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The exploration of Solar System bodies relies heavily 

on remote sensing and mapping [e.g. 1]. The 

approach is complemented by in-situ analyses and 

sample return. The combination of cross-validating 

data is of great importance for planetary landing site 

data analysis as well as for planetary analogues [e.g. 

2-4]. Integrating remote sensing and geophysical data 

can prove useful to constrain surface and subsurface 

structure of planetary landing sites and their 

terrestrial analogue counterparts [5-7].  

The 2017 ESA astronaut training campaign extension 

PANGAEA-X [3, 4] hosted several experimental 

suites. One of them is AGPA [5], standing for 

Augmented field Geology and Geophysics for 

Planetary Analogues.  

AGPA comprises a flexible suite of remote sensing 

and geophysical experiments including drone 

photogrammetry and LIDAR [6] as well as geo-

electrics [7] and active, passive seismic [8] 

investigations. AGPA also supported the integration 

of training data collection and analogue field geology 

procedures with geophysical in-situ and remote 

sensing. The resulting technique and data 

combination is synergistic and can be applied to both 

science and operational aspects. 

Sub-centimetric surface imaging and topographic 

reconstruction of the main analogue site [6] was 

obtained. The resulting models, integrating both 

stereogrammetry and ground-based LIDAR proved 

useful for the morphometric characterisation of 

surface materials and structures as well as for 

constraining the shallow subsurface geometry of 

vents (Figure 1). These data are being integrated with 

traditional cave surveying datasets, in order to 

produce a comprehensive surface-subsurface model. 

Subsurface structures and not directly accessible lava 

tubes have been investigated through concurrent use 

of surface imaging and subsurface sounding (Figure 

2). Results include constraining the position and size 

of lava tubes (Figure 3) and cross-validation with in-

tube lidar as performed by various teams during the 

PANGAEA-X campaign [see 3]. 

 

Figure 1: Exemplary result of drone-based 

stereogrammetric reconstruction of the Tinguaton 

cone topography [6] 

The integrated use of both surface imaging and 

subsurface geophysics can be synergistic [5], useful 

for cross-validation and improved geologic 

interpretation. The approach can be applied on a 

planetary analogue target, such as lava tubes, or 

future planetary cases, such as Lunar or Martian 

landing sites with the need to characterise, map and 

explore the subsurface, e.g. through lava tubes, 

collapses and caves. 

AGPA raw data are progressively available on public 

repositories such as Zenodo [9]. Datasets, both raw 
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and processed are going to be shared on public data 

repositories too, in order to support cooperation, data 

re-use and reproducibility. The data discovery and 

access of planetary analogue data is possible via 

EuroPlanet VESPA (Virtual European Solar and 

Planetary Access) [10], to be further expanded. The 

approach could be used also within similar activities 

[e.g. 11] 

 

Figure 2: Location of one of the geo-electric profiles 

over a lava tube system (background imagery Google 

Earth) [7]. 

 

Figure 3: Geo-electric imaging of lava tubes. Surface 

topography surveyed with RTK-GPS [7]. 
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