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KURZFASSUNG III

Kurzfassung

Semi-aktive Fahrwerke bergen im Vergleich zu passiven großes Potential zur Verbesserung

wesentlicher Fahrzeugeigenschaften, wie Fahrkomfort, Straßenhaftung und Fahrverhal-

ten. Die Ausnutzung dieses Potentials verlangt nach geeigneten Regelungsalgorithmen,

welche das nichtlineare Eingangssignal-zu-Dämpferkraft Verhalten und die Passivitäts-

beschränkung semi-aktiver Dämpfer berücksichtigen. Im Besonderen die Passivitäts-

beschränkung impliziert enge, zustandsabhängige Aktuatorkraftbegrenzungen und sollte

daher im Regelungsentwurf direkt berücksichtigt werden. Der Entwurf performanter

semi-aktiver Fahrwerkregelungen stellt eine große Herausforderung dar, da Störungen auf-

grund von Straßenunebenheiten und Lastwechseln unterschiedliche Anforderungen an die

Regelung stellen, und zusätzlich in einer Gesamtfahrzeuganwendung auch ein Regelungs-

entwurf basierend auf einem Gesamtfahrzeugmodell benötigt wird.

Im Gegensatz zu konventionellen viertelfahrzeug-basierten Fahrwerkregelungsansätzen,

welche häufig in der Literatur zu finden sind, zielt der Gesamtfahrzeugregelungsansatz

dieser Dissertation auf die explizite Berücksichtigung der Hub-, Wank und Nickbewe-

gung des Aufbaus. Darüber hinaus ermöglicht der Gesamtfahrzeugansatz die Entwicklung

von fehlertoleranten Reglern, welche die schwache Aktuatorredundanz der vier Dämpfer

nutzen. Die vorliegende Dissertation befasst sich mit linear parameter-variablen (LPV)

Regelungsmethoden zur Lösung des oben beschriebenen komplexen Regelungsproblems.

Die Kraftbegrenzungen der semi-aktiven Dämpfer werden mittels Sättigungsindikatoren

modelliert und diese dann als variable Parameter in den LPV Regelungsentwurf inte-

griert. Zusätzlich wird der LPV Regler um eine Dämpferkraftrekonfiguration erweit-

ert, so dass der Regler den Dämpferkraftverlust im Falle einer Dämpferfehlfunktion mit

den verbleibenden gesunden Dämpfern kompensiert. Der Regelungsentwurf begegnet

den unterschiedlichen Anforderungen von Straßen- und Lastwechselstörungen durch eine

Zweifreiheitsgradregelung bestehend aus einem LPV Regler und einer LPV Vorsteuerung.

Dabei fokussiert sich der LPV Regler auf die Verminderung des Effekts der Straßenuneben-

heiten und die LPV Vorsteuerung verringert den Effekt der Lastwechselstörungen. Auf

diese Weise zeigt die Zweifreiheitsgradregelung das gewünschte Verhalten trotz dieser bei-

den konträren Störungen.

Die Wirksamkeit der vorgeschlagenen Zweifreiheitsgradregelung wird durch Experimente

auf einem Stempelprüfstand und durch Straßenversuche validiert. Die Ergebnisse zeigen

eine Verbesserung des klassischen Zielkonflikts der Fahrwerksregelung zwischen Fahrkom-

fort und Straßenhaftung durch die LPV Gesamtfahrzeugregelung. Insbesondere erzielt die

LPV Gesamtfahrzeugregelung eine 10 % ige Verbesserung von Fahrkomfort und Straßen-

haftung im Vergleich zu einer Skyhook-Groundhook Gesamtfahrzeugregelung. Des Weit-

eren verdeutlicht ein Experiment mit einem simulierten Dämpferfehler die Vorteile der

fehlertoleranten LPV Regelung. Abschließend wird anhand von Spurwechselversuchen

die Wirksamkeit der LPV Vorsteuerung zur Verbesserung von Fahrkomfort, Straßenhaf-

tung und Fahrverhalten bei dynamischen Lenkwinkeleingaben des Fahrers demonstriert.
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ABSTRACT V

Abstract

Semi-active suspensions offer a large potential to improve essential vehicle properties like

ride comfort, road-holding and vehicle handling compared to passive suspensions. The

exploitation of this potential relies on suitable semi-active suspension control algorithms

which consider the nonlinear control signal to damper force characteristic and the passiv-

ity constraint of the semi-active damper. In particular, the passivity constraint introduces

a restrictive state-dependent actuator force limitation and should be explicitly considered

during the control design. The design of high-performance semi-active damper controllers

constitutes a challenging task due to the different requirements of an optimal control de-

sign regarding road disturbances and load disturbances induced by the driver inputs, and

the needed full-vehicle control approach to realize the performance potential of vehicles

equipped with semi-active suspensions.

In contrast to the conventional quarter-vehicle based suspension control approaches com-

monly found in the literature, the full-vehicle control approach proposed in this disserta-

tion aims at taking into account the body heave, roll and pitch motions. Moreover, the

full-vehicle control approach facilitates the development of active fault-tolerant controllers

by exploring the weak input redundancy provided by four semi-active dampers. The

dissertation addresses this complex control problem by linear-parameter varying (LPV)

control methods. The force constraints of the semi-active damper are modeled by sat-

uration indicators and these are treated as scheduling parameters in the LPV design.

Additionally, the LPV controller is augmented by a damper force reconfiguration such

that the controller compensates for the damper force loss in case of saturation or fail-

ure by the remaining healthy dampers. The different requirements of an optimal control

design regarding road disturbances and driver-induced disturbances are met by a two-

degree-of-freedom control approach comprised of an LPV feedback controller and an LPV

feedforward filter. The LPV feedback controller focuses on the attenuation of road distur-

bances, while the LPV feedforward filter reduces the effect of driver-induced disturbances.

In this way, the two-degree-of-freedom control provides good performance regarding both

disturbances.

The effectiveness of the proposed two-degree-of-freedom LPV controller is validated by

experiments on a four-post test-rig and by road tests. The results show the improved

trade-off between ride comfort and road-holding of the full-vehicle LPV controller. In

particular, the full-vehicle LPV controller achieves a 10 % improvement of ride comfort

and road-holding compared to a full-vehicle Skyhook-Groundhook controller. Further-

more, an experiment with an assumed damper failure emphasizes the benefit of the active

fault-tolerant full-vehicle LPV controller. Finally, the results of the double lane change

manoeuvers performed during the road tests illustrate the enhanced ride comfort and

handling properties of the vehicle with two-degree-of-freedom LPV control compared to

the set-up without feedforward filter.
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1 Introduction

A well tuned suspension system significantly contributes to the vehicle’s driving safety

by promoting a good tire road contact. From the driver perspective the tire road contact

itself is not of major importance, but rather the road-holding ability, which e.g. affects

the braking distance during emergency braking or the cornering capabilities. These two

aspects, however, can be characterized by the transmissible longitudinal and lateral tire

forces and are therefore directly related to the tire road contact. Besides driving safety,

ride comfort is an important customer requirement of a modern vehicle (Mitschke and

Wallentowitz, 2004). Here, the suspension system also has a substantial effect, firstly

on the amount of road excitations transmitted to the vehicle body and secondly on the

magnitudes of roll and pitch motions of the vehicle body induced by the steering and

braking inputs of the driver.

Passive suspension systems allow only a compromise between the conflicting demands ride

comfort and road-holding. On the one hand ride comfort for example can be achieved by

small vehicle body amplitudes around the body resonance frequency and consequently a

stiff spring and high damper forces, whereas on the other hand good isolation of the vehicle

body against road excitations beyond the wheel resonance frequency requires a soft spring

and small damper forces. The trade-off between ride comfort and road-holding is shown

in a schematic way in Figure 1.1. There, the dotted black lines illustrate the evolution of

the design objectives ride comfort and road-holding if the body damper is varied while the

body spring is kept constant. Conversely, the dashed black lines depict the evolution of

both design objectives if the body spring is varied and the body damper is kept constant.

Furthermore, the solid black line represents the Pareto front of ride comfort and road-

holding of a passive suspension system, i.e. the optimal settings of the body spring stiffness

and body damping. No other spring stiffness and damping combination can yield a better

trade-off between ride comfort and road-holding than the realizations belonging to the

Pareto front. A detailed introduction to vehicle suspension systems, its components and

the design objectives can be found in Mitschke andWallentowitz (2004, p. 249 ff.), Heißing

and Ersoy (2011), Rajamani (2012, p. 287 ff.), Rill (2012) and Venhovens (1994).

Compared to passive suspension systems, active and semi-active suspension systems en-

able the mitigation of the above described conflicting requirements by the continuous

control of the respective actuators. These actuators are in case of an active suspension

e.g. a hydraulic cylinder or in case of a semi-active suspension a controllable damper

(Tseng and Hrovat, 2015). In either case, ride comfort and road-holding can be improved

compared to passive suspensions resulting in a better overall performance. Figure 1.1 also

shows the idealized Pareto fronts of an active suspension depicted by the dot-dashed blue

line and a semi-active suspension depicted by the dashed green line. From the three vari-

ants an active suspension generally provides the best trade-off between ride comfort and

road-holding followed by a semi-active suspension. The disadvantages of both systems

are firstly an increase in suspension cost due to additional and complex components like

electronic control units (ECU), sensors, wiring and the actuators themselves. Secondly,
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Figure 1.1: Schematic Pareto diagram of the trade-off between ride comfort and road-

holding (spring stiffness denoted by kb and body damping by db)

active and semi-active suspension systems also increase the energy consumption of the

vehicle due to the needed energy supply. These negative properties are more challeng-

ing for active suspension systems, therefore active suspension systems are only offered in

premium cars with a strong focus on ride comfort like the Mercedes Benz S-class, which

offers an active suspension system called Magic Body Control (Weist et al., 2013). In

contrast to fully-active suspensions, semi-active suspensions offer a good compromise be-

tween the additional energy consumption and the system complexity on the one side and

ride comfort and road-holding improvements on the other side. Moreover, the system

costs of semi-active suspensions are much lower than that of active suspension systems

resulting in a very good cost versus benefit calculation (Savaresi et al., 2010, p. 4 ff.).

Thus, semi-active suspension systems are not only offered in premium cars like the VW

T6 Multivan, but also in middle class cars like the VW Golf VII. Additionally, the low

energy consumption of semi-active suspensions makes their application in electric vehicles

very appealing in the near future.

The vital performance benefit of semi-active suspensions compared to passive suspensions

results from the high bandwidth and large controllable force range of contemporary semi-

active dampers. In contrast to the initial expectation, the Pareto front of a semi-active

suspension essentially differs from the damping variation curve (dashed black lines) of

passive dampers. As illustrated in Figure 1.1, the Pareto front of semi-active suspensions

is rather comparable to the Pareto front of active suspension systems. To understand this
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property, a semi-active damper has to be considered as a force actuator with constraints,

rather than as a damper with modifiable damping coefficient. Even though, a semi-active

damper is limited by the passivity constraint and thus can only dissipate energy like any

ordinary passive damper, as illustrated in Figure 1.2, its damper forces Fd can be freely

selected within the set of admissible damper forces D. In contrast, the forces Fd,p of a

passive damper are defined by a single curve. The inherent actuator force constraints,

however, bound the achievable ride comfort and road-holding performance of semi-active

suspensions and constitute a crucial restriction which has to be handled during controller

design.

vd

Fd

D
Fd,p

Figure 1.2: Example of force characteristic of passive damper (dotted line) and set D of

admissible semi-active damper forces (gray area)

Figure 1.3 gives an overview of typical functions of a semi-active suspension control algo-

rithm from a software implementation perspective. This thesis scientifically investigates

the core functions feedback controller and roll feedforward control, and presents new de-

velopments with improved performance. The main design goal of the feedback control

path is the attenuation of road disturbances, while the roll and pitch feedforward con-

trol paths focus on the attenuation of load disturbances induced by the steering, brake

and acceleration inputs of the driver. Thus, the core functions of the vertical dynamics

control algorithm resemble a two-degree-of freedom control structure with the feedback

control dealing with the unknown road disturbances and the feedforward control with the

known driver-induced disturbances. The functions inverse damper model, local damper

controller and sensor signal processing are realized according to the state-of-the-art with

minor adaptions to the application. This work does not investigate control adaptions,

e.g. depending on the selected user mode, the vehicle speed and the road type, but of

course they are considered during the design of the core functions such that the controller

provides the necessary interfaces.

The effectiveness of the newly developed semi-active damper control algorithms is demon-

strated by experimental results of the VW T5 van experimental vehicle called SC3-Bulli

of the Institute of System Dynamics and Control (SR) of the German Aerospace Center
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Figure 1.3: Overview of functions of vertical dynamics control algorithms

(DLR). Two types of experiments are performed with the SC3-Bulli depicted in Figure

1.4. The performance regarding road disturbances is validated on the four-post test-rig

of the KW automotive GmbH (KW) and the performance regarding driver-induced dis-

turbances is proven by lane change experiments on the automotive testing area of the

University of the Federal Armed Forces in Munich.

As a major step before the actual full-vehicle experiments, the control algorithms were

investigated on the quarter-vehicle test-rig of the Institute of Control Engineering of the

Department of Aerospace Engineering at the University of the Federal Armed Forces in

Munich. These experiments enabled a first detailed evaluation of the proposed control

algorithms and a targeted further development towards the full-vehicle experiments.
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Figure 1.4: SC3-Bulli experimental vehicle of SR on four-post test-rig

1.1 State-of-the-Art in Semi-Active Damper Control

1.1.1 Skyhook Control

In the literature, a lot of control approaches for semi-active suspensions like Skyhook,

Groundhook and clipped control concepts have been investigated since 1974 when Karnopp

et al. (1974) first published their famous work on “Vibration Control Using Semi-Active

Force Generators”. There, the to-date state-of-the-art in comfort-oriented semi-active sus-

pension control used in production vehicles, the Skyhook control concept, was described

for the first time. Within this concept, a hypothetical damper between sky and vehicle

body, the Skyhook damper, is approximated by the actual semi-active damper. In this

way, the controlled damper stabilizes the vehicle body and at the same time also improves

the isolation of the vehicle body from road excitations. The theoretical motivation for

the Skyhook control concept is derived from the optimal control policy of a fully-active

one-mass system using quadratic performance criteria. The resulting optimal feedback

law consists of two terms: one term proportional to the body velocity and a second term

proportional to the relative position between body and ground. In many application, e.g.

vehicle suspensions, the later term can be realized by a spring between body and ground,

while the exact realization of the first term, the Skyhook damper, is not possible. The

patent Ahmadian et al. (2000) describes an approximation of the Skyhook damper by a

switching rule using the body and damper velocity. In particular, the algorithm results in

jerk free damper forces and thus achieves excellent ride comfort of the vehicle. In Savaresi

and Spelta (2007) the Skyhook concept is combined with the Acceleration Driven Damp-

ing (ADD) concept through a frequency selector defining a cross-over frequency from the

Skyhook controller to the ADD controller. The authors show that these two concepts

feature complementary behavior to the effect that the Skyhook controller performs well
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around the body resonance frequency and the ADD controller in the intermediate and high

frequency range. Additionally, the ride comfort performance of the mixed Skyhook-ADD

controller is compared to an optimal ride-comfort benchmark (lower bound) derived from

the solution of an optimal predictive control problem under the assumption of a known

road profile as presented in Poussot-Vassal et al. (2010). In this investigation, the authors

show that the mixed Skyhook-ADD controller achieves a ride comfort performance close to

the optimal lower bound despite its simple structure and lack of road profile information.

The same design goal is addressed by a different approach in Yi and Song (1999). In this

article, the authors propose a frequency dependent scheduling of the Skyhook controller

gain such that the Skyhook controller improves its performance in the intermediate and

high frequency range.

Recent developments as presented in the patents Nedachi et al. (2016) and Unger (2017)

augment the Skyhook control policy to obtain a desired pitch behavior or add preview

information about the road profile to the controller.

1.1.2 Groundhook Control

The counterpart of the Skyhook control concept, the road-holding oriented Groundhook

control concept, was first published by Valášek et al. (1997). In this article, a hypothetical

damper, the Groundhook damper, between ground and wheel carrier is introduced aiming

at a reduction of the tire deflection magnitude, which is directly related to road-holding.

Subsequently, the approximation of the Groundhook damper by an actual semi-active

suspension damper is described. In comparison with the Skyhook concept, the implemen-

tation of the Groundhook control concept is complicated by the fact that the current tire

deflection is unknown in many applications because it cannot be measured easily. Conse-

quently, the desired Groundhook damper force cannot be determined. The authors in Koo

et al. (2004) analyze the desired Groundhook damper forces under several conditions and

develop an approximate, switching Groundhook control policy based on damper velocity

and wheel velocity signals without the need of tire deflection information. An extensive

survey of Skyhook and Groundhook control approaches including numeric evaluations of

the controller performance can be found in Savaresi et al. (2010) and Poussot-Vassal et al.

(2012).

1.1.3 Clipped Control

The clipped control concept adopts control approaches from fully-active suspension sys-

tems for semi-active suspension control by simply clipping the actuator force demand

according to the current damper force constraints (Margolls, 1982; Karnopp, 1983). The

basic idea of this approach can be summarized as follows: the actuator force demand

from the fully-active control policy is applied whenever possible i.e. the demanded actua-

tor force is realizable by the semi-active damper and otherwise the control policy selects

the best approximation of the demanded actuator force. In Hrovat (1997) the clipped
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control approach is used to develop a linear quadratic (LQ) controller for semi-active

suspensions. This clipped LQ approach, also denoted clipped-optimal, is widely used in

scientific applications (Unger et al., 2013; Tseng and Hrovat, 2015) because ride comfort

and road-holding can be quantified based on the L2-norm of linear combinations of the

system states. If the focus is shifted towards robust control and loop-shaping, clipped H∞

control offers a well-established framework to adopted developments from H∞ control of

fully-active suspensions (Sammier et al., 2003), to the case of semi-active suspensions.

An example of the clipped H∞ approach represents the clipped, adaptive, robust, gain-

scheduled H∞ controller given in Ahmed and Svaricek (2013). The huge disadvantage of

all controllers design according to the clipping policy arises from the ad-hoc controller ad-

justment. As a result, a loss of stability might occur when the actuator limits are reached.

Nevertheless, good performance of the clipped controllers is reported in the above publica-

tions and the question is raised how far the performance of the clipped-optimal controller

deviates from an optimal controller which explicitly accounts for the actuator constraints.

1.1.4 Model-Predictive Control

In Giorgetti et al. (2006) the question of optimal performance is addressed by the com-

parison of the clipped LQ approach with a model-predictive control (MPC) approach for

hybrid systems. During the MPC design the force constraints of the semi-active damper

are explicitly considered by including suitable inequality constraints in the formulation

of the optimization problem. The online optimization algorithm utilized inside the MPC

controller limits any solution of the demanded actuator force to reachable damper forces.

Firstly, the authors show that the clipped LQ controller and the MPC controller with

prediction horizon N = 1 correspond to each other and secondly that the MPC controller

can achieve a significantly better performance for prediction horizons N > 1. A similar

MPC approach with a stronger focus an real-time implementation on rapid control pro-

totyping (RCP) hardware, called “fast” MPC, is investigated in Canale et al. (2006). In

this article, the authors circumvent the online-optimization problem, an inherent part of

model-predictive control, by an approximation based on the set membership approach of

nonlinear function estimation.

1.1.5 Linear Parameter-Varying Control

As an alternative approach in recent years, the design of semi-active suspension controllers

based on linear parameter-varying (LPV) control theory are investigated. LPV control

methods offer a flexible theoretical framework for the design of nonlinear controllers, e.g.

