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Abstract 

Existing buildings often have low energy efficiency standards. For the preparation of retrofits, reliable high-quality data about the 

status quo is required. However, state-of-the-art analysis methods mainly rely on on-site inspections by experts and hence tend to 

be cost-intensive. In addition, some of the necessary devices need to be installed inside the buildings. As a consequence, owners 

hesitate to obtain sufficient information about potential refurbishment measures for their houses and underestimate possible 

savings. Remote sensing measurement technologies have the potential to provide an easy-to-use and automatable way to 

energetically analyze existing buildings objectively. To prepare an energetic simulation of the status quo and of possible retrofit 

scenarios, remote sensing data from different data sources have to be merged and combined with additional knowledge about the 

building. 

This contribution presents the current state of a project on the development of new and the optimization of conventional data 

acquisition methods for the energetic analysis of existing buildings solely based on contactless measurements, general 

information about the building, and data that residents can obtain with little effort. For the example of a single-family house in 

Morschenich, Germany, geometrical, semantical, and physical information are derived from photogrammetry and quantitative 

infrared measurements. Both are performed with the help of unmanned aerial vehicles (UAVs) and are compared to conventional 

methods for energy efficiency analysis regarding accuracy of and necessary effort for input data for building energy simulation. 

The concept of an object-oriented building model for measurement data processing is presented. Furthermore, an outlook is given 

on the project involving advanced remote sensing techniques such as ultrasound and microwave radar application for the 

measurement of additional energetic building parameters.  

Keywords: building tomograph; remote sensing; building physics; energy performance; thermography; infrared; building models; three-

dimensional 

1. Introduction 

Energy efficiency improvements on existing buildings have the potential to both decrease greenhouse gas emissions 

related to housing and to be economically beneficial for building owners and/or residents. However, refurbishment 

measures reducing the energy consumption are not carried out as widely as they should be. One reason for this gap 

is that many owners do not know about the potential savings that can be realized on their buildings [1]. They do not 

feel the need to invest the cost and effort involved with the on-site measurements which are necessary to obtain the 

information needed to determine optimal refurbishment solutions for their individual cases.  

The work presented is part of an ongoing research project called “building tomograph” run by the German 

Aerospace Center (DLR) and Solar-Institut Jülich (SIJ) at the University of Applied Sciences Aachen that intends to 

make remote sensing technologies applicable for energetic analyses of buildings [2]. Its goal is to develop a tool box 

of measurement and analysis methods to determine the energetically relevant properties of existing building 

envelopes quickly and accurately. Thus, single buildings or whole districts may be examined in short time to obtain 

crucial information for the development of refurbishment strategies or about loads of the energy distribution 

networks. A reference building provides a validated test ground for remote sensing campaigns and to assess the 
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suitability and accuracy of the techniques used in the project. The structure itself is located in the German village of 

Morschenich, North Rhine-Westphalia. It provides free accessibility from all directions, typical wall structures, and 

the possibility to let unmanned aerial vehicles (UAVs) fly around the building without obstacles. As the house is 

unoccupied and will be dismantled, extensive sample taking and deconstruction of construction elements is possible. 

In this paper, the current state of the research project is summarized. For this purpose the results of actual 

measurements and a set of photogrammetric data products with regard to the reference building are presented in a 

sequence of dedicated sections. Following this introduction, section 2 presents reference measurements using 

conventional methods. The section also provides an insight into the state of the art and the necessary effort to obtain 

reference values for the structure. Section 3 outlines the suggested remote sensing workflow for analyzing the 

energetic properties of the building. The sections 4 to 6 provide a detailed description of how remote sensing 

methods have been used up until now within the project’s time frame by elaborating on UAV-based image 

acquisition and preprocessing (section 4), photogrammetric building reconstruction (section 5), and quantitative 

infrared thermography (section 6). In section 7, the data processing approach is presented which is developed to 

merge the remote sensing data from different sources, generating energetic simulation input parameters. Section 8 

concludes the paper with a summary of the results obtained so far as well as an outlook to future work. 

2. Energetic building assessment with conventional methods to obtain reference data 

At the current state of the art, several methods are in use to obtain input data for the energetic assessment of 

buildings. They cover various aspects of energy consumption and heat demand and are useful to identify different 

types of building weaknesses. When combined, conventional analysis methods can provide the currently most 

reliable evaluation of the complete building. In order to examine the energetic quality of the building envelope, 

terrestrial laser scanning, the blower door test, infrared thermography, and U-value determination are widely used. 

With ground-based laser scanners the object’s inside and outside surfaces are spatially sampled by an invisible 

concentrated light beam in a selectable resolution and quality. As a result, the building geometry gets represented by 

a dense three-dimensional point cloud. The blower door test allows for the determination of the air exchange rate 

and the detection of possible leaks in the building hull. It pressurizes or depressurizes the interior of the structure 

using a unidirectional fan and monitors the air flow necessary to hold the pressure difference over time. Standard 

infrared thermography provides qualitative information about the insulation and possible weak points, such as 

thermal bridges. If accurate plans of the building exist, U-values are usually calculated on the basis of wall structure, 

material data, and layer thicknesses. If no up-to-date plans are available (as it is the case for many existing 

buildings), U-values are guessed using typologies or based on the experience of an expert. They can also be 

measured by taking material samples from the site. In exceptional cases, U-values are determined directly through 

on-wall measurements.  

