

Sensitivity study for aquatic ecosystem monitoring with the DESIS hyperspectral sensor

Nicole Pinnel, Peter Gege, Anna Göritz

Outline

- Aquatic ecosystem monitoring
- DLR Earth Sensing Imaging Spectrometer (DESIS)
- Sensitivity analysis for determination of water parameters
- Comparison of simulated spectra and real DESIS data.
- Conclusion

Aquatic ecosystem monitoring - global relevance

Coastal regions with water depth < 50 m

Inland wetlands, lakes, rivers

Global distribution of coastal and inland aquatic ecosystems (UNEP- WCMC, 2015)

Aquatic ecosystem monitoring

- Key parameters
 - Concentrations: phytoplankton pigments, suspended matter, dissolved organic matter (CDOM)
 - Optical properties: phytoplankton fluorescence, absorption, backscattering, transparency
 - Others: water depth, bottom substrate type and coverage
- Sensor requirements
 - Spectral
 - Radiometric
 - Geometric
 - Temporal coverage

http://ceos.org/about-ceos/publications-2/

Feasibility Study for an Aquatic Ecosystem Earth Observing System

Version 2.0 March 2018

DLR Earth Sensing Imaging Spectrometer (DESIS)

Orbit: I	SS (~400 km)	
----------	--------------	--

Coverage: 55° N to 52° S

Tilting: -45° to +5° (cross track) -40° to +40° (along track) Spectral range: 420 to 1000 nm **Spatial:** 30 m x 30 m Swath: 30 km @400 km

Flow chart forward simulations

Sensitivity analysis for determination of water parameters Variability of remote sensing reflectance (sr^-1)

Scenario	Deep water	Shallow water
θ_{sun} [deg]	30, 60	30, 60
VIS [km]	100, 10	100, 10
TSM [mg/l]	1 (0.1-10)	1
CHL [µg /l]	2 (0.2-20)	2
a _{cDOM} [1/m]	0.5 (0.2-2)	0.5
S _{CDOM} [nm ⁻¹]	0.014	0.014
zB [m]	1000	1 (0-10)

No sunglint, but skyglint included

Sensitivity analysis for determination of water parameters Range of upwelling radiance at top of atmosphere and bottom of atmosphere

Sensitivity analysis for determination of water parameters Range of transmitted BOA radiance to TOA radiance

Only a small fraction of upwelling radiance at top of atmosphere comes from water !

Scenario	Deep water	Shallow water
θ_{sun} [deg]	30, 60	30, 60
VIS [km]	100, 10	100, 10
TSM [mg/l]	1 (0.1-10)	1
CHL [µg /l]	2 (0.2-20)	2
a _{cDOM} [1/m]	0.5 (0.2-2)	0.5
S _{CDOM} [nm ⁻¹]	0.014	0.014
zB [m]	1000	1 (0-10)

No sunglint, but skyglint included

Solution Sensitivity analysis for determination of water parameters SNR at bottom of atmosphere (BOA) and top of atmosphere (TOA)

Scenario	Deep water	Shallow water
θ_{sun} [deg]	30, 60	30, 60
VIS [km]	100, 10	100, 10
TSM [mg/l]	1 (0.1-10)	1
CHL [µg /l]	2 (0.2-20)	2
a _{cDOM} [1/m]	0.5 (0.2-2)	0.5
S _{CDOM} [nm⁻¹]	0.014	0.014
zB [m]	1000	1 (0-10)

No sunglint, but skyglint included

Sensitivity analysis for determination of water parameters Simulation of noisy reflectance spectra

Chl a 2 [µg /l], TSM 1 [mg /l], a CDOM 0.5 [1/m]

Noise simulated DESIS spectra

Chl a 5 [µg /l], TSM 3 [mg /l], a CDOM 0.5 [1/m]

30

100

3 (0.1-10)

5 (0.2-20)

0.5 (0.2-2)

0.014

1

Chl a 5 [µg /l], TSM 3 [mg /l], a CDOM 0.5 [1/m]

Errors are given in %: error = 100*(inv/fwd-1)

Chl a 5 [µg /l], TSM 3 [mg /l], a CDOM 0.5 [1/m]

[%]

13.45

4.99

5.26

9.13

5.32

6.86

4.26

3.67

2.45

4.51

Inversion of water parameters from real DESIS spectra

Tennesse River, Alabama (USA) 4th Sept. 2018

Inversion of water parameters from DESIS

Alabama (USA)

DLR

Inversion of water parameters from DESIS (not validated)

Tennessee River Alabama (USA)

Inversion of water parameters from DESIS (not validated)

Tennessee River Alabama (USA)

Inversion of water parameters from DESIS (not validated)

Summary

- Simulated retrieval of water constituents was tested on different water constituents concentration and different atmospheric conditions.
- Retrieval worked well within the range of error for CDOM, CHL, TSM and bathymetry
- First inversion results of water parameters from DESIS for TSM and CDOM are very promising

Many thanks to

Kevin Alonso Martin Bachmann Rupert Müller Ralf Reulke Sebastian Riedel Ilse Sebastian and the whole DESIS Team !