LPV techniques features the possibility firstly to easily incorporate plant nonlinearities like

an air spring characteristic or vehicle speed dependencies and secondly to integrate con-

troller adaptions like a suspension deflection or a road type dependency (Fialho and Balas,

2000, 2002). The application of polytopic LPV methods to semi-active suspension control

goes back to Poussot-Vassal et al. (2008). The quarter-vehicle LPV control approach
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presented there relies on the appropriate selection of scheduling parameter-dependent

weighting filters such that the final controller always stays within the actuator limits. In

the follow-up research in Do et al. (2010, 2012) and Nguyen et al. (2015a), the polytopic

LPV framework is used to approximate the nonlinear input-to-output characteristic of

the semi-active damper by an LPV model and subsequently directly incorporate the LPV

damper model in the quarter-vehicle plant model. The approach assumes a bi-viscous

hysteresis behavior of the semi-active damper such that the damper can be described by

a Shuqi Guo model. In this way, the semi-active damper control problem is converted from

a problem with passivity constraint, i.e. state-dependent input constraints, into a prob-

lem with constant input constraints. Moreover, parameter-dependent weighting filters

as in Poussot-Vassal et al. (2008) are no longer mandatory and parameter-independent

ones are used. Do et al. (2013) compare the performance of both control approaches in

a numerical analysis based on a quarter-vehicle model and show that similar results are

obtained. Furthermore, Do et al. (2010, 2011) and Nguyen et al. (2015a) present exten-

sions of the control approach with LPV damper model introduced in Do et al. (2010).

The travel of a suspension system is typically limited by bump stops in order to prevent

physical damage from the suspension components due to collisions. In Do et al. (2010) the

suspension deflection issue is addressed by introducing a deflection dependent scheduling

of the controller such that the damper forces are increased if the deflection limits are ap-

proached. Alternatively, Do et al. (2011) and Nguyen et al. (2015a) develop a systematic

approach to avoid the deflection limits by adding a deflection inequality constraint to the

controller synthesis problem. To improve the controller performance and reduce conser-

vatism, the authors in Nguyen et al. (2015a) also modify the polytopic LPV controller

synthesis based on Finsler’s Lemma such that two Lyapunov function are utilized: one

that characterizes stability in the admissible scheduling parameter range and another that

defines performance of the unconstrained controller.

1.1.6 Vertical Dynamics Vehicle Models

When looking at the models employed during the controller design, most works cited

above focus on a simple two-degree-of-freedom quarter-vehicle model with reference to

the sufficiently good approximation of the vehicle vertical dynamics. The quarter-vehicle

model already covers most of the fundamental vehicle vertical dynamics properties like

the passivity constraint of the semi-active damper, of course, but also the invariant points

e.g. involved when modifying the body spring stiffness and damping coefficient (Savaresi

et al., 2010, p. 46 ff.). Therefore, most results obtained within quarter-vehicle applications

can be generalized to full-vehicle applications, especially if the main purpose is a proof-

of-concept or the presentation of a single dedicated innovation. Detailed introductions

on vertical vehicle dynamics models can be found in e.g. Mitschke and Wallentowitz

(2004); Rajamani (2012); Rill (2012); Savaresi et al. (2010) and Guglielmino et al. (2008).

Examples for the utilization of a quarter-vehicle model to illustrate theoretical advances

are the publications of Poussot-Vassal et al. (2008) and Do et al. (2013). The application
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of higher-order vehicle models like a half-vehicle model with four-degrees-of-freedom or a

full-vehicle model with seven-degrees-of-freedom, complicates the control design problem.

Therefore, higher-order models are generally only used if the theoretical contribution

requires such a complex model like in Smith and Wang (2002); Lu and DePoyster (2002)

and Gáspár and Szabó (2013) or if the work aims at the development of high performance

controllers for real vehicles (Unger, 2012; Unger et al., 2013). In Smith and Wang (2002),

e.g. the authors present a special controller parametrization, which allows to decouple the

disturbance response of the closed-loop system subject to road disturbances and to load

disturbances like longitudinal and lateral vehicle accelerations.

1.1.7 Experimental Validation

The final aspect to be highlighted in this chapter is the experimental evaluation of semi-

active damper controllers. With respect to this point it has to be distinguished between

gain-scheduled Skyhook controllers and more sophisticated model-based controllers e.g.

clipped LQ, MPC or LPV controllers discussed above. The former have been available

in production vehicles since many years, while field tests of the latter controllers are

rare. The reason for this difference is firstly the validated very good performance of gain-

scheduled Skyhook controllers, which constitutes a high entry barrier for other control

algorithms especially in industry and secondly the significantly increased effort and cost

of field tests compared to numerical investigations. This substantial effort emerges during

planning, constructing and commissioning of the test-rig and vehicle hard- and software.

Additionally, the plant model used in simulation is always a simplified approximation of

the real plant which ideally models the most important subset of plant dynamics, distur-

bances, uncertainties and nonlinearities. Therefore, the reproducibility of the performance

of controllers verified with simple simulation models, like the LPV controllers proposed

in Do et al. (2011) and Nguyen et al. (2015a) or the MPC controllers developed in Canale

et al. (2006), on a test-rig or in a vehicle application is highly uncertain.

Some examples of successful quarter-vehicle test-rig experiments are the investigation of a

combined Skyhook-Groundhook controller in Ahmadian and Pare (2000) or the investiga-

tion of clipped H∞ controllers in Ahmed and Svaricek (2013, 2014). Savaresi et al. (2010)

and Spelta et al. (2010) present results achieved with Skyhook, ADD and mixed Skyhook-

ADD controllers on a two-post motorcycle test-rig. The experiments cover a wide range

of excitations like sine sweep, stochastic road and bump excitations and thus give a de-

tailed comparison of the performance of these control methods. Examples of experimental

investigations in a full-vehicle context are the application of a Groundhook policy in or-

der to reduce road damage in Valášek et al. (1998), the evaluation of electro-rheological

dampers using a Skyhook controller in Choi et al. (2001) or the investigation of a com-

bined Skyhook-Groundhook controller in a light commercial vehicle in Sankaranarayanan

et al. (2008). Guglielmino et al. (2008) analyze the achievable performance benefit using

rather uncommon friction dampers with a clipped position and velocity feedback control

approach on a four-post test-rig. A particularly interesting application of a clipped LQ
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control policy based on a full-vehicle observer and state-feedback controller is presented

in Unger (2012) and Unger et al. (2013). These works discuss many practical aspects like

the effect of ascending and descending roads and give an experimental evaluation of the

proposed clipped LQ controller on a four-post test-rig.
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1.2 Linear Parameter-Varying Control

LPV control theory provides a mathematically rigorous framework to the design of non-

linear controllers for a family of linear time-varying plants. These time-varying plants

are characterized by certain assumptions on the exogenous scheduling parameters, such

as bounds on their magnitudes and rate of variations, and the availability of a measured

or estimated value of the current scheduling parameters during operation. The latter

assumption reflects the close relation between LPV control and classical gain-scheduled

control in the sense that the LPV controller is also gain-scheduled by time-varying ex-

ogenous parameters. The close relationship gets even clearer when looking at the early

work on LPV control in Shamma (1988) and Shamma and Athans (1991). There, analysis

methods for one special type of gain-scheduled control system, namely a linear system

satisfying the LPV assumptions, are proposed in order to guarantee that the stability,

robustness and performance properties of the gain-scheduled control system carry over

the entire operation range. Gain-scheduled controllers are widely used in real-world ap-

plications as “they offer a cheap and fairly transparent way of carrying out nonlinear

control” to cite Prof. P. Apkarian (Mohammadpour and Scherer, 2012, p. v-vi). The

main drawbacks of classical gain-scheduling are firstly the necessity of detailed engineer-

ing insight in order to determine ad-hoc scheduling rules for the exogenous parameters

and secondly these techniques ignore the nonstationary nature of parameter variations.

In contrast as illustrated in Figure 1.5, LPV controllers are automatically gain-scheduled

and parameter variations are explicitly considered during the controller synthesis. These

properties make LPV controllers a viable alternative to classical gain-scheduling despite

the increased complexity of the controller synthesis problem.

ρ1

ρ2

Klpv

ρ1

ρ2

Kgs,i

Figure 1.5: Comparison of LPV control to gain-scheduled control with index i denoting

the scheduling parameter grid points

The theoretical base of LPV methods was developed in the early- and mid-nineties when

Shamma and Athans (1991), Becker and Packard (1994), Apkarian et al. (1995) and

Apkarian and Gahinet (1995) published their works on LPV control. The control design

presented in this work is based on the follow-up research of Becker and Packard (1994), Wu
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(1995) and Wu et al. (1996) on gridding-based LPV controller synthesis. An introduction

to LPV control design starting with some fundamental properties of linear time-varying

systems can be found in Amato (2006). More recent books such as Mohammadpour and

Scherer (2012) and Sename et al. (2013) provide an overview over past, recent and novel

methods on modeling, identification, and control design of LPV systems. Additionally,

they present an extensive collection of applications in diverse domains like aerospace and

road vehicles. A vital supplement to these books can be found in the survey article

of Hoffmann and Werner (2015), which discusses polytopic, gridding-based and linear

fractional transformation (LFT) based LPV control methods and gives corresponding

application examples.
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1.3 Control Design Methodology

The control development presented in the subsequent sections strongly relies on sim-

ulation investigations and simulation-based tuning of the controller parameters. This

approach has been successfully applied to many different topics like control of semi-active

dampers (Kortüm et al., 2002) and control of industrial manipulators (Saupe, 2013) at

SR. The major advantage of such a Design-by-Simulation methodology (Kortüm et al.,

2002) arises from short development cycles due to the reduced number of necessary hard-

ware experiments for controller tuning and validation. In particular, the controller tuning

in simulation allows for an extensive analysis of the controller stability, performance and

robustness under various use cases and with respect to all relevant uncertainties and dis-

turbances. In this process, the employed plant model becomes crucial meaning that on

the one hand the model has to be a sufficiently good approximation of the real plant, and

on the other hand the model should be as simple as possible to keep the complexity and

the computational effort at a reasonable level. According to Kortüm et al. (2002), the

virtual control design can be divided into the five consecutive steps depicted in Figure 1.6.

In the context of the development of vertical dynamics controllers, the first step consists

of establishing a nonlinear quarter-vehicle model of the test-rig and of developing a non-

linear full-vehicle model of the experimental vehicle. Starting from these plant models,

in the next step, an LPV representation must be derived for controller synthesis. In the

third step, the LPV model is then used in a mixed sensitivity loop-shaping design and in

the fourth step the tuning parameters of the control design are optimized by simulating

the high-fidelity plant model and the controller in closed-loop. The optimization itself is

implemented as a Pareto optimization seeking the optimal trade-off between ride comfort

development and verification of an appropriate high-fidelity plant model

derivation of reduced order controller synthesis models

design of (model-based) controllers

multi-objective optimization of controller parameters

experimental validation of controller properties

Figure 1.6: Design-by-Simulation methodology
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and road-holding. Finally, the properties of the controller, like performance and stability,

are validated during experiments with the test-rig and experimental vehicle.
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1.4 Problem Statement and Contribution

As previously discussed, semi-active suspensions offer a large potential to improve es-

sential vehicle properties like ride comfort, road-holding and vehicle handling compared

to passive suspensions. The exploitation of this potential relies on suitable semi-active

suspension control algorithms which consider the nonlinear control signal to damper force

characteristic and the passivity constraint of the semi-active damper. In particular, the

passivity constraint introduces a restrictive state-dependent actuator force limitation and

should be explicitly considered during the control design. Figure 1.7 shows the two degree-

of-freedom control configuration of the semi-active suspension control algorithm developed

in this work. The control-loop consists of the two degree-of-freedom LPV controller K,

the plant model Gsa and the disturbance model Gd. The disturbance signal d driving

Gd gathers the known and unknown disturbances dk and du. The two degree-of-freedom

LPV controller K, which generates the control signal u, is composed of the feedforward

filter Nk processing the known disturbances dk and the feedback controller Ku processing

the measurements y. Subsequently, the saturation block limits the control signal u to the

saturated signal σ(u).

G

K

yu σ(u)

Gd

dk

du

Gsa

+

+

Nk

Ku

+

+

Figure 1.7: Two degree-of-freedom control configuration

As illustrated in Figure 1.7, there exists no reference signal which has to be tracked, but the

control design should focus on the rejection of road disturbances as well as driver-induced

disturbances. These two disturbances have distinct frequency ranges meaning that the

relevant frequency range of road disturbances is 0.5 - 20 Hz, while the relevant frequency

range of driver-induced disturbances is 0.1 - 3 Hz. Furthermore, road disturbances denoted

by du are unknown during runtime, but driver-induced disturbances dk can be estimated

from the driver inputs by a planar vehicle model like the single-track model (Schramm

et al., 2014, p. 223 ff.). As illustrated in Figure 1.1, the optimal values of the design

objectives ride comfort and road-holding cannot be simultaneously realized and the control

design always has to seek the best trade-off between them. Moreover, controllers which
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minimize the effect of road disturbances only achieve medium ride comfort, road-holding

and handling regarding driver-induced disturbances and vice versa.

This work addresses the above described challenges by the anti-windup LPV control

approach proposed by Wu et al. (2000). The approach utilizes saturation indicator pa-

rameters to directly model the actuator constraints in the LPV plant. The resulting

LPV controller features guaranteed closed-loop performance and stability in the presence

of saturation nonlinearities. The conflicting design requirements regarding road distur-

bances and driver-induced disturbances are overcome by the two-degree-of-freedom LPV

control approach described in Prempain and Postlethwaite (2001). The separate design

of the LPV feedback control part and the LPV feedforward control part proposed there,

perfectly matches the semi-active control problem at hand as driver-induced disturbances

are known during runtime and consequently their effect can be reduced by an appropriate

feedforward filter, while road disturbances are unknown during runtime and their effect

has to be minimized by feedback control.

This thesis extends control methods and semi-active suspension control by the following

vital scientific contributions:

Section 2.4 presents a new saturation indicator dependent control effort weight re-

sulting in an LPV controller which linearly reduces its control signal according to

the saturation status.

Section 2.5 derives a minimum grid density of the LPV representation of the satura-

tion indicator parameters to guarantee quadratic stability of the closed-loop system

for all admissible saturation indicator parameters.

Section 3.5 proposes a time-varying saturation transformer parameter to extend the

saturation indicator concept to arbitrary, time-varying actuator constraints. In the

quarter-vehicle, semi-active suspension control design, the saturation transformer

has the physical interpretation of a time-varying nominal damping.

Sections 4.5 and 4.6 develop an active fault-tolerant, full-vehicle, semi-active suspen-

sion LPV controller. In particular, the sections discuss a new saturation indicator

dependent performance signal weight in addition to the saturation indicator de-

pendent control effort weight of Section 2.4. Moreover, the sections present the

integration of the saturation indicator and the actuator efficiency concepts and a

fault-tolerant control augmentation.

Section 5.3 presents the design of an LPV feedforward filter to reduce the effect

of vehicle roll disturbances induced by the steering inputs of the driver based on a

Full-Information problem approach.

Additionally, this thesis presents extensive experimental results of the quarter-vehicle

controller of Chapter 3, the full-vehicle controller of Chapter 4 and the feedforward control

of Chapter 5. In particular:
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Section 3.8 gives experimental results of the quarter-vehicle LPV controller with

saturation indicator and saturation transformer gathered at the quarter-vehicle test-

rig of the University of the Federal Armed Forces in Munich.

Section 4.8 emphasizes the performance improvement of the active fault-tolerant,

full-vehicle LPV controller with saturation indicators compared to a state-of-the-

art Skyhook-Groundhook controller by experiments gathered with the SC3-Bulli

experimental vehicle at a four-post test-rig.

Section 5.5 shows the vital benefit of combining feedback control with feedforward

control by double lane change manoeuvers with the SC3-Bulli experimental vehicle.
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1.5 Outline

The thesis presents a step-wise development of the two-degree-of-freedom LPV controller.

It is structured into the six chapters visualized in Figure 1.8. Starting with the intro-

duction of the semi-active suspension control problem and a brief state-of-the-art review

in Chapter 1, Chapter 2 describes the anti-windup LPV approach and establishes the

saturation indicator concept.

Subsequently, Chapter 3 introduces the semi-active control problem and emphasizes the

nonlinear actuator characteristics. Additionally, Chapter 3 presents the design of a

quarter-vehicle semi-active suspension controller and its assessment by experiments on

the quarter-vehicle test-rig of the University of the Federal Armed Forces in Munich.

Chapter 4 extends the quarter-vehicle controller of Chapter 3 to an active fault-tolerant,

full-vehicle controller and gives an investigation of the controller performance and its fault-

tolerance capabilities by experiments on a four-post test-rig. Finally, Chapter 5 adds a

feedforward control part to the controller of Chapter 4 such that the entire controller

performs well regarding road disturbances and driver-induced disturbances. Chapter 6

closes the thesis with a summary of the presented control design and an outlook about

future topics. Additionally, Chapter 6 discusses the cooperation of the proposed control

algorithm with planar vehicle dynamics control and describes the next steps towards the

integration of the control algorithm into the development process of car manufactures.

Introduction

LPV Control with Actuator Constraints

Quarter-Vehicle Control Design

Full-Vehicle Control Design

Roll Disturbance Feedforward Control

Conclusion and Outlook

Figure 1.8: Structure of the thesis
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2 LPV Control with Actuator Constraints

The inherent physical constraints limit the actuator capacity in all real-world applica-

tions leading to a difference between the controller output and the actual plant input if

the controller output exceeds the actuator capacity. This has long been acknowledged as a

major issue during control design and numerous literature addressing actuator constraints

like magnitude and rate limitations can be found like Doyle et al. (1987), Aström and

Rundqwist (1989) and Hu and Lin (2001). A simple but conservative approach to handle

actuator limitations is the avoidance of saturation by the design of low-gain controllers.

The essential drawback of low-gain controllers is poor performance because the control sig-

nal has to stay within its limits even for worst-case disturbances. An alternative approach

consists in extending a predetermined controller with a so-called anti-windup augmenta-

tion to reduce the adverse effects. The augmentation is necessary if the predetermined

controller is ill-suited for the input nonlinearity, e.g. if the controller states wind-up to

excessively large values in the event of saturation. Classical realizations of anti-windup

augmentations for PID controllers are presented in Aström and Murray (2008, p. 306).

A more involved augmentation with dynamic anti-windup compensators is developed in

Grimm et al. (2003). The latter work especially focuses on guaranteeing a prescribed

performance level of the augmented closed-loop system. Moreover, as shown in Gior-

getti et al. (2006) and Canale et al. (2006), MPC approaches readily consider actuator

limitations as inequality constraints of the online-optimization problem.

The control design in this work is performed along the anti-windup control method pro-

posed by Wu et al. (2000). The approach utilizes so-called saturation indicator scheduling

parameters to model the actuator constraints in an LPV plant. Subsequently, the LPV

plant facilitates the systematic design of an anti-windup LPV controller, which is directly

scheduled by the saturation indicators. This LPV method for plants with input con-

straints features some desirable properties like guaranteed closed-loop system stability,

smooth degradation of unconstrained performance in the presence of actuator saturation

and recovery of unconstrained design specifications in the absence of saturation. Further-

more, the approach is well-suited for the sophisticated design of anti-windup controllers

of MIMO systems.

Remark. In the following the term unconstrained is used to indicate the absence of satura-

tion, e.g. unconstrained closed-loop system refers to the closed-loop system if the controller

output can be realized by the actuator.