The advantages of these approaches are that they are well-known, widely recognized by the community and 

relatively accurate with respect to the energetic assessment of a building under well-defined conditions. Their results 

are used to prepare energetic assessment reports – sometimes including dynamic simulations –, energy performance 

certificates, and the recommendation of optimization measures. However, depending on the desired level of detail 

the state-of-the-art methods are time-consuming and require special devices and instruments with specific software 

solutions making them impractical and rather pricey. 

The following paragraph describes the workflow for energetic building assessment applied to the reference building. 

This comprises data acquisition, experimental setup, and energetic simulation. Afterwards, an overview of the 

results of the analysis is given. 

Application of conventional data acquisition methods to the reference building 

A series of measurements on the reference building was performed in Spring 2018. On the basis of a 3D point cloud 

derived from indoor and outdoor laser scans, the building was reconstructed using the software Revit Autodesk. 

With the help of the OpenStudio plugin for the SketchUp 3D tool from Google, information on the wall structure, 

materials, and physical data derived from samples as well as the relationship of building surfaces to their 

environment were introduced into the model. Afterwards, it was transferred to the simulation software EnergyPlus 

as a gbXML file. Data on the air exchange rate (from a blower door test) and on thermal bridges (estimated based on 
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qualitative infrared thermography) as well as estimated values for the sky temperature (calculated in relation to the 

dry bulb temperature) and soil temperature (based on the measured temperatures in the unheated basement and 

recorded data of a meteorological station in the North of North Rhine-Westphalia) were added. The general 

workflow for the determination of an energetic assessment of the reference building including the energetic 

simulation is shown in Figure 1. 

Experimental setup: Heating and temperature measurements 

As it is going to be demolished, the reference building neither was heated nor is its space heating system currently 

operable. During a measurement campaign in Spring 2018, the first floor was heated by a portable 9 kW fan heater. 

On the second floor, each room was equipped with a single electric heater with a power of 2 kW, 2 kW, and 1.2 kW 

respectively. All devices were set up to work at the highest level delivering as much heat as specified on the rating 

plate. The attic space and the basement were not heated. Energy consumption was recorded periodically through 

manual read-out of a Ferraris-type electric meter. Room temperature in the basement and on the first and second 

floor got recorded automatically as were the outside wall surface and ambient temperatures. The mean temperature 

of the building was calculated from the measured room temperatures on the two upper floors using volume-based 

weighting. The general arrangement of the electric heaters and the spots where the main temperature measurements 

took place are shown in Figure 2. 

Energetic simulation: Input data 

In order to validate the building model with its assumptions and physical parameters, mean building temperature, 

basement temperature, energy consumption, and surface temperatures during the measurement campaign were 

simulated using EnergyPlus. For this reason, a weather data file was created containing the ambient temperature at 

Morschenich during the campaign as well as wind velocity, wind direction, and radiation values from a weather 

station in Jülich (in a distance of about 15 km) for the corresponding time interval. Weather data preceding the start 
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Figure 1: Workflow for conventional energetic building assessment 
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Figure 2: Ground plan of first and second floor of the reference building with main measurement points and heating setup 

of the measurements was modified in order to guarantee the same range of initial temperatures during simulation 

compared to reality.  

In the simulation, every room is treated as a thermal zone. As on the first floor only one electric heater was installed, 

the simulation heating load was distributed to the thermal zones proportionally to their floor area. Maximum heating 

power during simulation was adjusted to 71 % of the peak load because unexpectedly low electric meter values lead 

to the conclusion that the heaters stopped operating from time to time, probably due to local overheating at their 

thermostat. Consequently, the thermostat set points could not be used as heating set points for simulation. Instead, 

the simulation heating set points were modified to make the simulated energy consumption match the actual one for 

every interval between the electric meter read-outs, but complying with the maximum value of 38.5°C. The attic 

spaces and the basement are treated as unheated. For the simulation of the basement temperature an additional 

simulation had to be carried out in order to adjust the basement surface temperature towards the soil. 

Energetic simulation: Validation of the model 

In order to verify the model parameters, three sources of data were available: room temperatures, energy 

consumption, and outside surface temperatures. First results show a good agreement of the simulated and measured 

values. In the following, they are presented in detail. 

Figure 3 shows simulated and measured values of mean building temperature, basement temperature, and cumulated 

energy consumption over time. The measurement campaign starts with powering up the heating system. The peak in 

the basement temperature measured in the beginning is due to an initial time delay of the respective temperature 

sensor and hence can be ignored. The negative/positive temperature peaks on April 12 occur because of a blower 

door test on that day. Simulated values for the basement are very close to the measured temperatures; the deviation 

remains less than the specified accuracy of ±0.5 K of the installed sensor (shown as gray intervals in Figure 3). 

Simulated mean building temperatures largely match the measured values. Even the dynamic effect of the blower 

door test can be reproduced approximately by assuming the actual air exchange rate on that particular day. 

