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Abstract 

CoSb3-based Skutterudites are among the best materials for thermoelectric generator (TEG) 

applications in the intermediate temperature range up to 500 °C. Synthesis of these materials is 

usually performed on a laboratory scale in materials research. In order to be suitable for an industrial 

low cost production of TEG technologies capable of delivering large amounts of thermoelectric (TE) 

materials are needed. A process mastering this challenge is gas atomization, which has been adapted 

to the requirements of TE materials, in particular CoSb3-based Skutterudites. We found that despite 

rapid solidification taking place in the atomization process the produced powder material contains 

only traces of the target Skutterudite phase. Microstructure investigation shows a very fine 

dispersion on the micrometer scale of CoSb, CoSb2 and Sb phases in the atomized particles, making 

diffusion paths for the formation of the Skutterudite phase short. This allows the use of short-term 

heat treatment to achieve almost single phase material of high functional homogeneity. Different 

thermal post-treatments have been evaluated leading to a content of >98% of the Skutterudite phase 

in large ingots. Doping and filling by varying the starting composition was applied to tune the 

materials to n- and p-type conduction, respectively, and led to an increase of their thermoelectric 

figure of merit ZT up to values of 0.9 and 0.72 for n- and p-type material, respectively.  

Introduction 

Thermoelectric generators are used to convert flowing heat directly into electricity without moving 

parts or working fluids, thus providing a great potential in applications of waste heat recovery or 

energy harvesting [1]. In the search for highly efficient thermoelectric materials a new material is 

usually synthesized on a laboratory scale of a few grams per batch, yielding sufficient material to 

fabricate some laboratory samples. To bring TEG technology into the market for mass applications 

like waste heat recovery in vehicles or stationary industrial applications, a large scale production 

technology of high performance, yet low cost thermoelectric materials is required.  

Skutterudites are among the materials with highest conversion efficiency, given by the thermo-

electric figure of merit ZT, in the relevant temperature range between 250 and 550 °C [2-4]. ZT is 

defined as ZT=(S2
/)·T, with the Seebeck coefficient S, electrical conductivity , thermal 

conductivity  and the absolute temperature T. 

For application, besides the material properties, cost and available quantities play likewise important 

roles. Here, advanced production methods facilitate a scalable synthesis of Skutterudite materials 

and have the potential to reduce production cost.  
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Gas atomization is a commercially widely used method for the large scale production of metal and 

alloy powders. It combines melting and alloying of the elements, quenching and pulverization into 

fine powders for subsequent sintering within one single process. For the work presented here a 

small-scale gas atomizer was used that allows for a material production of 0.5-3 kg of powder per 

batch which overcomes the threshold from laboratory-style ampoule melting synthesis to a high-

throughput one-step powder production method. The method is easily scalable from kilograms to 

tons per batch and thus allows for a fast and flexible production of thermoelectric material powders 

as has already been investigated for Bi2Te3-Bi2Se3 compounds [5] , Mg2(Si,Sn) [6] and for Ce-filled n-

type Skutterudites [7]. In this work we present investigations on undoped and on both p-type and n-

type Skutterudites with various filling elements synthesized using gas atomization and subsequent 

current-assisted sintering. The influence on the phase composition, microstructure and 

thermoelectric properties of both p- and n-type filled Skutterudite materials are discussed. A 

moderate chemical purity (3N+) of the original elements has been chosen in order to keep this 

synthesis route costwise competitive as an industry-relevant production. Results of annealing and 

sintering effects on materials prepared in the same way are presented elsewhere [8]. 