2.1 Definition of LPV Systems

LPV systems generalize LTI systems to linear plants with time-varying parameters ρ (t)

called scheduling parameters. The scheduling parameters are assumed to continuously

evolve in time and to be measurable or estimable in real-time. Furthermore, the rates of
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variation of the scheduling parameters are assumed to be bounded according to

|ρ̇i (t)| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ} ∀t ∈ R
+ (2.1)

with nρ the number of scheduling parameters and the rate bounds ρ̇max,i > 0. The

scheduling parameter vector itself belongs to a compact set P ⊂ R
nρ . Definition 2.1

states a general continuous-time LPV system whose state-space matrices are continuous

functions of the scheduling parameters ρ and their derivatives ρ̇.

Definition 2.1. An nx-th order linear parameter-varying (LPV) system Γed with distur-

bance input d and performance output e is given by

[
ẋ

e

]

=

[
A (ρ, ρ̇) B (ρ, ρ̇)

C (ρ, ρ̇) D (ρ, ρ̇)

] [
x

d

]

, (2.2)

with ρ ∈ Fρ, A ∈ C0 (Rnρ × R
nρ ,Rnx×nx), B ∈ C0 (Rnρ × R

nρ ,Rnx×nd),

C ∈ C0 (Rnρ × R
nρ ,Rne×nx), and D ∈ C0 (Rnρ × R

nρ ,Rne×nd) and the vectors x, e and d

of appropriate dimension. The notation ρ ∈ Fρ denotes time-varying trajectories with

bounded rates in the parameter variation set Fρ.

Compared to LTV systems whose system matrices A (t), B (t), C (t), and D (t) are

general functions of time, the system matrices of LPV systems feature a prescribed de-

pendence on the scheduling parameters ρ. The interest in LPV systems is motivated by

the fact that nonlinear dynamics can be often cast into LPV systems by choosing a suit-

able set of scheduling variables. LPV systems whose scheduling parameters are functions

of the system state ρ (t) = f (x (t)) are called quasi-LPV systems. During controller syn-

thesis, the state-dependent scheduling parameters of quasi-LPV systems are treated as

exogenous signals just as scheduling parameters of ordinary LPV systems. The drawback

of this approximation may be a more conservative controller, however, the advantages of

LPV methods outweigh in most applications (Huang and Jadbabaie, 1999, p. 87). In the

remainder, this thesis does not distinguish between quasi-LPV systems and LPV systems.

2.2 Basics of LPV Control Design

The LPV controller synthesis is carried out in MATLAB using the LPVTools toolbox

(Hjartarson et al., 2013, 2015). This toolbox pursues a gridding-based LPV approach

which specifies performance by the closed-loop input-to-output response (Apkarian et al.,

1995; Apkarian and Gahinet, 1995; Wu et al., 1996; Becker and Packard, 1994). The

controller design interconnects the open-loop LPV plant P and the LPV controller K

according to the general control configuration illustrated in Figure 2.1. The resulting

closed-loop system is denoted by Γed (P ,K). In this configuration, the measurements

y of the open-loop plant P drive the controller K yielding the control signal u. The

performance of the controller is specified by the induced L2-norm of the closed-loop system

Γed with the disturbance input d shaped by the filter Wd and the performance output e
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weighted by the filter We. The induced L2-norm of the closed-loop system Γed is defined

as

‖Γed (P ,K)‖i2 = sup
ρ∈Fρ, ‖d‖2 6=0,

d∈L2

‖e‖2
‖d‖2

= sup
ρ∈Fρ, ‖d‖2 6=0,

d∈L2

‖Γed (P ,K)d‖2
‖d‖2

< γ, (2.3)

with the induced L2-norm performance level γ. The conditions ‖d‖2 6= 0 and d ∈ L2

ensure that the L2-norm of the input signal d is well defined. A proof of the existence of

an upper bound of the induced L2-norm of a stable LPV system Γed, i.e. γ <∞, can be

found in Wu (1995, p. 61 ff.).

G

K

ed

u y

Wd We

P

Figure 2.1: General control configuration

The close relation of the induced L2-norm and the H∞-norm facilitates the application

of loop-shaping techniques during the design of LPV controllers. Hence, LPV controllers

can be developed according to the two-stage loop-shaping design process well-established

in H∞ control, see e.g. Kwakernaak (1993, p. 261 ff.) and Skogestad and Postlethwaite

(2005, p. 399 ff.). In this process, the original open-loop LPV plant G is augmented by

input and output weighting filters Wd and We to specify the desired closed-loop shape.

A detailed introduction to LPV control design is presented in Appendix A. Additional

overviews of LPV control theory and lots of application examples are given in Amato

(2006); Sename et al. (2013); Mohammadpour and Scherer (2012) and Hoffmann and

Werner (2015).

2.3 LPV Modeling of Actuator Constraints

Figure 2.2 illustrates the general control configuration of a closed-loop with actuator

constraints. The open-loop plant GΘ consists of the unconstrained open-loop plant G

and the saturation block. The control signals u of the controller KΘ are fed into the

saturation block yielding the saturated control signals σ (u). Mathematically, saturation
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of the i-th actuator can be described by

σ (ui) =







ui umin
i < ui < umax

i

umin
i umin

i ≥ ui
umax
i umax

i ≤ ui

(2.4)

with the upper actuator limitation umax
i > 0 and the lower actuator limitation umin

i < 0.

The saturation indicator parameter θi is introduced as the quotient of the saturated

control signal σ (ui) and the original control signal ui according to

θi =
σ (ui)

ui
∀i ∈ {1, 2 . . . , nu} . (2.5)

A saturation indicator value of θi = 1 represents the situation when the control signal ui
can be realized by the actuator and θi < 1 reflects the degree of saturation. The saturation

indicators θi are assumed to continuously evolve over time, to be either measurable or

estimable in real-time, and to lie in the range θi ∈ (0, 1] ∀i ∈ {1, 2 . . . , nu}. As mentioned

in the introduction of this chapter, the saturation indicators are introduced as additional

scheduling parameters into the plant. They are gathered in the saturation matrix Θ given

by

Θ = diag (θ) , (2.6)

with the saturation indicator vector θ = [θ1 θ2 . . . θnu
]T . This saturation matrix assumes

decoupled actuator constraints, i.e. the control signal of one actuator has no influence on

the saturated control signals of other actuators. The saturation matrix Θ can be used to

express the saturated control signals as

σ (u) = Θu. (2.7)

KΘ

G
yu

GΘ

σ (u)

Θ

Figure 2.2: Closed-loop of plant GΘ with actuator constraints and controller KΘ
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The state-space realization of a generalized plant PΘ with the scheduling parameter vector

ρ comprised of the original scheduling parameters ρ̄ and the saturation indicators θ

according to

ρ =
[
ρ̄T θT

]T
, (2.8)

can then be stated by





ẋ

e

y



 =





A (ρ̄,θ) B1 (ρ̄,θ) B̄2 (ρ̄)Θ

C1 (ρ̄,θ) 0 D̄12 (ρ̄,θ)Θ

C2 (ρ̄) D21 (ρ̄,θ) 0









x

d

u



 . (2.9)

The corresponding state-space matrices are continuous functions of the scheduling param-

eters ρ ∈ Fρ and of appropriate dimensions with x ∈ R
nx , d ∈ R

nd , e ∈ R
ne , u ∈ R

nu ,

and y ∈ R
ny . The formulation of PΘ uses the definition of the saturated control signal

(2.7) to incorporate the input constraints in the LPV plant. Additionally, the satura-

tion indicators may occur in A (ρ̄,θ), B1 (ρ̄,θ), C1 (ρ̄,θ), D̄12 (ρ̄,θ) and D21 (ρ̄,θ) if

the control design employs saturation indicator dependent weighting filters We (ρ̄,θ) and

Wd (ρ̄,θ). More details on the assumptions and structure of generalized plants for LPV

control design can be found in Appendix A.4.

Even though Wu et al. (2000) only consider constant symmetric actuator limitations,

i.e.
∣
∣umin

i

∣
∣ = |umax

i | ∀i ∈ {1, 2 . . . , nu}, the approach can be readily extended to gen-

eral time-dependent actuator limitations. Figure 2.3 depicts examples of 1) constant

actuator limitations, 2) time-dependent actuator limitations, and the special case of 3)

state-dependent actuator limitations. In any case, the actuator limitations must satisfy

umax
i > 0 and umin

i < 0 to keep the saturation indicators well defined and within their

parameter space given by θi ∈ (0, 1].

In the context of semi-active damper control, the actuator limits are nonlinear functions

t

u

1) constant control signal

limits

t

u

2) time-dependent control

signal limits

x

u

1) state-dependent control

signal limits

Figure 2.3: Types of control signal constraints; dashed lines represent actuator limita-

tions and dotted lines saturated control signals
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of the plant states and can be expressed as

umin
i (x) = fmin (x) (2.10a)

umax
i (x) = fmax (x) . (2.10b)

Remark. This thesis assumes that the actuator limitation of each actuator is relevant

during control design. Therefore, the number of saturation indicators is considered equal

to the number of actuators nu. Nevertheless, actuators with large capacity whose limits

are not reached can readily be treated by the presented anti-windup LPV control approach

by adjusting their saturation indicators to one.

2.4 LPV Control Design with Actuator Constraints

The LPV control problem formulated by the generalized plant PΘ can be solved by LPV

methods as introduced in Appendix A.4. The resulting controller depends on the satu-

ration indicators and thus is gain-scheduled by the saturation status. As emphasized in

Wu et al. (2000, p. 1109), a saturation indicator dependent weighting scheme is neces-

sary to achieve a successful control design. The weighting scheme should specify different

performance requirements for the unconstrained and constrained closed-loop system. In

particular, Wu et al. (2000) show that controllers synthesized with plants P̄Θ given by





ẋ

e

y



 =





A (ρ̄) B1 (ρ̄) B̄2 (ρ̄)Θ

C1 (ρ̄) 0 D̄12 (ρ̄)Θ

C2 (ρ̄) D21 (ρ̄) 0









x

d

u



 , (2.11)

without saturation indicator dependent weights upscale their control signal by Θ−1 in

the event of saturation. This property holds for general output-feedback controllers K̄Θ

as well as state-feedback controllers K̄Θ,x. The corresponding gain F̄ (ρ̄,θ) of the state-

feedback controller K̄Θ,x is given by

F̄ (ρ̄,θ) = −Θ−1
(
D̄T

12 (ρ̄) D̄12 (ρ̄)
)−1 (

γ2B̄T
2 (ρ̄)Z (ρ̄,θ) + D̄T

12 (ρ̄)C1 (ρ̄)
)

︸ ︷︷ ︸

=−K̄ρ,x

, (2.12)

with parameter-dependent Lyapunov function Z (ρ̄,θ). The difference to the state-

feedback gain F (ρ) introduced in (A.25) arises from the augmented matrices B2 (ρ̄,θ) =

B̄2 (ρ̄)Θ, and D12 (ρ̄,θ) = D̄12 (ρ̄)Θ in the plant with saturation indicators. The struc-

ture of the state-feedback controller K̄Θ,x in closed-loop with its plant GΘ,x is visualized

in Figure 2.4. To highlight the effect of the saturation indicators, the figure shows the

inner structure of K̄Θ,x comprised of K̄ρ,x and the inverse saturation indicator matrix

Θ−1. From Figure 2.4 it is obvious that state-feedback controllers K̄Θ,x synthesized with-

out saturation indicator dependent weights simply cancel the saturation indicators of the

open-loop plant. The resulting closed-loop features no saturation indicators at all. In real

world applications, the controller output is a physical signal, e.g. a force demand. Conse-

quently, the controller output should stay finite even if saturation occurs. Unfortunately,



2.4 LPV Control Design with Actuator Constraints 25

K̄ρ,x G

K̄Θ,x GΘ,x

y

θ1

θ2

θ3

θ4

θ−1
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θ−1
2

θ−1
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θ−1
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u1

u2

u3

u4

Figure 2.4: Structure of LPV controller without saturation indicator dependent weight-

ing filters

controller K̄Θ,x is unstable regarding the saturation indicators; once saturation occurs the

controller increases its control signal to infinity.

To overcome the issue, this work proposes a new saturation indicator dependent control

effort weight Wu (θ). The control effort weight Wu (θ) shapes the control effort perfor-

mance output eu according to

eu = Wu (θ)Θu. (2.13)

The idea is to distinguish the performance requirements of the unconstrained and con-

strained closed-loop system by realizing the control effort weight as

Wu (θ) = Θ−1, (2.14)

with Θ = diag (θ) and θi ∈ (0, 1] ∀i ∈ {1, 2 . . . , nu} and consequently Θ always invertible.

This control effort weight increases the penalty of large control signals if saturation occurs

and yields the control effort performance output equal to the control signal eu = u. The

generalized plant PΘ with Wu = Θ−1 can be expressed as







ẋ
[
ea

eu

]

y







=








A (ρ̄,θ) B1 (ρ̄,θ) B̄2 (ρ̄)Θ
[
C11 (ρ̄,θ)

0

] [
0

0

] [
0

I

]

C2 (ρ̄) D21 (ρ̄) 0












x

d

u



 . (2.15)

This representation of PΘ emphasizes the structure of the performance signal e =
[
eT
a eT

u

]T

as in (A.11) and its corresponding performance weight

We (θ) =

[
Wa (θ) 0

0 Wu (θ)

]

(2.16)
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Figure 2.5: Structure of LPV controller with proposed saturation indicator dependent

weighting filters

introduced in Figure 2.1. Compared to the generalized plant (2.11), the augmented gener-

alized plant (2.15) with Wu (θ) as defined in (2.14) recovers the simplifying assumptions

D12 = [0 Inu
]T and C12 = 0. In contrast to LPV controllers synthesized without sat-

uration indicator dependent weights, general output-feedback controllers KΘ as well as

state-feedback controllers KΘ,x designed with Wu = Θ−1 linearly reduce their control

signals u by Θ. The corresponding gain F (ρ̄,θ) of the state-feedback controller KΘ,x is

then given by

F (ρ̄,θ) = −Θ γ2B̄T
2 (ρ̄)Z (ρ̄,θ)

︸ ︷︷ ︸

−Kρ,x

. (2.17)

The closed-loop system with controller KΘ,x with gain F (ρ̄,θ) according to (2.17) is

visualized in Figure 2.5. Due to the proposed control effort weight each control signal ui
is downscaled by θi in the event of saturation and hence, the controller is stable regarding

the saturation indicators and avoids excessively large control signals.

The following example emphasizes the advantages of the proposed control effort weight

Wu (θ) in (2.14). The example presents the design of two LPV state-feedback controllers

for the LTI spring-mass system with input constraints illustrated in Figure 2.6. The

control design minimizes the induced L2-norm from the ground disturbance dg to the body

velocity ẋb. The resonance magnitude of the open-loop spring-mass system is infinite due

to the missing damping of the body mass. Consequently, the H∞-norm of the open-loop

system is not defined. The parameters of the spring-mass system are the body mass

mb = 250 kg and the spring stiffness kb = 30000 N/m. For the control design, the control

force u is scaled to kilo Newton.
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mb

cb

xb

dg
u

Figure 2.6: Spring-mass system used to illustrate the advantages of the proposed control

effort weight Wu (θ)

The first controller K̄θ,x is synthesized from plant P̄θ,x given by

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, (2.18)

with the constant control effort weight Wu = 1 and the performance weight Wa = θ/10.

This performance weight linearly mitigates the performance requirements depending on

the saturation indicator. The second controller Kθ,x is synthesized from plant Pθ,x given

by

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eu
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
, (2.19)

with the control effort weight Wu = θ−1 as proposed in (2.14) and the same performance

weightWa = θ/10. Figure 2.7-top left illustrates the frequency responses from disturbance

dg to body velocity ẋb of the open-loop plant, and the closed-loop plants with controller

K̄θ,x and Kθ,x. Due to the cancellation of the saturation indicators in the closed-loop

plant with K̄θ,x, the closed-loop Γed

(
P̄θ,x, K̄θ,x

)
is independent of θ and Figure 2.7-top

left shows only one curve. Conversely, the closed-loop system Γed (Pθ,x,Kθ,x) depends on

the saturation indicator and its frequency behavior is visualized by the frozen closed-loop

systems with θmin and θmax. Figure 2.7-top right and bottom show a simulation of the

decay of the body velocity of the system with an initial body displacement xb = 0.1

m. During the simulation the ground disturbance dg is zero all the time. The force

constraint of the control force u is adjusted to 0.5 kN. The simulation emphasizes the

inappropriate behavior of controller K̄θ,x. In particular, as illustrated in Figure 2.7-

bottom left, its control force u increases towards infinity as soon as the control force

reaches the force constraint. Accordingly, its saturation indicator violates the specified

saturation indicator range θ ∈ [0.1, 1] and the LPV controller operates outside its validity

range. In contrast, the controller Kθ,x linearly reduces its control force u depending on

the saturation indicator if the control force violates the force constraint. In this way, the
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Figure 2.7: LPV control design example emphasizing the advantages of the proposed

control effort weight Wu (θ): top left - frequency response of frozen LPV systems, top

right - saturation indicator trajectory, bottom left - control force, and bottom right - body

velocity

control force stays finite and the saturation indicator trajectory depicted in Figure 2.7-top

right keeps the validity range of the saturation indicator.

Remark. From the controller equations in (2.12) and (2.17) it can be concluded that the

performance weight Wa (θ) has no effect on the structure of the controller comparable to

the control effort weight Wu (θ). Nevertheless, a saturation indicator dependent perfor-

mance weight Wa (θ) should be employed to relax the performance specification in the

event of saturation to honor stability over performance.

2.5 Saturation Indicator Grid Density Assessment

As discussed in Appendix A, the grid density is an important design parameter during a

gridding-based LPV control approach. On the one hand a fine-meshed grid constitutes

a good approximation of the continuous operating range of the controller, while on the

other hand a wide-meshed grid with few grid points reduces the computational complexity

of the controller synthesis and implementation. The complexity of the synthesis problem

is of major interest as it badly scales with the number of states and the number of

grid points. This is especially obstructive during the synthesis of LPV controllers with

high-order MIMO plant models. Firstly, the high-order plant model yields large LMI

conditions and secondly the synthesis problem involves several of these LMI conditions
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as discussed in Appendix A.4.6. To emphasize the complexity issue, (2.20) shows the

number of LMIs hP of a synthesis problem with constant Lyapunov matrix and a uniform

scheduling parameter grid with h0 grid points per scheduling parameter ρi. The number

of LMIs is then determined by

hP = h
nρ

0 , (2.20)

and it is obvious that the number of LMIs grows exponentially.

In the special case of a controller design with a constant Lyapunov function, the structure

of the closed-loop system can be exploited to state a necessary and sufficient condition for

the number of grid points of the saturation indicators θ guaranteeing quadratic stability of

the closed-loop system. Theorem 2.1 states this condition for the state-feedback problem

with state-feedback plant PΘ,x given by


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eu
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A (ρ̄) B1 (ρ̄,θ) B̄2 (ρ̄)Θ
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C11 (ρ̄,θ)
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0

0
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0

Inu
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x

d

u



 . (2.21)

This state-feedback plant is derived from (2.15) and thus includes the control effort weight

Wu (θ) = Θ−1. Compared to (2.15), however, plant (2.21) additionally features a satura-

tion indicator independent system matrix A (ρ̄). This assumptions can be easily satisfied

by a proper definition of the saturation indicator dependent weighting function Wa (θ).

Theorem 2.1 (Minimum grid density for quadratic stability analysis). Given

the open-loop plant PΘ,x in (2.21), the scheduling parameters ρ =
[
ρ̄T θT

]
∈ P and

the performance level γ > 0. The closed-loop system Γed (PΘ,x,KΘ,x) is quadratically

stable for all ρ ∈ P if and only if there exists a positive-definite Lyapunov matrix Z > 0

with Z ∈ R
nx×nx and saturation indicators θ with θi ∈ (θmin, 1] ∀i ∈ {1, 2 . . . , nu} and

θmin ∈ (0, 1) such that the closed-loop Γed (PΘmin,x,KΘmin,x) with θ = θmin is quadratically

stable for all ρ̄ ∈ P̄, i.e.