Although it was also used for adjusting the heating set points and therefore to some extend is a simulation input 

parameter, the energy consumption of the heating system is a second source for verification of the simulation model. 

In Figure 3, it can be seen that the simulated curve is approximately congruent with the measured curve. The 

difference in total energy consumption might be explained by the inhomogeneous distribution of the heat within the 

house which cannot be fully compensated by just mixing the air with a fan. In contrast to this, in the simulation 

model, every room is considered a homogeneous zone with its specific surfaces, physics, and a static electric heating 

power. Moreover, a constant infiltration rate was assumed during the EnergyPlus simulation run while at the end of 
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the measurement campaign slightly higher wind velocities were recorded. The cooling phase was not examined 

because immediately after finishing the heating phase another blower door test took place. 

Wall surface temperatures were measured and simulated. Figure 4 shows the results for a cloudless day during the 

campaign. As the whole building is orientated approximately 25° counterclockwise from true north, the cardinal 

directions specified do not represent the wall orientations exactly. The surface temperature of the east wall rises at 

first in the morning when it gets hit by the solar radiation with a low incidence angle towards the wall. Shortly 

afterwards, the south wall surface temperature increases due to the slight south-eastern orientation. The temperature 

of the west wall shows the highest absolute values because the angle of incidence is advantageous for a long period 

of time in the afternoon. On top of that, the high temperatures on the west surface are supported by the rising 

ambient air and inside temperatures during the day. The reason for the fact that the simulated values for the west 

wall rise earlier than the measured values is the placement of the surface temperature sensor next to the north/west 

corner of the building. The north face eventually shows a small peak when the solar radiation partially hits the wall 

surface during the end of the day.  

In any case small deviations between the measured and simulated samples can be explained by having used radiation 

data from a weather station nearby. Moreover, effects from shadow cast by the roof overhangs were neglected 

during the simulation. Considering that each temperature measurement was taken at a certain specific point and that 

the simulation data comprises the calculated mean surface temperatures of the respective thermal zones, the 

simulation shows a good approximation of the measured surface temperatures for all four cardinal directions. 

Conclusion on the reference model 

As a conclusion, it can be stated that the EnergyPlus model derived from the actually measured values has been 

successfully validated and may serve as a basis for a future comparison with the remote sensing approach under 

development as a part of the project. In Table 1, the most relevant building analysis results and simulation 

parameters are listed together with a reference to their source. Acquiring the necessary parameters required a 

substantial amount of manual effort and heavily relied on (reasonable) assumptions and literature values.  

0

500

1000

1500

2000

2500

3000

0

5

10

15

20

25

30

35

40

45

43200.25 43202.25 43204.25 43206.25 43208.25 43210.25

E
le

ct
ri

c 
M

et
er

 [
k

W
h

] 

T
em

p
er

a
tu

re
 [

°C
] 

Time  

Reference building measured Reference building simulated Basement simulated

Basement measured Electric meter measured Electric meter simulated

Diff: 5,8% 

Figure 3: Simulated and measured values for mean building temperature, basement temperature, and cumulated energy 

consumption over the time of the reference measurement 

10.4. 6:00 12.4. 6:00 14.4. 6:00 16.4. 6:00 18.4. 6:00 20.4. 6:00 



 

6 

 

October 17-19, 2018 

Innsbruck, Austria Fourth expert meeting 

October 17-19, 2018 

Innsbruck, Austria Fifth expert meeting 

10

20

30

40

50

60

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

S
u

rf
a

ce
 t

em
p

er
a

tu
re

 [
°C

] 

Time 

Wall_North_meas. Wall_West_meas. Wall_South_meas. Wall_East_meas.

Wall_North_SIM Wall_West_SIM Wall_South_SIM Wall_East_SIM
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(18/4/2018) 

Table 1: Overview of the most relevant simulation parameters 

Parameter Value Unit Reference 

Orientation (counterclockwise from true north) 25 ° Google Earth 

Heated zone 7 rooms defined 

Unheated zone  4 basement rooms 

3 attic spaces 

[-] defined 

Infiltration rate (continuous)  0.225
1
 1/h Measurement, calculation 

Thermal bridges (complete building envelope) 0.1 W/(m²K) Assumption based on IR 

Soil temperature 14.0 °C Assumption based on IR and 

meteorological station 

U-value walls 1.095 – 1.95 W/(m²K) Based on literature values 

U-value roof (insulated) 0.418 W/(m²K) Based on literature values 

U-value roof (without insulation) 6.85 W/(m²K) Based on literature values 

Surface convection Ri and Ra various m²K/W calculated2 

U-value Windows 2.22 – 2.60 W/(m²K) Based on literature values 

U-value floor  2.34 W/(m²K) Based on literature values 

U-value ceiling towards attic space 0.423 W/(m²K) Based on literature values 

Shading none [-] Not specified 

Density: brick / pumice stone / concrete 1800 / 1200 / 2400 kg/m³ Literature values 

Conductivity: brick / pumice stone / concrete 1.05 / 0.58 / 2.1 W/(mK) Literature values 

Specific heat: brick / pumice stone / concrete 836 / 800 / 1000 J/(kgK) Literature values 