Experimental 

For the material synthesis a gas atomizer of type Hermiga Mini, PSI Ltd., UK, was used that allows for 

production quantities of 0.5 – 3 kg of powder per batch, depending on the processed materials´ 

density. Purified elements (Co: 99.95%, Sb: 99.97%, Fe: 99.98%, Ni: 99.98% all supplied by 

Sindlhauser Materials GmbH; In: 99.999%, Ce: 99.99%, La: 99.99%, Nd: 99.995% all supplied by 

AlfaAesar) were treated in a glovebox to prevent oxidation. The Ce-mischmetal (66% Ce, 33% La) was 

only 99% pure and delivered under air. The elements were weighed and mixed according to the 

target stoichiometry with 1.5% excess of Sb to compensate for material loss due to evaporation from 

the melt. The material was heated to 1100 °C in an induction furnace under Argon atmosphere 

within 1 h. The induction furnace is positioned as part of the upper section (melting chamber) in the 

atomizer setup. The melt is held at 1100 °C for 10 min before it is released through a ceramic nozzle 

into a large solidification chamber as the bottom section of the atomizer and then quenched and 

atomized by a high pressure Argon gas jet into fine droplets. While floating in the inert gas these 

droplets solidify and transform into micrometer-sized spherical powder particles. The synthesis route 

is not a complete inert gas process chain, since the gas atomization system used here is not prepared 

for a loading of the basic elements under inert gas, hence a short exposure to air cannot be excluded. 

Treatment of the atomized powders in a glove box and hot pressing are done under inert gas or 

vacuum.  

The particle size distribution after atomization was measured in a Beckman Coulter LS 13 320 particle 

analyzer with ethanol as a working fluid. For structural characterization of the powders as well as of 

sintered samples, a Siemens Bruker D5000 powder XRD system was employed. The software 

FULLPROF [9] was used for Rietveld refinement of the XRD data. Powders were compacted in a 

graphite pressing die with a diameter between 15 and 50 mm using a current-assisted hot press (Dr. 

Fritsch DSP 510A) at 580 °C and 60 MPa under 0.7 bar of Ar partial pressure to reduce evaporation. 

The duration of the holding time at maximum temperature was varied between 10 and 30 min in the 

press.  

The temperature-dependent thermal conductivity is calculated from the thermal diffusivity 

measured with a Netzsch LFA 427, Archimedes’ density, and specific heat measured by a Netzsch DSC 
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404. The temperature-dependent electrical conductivity σ and Seebeck coefficient S were measured 

simultaneously using a custom-built measurement device [10]. S and  are recorded during 

subsequent heating and cooling phases of the measurement cycle to obtain information on the 

functional material stability. Measurement errors are assumed to be 8%, 5%, and 5% for κ, S, and σ, 

respectively. The repeatability of the Seebeck coefficient measurement is better than 5% allowing for 

the identification of smaller differences between samples; the 5% error mainly accounts for accuracy, 

meaning an absolute uncertainty of the measured values due to systematic errors [11]. These values 

sum up to an accuracy of the calculated figure of merit of approx. 20%. Hall measurements were 

performed at room temperature in a custom-made setup in van der Pauw geometry [12] comparable 

to the setup discussed in [13]. Hall carrier concentration and mobility were calculated under the 

assumption of a single carrier type; errors are estimated to be 10% for samples with a Hall carrier 

concentration nH < 3·1020 cm-3. For these with higher carrier concentration the error is estimated to 

be up to 20% due to lower signal-to-noise ratio. For some of the p-type samples Hall measurements 

were not possible due to sample breaking during the course of the measurements. 

Results and discussion 

The influence of the atomization gas jet pressure on the powder particle size has been investigated 

for undoped Co-Sb with the weighted nominal composition CoSb3. The particle size distributions of 

the atomized Co-Sb-based powders range from 0.4 to approx. 100 µm with the main volume fraction 

around 10 µm (see Figure 1). The variation of the atomization gas jet pressure has a significant 

influence on the mean particle size and shape distribution, thus allowing for a particle size control in 

a range between main fractions of approx. 20 and 8 µm between 15 and 36 bar gas pressure, 

respectively. 