AT
F (ρ̄,θmin)Z +ZAF (ρ̄,θmin) < 0, (2.22)

with AF (ρ̄,θmin) = A (ρ̄) + B̄2 (ρ̄)ΘminF (ρ̄,θmin).

Proof. The quadratic stability condition of the closed-loop system Γed (PΘ,x,KΘ,x) ac-

cording to (A.6) can be stated as

AT
F (ρ̄,θ)Z +ZAF (ρ̄,θ) < 0. (2.23)

After substituting AF (ρ̄,θ) and F (ρ̄,θ) into (2.23), the condition can be expressed by

AT (ρ̄)Z+ZA (ρ̄)−γ2
(
B̄2 (ρ̄)ΘΘT B̄T

2 (ρ̄)Z
)T

Z−γ2ZB̄2 (ρ̄)ΘΘT B̄T
2 (ρ̄)Z < 0,

(2.24)
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and subsequently using Z = ZT as

AT (ρ̄)Z +ZA (ρ̄)− 2γ2ZB̄2 (ρ̄)ΘΘT B̄T
2 (ρ̄)Z < 0. (2.25)

The third term in (2.25) is positive-definite for all ρ ∈ P due to

HΘ (ρ̄,θ) = γ2ZB̄2 (ρ̄)ΘΘT B̄T
2 (ρ̄)Z = MΘ (ρ̄,θ)MT

Θ (ρ̄,θ) > 0, (2.26)

with MΘ (ρ̄,θ) = γZB̄2 (ρ̄)Θ and γ > 0. Using the definition of HΘ (ρ̄,θ), condition

(2.25) can be rewritten as

AT (ρ̄)Z +ZA (ρ̄)− 2HΘ (ρ̄,θ) < 0. (2.27)

The diagonal structure of Θ introduced in (2.6) can now be exploited to show that

HΘ (ρ̄,θ) >HΘ (ρ̄,θmin) > 0. (2.28)

To this end, HΘ (ρ̄,θ) must be reformulated as

HΘ (ρ̄,θ) = γ2
nu∑

i=1

θ2iZB̄2 (ρ̄)EiB̄
T
2 (ρ̄)Z > 0, (2.29)

with Ei defined such that

Θ =
nu∑

i=1

θiEi, (2.30)

e.g. E1 = diag
(

[1, 0, . . . , 0]T
)

. Each term of (2.29) itself is positive-definite, i.e.

θ2iZB̄2 (ρ̄)EiB̄
T
2 (ρ̄)Z > 0 ∀i ∈ {1, 2 . . . , nu} , (2.31)

and each term of (2.29) is upscaled by θi. These properties of HΘ (ρ̄,θ) can be used to

conclude that HΘ (ρ̄,θ) > HΘ (ρ̄,θmin) as stated in (2.28). Consequently, any positive-

definite Lyapunov matrix Z that renders the closed-loop system Γed (PΘmin,x,KΘmin,x)

quadratically stable for all ρ̄ ∈ P̄ , also renders the closed-loop system Γed (PΘ,x,KΘ,x)

quadratically stable for all ρ ∈ P .

Remark. Even though Theorem 2.1 only states a stability condition and does not consider

the induced L2-norm performance of the closed-loop system, it essentially facilitates the

design of high-order MIMO controllers for plants with actuator saturation. Due to the

a priori known grid point θ = θmin required to guarantee quadratic stability, the LPV

controller can be synthesized with a loose saturation indicator grid containing θ = θmin

for quadratic stability and some additional grid points as required for performance.

Remark. Theorem 2.1 says nothing about the required grid density regarding the schedul-

ing parameters ρ̄. Thus the required grid density of these parameters has to be determined

during a preliminary analysis as described in Appendix A.4.6.
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3 Quarter-Vehicle Control Design

For fundamental investigations, the well-known two-degree-of-freedom quarter-vehicle rep-

resents a sufficiently good approximation of the vehicle vertical dynamics. Most con-

straints and limitations like invariant points are already captured by this rather simple

model. Therefore, results and insights obtained within quarter-vehicle applications can be

transferred to full-vehicle applications, see e.g. Savaresi et al. (2010) and Guglielmino et al.

(2008) for details. As discussed in Chapter 1, the semi-active suspension control problem

has been intensively investigated due to its high relevance in automotive suspension de-

velopment. Most of these investigation have been performed in quarter-vehicle set-ups,

as the quarter-vehicle features the following advantages compared to a full-vehicle:

• single control input,

• single road disturbance input,

• medium number of states,

• well-understood system dynamics,

• large and solid collection of control policies, and

• reasonable effort to build a test-rig.

The first three items simplify the control design due to the manageable problem complexity

and the following two points facilitate the design of controllers using sophisticated control

theory like MPC and LPV due to the vast availability of expert knowledge. The last

item concerns the experimental assessment of developed controllers because experimental

validation is the mandatory last step to demonstrate a successful control design.

Regarding the development of a full-vehicle controller, which is the ultimate target of this

work, the initial development of a quarter-vehicle controller constitutes a good starting

point. Firstly, because four quarter-vehicle controllers each applied to one suspension unit

of the vehicle can be gathered to form a full-vehicle controller and secondly because the

control design methods developed in quarter-vehicle applications can be readily extended

to the design of full-vehicle controllers.

3.1 Quarter-Vehicle Control Structure

The structure of the Disturbance-Information (DI) LPV controller consisting of the state-

observer and the state-feedback controller is illustrated in Figure 3.1. The state-observer

estimates the current plant states x̂ using the plant measurements y and the exogenous

scheduling parameter ρ. Based on the estimated states x̂ and the exogenous scheduling

parameters ρ, the state-feedback controller calculates the optimal damper force Fsa. As

discussed later on in Section 3.5, the augmented plant used for the LPV control design

gathers the saturation block, the inverse damper model and the plant. In this way, the
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Figure 3.1: Disturbance-Information structure of quarter-vehicle LPV controller

damper force Fsa forms the interface between the LPV controller and the augmented

plant. The inverse damper subsystem transforms the constrained damper force demand

σ (Fsa) of the controller into the current demand ud of the semi-active damper using the

estimated states x̂. The actual implementation of the semi-active suspension controller

depicted in light green is comprised of the LPV controller, the saturation block and the

inverse damper subsystem.

3.2 Performance Criteria

A systematic system design necessitates the quantitative description of the design goals

of the system. In the suspension design context, the major design objectives are ride

comfort and road-holding. Additionally, the suspension deflection can become relevant in

applications with restrictive minimum and maximum suspension deflection bounds.

According to ISO (2631-1:1997), ride comfort of vehicle passengers can be characterized

by their experienced accelerations. In general, this includes translational and rotational

accelerations along all six degrees-of-freedom (DoF). In a quarter-vehicle application, how-

ever, the body mass has just the vertical, translational DoF and the best approximation of

ride comfort is achieved by assuming that the accelerations experienced by the passenger

are equal to the body mass accelerations of the quarter-vehicle. These accelerations can

be stochastically evaluated as described in ISO (2631-1:1997) by the root mean square

(RMS) value of the signal. In contrast to the sophisticated procedure of ISO (2631-1:1997),

the ride comfort criterion calculation employed in this section neglects the band-limiting

prefiltering step and also the frequency weighting of the signal. The quantitative repre-

sentation of ride comfort Jc is given by

Jc =

√

1

T

∫ T

0

|ẍb|2 dt. (3.1)

The road-holding capability defines the longitudinal and lateral force potential Ft,xy of the
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vehicle tires and is directly related to ride safety. The dependence of the force potential

Ft,xy on the vertical tire force Ft,z, called wheel load, through the road friction coefficient

µr is given by

Ft,xy = µrFt,z, (3.2)

with the total wheel load comprised of the static wheel load Fwl,stat and the dynamic

wheel load Fwl,dyn according to

Ft,z = Fwl,stat + Fwl,dyn. (3.3)

The static wheel load of a tire is solely determined by the vehicle mass and its distribution

to the front, rear, left and right suspensions. Generally, the static wheel load cannot be

influenced by suspension elements like springs, dampers or actuators. Conversely, the

dynamic wheel load is affected by these suspension elements and of essential interest

during the design of suspension systems. In the following only the road-holding ability

regarding the dynamic wheel load is considered as design criterion and the notation wheel

load is used for the dynamic wheel load, i.e. Fwl = Fwl,dyn. Eq. (3.2) immediately suggests

to define the road-holding criterion as the integral of the dynamic wheel load such that

a maximization of the criterion improves road-holding. Unfortunately, this criterion is

difficult to evaluate because it distinguishes between the sign of the dynamic wheel load

and cannot be formulated as a signal norm. Additionally, for the most common road

excitations, namely stochastic road excitations, the integral of the dynamic wheel load

over infinite time is zero, meaning that the positive dynamic wheel loads, which improve

road-holding, cannot be increased without equivalently increasing the negative dynamic

wheel loads, which deteriorate road-holding. Therefore, the variation of the dynamic

wheel load should be reduced and the road-holding criterion Jrh can be quantitatively

represented by the RMS value of the dynamic wheel load according to

Jrh =

√

1

T

∫ T

0

|Fwl|2 dt. (3.4)

This definition of the road-holding criterion can be also found in Savaresi et al. (2010, p.

95).

The exploitation of the minimum and maximum suspension deflection constitutes the

third criterion to be considered during suspension design. The suspension deflection is

bounded by bump-stops leading to large suspension forces and large body accelerations

when these bump-stops are reached during operation. Consequently, excessively large

suspension deflections deteriorate ride comfort and reduce the durability of the suspension

system. The exploitation of the suspension deflection range, called deflection usage Jd,

can quantitatively be characterized by the RMS value of the suspension deflection xd
according to

Jd =

√

1

T

∫ T

0

|xd|2 dt. (3.5)
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Figure 3.2: Sketch of the quarter-vehicle model

When stochastically evaluated, the criteria Jc, Jrh and Jd determine the one sigma bound

of their corresponding signals, which is tantamount to the signal values being 68.3 % of

the time smaller than the criteria value.

3.3 LTI Quarter-Vehicle Model

From a mechanical point of view the linear quarter-vehicle model is essentially a two-

mass spring-damper system as depicted in Figure 3.2. The upper mass denoted by m̄b

represents the vehicle body and the lower mass denoted by mw represents the wheel. In

the general configuration of Figure 3.2, both masses are coupled by a linear spring-damper

element with spring stiffness kb and damping coefficient db. Additionally, a suspension

force Fs can act between both masses. The tire transmits the road disturbances dg to the

wheel. The tire is approximated as a linear spring-damper element with spring stiffness

kw and damping coefficient dw. The position of the body mass m̄b and the wheel mass mw

with respect to the equilibrium point of the two-mass system are labeled by xb and xw.

A detailed introduction to the quarter-vehicle and to suspension systems can be found in

Mitschke and Wallentowitz (2004), Isermann (2005) and Savaresi et al. (2010, p. 41 ff.).

The quarter-vehicle dynamics equation can be derived by applying Newtons’ second law

to the body and wheel masses. After reformulating these two equations, the differential

equation of the quarter-vehicle can be expressed as

ẋ = Ax+B1dg +B2Fs, (3.6)

with the system states x = [xb ẋb xw ẋw xg]
T , and the matrices

A =










0 1 0 0 0
−kb
mb

−db
mb

kb
mb

db
mb

0

0 0 0 1 0
kb
mw

db
mw

−kb−kw
mw

−db−dw
mw

kw
mw

0 0 0 0 0










, (3.7)



3.3 LTI Quarter-Vehicle Model 35

B1 =
[

0 0 0 dw
mw

1
]T

and (3.8)

B2 =
[

0 1
mb

0 −1
mw

0
]T

. (3.9)

The quarter-vehicle has some interesting properties which affect the design of a semi-

active suspension controller. The first property to be discussed concerns the calculation

of the dynamic wheel load. On the one hand, the dynamic wheel load can be calculated

from the tire properties according to

Fwl = −kwxt − dwẋt, (3.10)

with the tire deflection xt defined as the difference between the wheel and road position

xt = xw−xg. On the other hand, the dynamic wheel load can be expressed as a function of

the body and wheel accelerations without any knowledge of the tire properties according

to

Fwl = m̄bẍb +mwẍw. (3.11)

The latter equation of the dynamic wheel load establishes a direct relation between the

body acceleration, the wheel acceleration and the dynamic wheel load and emphasizes the

coupling between the ride comfort and road-holding criteria. In particular, (3.11) shows

that a reduction of the body acceleration while maintaining the same wheel acceleration

yields an improvement of both criteria. Unfortunately, during the design of a semi-active

suspension the body acceleration cannot be reduced without interference to the wheel

acceleration.

The frequency responses of the body acceleration and the dynamic wheel load of a passive

suspension are subject to a waterbed effect. Therefore, it is impossible to simultaneously

reduce the frequency response magnitude at all frequencies. Figure 3.3 illustrates the

waterbed effect for a variation of the body damping coefficient db of the quarter-vehicle.

This analysis shows the limits of suspension systems with passive dampers and presents

some helpful insights into the system dynamics. Additionally, passive suspension config-

urations will be extensively used as benchmark for the evaluation of the LPV controllers.

The transfer functions from the road disturbance to the body acceleration, Figure 3.3-top

left, and to the dynamic wheel load, Figure 3.3-top right, have two magnitudes, which are

invariant against variations of the damping coefficient. This property was theoretically

investigated in Hedrick and Butsuen (1990) and is discussed in detail in (Savaresi et al.,

2010, p. 46 ff.). In the example shown in Figure 3.3, the first invariant point is located at

a frequency slightly higher than the resonance peak of the body mass and the second in-

variant point is located near the resonance frequency of the wheel mass. As obvious from

Figure 3.3 the waterbed effect leads to a simultaneous increase in magnitude in the inter-

mediate and high frequency range if the resonance peaks are reduced by a higher damping

coefficient. Consequently, the design of a passive suspension regarding ride comfort and
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Figure 3.3: Waterbed effect of frequency responses of quarter-vehicle subject to road

disturbances dg due to variation of damping coefficient db; top left - frequency response

of body acceleration, top right - frequency response of dynamic wheel load, bottom left

- frequency response of damper deflection, and bottom right - trade-off ride comfort vs

road-holding

road-holding involves a trade-off between small resonance peak magnitudes, especially of

the body mass resonance peak, and the deterioration of the isolation against road distur-

bances in the intermediate and high frequency range. Figure 3.3-bottom right shows the

conflict diagram corresponding to a variation of the damping coefficient from db = 1000

Ns/m to db = 2500 Ns/m. The conflict diagram confirms the observation from (3.11) that

ride comfort and road-holding can be improved simultaneously (dashed black line) if the

damping coefficient is far from the optimum, but optimal ride comfort and road-holding

cannot be achieved at the same time (solid black line). During the design of semi-active

suspensions, the area of interest in the conflict diagram is mainly the trade-off region

between ride comfort and road-holding represented by the solid black line. In contrast

to the frequency responses of body acceleration and dynamic wheel load, the frequency

response of the damper deflection xd = xb− xw shows no waterbed effect and an increase

in damping yields a consistent reduction of the damper deflection magnitude. Never-

theless, there is a design conflict between ride comfort and road-holding on the one side

and damper deflection on the other, because ride comfort and road-holding drastically

deteriorate once the damping coefficient increases beyond a certain level.

In model-based semi-active damper control, the damper is considered as a force actuator

with input constraints rather than as a device to continuously change the damping. The
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interpretation as force actuator with constraints is natural, because a semi-active damper

can generate arbitrary forces inside its limits. The analysis of the system behavior subject

to a varying damping coefficient given in Figure 3.3 only provides the first part of the

necessary system understanding. The second part presents the analysis of the system

properties considering the suspension force Fs as input which is depicted in Figure 3.4. The

transfer function on the left of Figure 3.4 shows a transmission zero of the suspension force

Fs regarding the body acceleration for zero tire damping dw = 0 Ns/m. The reduction

of the gain of the suspension force on the body acceleration stays significant for a tire

damping up to dw = 500 Ns/m. In vehicle applications, the tire damping is normally

smaller than dw = 500 Ns/m. Most investigations in the literature even neglect the tire

damping at all, e.g. Savaresi et al. (2010, p. 44 ff.). The efficiency loss of the suspension

force regarding the body acceleration near the wheel mass resonance peak imposes vital

challenges during an induced L2-norm control design, because the input-output behavior

of the system can hardly be changed by the suspension actuator. Conversely, the transfer

function of the dynamic wheel load shows no efficiency loss of the suspension actuator.

Based on the quarter-vehicle system properties, the following performance specification

for semi-active suspension control design can be derived:

ride comfort: performance outputs related to ride comfort should emphasize the

body resonance peak and roll-off at about 3 Hz,

road-holding: performance outputs related to road-holding should emphasize the

body and wheel resonance peaks, and roll-off beyond the wheel resonance frequency,

suspension usage: performance outputs related to suspension usage should em-

phasize the body and wheel resonance peaks, and roll-off beyond the wheel resonance

frequency.

The specification regarding ride comfort is obvious from Figure 3.3-top left and Figure 3.4-

left. In the frequency range between both resonance peaks the smallest body acceleration
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magnitudes are achieved by the smallest possible damper forces. This cannot be overcome

by a semi-active damper due to its inherent force limits. Additionally, the frequency

response magnitude of the wheel resonance peak can hardly be reduced due to the poor

actuator efficiency in this frequency region. Consequently, the best that a ride comfort

oriented controller can achieve is to roll-off after the body resonance frequency. Regarding

road-holding and suspension usage the performance specification is not that involved.

The control objective is simply a reduction of both resonance peaks with a simultaneous

sufficiently fast controller roll-off.

3.4 Skyhook-Groundhook Control

The Skyhook (SH) control policy introduced by Karnopp et al. (1974) constitutes the to-

date state-of-the-art in semi-active suspension control in production vehicles. It follows

from a result of optimal quadratic control of a one-mass system which states that the body

velocity can be best minimized by a Skyhook damper, i.e. a damper between the body

mass and an inertial reference frame. In the context of vehicle applications, a Skyhook

damper cannot be realized, but it can be approximated by a semi-active damper mounted

between body and wheel mass. The semi-active suspension operated by the Skyhook

control policy aims at a reduction of the body resonance peak and hence at improved ride

comfort.

Conversely, the Groundhook (GH) control policy developed in Valášek et al. (1997) aims

at a reduction of the dynamic wheel load to improve road-holding. This is achieved by

approximating a Groundhook damper acting between ground and wheel by the semi-

active damper. Savaresi et al. (2010, p. 108 ff.) provide an overview about the Skyhook

and Groundhook control concepts and give a performance evaluation of both concepts

compared to passive suspension setups. In this thesis, the Skyhook and Groundhook

controllers are implemented in the control structure shown in Figure 3.1. The output

signal of the controllers is a damper force demand similar to Unger et al. (2013, p. 4).

Starting from Savaresi et al. (2010, p. 108 ff.), the Skyhook control law can be expressed

by

Fsa,SH =

{
Fd,min ẋbẋd ≤ 0

FSH ẋbẋd > 0
, (3.12)

with the Skyhook force FSH = dSHẋb computed from the body velocity ẋb and the Skyhook

damping dSH ≥ 0. Similarly, the Groundhook control law can be expressed by

Fsa,GH =

{
Fd,min −ẋwẋd ≤ 0

FGH −ẋwẋd > 0
, (3.13)

with the Groundhook force FGH = dGHẋw computed from the wheel velocity ẋw and the

Groundhook damping dGH ≥ 0. In (3.12) and (3.13), Fd,min denotes the minimum absolute

damper forces.
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As proposed by Ahmadian and Blanchard (2011, p. 223), a combined Skyhook-Groundhook

(SH/GH) control policy can be realized by superposition of the Skyhook controller given

in (3.12) and the Groundhook controller given in (3.13) according to

Fsa = Fsa,SH + Fsa,GH. (3.14)

The hybrid controller collapses to the pure Skyhook controller given in (3.12) for dGH = 0

and to the pure Groundhook controller given in (3.13) for dSH = 0. Skyhook and Ground-

hook damping values larger than zero yield a controller that simultaneously approximates

the Skyhook damper and the Groundhook damper.