Solar absorptance complete building envelope 0.7 [-] Assumption based on 

verification of wall 

temperatures 

Maximum heating power (total building) 10.1 kW Measurement 

People, lights, additional internal gains none [-] Not specified 

                                                           
1
 Calculated at 1…2 Pa pressure difference based on the measured low wind velocity during measurement campaign 

2
 Ri inside correlation from models developed by [3, 4], Ra outside correlation from models developed by [3–5] 
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3. Suggested workflow for the energetic assessment of buildings using remote sensing 

Remote sensing technologies have the potential to reduce the effort necessary for the energetic assessment of 

buildings if it can be managed to at least partially substitute the laborious on-site inspections involving the 

conventional methods mentioned above. Thus, the goal of the ongoing research project “building tomograph” is to 

develop an appropriate remote sensing methodology and to estimate the accuracy that can be achieved with the 

technologies identified. In this section, a combination of sensors for the energetic analysis of buildings is proposed. 

A comparison of the conventional analysis and the proposed approach is listed in Table 2. 

Table 2: Comparison of different data sources for conventional analysis and those used for the “building tomograph” 

project 

Information Conventional analysis Building tomograph 

3D point cloud Laser scans with RGB camera for 

coloring  

Photogrammetry based on UAV aerial 

RGB imagery 

Envelope surface geometry Autodesk Recap (with manual input) Automatic identification of surfaces and 

semantics 

Inside geometry Laser scans for each room, Autodesk 

Recap 

Story height estimation from window 

position or similar story-related features 

Location and orientation Google Earth GPS-tagged images 

Roof and wall U-values Calculation based on literature values Sensor fusion of quantitative infrared, 

microwave radar, literature values 

Thermal bridges Assumption based on IR  Estimation based on IR 

Air infiltration Blower door test Ultrasound measurement 

Shading Not specified Polygon clipping on CityGML objects
 

 

Since they can be positioned freely within the space around a building, UAVs provide a flexible platform for image 

acquisition. They allow capturing close-range aerial imagery which subsequently can be used for high-resolution 

photogrammetric building reconstruction. The involved devices are handier and less expensive than a terrestrial laser 

scanner. Furthermore, it becomes possible and more convenient to picture details of the building façade or roof that 

are not visible from any possible laser scanner position on the ground. Taking oriented images and pre-processing 

can be easily carried out with the latest advances in photogrammetric software tools although manual input is still 

needed as described in section 4. The same holds for the reconstruction process (section 5) generating polygonal 

building hulls with semantic annotations which, in contrast to bare point clouds, are the representation most state-of-

the-art 3D tools are expecting as an input.  

To obtain the interior geometry of a structure, additional information is needed which of course cannot be obtained 

by remote sensing from the outside. Assumptions on the inside layout can be made from the story heights derived 

for example from window positions. However, interior walls will not get modelled this way. For future applications 

it may hence be advantageous to include floor plan recognition algorithms based on existing printed plans [6] or 

smartphone imagery [7].  

Thermal infrared (TIR) imagery is a state-of-the-art technology for a qualitative analysis of the thermal quality of 

the building envelope. Utilizing UAVs, it is possible to obtain high-quality infrared images of the structure from 

different perspectives. This does not only allow for 3D infrared visualization and to identify thermal bridges, but 

may also help to approximately quantify the U-values of wall and roof surfaces. A possible approach on how to 

achieve this goal is presented in section 6. However, in order to determine the heat flow through the walls, the 

infrared images must be taken when sunlight is not present yet since its absorption will distort the measured values. 

As a consequence, there is only a short time frame before actual sunrise during which it is feasible to obtain both IR 

and standard RGB imagery during a single flight. Even if quantification of the U-values cannot be realized 

accurately enough, regions with different building material layer structures can be identified. For a detailed wall 

structure analysis of these regions, a promising approach involving non-destructive testing is the use of microwave 

radar [8, 9]. The technology is under development at DLR and will be tested on the reference building in 2019. 
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Another important value for energetic building assessment is the air infiltration rate. The state-of-the-art method to 

determine this value is the blower door test explained previously. It tends to be expensive, laborious, and time-

consuming. To overcome this, research on an approach using ultrasound technologies is currently conducted [10]. 

4. UAV-bound image acquisition and pre-processing 

In order to create a three-dimensional model of the reference building, a large set of more than 1000 GPS-tagged 

and hence roughly oriented RGB images was captured by a standard digital single-lens reflex camera 

(18 megapixels) mounted on a UAV. For reconstruction of the building geometry, nadir-looking and oblique images 

were acquired during a pre-planned flight finished automatically within a few minutes. To capture even small details 

of the façades, close-range images with a nearly horizontal orientation were recorded by manually operating the 

involved hexacopter in a distance of 5 m to the building in different altitudes. However, this time-consuming step 

which cannot be performed automatically yet and thus has to be carried out by an experienced drone pilot is only 

necessary if a close-range examination of possible façade damages is required and is not needed for only deriving a 

generalized 3D-model like a CityGML representation of the building. 

