-to-fuel energy conversion 

efficiency in the first few reduction seconds compared to the lab-scale design, but the restriction of the RPC 

thickness caused saturation and a steady-state effect which eventually hindered the performance of the larger scales. 

Optimizing the solar reactor is possible through the use of validated models, but optimization should be addressed in 

combination with a plant design and an economic/environmental impact study.  
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