3.5 Quarter-Vehicle LPV Control Design

This section presents the design of a quarter-vehicle DI LPV controller as introduced in

Chapter 2 and Appendix A. The DI problem represents a special type of output-feedback

control problem. It is extensively discussed in Doyle et al. (1989) and Prempain and

Postlethwaite (2001) where it is referred to as Disturbance-Feedforward problem. One

advantageous property of DI controllers is that they can be constructed by the sequential

synthesis of a full-order state-observer and a state-feedback controller. In contrast to

ad-hoc observer-based state-feedback controllers, DI controllers achieve a guaranteed per-

formance index γ of the closed-loop equivalently to general output-feedback controllers.

Specifically, this section particularizes the quarter-vehicle semi-active LPV control ap-

proach published in Fleps-Dezasse et al. (2016).

As a first step, the LTI quarter-vehicle state-space model Gqv with general suspension

force input Fs discussed in Section 3.3 is adapted to a semi-active damper force input

Fsa as depicted in Figure 3.5. The augmented quarter-vehicle plant Ḡsa with semi-active

damper force input considers the damper force dynamics Gud
(s) and the damper force

limitations. The nonlinear control signal to damper force behavior of the force map f2D of

the semi-active damper, however, is canceled by the control signal map g2D as described

in (B.5).

According to the passivity constraint of the semi-active damper, the damper force Fsa is

limited to the first and third quadrant of the force map shown in Appendix B Figure B.3.

This asymmetry is obstructive for the synthesis of an LPV controller using saturation

indicators to model the actuator force limits. To obtain an eligible representation the

QVM plant Ḡsa is transformed as follows: the damper force Fsa generated by the semi-

active damper is split into a virtual control force uFd
and a nominal damper force F0

Fsa = F0 + uFd
, (3.15)

with F0 = −d0 (x (t)) ẋd and the damper velocity ẋd = ẋb − ẋw. For a suitable problem

formulation, the force constraints of the virtual control signal uFd
should be such that the

upper force limit uFd,max is greater than zero uFd,max > 0 and the lower force limit uFd,min

is smaller than zero uFd,min < 0. For general semi-active damper force maps, this can be
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ρ ẋd ẋd

Figure 3.5: Control structure of quarter-vehicle semi-active suspension control

realized by utilizing a nonlinear nominal damper force characteristic with a time-varying

damping coefficient d0 (x (t)). Figure 3.6 illustrates the effect of the nonlinear nominal

damper force F0 on the force limits of the virtual control force uFd
. Compared to the

original force limits of Fsa, the force limits of uFd
are shifted to all four quadrants of the

force map. In contrast to previous works utilizing such a shift towards a virtual control

input with a constant nominal damping like Poussot-Vassal et al. (2008, p. 1525), a

time-varying nominal damping coefficient d0 (x (t)) readily extends the anti-windup LPV

controller design presented in Wu et al. (2000) to general semi-active damper applica-

tions. According to Section 2.3, the constrained virtual control force σ (uFd
) can now be

expressed as a function of the saturation indicator θ by

σ (uFd
) = θuFd

, (3.16)

with

θ =
σ (uFd

)

uFd

. (3.17)

The dynamics of control signal changes modeled by Gud
(s) in the force map damper

model fFM is approximated by a first-order dynamics of the virtual control force uFd
with

bandwidth ωd according to

ẋFd
= ωd (uFd

− xFd
) , (3.18)

with the virtual damper force state xFd
. The LPV plant Ḡsa with the saturation indicator

θ and saturation transformer d0 can be stated by

ẋ = A (d0)x+ B̄2θuFd
, (3.19)
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coefficient d0 (x (t)) called saturation transformer

with the system states x = [xb ẋb xw ẋw xFd
]T , and the matrices

A (d0) =










0 1 0 0 0
−kb
mb

−d0
mb

kb
mb

d0
mb

1
mb

0 0 0 1 0
kb
mw

d0
mw

−kb−kw
mw

−d0−dw
mw

− 1
mw

0 0 0 0 −ωd










and (3.20)

B̄2 =
[
0 0 0 0 ωd

]T
. (3.21)

Remark. The control force transformation by saturation transformers can be easily used

to achieve an eligible virtual control force uvirtual of force actuators with arbitrary time-

varying constraints. In the general case, the control force shift is then performed by a

saturation transformer δu (t) according to

uoriginal = δu (t) + uvirtual. (3.22)

3.5.1 State-Observer Design

The state-observer of the open-loop plant Ḡsa is synthesized according to Appendix A.4.1

and A.4.2. Figure 3.7 shows the detailed general control structure of the observer problem

with the road disturbance input dg, the measurement disturbances dn and the perfor-

mance output ∆e. For the observer design, the performance output simply consists of

the estimation error between the plant states x and the observer states x̂ according to

∆e = We (x− x̂) . (3.23)
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Figure 3.7: Weighting scheme of quarter-vehicle state-observer design

The diagonal weighting matrix We = diag
(

[we,1, . . . , we,nx
]T
)

prioritizes the estimation

error of distinct states according to the values of the diagonal entries we,i. In the same

way, the diagonal weighting matrix Wn = diag
([
wn,1, . . . , wn,ny

]T
)

scales the measure-

ment disturbances dn. The road disturbance weight Wg is realized as stated in (C.6) as

a first-order filter that shapes the road disturbance amplitudes according to the power

spectral densities (PSD) of real roads reported by ISO (8608:1995). This weighting filter

introduces an additional state xg into Ḡsa which is also estimated by the observer O as

shown in Figure 3.7. Instead of the vehicle speed, the disturbance input filter Wg uses a

fixed reference velocity, i.e. vv = vref such that the vehicle speed dependence of the road

model does not introduce an additional scheduling parameter. Due to this approxima-

tion the velocity dependent increase in magnitude of the road disturbances is neglected

and the observer design only considers a static trade-off between road disturbances and

measurement disturbances. The reference velocity vref should thus be selected around

100 km/h to give a good approximation of the entire velocity related operating range of

passenger cars.

The state-observer design assumes measurements of the body acceleration yẍb
, the wheel

acceleration yẍw
and the damper velocity yẋd

. According to (A.30), the generalized plant

PO of the observer synthesis can be stated by





∆ẋ

∆e

∆y



 =





A (d0) B1 I

C1 0 0

C2 (d0) D21 0









∆x

d

∆v



 . (3.24)

with ∆x the difference between the plant and observer states and ∆y the difference

between the plant measurements and the estimated measurements of the observer. The

disturbance inputs d of PO are d = [dg dn,ẍb
dn,ẍw

dn,ẋd
]T and the system matrices are
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Figure 3.8: General control configuration of quarter-vehicle state-observer problem

given by

A (d0) =












0 1 0 0 0 0
−kb
mb

−d0
mb

kb
mb

d0
mb

1
mb

0

0 0 0 1 0 0
kb
mw

d0
mw

−kb−kw
mw

−d0−dw
mw

− 1
mw

kw−dwβrvref
mw

0 0 0 0 −ωd 0

0 0 0 0 0 −βrvref












, (3.25)

B1 =








0 0 0 dwαrvref
mw

0 αrvref
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0








T

, (3.26)

C1 = We = diag
(

[we,1, . . . , we,nx
]T
)

, (3.27)

C2 (d0) =






−kb
mb

−d0
mb

kb
mb

d0
mb

1
mb

0
kb
mw

d0
mw

−kb−kw
mw

−d0−dw
mw

− 1
mw

kw−dwβrvref
mw

0 1 0 −1 0 0




 and (3.28)

D21 =






0 wn,ẍb
0 0

dwαrvref
mw

0 wn,ẍw
0

0 0 0 wn,ẋd




 . (3.29)

The states x of the open-loop plant Gsa are x = [xb ẋb xw ẋw xFd
xg]

T and the corre-

sponding measurements are y = [yẍb
yẍw

yẋd
]T . The generalized plant PO given in (3.24)

- (3.29) exhibits just the saturation transformer scheduling parameter d0 because the sat-

uration indicator θ only occurs in the input matrix B2 = B̄2θ. Consequently, the LPV

observer synthesis considers one scheduling parameter, namely d0 as illustrated in Figure
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Figure 3.9: Mixed sensitivity weighting scheme of quarter-vehicle LPV controller design

3.8. The observer synthesis is performed with a linear parameter-dependent Lyapunov

matrix Y (d0) stated by

Y (d0) = Y0 + d0Y1, (3.30)

and a grid density of two points. After determination of the tuning parameters, the

observer synthesis is verified with a denser grid featuring hP = 10 grid points.

The tuning parameters of the observer problem are

• the scaling factors of the state-estimation errors we,1, . . . , we,nx
,

• the scaling factors of the measurement disturbances wn,1, wn,2 and wn,3, and

• the parameters of the road model βr, αr and vref.

The determination of optimal values of these tuning parameters is discussed later on in

Section 3.6.

3.5.2 DI Controller Design

This section presents the actual semi-active suspension DI LPV controller design based

on the theory introduced in Section 2.4 and Appendix A.4.4. The controller is designed

along a mixed sensitivity S/KS loop shaping scheme as discussed in Kwakernaak (1993, p.

261) and Skogestad and Postlethwaite (2005, p. 392 ff.). The design scheme is adapted to

the special case of semi-active suspension control, e.g. pure disturbance rejection without

any reference tracking.
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Figure 3.9 illustrates the detailed general control configuration of the mixed sensitivity

S/KS scheme consisting of the unconstrained open-loop plant G, the constrained open-

loop plant Gsa, the generalized plant Pθ, and the DI controller Kθ. The constrained

open-loop plant Gsa is excited by the disturbances d shaped by the weighting function

Wd. According to the mixed sensitivity S/KS scheme, the overall performance outputs e

are distinct into the control effort eu shaped by Wu and the actual performance signals

ea shaped by Wa. The S/KS mixed sensitivity design problem of Figure 3.9 with the

closed-loop system denoted by Γed (Pθ,Kθ) can be stated as

‖Γed (Pθ,Kθ)‖i2 =
∥
∥
∥
∥

[
W1 0

0 W2

]

Sa

[
V1

V2

]∥
∥
∥
∥
i2

< γ, (3.31)

with γ the least upper bound of the induced L2-norm of Γed (Pθ,Kθ). The functions

W1, W2, V1 and V2 can be determined from Figure 3.9 using an augmented sensitivity

function Sa. The augmented sensitivity function Sa describes the mapping of the closed-

loop system Γed (Pθ,Kθ) from the disturbance inputs d to the augmented measurement

outputs yP = [ya y]T according to

[
ya

y

]

= Sa

[
Gad

Gyd

]

Wdd. (3.32)

The indices ad and yd of the plant G describe the plant input and output signals, namely

the input signals d and the output signals ya and y, respectively. Starting from the

control structure in Figure 3.9, the augmented sensitivity function Sa given by

Sa =

[
I −GauθKθS

0 S

]

, (3.33)

can be derived from

[
ya

y

]

=

[
Gad

Gyd

]

Wdd+

[
Gau

Gyu

]

θ [0 Kθ]

[
ya

y

]

, (3.34)

using the closed-loop mapping S of output disturbances to the measurement signals. For

LTI systems, the closed-loop mapping S is referred to as sensitivity function (Skogestad

and Postlethwaite, 2005, p. 24). The mixed sensitivity problem defined in (3.31) can now

be expressed by

‖Γed (Pθ,Kθ)‖i2 =
∥
∥
∥
∥

[
Wa 0

0 WuθKθ

] [
I −GauθKθS

0 S

] [
GadWd

GydWd

]∥
∥
∥
∥
i2

< γ. (3.35)

Even though the controller synthesis problem is formulated in generalized plant notation

as introduced in Appendix A.4, the mixed sensitivity problem representation in (3.35)

provides some insight into the performance specification. The triangle inequality of norms

described in Skogestad and Postlethwaite (2005, p. 549) imposes that each individual row
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of (3.35) has to be at least smaller than γ, i.e. the induced L2-norm from the disturbances

d to the performance signals ea has to satisfy

‖Wa (Gad −GauθKθSGyd)Wd‖i2 < γ, (3.36)

and simultaneously the induced L2-norm from the disturbances d to the controller effort

eu has to satisfy

‖WuθKθSGydWd‖i2 < γ. (3.37)

According to Kwakernaak (1993, p. 261), (3.36) and (3.37) can be exploited to specify

the design targets of ea and eu by appropriately choosing the weighting functions Wa, Wu

and Wd. In particular, a large Wa at low frequencies and a large Wu at high frequencies

often has the effect that (3.36) dominates the resulting closed-loop at low frequencies and

(3.37) at high frequencies.

The DI controller design introduced in Section 2.4 predetermines the control effort weight-

ing function Wu to

Wu = θ−1, (3.38)

to achieve the desired controller structure. As described in Section 2.4, this choice of Wu

yields a controller that linearly reduces its control signal in the event of saturation. In

addition to the structural motivation of Wu = θ−1 of Section 2.4, the inspection of (3.35)

also suggests this control effort function, because Wu = θ−1 cancels θ and consequently

the control effort eu is equal to the controller output uFd
. This entails that the control

effort eu is not downscaled by θ and the design imposes the same control effort bound for

the constrained and unconstrained system.

The DI controller design also predetermines the disturbances d, the disturbance weight-

ing function Wd and the disturbance models Gyd and Gad according to the DI plant

assumptions

(a1) D11 (ρ) = 0,

(b1) (A (ρ)−B1 (ρ)C2 (ρ)) parameter-dependent stable, and

(b2) D21 (ρ) = I.

Assumption (b2) can be satisfied by

Gyd = I, (3.39)

and

Wd = I. (3.40)

Assumptions (a1) and (b1) restrict the disturbance model Gad given by
[
ẋa

ya

]

=

[
Aa Ba

Ca Da

] [
xa

d

]

(3.41)
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to have the same dynamics matrix as the open-loop plant Gsa, i.e. Aa = A, and the

feedthrough matrix Da = 0. Furthermore, an input matrix Ba equal to the observer gain

L (d0), i.e. Ba = L (d0), satisfies assumption (b1).

The choice of the performance signals ea and their weighting functionWa is crucial during

the controller design. The main objectives determining the performance signals are:

• the performance goals ride comfort and road-holding introduced in Section 3.2, and

• the computational cost during controller synthesis and code execution on real-time

hardware.

According to the ride comfort and road-holding criteria introduced in (3.1) and (3.4),

the first point refers to a reduction of the body acceleration ẍb and dynamic wheel load

Fwl. The second point is mainly influenced by the controller order and consequently the

number of states of the generalized plant Pθ. The presented controller design employes

the body velocity ẋb and the wheel velocity ẋw as performance signal. To motivate this

choice, Figure 3.10 shows the quarter-vehicle frequency responses of body and wheel

velocity and acceleration, and the corresponding dynamic wheel load. As discussed in

Section 3.3, the ride comfort related performance signals should emphasized the body

resonance peak and roll-off at higher frequencies. The body acceleration which directly

characterizes ride comfort according to (3.1) does not meet this requirement as the wheel

resonance peak is almost as high as the body resonance peak. Do et al. (2010, p. 4656)

overcome this issue by shaping the body acceleration with a second-order low-pass filter.

This approach introduces two additional states into the generalized plant which is not

desired in the control design in this work. The body velocity, however, inherently provides

a better distinction between the body and wheel resonance peaks and consequently, a

first-order shaping filter is sufficient. Regarding road-holding, Do et al. (2010, p. 4656)

propose the dynamic wheel load as performance signal again shaped by a second-order low-

pass filter. In contrast to this approach, a wheel velocity performance signal sufficiently

emphasizes the wheel resonance peak and features a one decade stepper roll-off than the

dynamic wheel load. In the proposed performance signal scheme, the dynamic wheel load

is indirectly minimized through the body and wheel velocities according to (3.11). In

summary, the proposed weighting scheme reduces the number of states of the generalized

plant by 30 % compared to Do et al. (2010). Thus, the number of controller states is also

reduced by 30 % because the controller order is equal to the generalized plant order as

discussed in Appendix A. Moreover, the proposed performance signals

ea =

[
eẋb

eẋw

]

=

[
Wa,b 0

0 Wa,w

] [
ẋb
ẋw

]

(3.42)

with weighting functions Wa,b and Wa,w provide the necessary degrees-of-freedom (DoF)

to tune ride comfort and road-holding. In particular, the selected performance signals

correspond to the two DoFs of the quarter-vehicle model such that the body resonance
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Figure 3.10: Open-loop frequency responses of plant Gsa from road disturbance input

dg to: left - body motion, right - wheel motion, and bottom - dynamic wheel load

peak is tuned by eẋb
with the first-order weighting function Wa,b with bandwidth ωb given

by

[
ẋa,b
eẋb

]

=

[
−ωb 1

θ wb ωb 0

] [
xa,b
ẋb

]

, (3.43)

and the wheel resonance peak by eẋb
with the weighting function Wa,w given by

Wa,w = θww. (3.44)

The scalars wb and ww offer a means to tune the controller and trade-off ride comfort

against road-holding.

Eq. (3.36) and (3.37) impose upper bounds on the performance signals ya such that

ya < γ

[
Wa,b 0

0 Wa,w

]−1

, (3.45)

and on the constrained controller output σ (uFd
) such that

σ (uFd
) < γW−1

u (θ) . (3.46)

This property is exploited to reduce the weighting functions Wa,b (θ) and Wa,w (θ) by θ

to relax the performance requirements and simultaneously to increase the control effort
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Figure 3.11: Saturation indicator dependence of weighting filtersWa,b andWu; solid line

θ = 1 and dashed line θ = θmin

weight Wu (θ) by θ
−1 to reduce the control signal usage, when actuator saturation occurs.

Figure 3.11 exemplifies the saturation indicator dependence of the weighting functions

Wa,b (θ) and Wu (θ).

The generalized plant Pθ, which is used for controller synthesis, can now be stated by







ẋ
[
ea

eu

]

y







=








A (d0) L̄ (d0) B̄2θ
[
C11 (θ)

0

] [
0

0

] [
0

I

]

C2 (d0) I 0












x

d

uFd



 . (3.47)

with the observer gain L̄ (d0) = [L (d0) 0]T which extends from the original observer gain

L of Section 3.5.1 by one row of zeros to account for the additional state introduced by

the weighting function Wa,b. Equally, the system matrix A (d0) and the input matrix

B̄2 are also adjusted according to Wa,b. The DI controller Kθ obtained by the controller

synthesis described in Appendix A.4.4 with Pθ can be expressed as
[
ẋK

uFd

]

=

[
A (d0) + B̄2θF (d0, θ) L̄ (d0)

F (d0, θ) 0

] [
xK

y

]

, (3.48)

with state-feedback gain F (d0, θ) according to (A.26) given by

F (d0, θ) = −θγ2B̄T
2 Z (d0) . (3.49)

Likewise to the observer synthesis, a Lyapunov function Z (d0) given by

Z (d0) = Z0 + d0Z1, (3.50)

with a linear dependence on the saturation transformer d0 is employed in the feedback

controller design. During controller tuning, a grid density of two points is employed for

the saturation indicator θ and the saturation transformer d0. After determination of the

tuning parameters, the controller synthesis is verified with a denser grid featuring hd0 = 10

grid points for the saturation transformer d0.