From the stock of images a subset of 152 GPS-tagged images with sufficient overlap (> 60 %) was selected 

manually and processed with the commercial software tool Agisoft PhotoScan. After automatically detecting and 

matching tie points inside the images their orientation which originates from the GPS receiver of the drone gets 

refined resulting in an accurate estimate for the global camera position and rotation at the time of exposure.  In 

Figure 5 (left), camera positions and orientations for the selected subset of images are depicted. From this set of 

oriented images a 3D point cloud with approximately 12 million points (Figure 5 (right)) was calculated by the 

software, providing a spatial resolution of less than 1 cm. This point cloud can now serve as an input to generate the 

polygonal building hull with semantic annotations useful for building information systems or subsequent energy 

simulation. 

Since due to its rotors the UAV used cannot take upward-looking images the point cloud resulting from UAV flights 

lacks information under the roof overhangs and canopies of the building. This obviously is a disadvantage compared 

to point clouds derived from a terrestrial laser scanner. An example for this difference can be seen in Figure 6. 

However, ground-based laser scans expose visibility problems when regions behind balconies and roof installations. 

With some modifications applied to the UAV flight control it will probably be possible to cover the missing regions 

in the near future as well. 

Figure 5: Camera positions for the selected subset of nadir, oblique and near-horizontal images as calculated by Agisoft 

Photoscan (left), 3D point cloud with very high detail (approx. 12 million points, right) 
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In addition to the acquisition of images in the visible range of the spectrum, a TIR camera was also carried by the 

UAV in order to measure the temperature of the building surfaces. In comparison to the RGB images the spatial 

resolution of the TIR camera is significantly lower (640x512 pixels). However, the high-resolution RGB data can be 

superimposed with the thermal imagery to better interpret relevant features. Section 6 discusses infrared 

thermography using drones in detail. 

Furthermore, a UAV-borne hyperspectral camera (Cubert UHD-185) was used to derive information about the 

surface materials of the building components as an additional input to the building analysis. It was shown previously 

that, using an aircraft-borne hyperspectral sensor, the detection of different roof materials (concrete, zinc, aluminum, 

copper, plastic polymers) is generally possible [11]. In further work, the suitability of the rather low-resolution 

50x50 pixel UAV sensor for this task will be examined. 

5. Photogrammetric building reconstruction 

In order to derive a polygonal 3D model of the sample building with semantic annotations, the point cloud from 

Agisoft PhotoScan was used. In a first step, it was converted into a digital surface model
3
 (DSM, depicted in Figure 

7a) which effectively encodes the elevation of the scene. Also, having the DSM, a digital terrain model
3
 (DTM) was 

obtained providing an estimate for the ground height around the building by repeatedly shifting windows of varying 

size over the height bitmap [12]. In the following, the workflow for the photogrammetric building reconstruction is 

summarized. A detailed description is available in previous publications of the authors of this paper [13–15]. 

Façade and roof modelling 

To model the wall surfaces of the structure, the 3D point cloud gets projected into the xy plane subdivided by a 

regular grid. The spatial distribution and z histogram is analyzed for façade pieces which are approximated by line 

segments using RANSAC [16]. Adjacent line segments again undergo linear regression when their directional 

difference is below a fixed angular threshold. The resulting façade fragments will be intersected if their endpoints 

are locally adjacent within the grid forming a closed two-dimensional contour. The step from line segments to 

façade fragments is shown in Figure 7b for the reference building. 

For the extraction of roof planes, slope and aspect of the DSM pixels within the area enclosed by the wall surfaces 

are computed and similar pixels are grouped. During this process chimneys and other installations on the top get 

identified and eliminated for now. Any resulting gaps between or inside the roof segments are filled by breath-first 

                                                           
3
 DSM represents earth surface including any objects on it, DTM only represents the natural terrain’s elevation 

Figure 6: Blind spaces below roof overhangs and canopies in photogrammetry-based point cloud (left) and the respective 

regions in laser scanner point cloud (middle, right) 
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region growing yielding closed surfaces (see Figure 7c). The surfaces are then geometrically combined with the wall 

contours that for this purpose get perpendicularly erected to match the ground height from the DTM. The outcome 

of this process is a preliminary building hull with known surface semantics (for example roof or wall surface) 

according to its construction.  

Roof overhangs 

In western architecture, roofs often come with overhangs which, if not modeled, will disturb texture mapping and 

façade element classification. Since they cast shadows, energetic simulations on the building are influenced, too. To 

extract the eaves, the polygonal outline given by the wall surfaces of a building is projected onto the DSM of the 

scene (see Figure 7d). The roof edges are then moved along their normal vectors with subpixel accuracy up to the 

end of the roof overhangs which are represented by the zero-crossings of the second-order derivative of the height 

map in the gradient direction. The previously reconstructed roof polygons of the building model then get extended 

accordingly. 

Texture mapping 

For realistic renderings of the reconstructed building its naked hull is textured directly from the available input 

images. Each model polygon gets assigned to a sorted list of oriented source bitmaps depending on the effective 

resolution on the respective 3D surface. Following a complex visibility test to bypass any occluders and a tree-based 

coverage analysis the remaining image candidates are written to a single space-optimized texture atlas with minimal 

resampling. Perspective correction relative to the camera position is performed before both the atlas and texture 

coordinates eventually are added to the model. 