 

Figure 1: Particle size distribution of Co-Sb-based atomized powders, prepared using different atomization gas pressures 

SEM images of atomized powders reveal spherical particle shapes (Figure 2 inset), which is typical for 

atomized materials, driven by surface tension of the hovering droplets in the inert gas. The spherical 

shape enhances an easy powder flow e.g. in mechanical feed throughs technological processes. The 

surfaces of undoped Co-Sb powder particles show a precipitation of seemingly fluffy material, the 

elemental nature of which could not be identified by EDX because of its fine, open structures. This 

material might be elemental Sb initially evaporated from the droplets because of its low melting 

point and high vapor pressure that later re-condensed on the particles´ surfaces. This assumption is 

supported by the observation of a visible vapor around the melt jet in the atomization chamber 

before the atomization gas jet sets in. At higher magnification the particle surface shows distinct 
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polygonal phase regions with a scaling smaller than 1 µm (Figure 2). The chemical nature of these 

regions is revealed by EDX analyses on cross sections of gas atomized powder particles, as shown in 

Figure 3 left. The nominal composition in this sample was according to a Ce- and La-filled p-type 

Skutterudite of La0,053Ce0,099Co0.5Fe0.5Sb3. The micrographs clearly show a multi-phase constitution 

composed of grains with MSb cores and MSb2 surrounding (M = Co0.5Fe0.5) in a Sb matrix with minor 

regions of MSb3 decoration the interfaces, and additional La-Sb and Ce-Sb phases. Rapid solidification 

during gas atomization led to the formation of high temperature M-Sb side phases rather than 

establishing the desired Skutterudite phase in accordance to the phase diagram.  

  

Figure 2: SEM micrographs of atomized Co-Sb-based powder particle surfaces; inset: Spherical shape of the produced 
particles 

   

Figure 3: Left: SEM micrographs and element analysis on cross sections of gas atomized Co-Fe-Sb-based powder particles 
with La and Ce addition as filling elements (nominal composition La0,053Ce0,099Co0.5Fe0.5Sb3); Right: Hot pressed pellet from 
the same material; labels indicate location of point IDs by EDX (Table 1) 

Table 1: Results of the EDX analyses of point IDs indicated in Figure 3 (right) 

at.-% Fe Co Sb La Ce 

Spektr. 2 10.5 11.6 75.3 0.5 2.1 

Spektr. 3 10.7 10.8 75.2 1.2 2.1 

Spektr. 4 10.4 10.4 76.3 1.0 1.9 

 

The Co-Sb phase diagram shows the peritectic segregation into liquid Sb and CoSb during cooling, 

which at lower temperatures partly converts into the CoSb2 γ phase, which is stable up to 936 °C and 

later into the CoSb3 δ phase, which is stable up to 874 °C [14]. Since the diffusion at this comparably 

low temperature is very slow and the duration in this temperature range is short during passive 
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cooling of the droplets, only a small content of δ phase is found at the boundaries between the dark 

gray areas and the Sb matrix in Figure 3 left.  

Therefore, alike to the established ampoule melt-quench route, a thermal post-treatment of the 

quenched material was necessary to transform the material into the desired MSb3 phase. Several 

processes have been tested on undoped Co-Sb powder from the same atomization run such as ball-

milling, heat-treatment of the as-atomized powders in a furnace or during hot pressing. The results of 

the XRD phase analyses are shown in Figure 4.  

 

Figure 4: XRD patterns and results of the phase analysis of the atomized powders of undoped Co-Sb material before and 
after different post-processings. The content of the Skutterudite phase is given in vol.-%. 

The as-atomized powder contains hardly any Skutterudite phase. The formation of CoSb3 by 

mechanical alloying is known from literature [15] and the synthesis  of Skutterudite phase from 

elemental powder mixtures by ball milling has been investigated [16]. A maximum Skutterudite 

content of 75% was reached there after 8 h of ball milling at 300 rpm. In our work the starting 

material is already a fine powder with a very fine distribution of the predecessor phases, so a more 

gentle approach with 12 h of ball milling of gas atomized powder in a planetary ball mill at 200 rpm 

has been tried. The content of Skutterudite phase could be increased to merely about 10%, which is 

comparable with literature results on ball milling of ingots quenched from the melt [17]. For 

comparison, a long-term heat treatment of atomized powder sealed in a quartz ampoule under Ar 

for 7 days at 700 °C (comparable to usual procedure) for ingots from the conventional melt-quench 

synthesis) was tested and confirmed the feasibility of getting single phase material from gas 

atomization. The powder contained up to about 98% of Skutterudite phase, with an experimental 

error of ±1%, with side phases of CoSb2, possibly because of Sb loss during the melting process. A 

heat treatment with longer duration and at higher temperature did not lead to higher phase content.  