The tuning parameters of the DI problem are
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• the scaling wb of the body velocity ẋb, and

• the scaling ww of the wheel velocity ẋw.

The optimal values of these tuning parameters are obtained as discussed in Section 3.6.

3.6 Multi-Objective Controller Tuning

An additional Pareto optimization loop is implemented around the LPV controller synthe-

sis to find the tuning parameters for optimal ride comfort and road-holding performance

of the controller. As visualized in Figure 3.12, the optimization updates the control de-

sign during each iteration by synthesizing the state-observer and the DI controller with

the updated tuners. Subsequently, the optimization evaluates the controller in closed-

loop with the nonlinear reference quarter-vehicle model and quantifies the constraints

and performance criteria ride comfort and road-holding. The stopping criterion analyzes

the progression of the performance criteria and decides whether the optimization reached

an optimum. The combination of the controller synthesis with the additional optimiza-

tion loop simplifies the determination of the tuning parameters. On the one hand, the

performance index γ obtained during the LPV controller synthesis is not directly related

to the ride comfort and road-holding criteria of Section 3.2 and on the other hand the

reference quarter-vehicle considers nonlinearities like the semi-active damper or bump

stops. Additionally, during simulation, the reference vehicle can be excited by realistic

road profiles as introduced in Appendix C leading to realistic damper force saturation

conditions. In this way, the LPV controller can be tuned for optimal performance despite

the very restrictive damper force constraints, which make saturated operation a common

system state.

The optimization is formulated by

min
ϕ

Jopt (Jc, Jrh) subject to (3.51a)

max (|eig (Γed (Pθ,k,Kθ,k))|) < λmax, (3.51b)

as a Pareto optimization with parameter ϑ ∈ [0, 1] and cost function

Jopt (Jc, Jrh) = ϑJc + (1− ϑJrh) , (3.52)

as described in Savaresi et al. (2010, p. 99). The inequality constraint (3.51b) restricts the

distance of the maximum eigenvalue of frozen closed-loop systems Γed (Pθ,k,Kθ,k) to the

origin to values smaller than λmax. This ensures that the controller is implementable on

real-time hardware with a given sample time Ts = 1 ms. The decision parameter vector ϕ

gathers the tuning parameters of the state-observer and LPV controller design presented

in Section 3.5.1 and 3.5.2 according to

ϕ = [we,1 . . . we,nx
wn,ẍb

wn,ẍw
wn,ẋd

wb ww]
T . (3.53)
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Figure 3.12: Process diagram of multi-objective controller tuning

The appropriate parameters of the road model βr, αr and vref are determined by a pre-

liminary optimization.

During the optimization the reference vehicle is excited by the sine sweep signal with

constant velocity amplitude introduced in Appendix C. This signal excites the body and

wheel resonances with appropriate amplitudes and covers the relevant frequency range

between 1 Hz and 20 Hz. The optimization itself is carried out in MATLAB using the DLR

MOPS toolbox with a genetic algorithm and a subsequent local downhill method (Joos

et al., 2002). The initial values of the tuning parameters related to the observer design

are determined by a preceding optimization setup which minimizes the observation error

between the body and wheel velocities estimated by the observer and the corresponding

signals of the nonlinear reference model. Due to the large number of tuning parameters in

(3.53), the genetic optimization algorithm has to be parametrized with a large population

size. As a rule of thumb, the population size should be at least twice as large as the
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number of tuning parameters. Thus, the genetic algorithm needs several hundred function

evaluations. However, this is not a major restriction as the function evaluations of one

population of the genetic algorithm can be performed in parallel. At the Institute of

System Dynamics and Control the local Linux cluster can be used to implement the

optimization such that up to 32 function evaluations can be performed in parallel which

drastically speeds up the entire optimization process.

3.7 Simulation Results

As a performance benchmark for the LPV controller, a Skyhook-Groundhook (SH/GH)

controller is implemented using the control structure in Figure 3.5. For the SH/GH

control configuration, the state estimation is replaced by a simple low-pass and high-pass

filtering of the measurements. The SH/GH controller itself is implemented according to

Section 3.4 such that the controller provides a damper force Fsa which is then processed

by the inverse damper subsystem. The gains of the SG/GH controller are tuned with the

optimization framework described in the previous section.

The investigation of the PSD of the sine sweep simulations of passive and controlled sus-

pensions shows that the passive suspension configuration denoted by min. damping offers

the best ride comfort and road-holding behavior in the frequency range above 3 Hz as ob-

vious from the top and middle plots of Figure 3.13. Even the passive configuration, called

ref. damping, which applies very high damper forces and therefore drastically deteriorates

ride comfort, can only slightly reduce the wheel load resonance amplitude. At the same

time, the wheel load amplitudes in the intermediate frequency range are much higher

and consequently the overall road-holding performance of the ref. damping configuration

is worse than that of min. damping. Regarding the LPV controller this implies that the

controller should roll-off at around 3 Hz and the bandwidth ωb of the weighting filterWe,ẋb

should be chosen accordingly. Furthermore, the saturation transformer d0 should closely

reflect the min. damping characteristic as the frequency response of the LPV controller

above 3 Hz is determined by the saturation transformer.

The simulation results with the reference quarter-vehicle excited by a sine-sweep signal

and a stochastic road signal according to ISO (8608:1995) type D show that the LPV

controller outperforms the SH/GH controller and both passive suspension configurations.

The LPV controller especially features the smallest magnitudes of body acceleration and

dynamic wheel load in the frequency range below 3 Hz. In comparison to the sine sweep

experiment, the road excitation experiment is stochastically evaluated using the RMS

criteria introduced in Section 3.2. The corresponding bar plot depicted in Figure 3.14

confirms the benefit of the LPV controller which achieves the lowest RMS values regarding

ride comfort and road-holding. Furthermore, the LPV controller achieves smaller damper

deflections for the sine sweep and stochastic road excitations than the SH/GH controller

and the min. damping configuration.

In addition to the performance criteria, the controller roll-off can be analyzed by the sine

sweep experiment as depicted in Figure 3.15. The sine sweep features a frequency range
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Figure 3.14: Stochastic road simulation according to ISO (8608:1995) road type D at a

vehicle speed of 100 km/h: ride comfort Jc, road-holding Jrh and damper deflection Jd

of 1-20 Hz over a duration of 60 s. After 10 s, the excitation frequency reaches 3.6 Hz

and as desired the control signal of the SH/GH and the LPV controller rise to almost 1.8

A which corresponds to min. damping.

3.8 Experimental Results

The experimental assessment was carried out using the sine sweep and stochastic road

profile from the simulation study. In order to facilitate a comparison of the results obtained

on the test-rig and during controller tuning, the experimental results are illustrated in
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Figure 3.15: Sine-sweep simulation: control signal ud over time

the same way as the simulation results in the previous Section. This visualization of

the experimental results helps to verify the robustness of the controllers with respect to

model uncertainties and sensor disturbances. The evaluation of the closed-loop PSD of the

LPV controller, the SH/GH controller and both passive suspension configurations shows

that the LPV controller outperforms the SH/GH controller and the passive suspension

configurations min. damping and ref. damping, but the benefit of the LPV controller is

not as large as expected from the simulation. In particular, the amplitude reduction of

the body acceleration and dynamic wheel load in Figure 3.16 are smaller than during the

simulation study. This deviation results from the approximated quarter-vehicle dynamics

by the virtual body mass at the test-rig and from the suspension friction which has

been neglected by the reference quarter-vehicle. Nevertheless, the improvement of the

LPV controller with respect to both ride comfort and road-holding can be noticed in the

frequency range from 2 Hz to 3 Hz.

Figure 3.17 shows the performance criteria in case of a stochastic road profile excitation

according to ISO (8608:1995) type D at a vehicle speed of 100 km/h. In this experiment

the LPV controller achieves small improvements regarding road-holding and damper de-

flection with similar ride comfort as the SH/GH controller and the min. damping config-

uration.

3.9 Discussion and Conclusion

This section presents an LPV controller for a semi-active quarter-vehicle suspension sys-

tem. The LPV controller explicitly considers the state-dependent actuator constraints of

the semi-active damper within a rigorous LPV control framework. Therefore, a saturation

indicator and a saturation transformer are introduced into the LPV plant model as ex-

ogenous scheduling parameters. The LPV controller is designed along a mixed sensitivity

scheme with saturation indicator dependent weighting filters. The tuning parameters of

the control design are determined using a genetic optimization algorithm and a simulation
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Figure 3.16: Sine-sweep experiment: top - PSD of body acceleration, middle - PSD of

dynamic wheel load, and bottom PSD of damper velocity

environment with a nonlinear quarter-vehicle model.

The LPV controller is compared to a state-of-the-art Skyhook-Groundhook controller

and two passive suspension configurations by means of quarter-vehicle simulations and

experiments on a quarter-vehicle test-rig. The results show that the LPV controller offers

a better trade-off between ride comfort and road-holding than the Skyhook-Groundhook

controller and the passive suspension configurations with a simultaneous reduction of the

damper deflection.
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4 Full-Vehicle Control Design

Exploiting the performance potential of vehicles equipped with semi-active dampers con-

stitutes a complex control problem because of

• the well-known design conflict between ride comfort and road-holding as depicted

in the conflict diagram in Figure 1.1,

• the highly nonlinear actuator, in particular the passivity constraint of the semi-

active damper,

• the full-vehicle model necessary to accurately model the vehicle vertical dynamics

and to individually tune heave, roll and pitch of the vehicle body during control

design, and

• the sophisticated augmentation of the controller to explore the weak input redun-

dancy in case of damper malfunction or saturation.

Here, these challenges are addressed by a DI LPV controller using a full-vehicle synthesis

model. The controller gathers the developments published in Fleps-Dezasse and Brem-

beck (2016), Fleps-Dezasse et al. (2016) and Fleps-Dezasse et al. (2017). Equally to the

quarter-vehicle control design presented in Chapter 3, the damper force constraints are

incorporated in the synthesis model by saturation indicator parameters according to the

anti-windup LPV control method introduced in Wu et al. (2000). The full-vehicle model

allows for individually penalizing heave, roll and pitch of the vehicle body during con-

trol design and further for augmenting the controller with a force reconfiguration. The

saturation indicators readily describe damper failures like e.g. oil leakage which extends

the LPV controller validity from normal operation to faulty operation modes. The force

reconfiguration explores the weak input redundancy provided by four force actuators in

a full-vehicle. It is inspired by the fault-tolerant control (FTC) schemes in Sename et al.

(2013) and Tudón-Martinez et al. (2013).

FTC has gained vital importance in automotive applications because mechatronic systems

like semi-active suspensions are comprised of many components like sensors, actuators,

power electronics and electronic control units. This component variety increases system

complexity and contributes to a greater likelihood of component or system failure (Iser-

mann, 2006). The fault-tolerant operation can be addressed in several ways depending on

the type of failure, e.g. by component redundancy or backup operation modes. Regard-

ing the control algorithms, control reconfiguration offers a promising approach to address

component malfunction as described in Lunze and Richter (2008). Control reconfigura-

tion, also referred to as fault-tolerant control, requires the control loop to maintain certain

system properties like stability and satisfactory performance in the event of component

failures (Zhang and Jiang, 2008). The basic principle of the control reconfiguration ap-

proach is illustrated in Figure 4.1 in case of an actuator malfunction. After the detection
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Figure 4.1: Interconnection of generalized plant with nominal controller (left) and re-

configured controller (right)

of the actuator failure, the nominal controller is reconfigured such that it does not use

actuator 2.

The LPV control design adopts the gridding-based LPV approach introduced in Chapter 2

and applied during the quarter-vehicle control design in Chapter 3. Together with the full-

vehicle synthesis model and four saturation indicators, the gridding-based LPV control

approach leads to a large controller synthesis problem. Therefore, the computational cost

of the controller synthesis becomes a significant issue and the control design pursues two

countermeasures:

• firstly, the control design exploits a Disturbance-Information output-feedback prob-

lem structure which allows for the separate synthesis of state-observer and state-

feedback controller as introduced in Appendix A.4.4, and

• secondly, the control design uses a loose saturation indicator grid density based

on the theoretical investigation of the minimum required saturation indicator grid

density presented in Section 2.5.

As shown in Appendix A.4.4, the DI controller provides guaranteed performance, even

though the controller can be assembled from the subsequent solutions of a state-observer

and a state-feedback problem. In this way, the DI synthesis problem complexity is signif-

icantly smaller than the equivalent general output-feedback controller synthesis problem.

Full-vehicle control design approaches are hardly found in the literature due to the es-

sentially more complex vehicle model compared to quarter-vehicle approaches. As an

exception, Unger et al. (2013) developed an LQG semi-active suspension controller using

the clipping approach and presented promising experimental results gathered on a four-

post test-rig. Regarding LPV control methods, Nguyen et al. (2015b) and Fleps-Dezasse

and Brembeck (2016) provide simulation investigations involving a full-vehicle. Nguyen
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et al. (2015b) presents a polytopic LPV state-feedback controller design which only fo-

cuses on a minimization of the vehicle roll acceleration. In contrast, this chapter extends

the full-vehicle LPV control approach presented in Fleps-Dezasse and Brembeck (2016)

and Fleps-Dezasse et al. (2017), and provides extensive results from experiments on a

four-post test-rig.

4.1 Full-Vehicle Control Structure

The structure of the full-vehicle LPV controller employed in this section is depicted in

Figure 4.2. The central LPV controller consisting of state-observer and state-feedback

controller generates the damper forces Fsa which are separately processed by saturation

blocks and inverse damper subsystems yielding the damper current ud. Similar to the

quarter-vehicle control design of Chapter 3, the saturation block and the inverse damper

model are gathered in an augmented plant, which is then employed for the LPV control

design. As a benchmark, a full-vehicle Skyhook-Groundhook (SH/GH) controller and a

full-vehicle LPV controller gathering four quarter-vehicle LPV controllers, called quarter-

vehicle FVC, are implemented in the control structure of Figure 4.2. The quarter-vehicle

FVC assumes that the full-vehicle vertical dynamics can be approximated by four separate

quarter-vehicle models, i.e. one quarter-vehicle for each suspension system of the vehicle.

This approximation condenses the body mass, and the roll and pitch inertia into the mass

of the quarter-vehicle body.

inverse

damper

model

feedback

controller

plant

state

observer

ρ ρ

x̂ ud y

LPV controller

Fsa

semi-active suspension controller

augmented plant

Figure 4.2: Disturbance-Information structure of full-vehicle LPV controller

4.2 Performance Criteria

In a full-vehicle context ride comfort is not solely characterized by the vehicle body heave

acceleration, but also by the angular roll and pitch accelerations. ISO (2631-1:1997)
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gives a detailed description of the effect of accelerations on human comfort and health.

According to ISO (2631-1:1997) the accelerations have to be distinguished by their point

of application, e.g. seat-surface or feat, and their direction, e.g translational along z-axis

or rotational around x-axis as illustrated in Figure 4.3.

pitch

yaw

roll

x

x

x
z

z

z
y

y

y

feat

Seat-back

Seat-surface

Figure 4.3: Directions of comfort assessment defined by ISO 2631-1:1997

Regarding the vehicle vertical dynamics only the translational body acceleration along the

vehicle z-axis ẍb,CoG and the rotational body accelerations ẍb,roll and ẍb,pitch around the roll

and pitch axes are of interest. The ride comfort criteria JcISO given by ISO (2631-1:1997)

can be calculated from these signals according to

JcISO =

√

(k1RMS (¨̄xb,CoG))
2
+ (k2RMS (¨̄xb,roll))

2
+ (k3RMS (¨̄xb,pitch))

2
, (4.1)

with the scaling factors k1 = 1, k2 = 0.63 and k3 = 0.4. The RMS values RMS (¨̄xb,CoG),

RMS (¨̄xb,roll) and RMS (¨̄xb,pitch) are computed from the filtered body heave acceleration
¨̄xb obtained form

¨̄xb,CoG = WISO,heave ẍb,CoG, (4.2)

the filtered angular roll acceleration ¨̄xb,roll obtained from

¨̄xb,roll = WISO,rot ẍb,roll, (4.3)

and filtered angular pitch acceleration ¨̄xb,pitch obtained from

¨̄xb,pitch = WISO,rot ẍb,pitch. (4.4)
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Figure 4.4 shows the transfer functions of the weighting filters WISO,heave and WISO,rot.

They emphasize the amplitudes of the acceleration signals according to human sensitivity.

The filterWISO,rot focuses on the frequency range between 0.5 Hz and 2 Hz, while the filter

WISO,heave distinguishes between the low frequency range from 0.5 Hz to 3 Hz and the

slightly more important medium frequency range from 4 Hz to 10 Hz. The parametrization

of the weighting filters can be found in ISO (2631-1:1997).
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Figure 4.4: Weighting filters of translational heave acceleration and angular roll and

pitch accelerations according to ISO (2631-1:1997)

Similar to the quarter-vehicle control design, the road-holding performance Jrh is charac-

terized by the RMS value of the dynamic wheel loads. In contrast to the quarter-vehicle,

however, the dynamic wheel loads Fwl are a vector comprised of the dynamic wheel loads

of the four tires according to

Fwl = [Fwl,1 Fwl,2 Fwl,3 Fwl,4]
T . (4.5)

The RMS value of the vectorial dynamic wheel load signal Fwl can be computed by

Jrh =

√

1

T

∫ T

0

∑

i

|Fwl,i (t)|2 dt, (4.6)

as described in (Skogestad and Postlethwaite, 2005, p. 558). Likewise, the suspension

deflection usage Jd can be calculated from the damper deflection vector xd by

Jd =

√

1

T

∫ T

0

∑

i

|xd,i (t)|2 dt. (4.7)

4.3 LTI Full-Vehicle Model

The full-vehicle vertical dynamics comprises seven degrees-of-freedom, namely vehicle

body heave, roll and pitch and vertical wheel motion. Its equation of motion can be
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derived from Newtons’ second law using the notation introduced in Figure 4.5. The

considered full-vehicle model assumes a left/ right symmetrical vehicle similar to Mitschke

and Wallentowitz (2004, p. 439 ff.) and (Unger et al., 2013, p. 2-3) and equal tires at

the front and rear suspensions. The full-vehicle model features similar parameters as the

quarter-vehicle model namely the body spring stiffnesses kb,i, body dampings db,i, tire

stiffness kw and tire damping dw.

Remark. In the full-vehicle application, the number of semi-active dampers and the num-

ber of suspensions is identical, thus the index i = 1, 2, 3, 4 denotes both the respective

damper and suspension unit with i = 1 referring to front left, i = 2 to front right, i = 3

to rear left, and i = 4 to rear right.

m̄b

mw

db Fs
kb

dw kw

xb

xw

xg

mw1

mw2 mw3

mw4

mb, Ixx, Iyy

long lat

heave

pitch

roll

Figure 4.5: Sketch of quarter-vehicle model (left) and full-vehicle model (right)

The equation of motion of wheel i is given by

mw,iẍw,i = kb,i (xbs,i − xw,i)+db,i (ẋbs,i − ẋw,i)+kw (xg,i − xw,i)+dw (ẋg,i − ẋw,i)−Fs,i, (4.8)

with xbs,i the body position above the wheel contact point at the respective suspension

unit and the suspension force input Fs,i. According to Lu and DePoyster (2002, p. 809),

the body position xbs,i can be calculated from the body position xb,CoG at the center

of gravity (CoG), the body roll angle xb,roll and the body pitch angle xb,pitch using the

geometric transformation matrix Tbs by








xbs,1
xbs,2
xbs,3
xbs,4







=








1
ly,f
2

−lx,f
1 − ly,f

2
−lx,f

1 ly,r
2

lx,r
1 − ly,r

2
lx,r








︸ ︷︷ ︸

Tbs





xb,CoG

xb,roll
xb,pitch



 , (4.9)

with ly,f and ly,r the front and rear track widths, and lx,f and lx,r the distances from the

front and rear wheels to the body CoG. The geometric transformation of (4.9) uses small

angle approximations of the roll and pitch angles of the vehicle body.
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The equation of motion of the vehicle body heave is given by

mbẍb,CoG =
∑

i

(kb,i (xw,i − xbs,i) + db,i (ẋw,i − ẋbs,i) + Fs,i) , (4.10)

the equation of body roll by

Ixxẍb,roll =
∑

i

lroll,i (kb,i (xw,i − xbs,i) + db,i (ẋw,i − ẋbs,i) + Fs,i) , (4.11)

with lroll =
[
ly,f
2
− ly,f

2

ly,r
2
− ly,r

2

]T

and of body pitch by

Iyyẍb,pitch =
∑

i

lpitch,i (kb,i (xw,i − xbs,i) + db,i (ẋw,i − ẋbs,i) + Fs,i) , (4.12)

with lpitch =
[

− lx,f
2
− lx,f

2

lx,r
2

lx,r
2

]T

.