Window extraction and reintegration 

Having the texture atlas, windows can be directly extracted from its unrectified polygonal texture patches. However, 

since rectification allows geometrical features to be exploited, an orthogonal projection is computed per building 

polygon to undistort the wall surfaces before classification. Subsequently, openings are detected by iteratively 

scanning the transformed texture patches horizontally for stories and for façade elements per level. To identify 

openings and windows, brightness differences and an orthogonality criterion are evaluated. The elements found get 

vectorized and reintegrated into the building hull by sparsely ray-tracing their vertices starting at the corresponding 

d) Overhang reconstruction 

b) Wall surface segments c) Roof regions a) Digital surface 

model (DSM) 

e) Textured 3D 

model 
f) CityGML object 

with semantics 

Figure 7: Photogrammetric building reconstruction stages 
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camera position. The final geometry is stored in the open Alias/Wavefront OBJ format for visualization and as 

CityGML objects for GIS applications with the semantics collected during the reconstruction process (see Figure 7e 

and f). 

Evaluation on test building 

For the photogrammetric reconstruction of the test building, the chosen set of 152 JPEG images recorded by the 

UAV pictures the building from various positions with a resolution of approximately 3  cm/pixel. Using the process 

described in the previous paragraphs a polygonal 3D reconstruction of the hull of the structure was created. 

Comparing the resulting surfaces against the point cloud revealed a positional deviation of 5 cm on average for 99 % 

of all vertices and 6 cm for all 3D samples including those that belong to any displaced rooftop installations. 

6. Quantitative infrared thermography using UAVs 

In recent time, infrared thermography (IRT) is being tested to measure the heat transfer coefficient (U-value) of 

building walls. IRT from inside a building has provided acceptable outcomes [17, 18]. For the reference building, 

our approach for the external IRT measurement with an infrared camera carried by a UAV was used [19]. In this 

work, it is summarized and its application to the reference building is described.  

Approach for external U-value measurement by infrared thermography for building walls  

The U-value of an outer building wall can be defined as described by equation (1). In steady state it is equal to the 

heat per time and area passing through the wall divided by the difference of indoor and outdoor air temperature.  

𝑼 =
𝒒̇

𝑻𝒊𝒏,𝒂𝒊𝒓 − 𝑻𝒐𝒖𝒕,𝒂𝒊𝒓
=

𝒒̇𝒓𝒂𝒅 + 𝒒̇𝒄𝒐𝒏𝒗
𝑻𝒊𝒏,𝒂𝒊𝒓 − 𝑻𝒐𝒖𝒕,𝒂𝒊𝒓

 

      =
𝜺𝒘𝒂𝒍𝒍  ∙  𝝈 ∙  (𝑻𝒘𝒂𝒍𝒍

𝟒 − 𝑻𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒆𝒅,𝒐𝒖𝒕𝒔𝒊𝒅𝒆
𝟒 ) + 𝒉𝒄,𝒐𝒖𝒕𝒔𝒊𝒅𝒆  ∙  (𝑻𝒘𝒂𝒍𝒍 − 𝑻𝒐𝒖𝒕,𝒂𝒊𝒓)

𝑻𝒊𝒏,𝒂𝒊𝒓 − 𝑻𝒐𝒖𝒕,𝒂𝒊𝒓
 

(1) 

Here, 𝑈 denotes the heat transfer coefficient. The variable 𝑞̇ stands for the specific heat flux through the wall. In a 

steady state it is equal to the sum of the specific heat flux emitted from the wall by radiation 𝑞̇𝑟𝑎𝑑 and by 

convection  𝑞̇𝑐𝑜𝑛𝑣 . 𝑇𝑖𝑛,𝑎𝑖𝑟  is the air temperature near the wall from inside the building, and 𝑇𝑜𝑢𝑡,𝑎𝑖𝑟  represents the 

outdoor air temperature near the wall. In the second part of the equation, the radiative portion is expressed by the 

thermal emissivity of the outside wall surface 𝜀𝑤𝑎𝑙𝑙 , the Stefan-Boltzmann constant 𝜎, an averaged outside reflected 

ambient temperature 𝑇𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑,𝑜𝑢𝑡𝑠𝑖𝑑𝑒 , and the surface temperature of the wall 𝑇𝑤𝑎𝑙𝑙 . For the convective part, 

ℎ𝑐,𝑜𝑢𝑡𝑠𝑖𝑑𝑒 is the convective heat transfer coefficient on the outside of the wall.  

Table 3: Parameters required for measuring U-value using IRT 

Parameters Sensors 

Emissivity Reference table 

Radiation coming from test object IR camera 

Ambient reflected temperature IR camera 

Outside air temperature Temperature sensor (NiCr-Ni) 

Inside air temperature Temperature sensor (NiCr-Ni) 

Wind velocity Vane anemometer 

 

In Table 3 all parameters used for calculating the U-value are listed together with the corresponding sensors. To 

measure the U-value using a UAV-mounted TIR camera with our approach, the wall surface temperature is not 

calculated. Instead, the radiation coming from the wall surface 𝑊 is determined and used to calculate the U-value. 