However, this route would be too time-consuming and laborious for an industrial mass production 

technique. As a much faster alternative, a short-term heat treatment related to the current-assisted 

sintering for 10 min not only provides a compacted pellet of high density but also leads to the 

formation of approx. 90% of the Skutterudite phase in the pellet. In further tests this phase content 

could be increased to >98% after a hot pressing at 580 °C for 20 min. These results were obtained 

with undoped and unfilled Co-Sb material. When using these process parameters for In-filled 

material InxCoSb3 about 96% of Skutterudite phase could be achieved complemented by impurities of 

In-Sb and CoSb2 whereas for the Ce- and La-filled (Ce,La)xCoSb3 about 95% of Skutterudite phase with 
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side phases of rare earth antimonides and FeSb2 have been found (see Table 2). The needle-like rare 

earth antimonides in the as-atomized powders are high temperature stable (up to 1130 °C in case of 

Ce, In) and mostly consumed during the heat treatment by hot pressing. Since XRD of the hot pressed 

pellets showed the presence of residual side phases that are not in the SEM/EDX analysis in different 

locations of hot pressed pellets (Figure 3 right and Table 1), a very fine side phase distribution below 

the spatial?? resolution of the SEM must be assumed. 

In ingots from melt synthesis Skutterudite phase contents of 75-80 vol.-% are reported before heat 

treatment and of 93 vol.-% and >98 vol.-% after 2 and 7 days treatment at 700 °C, respectively [18]. 

The different durations of heat treatment necessary for the homogenization of melt ingots compared 

to the relatively short duration for atomized powders can be attributed to the different characteristic 

lengths of the phase mixtures, governing the transformation rate. As seen in Figure 3 for atomized 

powders a phase mixture with a scaling of about 2 µm around Sb precipitates in one particle is 

visible, whereas for quenched melt ingots these lengths are typically in the range of 50-100 µm, 

depending on the cooling rate upon solidification. Longer separation lengths between the phases 

require longer homogenization times by diffusion.  

Skutterudites were synthesized by gas atomization and hot pressing as n-type CoSb3-based and p-

type (Co,Fe)Sb3-based materials with different filling elements such as In, Ce and MM (mischmetal: 

66% Ce, 33% La) to reduce the thermal conductivity and tune the electrical properties, hence 

increase the figure of merit. It is well known that both structure filling and altering the Co/Ni or 

Co/Fe ratio changes the doping level in Skutterudites [19]. As can be seen from Table 2 the addition 

of the filler leads to an increase in carrier concentration for both n- and p-type samples in the range 

of 1019 cm-3 – 1020 cm-3, partially surpassing the reported optimum carrier concentration in the order 

of 1020 cm-3 or 0.5 charge carriers per unit cell independent on the filling element for p- and n-type 

Skutterudite, respectively [20]. 

Table 2: Nominal composition and room temperature Hall and XRD data (M=Co1-xNix for n-type and M=Co1-yFey for p-type 
samples). 

Composition Type 
nH  
[1019cm-3] 

 

[S·cm-1] 
µH  

[cm2·V-1·s-1] 
a [Å] 
Kieftite 

Kieftite 
vol.-% 

MSb2 

vol.-% 
MSb 
vol.-% 

Sb 
vol.-% 

other 
vol.-% RWP 

In0.05CoSb3 n 7.4 825 70 9.043953 98 1 <1   <1 8.998 

In0.06CoSb3 n 13.6 1030 47 9.042371 97 1 <1 <1 1 9.324 

In0.025Co0.9Ni0.1Sb3 n 39.0 1010 16               

In0.05Co0.93Ni0.07Sb3 n 26.0 775 19               

In0.035Co0.96Ni0.04Sb3 n 16.9 570 21 9.039727 96 2 <1 <1 1 7.464 

                        