The vehicle model Gfv represented by the equations (4.8) - (4.12) and including the road

disturbance model introduced in (C.6) can be summarized in state-space notation by

ẋ = Ax+B1dg +B2Fs, (4.13)

with the state vector x given by

x = [xb,CoG ẋb,CoG xb,roll ẋb,roll xb,pitch ẋb,pitch xw,1 ẋw,1 . . . xw,4 ẋw,4 xg,1 . . . xg,4] , (4.14)

the suspension forces Fs of each suspension system given by

Fs = [Fs,1 Fs,2 Fs,3 Fs,4]
T , (4.15)

and the independent road disturbance inputs dg given by

dg = [dg,1 dg,2 dg,3 dg,4]
T , (4.16)

The full-vehicle model feature similar properties as the quarter-vehicle model as discussed

in Hedrick and Butsuen (1990). Equally to the quarter-vehicle case, the dynamic wheel

loads can be computed from the tire deflections according to (3.10) and furthermore the

dynamic wheel loads are a function of the body and wheel accelerations. Unfortunately,

the dynamic wheel loads of the full-vehicle are coupled through the vehicle body and

hence the dynamic wheel load of one wheel cannot be expressed as an explicit function

of the body and wheel accelerations. Nevertheless, as described for the quarter-vehicle,

a reduction of the body and wheel acceleration amplitudes simultaneously reduces the

dynamic wheel loads. The frequency responses of the body heave, roll and pitch acceler-

ations as well as of the dynamic wheel loads of the passive full-vehicle are also subject to

the waterbed effect for variations of the body damping db. Additionally, the suspension

force inputs Fs also lose efficiency at frequencies near the wheel resonance frequency. The

efficiency loss increases if the tire damping dw approaches zero and results in a trans-

mission zero for dw = 0 Ns/m. Therefore, equal performance specifications than in the

quarter-vehicle control design have to be imposed for the full-vehicle control design:
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ride comfort: performance outputs related to ride comfort should emphasize the

body resonance peak and roll-off at about 3 Hz,

road-holding: performance outputs related to road-holding should emphasize the

body and the wheel resonance peak, and roll-off beyond the wheel resonance fre-

quency,

suspension usage: performance outputs related to suspension usage should em-

phasize the body and the wheel resonance peak, and roll-off beyond the wheel

resonance frequency.

This specification regarding ride comfort correspond well to the weighting filter WISO,rot

employed for the angular roll and pitch accelerations in the ride comfort criteria definition

of ISO (2631-1:1997), but the weighting filter WISO,heave emphasizes the frequency range

between 4 Hz and 10 Hz. In this intermediate frequency range, however, a semi-active

suspension controller achieves the best ride comfort performance by commanding the

minimum damper forces.

4.4 Full-Vehicle Skyhook-Groundhook Controller

The basic principle of the Skyhook control policy introduced in Section 3.4 can be general-

ized to a full-vehicle application. Karnopp et al. (1974) showed that in the quarter-vehicle

application the optimal body damping should be applied between an inertial frame and

the vehicle body. In a full-vehicle application, the body cannot only move in the vertical

direction, but also rotate around the roll and pitch axes. The optimal damping of these

rotations is again a Skyhook damper between inertial frame and vehicle body as discussed

in Unger et al. (2013, p. 4). Therefore, the full-vehicle Skyhook force FSH is computed

from the body heave, roll and pitch velocities according to

FSH = Tbs





dSH,heave 0 0

0 dSH,roll 0

0 0 dSH,pitch









ẋb,CoG

ẋb,roll
ẋb,pitch



 , (4.17)

using the Skyhook damping parameters dSH,heave, dSH,roll and dSH,pitch related to heave, roll

and pitch, respectively. Subsequently the control force of the i-th damper is calculated

by

Fsa,SH,i =

{
Fd,min,i FSH,iẋd ≤ 0

FSH,i FSH,iẋd > 0
, (4.18)

with i ∈ {1, 2, 3, 4}. This full-vehicle Skyhook policy recovers the quarter-vehicle Skyhook

policy if dSH,heave = dSH,roll = dSH,pitch.

As in the quarter-vehicle case, the combined Skyhook-Groundhook controller (SH/GH)

with Groundhook part stated in (3.13) results from the superposition of the Skyhook and

Groundhook control signals Fsa,SH and Fsa,GH according to

Fsa = Fsa,SH + Fsa,GH. (4.19)
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4.5 Full-Vehicle LPV Control Design

This section presents the design of a full-vehicle DI LPV controller as introduced in Chap-

ters 2 and Appendix A. The presented control design extends the quarter-vehicle control

design of Section 3.5 and elaborates the full-vehicle semi-active LPV control approach

published in Fleps-Dezasse and Brembeck (2016) and Fleps-Dezasse et al. (2017). The

design process exploits the special structure of the DI problem introduced in Appendix

A.4.4 and assembles the DI controller from the consecutive synthesis of a state-observer

and a state-feedback controller to mitigate the computational complexity of the LPV

control synthesis. The complexity issue constitutes an essential limition during the ap-

plication of LPV methods with high-order plants and numerous scheduling parameters.

In addition to the simplifications of the DI controller design, the control design exploits

Theorem 2.1 presented in Section 2.5 to determine the number of saturation indicator

grid points. Theorem 2.1 is especially helpful in applications with several actuators like

full-vehicle semi-active suspension control because the number of overall grid points scales

exponentially with the number of actuators as described in (2.20).

The full-vehicle LTI state-space model Gfv with general suspension force input Fs dis-

cussed in Section 4.3 is adapted to a semi-active damper force input Fsa yielding the

full-vehicle plant Gsa as presented in Section 3.5. Figure 4.6 shows the corresponding

full-vehicle control structure.

Due to its physical principle of converting kinetic energy into heat by means of hydraulic

valves any damper is subject to the passivity constraint. These restrictive actuator force

limits are considered during control design as presented in Section 3.5 by saturation

indicator scheduling parameters θ. In the full-vehicle control design with four semi-

active dampers, the four saturation indicators are gathered in the saturation indicator

matrix Θ given in (2.6). As discussed in Section 2.3, this saturation indicator matrix

assumes decoupled actuator constraints which is perfectly valid during full-vehicle semi-

active suspension control. The full-vehicle plant Gsa also includes the damper force

dynamicsGud
(s) and the transformation of the semi-active damper force Fsa by a nominal

inverse

damper

model

g2D

LPV

controller

KΘ

Fsa ud y
damper

model

fFM

plant

Gfv

Fd

plant Gsa

ρ ẋd ẋd

Figure 4.6: Control structure of full-vehicle semi-active suspension control
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damper force F0 to the virtual damper force xFd
according to

Fsa = F0 + xFd
. (4.20)

In contrast to Section 3.5, however, this transformation is realized by linear nominal

damper forces with constant nominal damping coefficients d0,f and d0,r of the front and

rear suspensions given by

F0 =








−d0,f 0 0 0

0 −d0,f 0 0

0 0 −d0,r 0

0 0 0 −d0,r















ẋd,1
ẋd,2
ẋd,3
ẋd,4







. (4.21)

The constant nominal damping coefficients reduce the number of scheduling parameters of

the LPV control design because no saturation transformer parameters are required, but

simultaneously restrict the presented full-vehicle control design to semi-active dampers

with approximately linear minimum damping.

The full-vehicle plant Gsa can now be expressed by

ẋ = Ax+B1dg + B̄2ΘuFd
, (4.22)

with the system states given by

x = [xb,CoG ẋb,CoG xb,roll ẋb,roll xb,pitch ẋb,pitch

xw,1 ẋw,1 . . . xw,4 ẋw,4 xg,1 . . . xg,4 xFd,1 . . . xFd,4] .
(4.23)

Remark. Due to the kinematics of the suspension systems of passenger cars like McPherson

or Double-Wishbone, the damper and spring deflection is not equivalent to the difference

between the vertical body and wheel position. Therefore, the spring and damper deflec-

tions and forces have to be converted to their equivalent deflections and forces acting

between body and wheel as depicted in Figure 4.5-right. The suspension spring force

Fspring,i used in the plants Gfv and Gsa is computed from the linearized suspension spring

stiffness k̄b,i by

Fspring,i = r2spring,i k̄b,i
︸ ︷︷ ︸

kb,i

(xw,i − xbs,i) , (4.24)

with rspring,i the conversion factor of the respective spring deflection. Similarly, the semi-

active damper force Fsa is computed by

Fsa,i = r2damper,i d̄0,i
︸ ︷︷ ︸

d0,i

(ẋw,i − ẋbs,i) + rdamper,i ūFd,i
︸ ︷︷ ︸

uFd,i

, (4.25)

with rdamper,i the conversion factor of the respective damper deflection and ūFd,i the virtual

damper force at the damper mounting position.
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4.5.1 State-Observer Design

As presented in Appendix A.4.4, the first step of a DI control design consists of find-

ing a suitable observer gain. This task simplifies to a classical H∞ state-observer de-

sign problem, due to the constant nominal damping coefficients. Figure 3.8 shows the

weighting scheme of the full-vehicle observer design problem. Compared to the quarter-

vehicle problem of Section 3.5.1, the full-vehicle problem considers four separate road

disturbance inputs dg. The corresponding road disturbance weight Wg comprises one

first-order weighting filters according to (C.6) for each disturbance input and shapes the

road disturbance amplitudes of each disturbance input according to the PSDs of real roads

reported by ISO (8608:1995). As in the quarter-vehicle design, the diagonal weighting ma-

trix We = diag
(

[we,1, . . . , we,nx
]T
)

prioritizes the estimation error of distinct states and

the diagonal weighting matrix Wn = diag
([
wn,1, . . . , wn,ny

]T
)

scales the measurement

disturbances dn.

O

ḠsaWg We

Wn

PO

dg

dn

y

∆ex

x̂
+

−
Gsa

Figure 4.7: Weighting scheme of full-vehicle state-observer design

The full-vehicle state-observer design assumes measurements of the body accelerations

yẍba
near each suspension unit, the wheel accelerations yẍw

and the damper velocities

yẋd
. The body acceleration measurements are related to the body heave, roll and pitch

accelerations by








yẍba,1

yẍba,2

yẍba,3

yẍba,4







=








1 lba1,y −lba1,x
1 −lba2,y −lba2,x
1 lba3,y lba3,x
1 −lba4,y lba4,x








︸ ︷︷ ︸

Tba





ẍb,CoG

ẍb,roll
ẍb,pitch



 , (4.26)

with lbai,y denoting the y-distance of the respective sensor mounting position from the

body CoG and lbai,x denoting the corresponding x-distance. The damper velocities can
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be computed from the body velocities at each suspension xbs and the wheel velocities xw

using the constant conversion factors rdamper,i according to

yẋd,i = rdamper,i (xbs,i − xw,i) . (4.27)

The resulting generalized plant PO of the observer synthesis can be expressed by





∆ẋ

∆e

∆y



 =





A B1 I

C1 0 0

C2 D21 0









∆x

d

∆v



 . (4.28)

with the disturbance inputs d given by

d = [dg dn,ẍba
dn,ẍw

dn,ẋd
]T . (4.29)

The states of the open-loop plant Gsa are given in (4.23) and the corresponding measure-

ments y are given by

y =
[
yT
ẍba

yT
ẍw

yT
ẋd

]T
. (4.30)

The state-observer can be synthesized according to Appendix A.4.1 and A.4.2. The tuning

parameters of the observer problem are

• the scaling factors of the state-estimation errors we,1, . . . , we,nx
,

• the scaling factors of the measurement disturbances wn,1, . . . , wn,ny
, and

• the parameters of the road model βr, αr and vref.

Equally to the quarter-vehicle control design, the vehicle speed vv of the road model is fixed

to a reference speed vref to avoid a vehicle speed scheduling parameter. The determination

of optimal values of these tuning parameters is discussed later on in Section 4.7.

4.5.2 DI Controller Design

This section extends the quarter-vehicle control design presented in Section 3.5.2 to a

full-vehicle application. The controller is designed along the same mixed sensitivity S/KS

loop shaping scheme as employed in Section 3.5.2. Figure 4.8 illustrates the elements of

the design scheme with unconstrained open-loop plant G, constrained open-loop plant

Gsa and generalized plant PΘ. The open-loop plant Gsa is excited by the disturbances

d shaped by the weighting function Wd. The control effort eu is weighted by the satu-

ration indicator dependent weight Wu (θ) and the performance signals ea are weighted

by the saturation indicator dependent weight Wa (θ). According to Section 3.5.2, the

S/KS mixed sensitivity design problem depicted in Figure 4.8 with closed-loop system

Γed (PΘ,KΘ) can be expressed by
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KΘ

G

PΘ

y
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uFd

Wd WaWu

d eaeu

Gsa

σ(uFd
)

Figure 4.8: Mixed sensitivity weighting scheme of full-vehicle Disturbance-Information

controller design

‖Γed (PΘ,KΘ)‖i2 =
∥
∥
∥
∥

[
Wa 0

0 WuΘKΘ

] [
I −GauΘKΘS

0 S

] [
GadWd

GydWd

]∥
∥
∥
∥
i2

< γ.

(4.31)

This representation is based on the augmented sensitivity function Sa introduced in (3.33)

given by

Sa =

[
I −GauΘKΘS

0 S

]

, (4.32)

with the closed-loop mapping S of output disturbances to the measurement signals. In

Skogestad and Postlethwaite (2005), the closed-loop mapping S of an LTI system is

referred to as sensitivity function. The indices ad and yd of the plant G describe the

plant input and output signals, namely the input signals d and the output signals ya

and y, respectively. As described in Section 3.5.2, representation (4.31) is helpful during

the specification of performance signals and corresponding weighting functions as (4.31)

imposes

‖Wa (Gad −GauΘKΘSGyd)Wd‖i2 < γ, (4.33)

and simultaneously

‖WuΘKΘSGydWd‖i2 < γ. (4.34)

The DI control design introduced in Section 2.4 defines the control effort weighting func-

tion

Wu (θ) = Θ−1, (4.35)
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to achieve the desired controller behavior, i.e the controller linearly reduces its output with

increasing actuator saturation. Furthermore, the DI control problem structure restricts

the disturbances d, the disturbance weighting function Wd and the disturbance models

Gyd and Gad according to the DI plant assumptions introduced in Appendix A.4.4. The

exact determination of these quantities can be performed analogous to the quarter-vehicle

case described in Section 3.5.2.

In a full-vehicle application, the body not only moves in vertical direction, but also ro-

tates around the roll and pitch axes. As presented in Section 4.2, the corresponding

accelerations, namely body heave acceleration ẍb,CoG, angular roll acceleration ẍb,roll and

angular pitch acceleration ẍb,pitch determine ride comfort. Instead of the scalar body-

related performance signal of the quarter-vehicle control design, the full-vehicle control

design employs all three velocities ẋb,CoG, ẋb,roll and ẋb,pitch as performance signals. These

signals complemented by the four wheel velocities ẋw form the overall performance signals

according to

ea = Wa

[
ẋb,CoG ẋb,roll ẋb,pitch ẋT

w

]T
. (4.36)

The velocity signals are again preferred over the corresponding acceleration signals because

the velocity signals directly emphasize the required frequency range of each signal as

illustrated in Figure 3.10. In this way, no high-order weighting functions are needed for

the design target specification and simple, first-order weighting functions as employed

during the quarter-vehicle control design are sufficient. The weighting function Wa,b of

the body signals ẋb,CoG, ẋb,roll and ẋb,pitch is defined as

Wa,b (θ) =

(

1

nu

nu∑

i=1

θi

)



wb,h 0 0

0 wb,r 0

0 0 wb,p



Gpt1,b, (4.37)

with Gpt1,b a diagonal weighting filter matrix comprised of three first-order filters similar

to (3.43) with bandwidths wb,h, wb,r and wb,p. The performance signals ea,b are scaled

by the mean value of the saturation indicators θ. This definition of the θ-dependence of

Wa,b (θ) gradually decreases the gain of Wa,b (θ) to account for the reduced performance

potential in the event of actuator saturation. Conversely, the wheel motion is essentially

influenced by the attached damper and thus the performance requirement of each wheel

velocity signal should be individually reduced according to the saturation status of the

attached damper. This can be realized by defining Wa,w (θ) as

Wa,w (θ) = ww Θ, (4.38)

with the tuning parameter ww.

The generalized plant PΘ gathering the full-vehicle plant Gsa and the weighting functions
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can be stated by








ẋ
[
ea

eu

]

y







=








A L̄ B̄2Θ
[
C11 (θ)

0

] [
0

0

] [
0

I

]

C2 I 0












x

d

uFd



 . (4.39)

with the observer gain L̄ = [L 0]T which extends from the original observer gain L of

Section 4.5.1 by three rows of zeros to account for the additional states introduced by

the weighting function Wa,b. Similarly, the system matrix A and the input matrix B̄2

are also adjusted according to Wa,b. The DI controller KΘ obtained by the controller

synthesis described in Appendix A with plant PΘ has the form

[
ẋK

uFd

]

=

[
A+ B̄2ΘF (θ) L̄

F (θ) 0

] [
xK

y

]

, (4.40)

with state-feedback gain F (θ) according to (A.26) given by

F (θ) = −Θγ2B̄T
2 Z. (4.41)

In contrast to the quarter-vehicle control design of Section 3.5.2, the full-vehicle control

design presented here uses a constant Lyapunov matrix Z.

The proposed performance signals and weighting functions yield far less additional states

in the generalized plant and consequently a controller with less states compared to the

design schemes proposed in Do et al. (2010, p. 4656) and Do et al. (2012, p. 398). These

schemes employ second-order weighting function for the body and wheel related perfor-

mance signals and introduce a significant number of additional states into the controller

synthesis problem. The disturbance inputs of the DI control design, namely body and

wheel acceleration and damper velocity feature the advantage that they inherently better

emphasize the frequency range of interest compared to the road profile height disturbance

input employed in Do et al. (2010) and Poussot-Vassal et al. (2008). This property is

visualized in Section 4.7 by the corresponding frequency responses of the unconstrained

open-loop system and the frozen closed-loop LPV systems with θi = 1 ∀i ∈ {1, 2, 3, 4}
and θi = θmin ∀i ∈ {1, 2, 3, 4}.
The tuning parameters of the DI problem are

• the scaling factors wb,h, wb,r and wb,p of the body velocities ẋb,CoG, ẋb,roll and ẋb,pitch,

and

• the scaling factor ww of the wheel velocities ẋw.

The optimal values of these tuning parameters are obtained as discussed in Section 4.7.
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4.6 Fault-Tolerant Control Augmentation

The proposed FTC augmentation considers damper malfunctions that reduce the damper

force, e.g. due to oil leakage or a loss of the electrical power supply similar to Sename et al.