With the assumption that the object’s surface behaves like an opaque grey body without spectral and directional 

variations in emissivity, 𝑊 can be inserted into equation (1) which gives 
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𝑼 =

 𝑾 −  𝝈 ⋅ 𝑻𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒆𝒅,𝒐𝒖𝒕𝒔𝒊𝒅𝒆
𝟒⏞                

𝒓𝒂𝒅𝒊𝒂𝒕𝒊𝒗𝒆 𝒕𝒆𝒓𝒎

    +   𝒉𝒄,𝒐𝒖𝒕𝒔𝒊𝒅𝒆  ∙  √
𝑾− (𝟏 − 𝜺𝒘𝒂𝒍𝒍) ⋅ 𝝈 ⋅ 𝑻𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒆𝒅,𝒐𝒖𝒕𝒔𝒊𝒅𝒆

𝟒

𝜺𝒘𝒂𝒍𝒍 ⋅ 𝝈

𝟒

− 𝑻𝒐𝒖𝒕,𝒂𝒊𝒓

⏞                                        
𝒄𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒗𝒆 𝒕𝒆𝒓𝒎

𝑻𝒊𝒏,𝒂𝒊𝒓 − 𝑻𝒐𝒖𝒕,𝒂𝒊𝒓
 

(2) 

 

An uncertainty analysis was carried out using this approach. As a result, emissivity and indoor air temperature only 

have a very small influence on the U-value measurement given a high temperature difference between inside and 

outside. Therefore, the emissivity value can be taken from emissivity tables and using an inside air temperature 

sensor is not strictly necessary. [19] 

U-Value measurement on reference building 

The measurement campaign took place at the reference building in Morschenich in April 2018 between 5 am and 

6 am. The primary reason to choose this time was to avoid solar radiation and obtain a large temperature difference. 

A FLIR Duo Pro R (microbolometer detector) thermal camera was used to measure quantities like radiation coming 

from the wall surface and the reflected radiation (using crumpled aluminum foil).  

A close qualitative observation of the thermal image of the north wall (Figure 8) exposes some interesting results. 

For example, the areas above both the windows seem to have higher temperature, probably meaning less insulation, 

whereas the areas next to both windows are insulating better. A detailed inspection from the inside of the building 

by removing the plaster layer off the wall led to the result that, while the outer layer of the wall is completely made 

of brick, in the area above the window the inner layer consists of reinforced concrete. The rest of the inner layer is 

built out of pumice stone. The use of different materials here explains partly the difference in temperature 

distribution because pumice stone insulates better than concrete. The reason for the rest of the temperature 

differences still has to be investigated.  

A reference measurement of the U-value was carried out with the Heat Flux Meter (HFM) method as described in 

ISO 9869-1 [20]. The U-value measured with the HFM method is 1.24 W/(m²K) as an averaged value over the 

seven consecutive days of the measurement period.  

Figure 8: IR image of north wall showing area for U-value measurement (Bx1) and for 

reflected temperature on crumpled aluminum foil (Bx2) 

“hot” 

“cold” 

Bx1

Bx2
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In Figure 8, area Bx1 is used to measure the radiation coming from the wall while Bx2 is used for the reflected 

temperature measurement. Bx1 was selected because the heat flux sensors used for the reference HFM method were 

also mounted in this area from the inside. The evaluation of the IRT measurements to determine U-values is still 

ongoing, but some valuable insights of data evaluation are described in the following. 

Due to the use of different materials in a single wall the usage of an average temperature for a whole façade to 

calculate its U-value is not possible. One approach is to select a small area of the whole wall (like Bx1 in Figure 8) 

and then to measure the U-value there. In this manner, the U-value result is valid only for that small area and not for 

the whole wall. Hence, it normally is impossible to make any assumptions about the insulation quality of the entire 

wall. However, if certain regions of the image of the wall are considered representative, this approach is favorable. 

Another way is shown in Figure 9. Multiple areas are selected for U-value calculation. By doing this, the insulation 

property of the wall can be analyzed locally and refurbishment measures can be recommended effectively. Regions 

can be as large as desired as long as the surface temperature is nearly constant. An area-weighted average can be 

used to determine the U-value for a complete façade. 

It will be interesting to see which approach provides acceptable results for the U-value calculation. In a first 

evaluation, the data analysis process has provided much higher U-values than the HFM results. This deviation is 

being studied in more detail. Moreover, there are more open topics to be worked on like angle dependency, selection 

of time for the IRT measurement, convective heat transfer effects on the TIR camera temperature (housing and core) 

during the measurement and the influence of dynamic effects on U-value calculation.  

7. Data processing 

After acquiring various kinds of remote sensing data, they have to be merged to form a base for energetic building 

simulation. For this purpose software to create object-oriented digital building models is being developed using the 

programming language Python. This section contains information about the concept of the modelling approach, the 

steps for the import of geometrical data, and the connection to building simulation tools.  