MM0.025Co0.67Fe0.33Sb3 p                     

MM0.07Co0.62Fe0.38Sb3 p 11.6 425 23 9.069631 97 2 <1 <1 <1 17.13 

MM0.15Co0.5Fe0.5Sb3 p       9.087153 96 1 1 <1 <1 13.57 

Ce0.1Nd0.1Ni0.08Fe0.92Sb3 p 120.0 1770 9 9.127059 95 3 <1 1 <1 17.11 

La0.053Ce0.099Co0.5Fe0.5Sb3 p 45.0 620 9 9.090162 96 2 <1 <1 1 13.55 

 

The structural filling limit depends on the certain element and on the substitution level for Co. For 

example the maximum filling of In in n-type InxCoSb3 is reached with x = 0.05 [21], while for Ce or La 

in p-type (Ce,La)xFeSb3 it is x = 0.225 [22]. The thermoelectric properties of n-type InxCo1-yNiySb3 and 

p-type MMxCo1-yFeySb3 were investigated. The results for Seebeck coefficient, electrical and thermal 

conductivity of n- and p-type Skutterudites are presented in Figure 5. For the n-type material an 
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increase of the In content increases the electrical conductivity and reduces the Seebeck coefficient in 

agreement with the measured increasing charge carrier density.  The n-type samples show 

consistently the opposing trends of carrier concentration and Seebeck coefficient. The electrical 

conductivities increase with increasing carrier concentration, however not proportional to nH due to 

a massive reduction of the carrier mobility for the Ni-containing samples. A reduction of the mobility 

with increasing carrier concentration is expected due to increasing carrier-carrier and impuritiy 

scattering in agreement to the results obtained on Ni-substituted CoSb3-Skutterudites [23]. The 

samples with low mobilities exhibit weaker decrease of the electrical conductivity with increasing 

temperature indicating an additional scattering mechanism that is more effective at lower 

temperatures as likely cause. Scattering of charge carriers on secondary phases at the grain 

boundaries, e.g. oxides, in addition to the usual electron phonon scattering, could lead to the 

observed behavior [24], however, further microstructural characterization is required to verify this 

hypothesis. Similarly, for the p-type samples also low mobility values are obtained for highly doped 

samples again in agreement to literature data and explaining the partially poor electrical 

conductivities [25].   

P-type material of Co0.5Fe0.5Sb3 has been prepared filled both with commercial Ce-Mischmetal and a 

mixture of Ce:La=2:1 from highly purified elements, respectively, for comparison. The lower electrical 

conductivity of the first material might be explained by residual oxides and impurities, since the 

commercial MM was not oxide-free. The Seebeck coefficient of these samples suggests a lower 

charge carrier density in the MM-sample, which is mainly determined by the Fe-content in p-type 

Skutterudites, hence partial oxidation of Fe could lead to a lower substitution level than expected. 

While the obtained values for the Seebeck coefficient and thermal conductivity for all gas atomized 

materials are comparable to literature values reported for similar compositions, the electrical 

conductivity of the gas atomized materials are only about half of the literature data for comparable 

compositions [26-28]. Hall effect data reveals reduced charge carrier densities in the gas atomized 

material, while at the same time lower mobilities compared to literature data [18, 29]. This may be 

caused by side phases of oxides decorating the grain boundaries or high-temperature stable 

antimonides. However, no clear evidence for such side phases could be seen from XRD and SEM 

investigations.  
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Figure 5: Temperature dependence of Seebeck coefficient, electrical and thermal conductivity (including the lattice 
contribution) for n-type (left) and p-type (right) Skutterudites prepared from gas atomized powders. 

