Development of a device for staged determination of water activity and moisture content

Carlo Tiebe¹, Marc Detjens¹, Annika Fechner², Stefanie Sielemann², Andreas Lorek³, Roland Wernecke⁴, Hartmut Stoltenberg⁵

Experimental setup

- the designed MOISHUM measuring cell includes two humidity sensors a capacitive SHT-25 for water activity (a_w value) and a coulometric^[1] for water mass determination, two Pt100 temperature sensors and two Peltier devices for precise temperature control of the chamber (Figure 1)
- a_w value (temperature range 20 °C to 40 °C): equilibrium relative humidity ($U_{w,ERH}$) which correspond to water activity $a_w = U_{w,ERH}$ / 100 % (isothermal)
- water content (at 105 °C): determination is based on FARADAY's law of electrolysis $m_{u} = (Q \cdot M_{u})/(F \cdot z)$
- reference hygrometer for water activity determination HygroPalm (Rotronic)

Results

Functionality test

- functionality tests were performed by investigations of deionised water
- determined a_w values are in the range higher than 95 %
- electrolytically obtained water masses have a relative deviation in the range of -2.2 % to 2.0 % in comparison to the measured water on an analytical balance

Figure 2: Determination of the a_w -value of powdered coffee by MOISHUM at 25 ± 0.2 °C. >

Water activity, moisture determinations and sorption isotherm of a powdered coffee

- a, value by MOISHUM measuring cell: 0.225 (Figure 2) reference a, value 0.27
- both determined a_{w} values of the powered coffee sample are in the range from 0.1 to 0.3^[2]
- electrolytically determined water content by MOISHUM measuring cell (Figure 3) is the basis for calculation of a sorption isotherm applying the Guggenheim, Anderson, and de Boer (GAB) function according to least square method (Figure 4)

Figure 3: Water amount determination by the MOISHUM

Figure 4: Sorption isotherm at 25 °C $\,\pm$ 0.2 °Cof powdered coffee

Figure 1: View on the MOISHUM measuring cell

Funding

This research and development was funded by Zentrales Innovationsprogramm Mittelstand (ZIM) of Germany's Federal Ministry of Energy and Economic Affairs - grant number KF2201085KM4.

Acknowledgments

The authors thank Jörg Schlischka, Harald Kohlhoff, Jörg Latzel, Holger Piefke, Sergej Johann, Jessica Erdmann and Michael Hofmann for technical support. *In memoriam* to Dr. Thomas Hübert[†].

References

 ^[1] VDI/VDE 3514-2:2013-03, Measurement of gas humidity - Methods of measurement.
^[2] Shelly J. Schmidt, Jr. Anthony J. Fontana, Water Activity Values of Select Food Ingredients and Products in Water Activity in Foods, Vol. 1 (Eds.: Gustavo V. Barbosa-Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, T. P. Labuza), Wiley-Blackwell, 2007, pp. 407-420.
^[3] E. Cepeda, R. O. de Latierro, M. J. San Jose, M. Olazar, Water sorption isotherms of roasted coffee and coffee roasted with sugar *International Journal of Food Science and Technology* 1999, 34, 3, 287-290.

measuring cell – DC voltage 18 V, shunt resistance 100 $\Omega,$ Peltier device 105 °C.

with MOISHUM data and GAB-function in black and the difference in brown pentagons - MOISHUM GAB-parameters: Xm = 8.230, C = 1.556 and K = 0.822 in comparison to Cepeda et al.'s parameter: Xm = 4.203, C = 4.186 and K = 0.941.^[3]

Conclusion

- The developed MOISHUM measuring cell's applicability was tested and proven on powdered coffee in comparison to data from literature.
- MOISHUM measuring times for a_w values are in the range of 20 min to 90 min (5 % to 95 % relative humidity) and for water content determinations in the range 45 min to 180 min.

Sicherheit in Technik und Chemie

www.bam.de

¹ Bundesanstalt für Materialforschung und -prüfung (BAM) ² Hochschule Hamm-Lippstadt ³ German Aerospace Center (DLR) ⁴ dr. wernecke feuchtemesstechnik GmbH ⁵ Prignitz Mikrosystemtechnik GmbH