Concept of modelling approach 

The output of photogrammetric building reconstruction is a CityGML file in level of detail (LoD) 3 containing 

information about the exterior surfaces of the structure and their semantic classification into walls, roofs, and 

Figure 9: U-value calculation with multiple areas on the north wall 

“hot” 

“cold” 
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windows. The software design resembles the CityGML semantics: Surface objects are defined by exterior and 

interior polygons which in turn are declared by position objects as corner points. Neighboring surfaces share the 

respective position objects. For volumetric objects, the concept assigns every part of the building to one of the 

volumetric categories (e.g. room, window, wall, or roof). The respective objects share their bounding surfaces with 

their neighbors. As a consequence, the surfaces bounding only one volumetric part of a particular building define its 

outer hull. To the other sides of these surfaces there is ground, a part of another building, or empty space (air). When 

importing groups of buildings, the volumetric parts of adjacent structures can share bounding surfaces, making it 

possible to efficiently identify energetically important neighbor relations. Surface, volume and building objects are 

intended to get attributes that are useful for building analysis. Exemplary attributes are shown in Figure 10 which 

gives an overview of the object-oriented concept of the software.  

 

Pre-processing steps 

When reading CityGML LoD 3 files from the building reconstruction process presented in section 5, buildings are 

assembled from semantically annotated polygonal envelope surfaces. These surfaces are imported into the model as 

volumetric building elements with coplanar front and back surfaces. One room object per building is confined by the 

back surfaces of its envelope elements. During the import process, it is ensured that if equal coordinate values 

appear for different surfaces, the same position object is used.  

With this information small irregularities in the planarity of the surfaces that occur due to the used reconstruction 

algorithm can be compensated. Coordinates that are part of perfectly planar surfaces are kept constant; the other wall 

and floor planes get vertically and horizontally aligned respectively while roof planes are fitted to the initial 

coordinates. Coordinates of corners are calculated as intersection points of the planes. As windows and doors are 

usually embedded into a surrounding surface, the positions defining them are usually set by the fitting of these 

surfaces.  

The algorithm for introducing wall thicknesses and story-separating floors is currently under development. This 

includes the derivation of story heights (including the height of the lowest floor for the estimation of building 

elements below the ground) from the positions of windows, balconies, and/or story-separating ceilings visible in 
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thermal images. As back surfaces of walls interfere with other volumetric objects if they are extruded orthogonally 

to their front counterpart, changes to all adjacent objects must be conducted consistently and simultaneously. 

Another important issue in this context is the complexity of the relation between windows and walls which are 

coplanar surfaces in the CityGML file, but not in reality. 

Connection to building simulation tools 

One of the development goals of the modelling software is a flexible interface to building simulation software such 

as the generation of EnergyPlus input data files (idf), the connection to the Modelica Buildings library via the 

Python package buildingspy [21], or the simplification of building information to connect to tools like TEASER [22] 

for urban-scale simulation or BuildingOPT [23] for retrofit optimization. As data quality and availability vary 

between different buildings and input data requirements also vary between simulation tools, it is important to choose 

the best information available for the respective purpose and to include a possibility to complete necessary 

information with the help of other data sources like building typologies. In order to improve the quality of the 

simulation, all information that can be easily obtained by residents or owners should be included in the model, 

starting from the year of construction up to the age of the windows and their material and glazing type. Solar 

irradiation onto the building can be calculated using a polygon clipping algorithm on the 3D models. 

8. Summary, conclusion, and outlook 

In this paper, measurement and data processing techniques for the energetic assessment of buildings were presented 

using a German single-family house as a reference building. Conventional tools for this purpose including laser 

scans, U-value detection from material information, U-value measurements, blower door tests, on-site inspections 

and general information sources were used in conjunction with commercially or openly available software tools to 

obtain a simulation model of the building that was afterwards validated against measured temperature and heating 

load data. The resulting data set provides reference values for a (hopefully) equivalent but more cost-efficient 

remote sensing approach as a part of the “building tomograph” project. Until now, a building reconstruction 

workflow based on close-range UAV photogrammetry in the visible spectrum and U-value quantification by 

infrared thermography has been tested on the reference building. 

There is no significant indication for sensor-caused accuracy issues between laser scans and photogrammetrically 

generated point clouds. However, there are some differences in visibility of parts of the building that result from the 

positions the respective devices have been operated from and in how color information gets added. While 

photogrammetric point cloud generation nowadays can be quickly achieved with ready-to-use software tools, 

retrieving a semantically annotated and textured building hull will remain computationally expensive particularly if 

visibility tests on occluding objects are involved. Nevertheless, the inline approach used for “building tomograph” is 

nearly fully automatic and allows recognizing wall surface openings like windows. 

Concerning U-value measurements, the proposed method hinged on quantitative infrared thermography is not yet 

able to compete with U-value calculation based on material information or the heat flux meter method. However, 

sufficient data on the material of the building wall is not generally available. Furthermore, the approach described is 

still under development and has the potential to reach a higher accuracy, especially when microwave radar and 

hyperspectral sensors will eventually be introduced. 

Thus, future work will concentrate on the development and evaluation of new remote sensing technologies for wall 

material analyses and air leakage detection. Strategies remain to be developed and refined on how the data from 

additional sources can be fused and stored efficiently and consistently. This also includes the identification and 

definition of interfaces between measurement data collection and energetic building simulation software. To further 

increase the quality of the validation data set, a new measurement campaign is planned on the reference building. 

This will involve a pressure difference sensor, a weather station also recording soil temperature, continuous 

monitoring of the heat energy consumed, and coverage of the cooling phase of the building.  
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