The lattice contribution to the thermal conductivity L (see Figure 5) is estimated using the 

Wiedemann–Franz law (L =  - LT) with the Lorentz number L calculated using the Seebeck 

coefficient data as  L = 1 + exp(-│S│/166) [30].  The thermal conductivity of unfilled CoSb3 prepared 

by gas atomization is given for comparison, almost identical to the lattice contribution in CoSb3 

because of its low electrical conductivity. The lattice thermal conductivity is strongly reduced in all 

filled materials with smaller values for higher In and Ni contents in the n-type material, with the 

stronger influence of In than Ni and even slightly increased L with maximum investigated Ni 

substitution of 10% for Co. The reduction in L by the In filling is more sensitive at lower filling level, 

reaching a minimum of 1.5 W/(m·K) at 350 °C for In0.06CoSb3. In the p-type material the high-level 

substitution of Co by Fe allows for a higher structural filling limit, as discussed before, hence lower 

lattice thermal conductivities are reached compared to the n-type material. Generally,  and L get 

smaller with increased filling level both for MM and Ce/La, reaching a minimum L of 0.9 W/(m·K) at 

400 °C for Ce0.1La0.05Co0.5Fe0.5Sb3 comparable to literature data of highly Ce- or Yb-filled Skutterudites 

[31]. An even higher filling was tested with Ce0.1Nd0.1Ni0.08Fe0.92Sb3, but the thermal conductivity 

could not be reduced more.  

The measured thermoelectric properties combine to the values of the figure of merit as shown in 

Figure 6. For the tested compositions increasing the amount of In filling in the n-type material raises 

the ZT values, whereas Ni substitution for Co contradicts this behavior as already seen in unfilled Ni-

doped Skutterudites [23], resulting in a maximum ZT  of 0.9 at 390 °C for In0.05CoSb3.  For the p-type 
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material the highest ZT values are reached for a substitution of Co by Fe by around 50% for the 

samples investigated here. Depending on the filling element different optimum Co:Fe ratios are 

reported, ranging from 5:3 for Ce filling to 1:7 for La-MM ([32, 33]). Again the higher filling fraction of 

mischmetal increases ZT, resulting in a maximum of 0.7 at 410 °C for MM0.15CoSb3. In both cases the 

formulae represent the nominal compositions; the actual filling level could not be refined from XRD 

measurements.  

  

Figure 6: Temperature dependent thermoelectric figure of merit of n- (left) and p-type (right) Skutterudite materials 
prepared by gas atomization 

The technique of gas atomization provides sufficient amounts of material for the fabrication of large 

ingots, used for the production of TE single legs on an industrial-sized scale. Here ingots of 50 mm in 

diameter, 35 mm in thickness and about 0.5 kg each were prepared by hot pressing of gas atomized 

powders. A multi-filament wire saw was used for cutting the ingots into wafers of precise thickness, 

determining the length of the single legs after separation of the wafers into blocks by a precision 

wafer saw. Figure 7 shows pictures after each of these processing steps. Before this separation step 

into TE legs the base faces of the wafers can be coated with metal layers acting as diffusion barriers 

and adhesion layers in the bonding process for a TE module setup. The combination of these down-

the-line steps with the gas atomization synthesis allows for large-scale production of Skutterudite-

based TEG. 

   

Figure 7: Hot pressed Skutterudite ingot of 50 mm Ø (left), cut into wafers (middle) and finally into single legs (right) 

 

Conclusion 

Gas atomization can be used in combination with current-assisted hot pressing to produce p- and n-

type Skutterudite single legs. In comparison to an ampoule melt synthesis this technique allows for 
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large material quantities in comparably short time, making it suitable for an industrial application. 

The achieved thermoelectric figure of merit of these materials (0.9 for n-type, 0.7 for p-type) is about 

half of the maximum values reported in the literature for similar compositions. The difference can be 

attributed mainly to lower electrical conductivities. Hall effect measurements showed lower charge 

carrier densities and at the same time reduced charge carrier mobilities for the gas atomized 

materials compared to literature data. The lower doping/filling efficiency, the reduced mobility and 

the observed changed temperature dependence of the electrical conductivity for samples with high 

filling levels are plausibly explained by the existence of side phases like oxides or high-temperature 

stable antimonides. These could be the result of the starting low grade elements of technical purity 

and the used gas atomization system, which cannot be loaded under complete inert atmosphere. 

However, no evidence of such side phases could be seen from XRD or SEM. Our results prove the 

possibility of Skutterudites fabrication by gas atomization with moderate thermoelectric properties 

and moreover give indications how to improve these further. 
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