(2013). In Sename et al. (2013) actuator faults are described by actuator efficiency pa-

rameters and the quarter-vehicle LPV controller presented in Do et al. (2010) is extended

such that it achieves closed-loop stability and a specified performance for all actuator

efficiencies. The paper reports simulation results illustrating the improved performance

of the FTC LPV controller. Tudón-Martinez et al. (2013) present a full-vehicle appli-

cation of fault-tolerant semi-active suspension control. Similar to Sename et al. (2013)

actuator malfunction is described by actuator efficiency parameters, but instead of intro-

ducing the actuator efficiency parameters into the quarter-vehicle LPV controller design,

they are employed to compute appropriate compensation forces for the remaining healthy

dampers. The compensation forces are added as a feedforward action to the respective

damper and simultaneously the applied compensation forces are subtracted from the force

limits of the quarter-vehicle LPV feedback controllers. The full-vehicle is then composed

of four quarter-vehicle controllers, one for each vehicle suspension.

The fault representation particularly assumes that the fault reduces the minimum and

maximum controller force constraints according to

ūmax
Fd

= Mηu
max
Fd

, (4.42)

and

ūmin
Fd

= Mηu
min
Fd
, (4.43)

with the diagonal actuator efficiency matrix Mη = diag
(

[η1 . . . ηnu
]T
)

and the actuator

efficiencies satisfying ηi ∈ (0, 1] ∀i ∈ {1, ..., nu}. Furthermore, the fault representation

assumes that the failure likewisely affects compression and rebound leading to

ηi =
ūmax
Fd,i

umax
Fd,i

=
ūmin
Fd,i

umin
Fd,i

. (4.44)

The design target of the augmentation of the LPV controller KΘ in the event of a damper

failure can be summarized as follows:

• the augmented controller should be stable for all combinations of damper failures,

and

• the performance degradation due to damper failures should be minimized.

The fault-tolerant properties of the LPV controller are achieved by integrating some ideas

of Sename et al. (2013) and Tudón-Martinez et al. (2013) into the full-vehicle LPV control

design with saturation indicators presented in Section 4.5. A comparison of the definition

of actuator efficiency in Sename et al. (2013) and of saturation indicators in Wu et al.
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(2000) shows that saturation indicators can readily be used to describe actuator malfunc-

tion. The following section investigates stability of the LPV controller from (4.39) and

shows the adjustment of the saturation indicator definition to account for damper mal-

function. Subsequently, Section 4.6.2 presents the augmentation of the nominal controller

by a force reconfiguration such that the remaining healthy dampers compensate for the

force loss of a malfunctioning damper.

This work assumes the existence of a fault detection algorithm, e.g. as proposed by Fischer

and Isermann (2004) and Tudón-Martinez et al. (2013) providing the necessary fault

information.

4.6.1 Stability of the Nominal Controller

The analysis of the definition of actuator efficiency from Sename et al. (2013) and actuator

saturation from Wu et al. (2000) reveals that saturation indicators readily describe the

considered class of actuator malfunction. This is possible due to the high flexibility

of the actuator force constraint representation by saturation indicators. In particular,

the actuator force limits are not explicitly considered in the controller design, but just

the saturation indicators. Thus the actuator force limits employed in the calculation of

the saturation indicators can be updated according to the force limits of malfunctioning

dampers. The saturated control signal σ̄ (uFd,i) with consideration of actuator malfunction

can be computed by

σ̄ (uFd,i) =







uFd,i ηiu
min
Fd,i

(x) < uFd,i < ηiu
max
Fd,i

(x)

ηiu
min
Fd,i

(x) ηiu
min
Fd,i

(x) ≥ uFd,i

ηiu
max
Fd,i

(x) ηiu
max
Fd,i

(x) ≤ uFd,i

. (4.45)

The corresponding saturation indicators θ̄i are given by

θ̄i =
σ̄ (uFd,i)

uFd,i

. (4.46)

They can be computed from the saturation indicators θi of the nominal system according

to

θ̄i =







θi ηiu
min
Fd,i

(x) < uFd,i < ηiu
max
Fd,i

(x)

ηiθi ηiu
min
Fd,i

(x) ≥ uFd,i

ηiθi ηiu
max
Fd,i

(x) ≤ uFd,i

. (4.47)

Consequently, the LPV controllerKΘ̄ using saturation indicators θ̄i ∈ (0, 1] ∀i ∈ {1, ..., nu}
stabilizes the closed-loop system for all combinations of damper failures.

4.6.2 Augmentation of the Nominal Controller

From the structure of the feedback controller in (4.39) and (4.41) it is clear, that the LPV

controller KΘ̄ reduces the controller output uFd
of saturated or malfunctioning actuators
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by Θ̄ without any interference to the remaining unsaturated actuators. Even though

this controller guarantees stability in the admissible parameter range as discussed in the

previous section, for a reduction of the performance degradation in the event of damper

malfunction it would be preferable if the controller would compensate for the lost forces

uδ. Figure 4.9-left shows the structure of the nominal LPV controller KΘ̄ without force

reconfiguration. The control signals of the unconstrained controller K0 are scaled with

their corresponding saturation indicators yielding the control signal uFd
. An analysis

of the four suspension force inputs of the LTI full-vehicle model Gfv reveals a weak

input redundancy with respect to body heave, roll and pitch accelerations. According to

Zaccarian (2009, p. 1432), a linear plant is weakly input redundant if

G∗
fv = lim

s→0

(
C (sI −A)−1

B +D
)

(4.48)

is finite with ∗ denoting the steady-state values of the signals and if Ker G∗
fv satisfies

Ker G∗
fv 6= 0. (4.49)

Systems Gfv satisfying the properties stated in (4.48) and (4.49) feature a kernel such

that different inputs are mapped to the same output. In contrast to strong input redun-

dancy, the force allocation transients are visible at the plant outputs y in case of weak

input redundancy and thus the allocation influences stability of the augmented controller.

Furthermore, the weak input redundancy is most effective at s→ 0 and consequently the

allocation should focus on the low frequency range. The weak input redundancy can be

exploited by augmenting the nominal LPV controller KΘ̄ through a force reconfiguration

matrix T
(
θ̄
)
which uses the kernel of G∗

fv. Starting from the nominal controller, the

force reconfiguration introduces cross-connections between the control signals depending

on the saturation indicators. The control signal ūFd
of the augmented controller K̄Θ̄ is

defined as the summation of the original control signal uFd
and a redistribution of the

control signal uδ lost in the event of malfunction or saturation according to

ūFd
= uFd

+ αuT̄u

(
θ̄
)
uδ, (4.50)
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Figure 4.9: Left - structure of the nominal controller without force reconfiguration; right

- structure of the augmented controller with force reconfiguration
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with the scalar αu ∈ [0, 1] and the force redistribution matrix T̄u

(
θ̄
)
. The scalar αu is

introduced into (4.50) to provide a tuning parameter for the amount of force redistribution,

i.e. (αu × 100) % of the control signal loss uδ are redistributed to the remaining healthy

dampers. The control signal loss uδ can be calculated by

uδ =
(
I − Θ̄

)
u0, (4.51)

with u0 the healthy control signal. Here, the term healthy control signal is used for

u0 because the output uFd
of the nominal controller KΘ̄ equals u0 in the absence of

malfunction or saturation due to Θ̄ = I and uFd
= Θ̄u0. This relation is visualized by

Figure 4.9-left. The control signal loss uδ can be alternatively expressed as a function of

the output of the nominal controller uFd
by

uδ =
(
Θ̄−1 − I

)
uFd

. (4.52)

Due to the computation of the augmented control signal ūFd
in (4.50) and in particular

the control signal loss uδ using the saturation indicator definition of (4.47), the force

redistribution covers both actuator malfunction and saturation. Figure 4.9-right depicts

the structural augmentation of the nominal controller KΘ̄ with the force reconfiguration

matrix T
(
θ̄
)
. The augmented control signal can be stated by

ūFd
=
(
I + T

(
θ̄
))

uFd
, (4.53)

as a function of the force reconfiguration matrix T
(
θ̄
)
and the nominal control signal

uFd
. The force reconfiguration matrix T

(
θ̄
)
is related to the force redistribution matrix

T̄u

(
θ̄
)
of (4.50) according to

T
(
θ̄
)
= αuT̄u

(
θ̄
) (

Θ̄−1 − I
)
. (4.54)

The derivation of the force reconfiguration individually considers the failure conditions

from no damper malfunctioning to one damper malfunctioning to ultimately all dampers

malfunctioning. The idea is to find a force redistribution matrix T̄u

(
θ̄
)
that gives a good

approximation of the optimal redistribution for all failure conditions.

Firstly, the condition with no damper failure is considered. In this case, the control

signal loss uδ is zero and the redistribution matrix does not affect the augmented control

signal ūFd
. Consequently, the force redistribution matrix can be arbitrary, but with finite

elements, i.e.
∥
∥T̄u

(
θ̄
)∥
∥
∞
<∞ ∀θ̄i ∈ (0, 1].

Secondly, the conditions with one malfunctioning damper are considered. In this case,

the weak input redundancy of the full-vehicle can be exploited to derive an optimal force

redistribution by four separate equilibrium analyses of the LTI full-vehicle Gfv as shown

in Tudón-Martinez et al. (2013). The four resulting force redistribution matrices T̄ui can

then be gather into the redistribution matrix T̄ug according to

T̄ug =
nu∑

i=1

T̄ui. (4.55)
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The matrices T̄ui are computed by imposing that the remaining healthy dampers com-

pensate the effect of the control signal loss uδ,i due to malfunction of the i-th damper. In

particular, the design goal is to achieve the same body heave, roll and pitch accelerations

yhrp of the healthy system and the system with one damper failure. If damper i = 1 is

assumed faulty, this design goal can be stated by

yhrp =





ẍb,CoG

ẍb,roll
ẍb,pitch



 = Gfv,hrp (j0)








uδ,1
0

0

0







= Ḡfv,hrp (j0)





ūr,2
ūr,3
ūr,4



 , (4.56)

with the control signals ūr,j to be added to the nominal control signal of the three healthy

damper j ∈ {2, 3, 4}. The control signals ur,j can be expressed by





ūr,2
ūr,3
ūr,4



 = T̃u1








uδ,1
0

0

0







, (4.57)

with T̃u1 = Ḡ−1
fv,hrp (j0)Gfv,hrp (j0). The inversion of the 3×3 matrix Ḡfv,hrp (j0) is

always defined in a full-vehicle application as long as the actuators have different points

of application. The matrix T̄u1 used in (4.55) can now be computed by

T̄u1 =

[

0 0 0 0

T̃u1 −
[
0 I

]

]

. (4.58)

In (4.58) the 3 × 4 matrix T̃u1 is extended to the 4 × 4 matrix T̄u1. Therefore, a row of

zeros is added such that any control input results in zero output of the faulty damper.

Additionally, the matrix T̃u1 preserves the control signals of the control inputs uδ,2 to

uδ,4 which are all zero in (4.57). This property is obstructive for the computation of T̄ug

according to (4.55) and thus the identity entries are canceled in (4.58). The matrices T̄u2

to T̄u4 can be derived in a similar manner, e.g. the matrix T̄u4 can be computed from T̃u4

by

T̄u4 =

[

T̃u4 −
[
I 0

]

0 0 0 0

]

. (4.59)

The matrix T̄ug optimally redistributes the force losses uδ in case of one malfunctioning

actuator and satisfies the condition
∥
∥T̄ug

(
θ̄
)∥
∥
∞
<∞.

In case of all actuators malfunctioning, however, the matrix T̄ug redistributes the force

losses uδ from one faulty actuator to the other faulty actuators. This behavior counteracts

the original controller behavior which reduces the nominal control signal uFd
by Θ̄. In

particular, a force redistribution using T̄u

(
θ̄
)
= T̄ug increases the augmented control

signals ūFd
far beyond the force limits of the actuators such that the saturation possibly
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exceeds the admissible saturation indicator range. To reduce this effect, the matrix T̄ug

is scaled by Θ̄2 leading to the redistribution matrix T̄u = Θ̄2T̄ug. This matrix T̄u still

optimally redistributes the force loss uδ if one actuator is malfunctioning, but no longer

superimposes significant forces to other malfunctioning actuators. The augmented control

signal ūFd
can then be computed according to (4.53) with the force reconfiguration matrix

T
(
θ̄
)
= αuΘ̄

2T̄ug

(
θ̄
) (

Θ̄−1 − I
)
. (4.60)

In case of two or more actuators malfunctioning, the force reconfiguration matrix T
(
θ̄
)

redistributes the control signal loss uδ form the faulty actuators to the remaining healthy

actuators. This redistribution, however, is only an approximation of the optimal force

redistribution. The approximation results from the design of the force reconfiguration

matrix as described above which focuses on an optimal force reconfiguration of the most

likely condition of one actuator malfunctioning.

To verify that the introduction of the reconfiguration of the nominal controller output

does not corrupt stability of the closed-loop LPV system, the existence of the induced

L2-norm of the modified closed-loop with

F̄ (θ) = −γ2
(
I + T

(
θ̄
))

Θ̄B̄T
2 Z (4.61)

is verified by calculating the performance index of the modified closed-loop. In this

process, the scalar αu acts as a tuning parameter, which is increased from zero towards

one.

4.6.3 Verification of the Augmented Controller

The proposed augmented LPV controller K̄Θ̄ is verified by a simulation scenario using the

nonlinear simulation model discussed in Appendix E.2. The simulation scenario assumes

a failure of one damper such that this damper provides only the minimal damper force

and the actuator efficiency approaches zero. The vehicle model is excited by a heave,

roll and pitch sine sweep with constant excitation velocity amplitude and a frequency

progression from 1 Hz to 6 Hz. The force reconfiguration has been designed to reduce

the body heave, roll and pitch accelerations, which define ride comfort. Therefore, the

ride comfort index described in Section 4.2 is employed to assess the performance of

the augmented controller. During the experiments, the parameter αu of the augmented

controller was set to αu = 0.75. The result of the controller assessment is shown in Table

4.1. The percentage values provided there indicate the ride comfort degradation relative

to ride comfort of the nominal closed-loop without damper failure. Compared to the

nominal controller KΘ̄, the augmented controller K̄Θ̄ with force reconfiguration achieves

a significant reduction of performance degradation for all three types of excitations.

The performance improvement of the force reconfiguration, however, is not as large as re-

ported by Tudón-Martinez et al. (2013). This difference can be attributed to the distinct

ride comfort definitions, while Tudón-Martinez et al. (2013) considers the roll angle as
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Table 4.1: Performance degradation due to failure of front left (FL) or rear left (RL)

damper. The percentages indicate the degradation relative to the nominal closed-loop

without damper failure.

heave

FL failure

roll

FL failure

pitch

RL failure

nom. ctrl KΘ̄ 5.1 % 18.1 % 12.5 %

aug. ctrl K̄Θ̄ 2.0 % 2.0 % 4.8 %

ride comfort index, this work employs the ride comfort definition from ISO (2631-1:1997).

Complementary to Table 4.1, Figure 4.10 shows plots of the heave, roll and pitch veloc-

ities and the controller output ūd of the nominal closed-loop, and the closed-loop with

damper failure with and without force reconfiguration. During the experiment depicted

in Figure 4.10-left the vehicle model has been excited by the roll sweep signal. The plots

of heave and pitch velocities illustrate vital amplitude reductions of the augmented con-

troller compared to the nominal controller. The amplitude reduction of the roll velocity,

however, is rather small, nevertheless, the augmented controller reduces the performance

degradation by 16 %. Figure 4.10-right shows the same signals in case of a rear left

damper failure and a pitch sweep excitation. Here, the augmented controller achieves

small reductions of the body heave and pitch velocities and a vital reduction of the roll

velocity. The improvement of the ride comfort performance degradation amounts to 7.7

%. In summary, Figure 4.10 emphasizes that the force reconfiguration reduces the asym-

metry of the damper force distribution in the event of malfunction of one damper. The

bottom plots of Figure 4.10 show the controller output of the four damper. As expected,

the controller with force reconfiguration commands much higher control signals than the

controller without reconfiguration. Due the nonlinear reference vehicle, the control signals

of the rear suspensions are much higher than those of the front suspensions. Therefore,

the additional control signals of the augmented controller at the rear suspensions in case

of the front left damper failure are much more obvious than the additional control signals

at the front suspensions in case of the rear left damper failure.

The robustness of the proposed augmented controller regarding deviations of the actual

actuator efficiencies ηi and the estimated actuator efficiencies η̂i is numerically assessed

by two scenarios. The fault detection does not recognize a damper failure, e.g. the esti-

mated actuator efficiencies supplied to the augmented controller are η̂i = 1 ∀i ∈ {1, ..., nu}
although the k-th damper is malfunctioning ηk → 0. The results of this scenario corre-

spond to the ones of the nom. controller in Table 4.1, because the augmented controller

is identical to the nominal controller due to the missing fault information. The second

scenario assumes a false alarm, e.g. the estimated actuator efficiency of the k-th damper

approaches zero η̂k → 0, even though the actuator is perfectly healthy ηk = 1. During this
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Figure 4.10: Results of sweep simulations with damper failure: top - body heave, upper

middle - body roll, lower middle - body pitch, and bottom - normalized control signals
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scenario, the augmented controller reconfigures its output such that no damper forces are

requested from the reported faulty damper and simultaneously compensates αu × 100 %

of the missing force of this damper by the other dampers. The assessment of the heave,

roll and pitch sweep experiment illustrated in Table 4.2 reveals that the ride comfort per-

formance of the augmented controller subject to a false alarm degrades to similar values

than in case of a real damper failure. This result is natural because the reconfiguration

reduces the control signal of the presumed faulty damper. Furthermore, the results of

Table 4.1 and 4.2 show that the augmented controller is stable in case of false alarms or

missing fault information.

Table 4.2: Performance degradation due to false alarm (FA) of damper failure front left

(FL) or rear left (RL). The percentages indicate the degradation relative to the nominal

closed-loop without damper failure

heave sweep

FA FL

roll sweep

FA FL

pitch sweep

FA RL

aug. ctrl K̄ 2.0 % 2.0 % 4.7 %

4.7 Multi-Objective Controller Tuning

The controller tuning is carried out in MATLAB using the DLR MOPS optimization

toolbox (Joos et al., 2002) and the nonlinear full-vehicle model presented in Appendix

E.2. The controller is simulated with the vehicle model in closed-loop and ride comfort

JcISO and road-holding Jrh given in Section 4.2 are calculated from the simulation outputs.

The optimization procedure is equal to the one introduced during the quarter-vehicle

control design in Chapter 3. The corresponding process diagram is depicted in Figure

3.12. In contrast to the quarter-vehicle application of Section 3.6, sine sweep excitations,

e.g. a heave sweep signal or a pitch sweep signal, are not well suited for full-vehicle

controller tuning. The sine sweep signals mainly excite one body degree-of-freedom, while

leaving the others almost unaffected. Conversely, stochastic road signals, e.g. as reported

by ISO (8608:1995) simultaneously excite all body degrees-of-freedom and furthermore,

these signals represent the most common excitations on real roads. To ensure that the

controllers also perform well if the vehicle is excited by single events, like bumps or

potholes, the simulation is conducted twice with the two excitations:

• stochastic road, and

• obstacle event.

This multi-excitation approach computes the ride comfort and road-holding criteria as

the mean value of the respective criteria of the separate simulations. The optimization
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problem at hand is nonconvex due to the employed nonlinear vehicle model, and thus

local minima can be an issue. To still achieve a solution close to the global minimum, the

optimization uses a hybrid algorithm consisting of a genetic algorithm and a subsequent

local downhill method. The optimization problem is defined analog to (3.51) and (3.52)

by

min
ϕ

Jopt (Jc, Jrh) subject to (4.62a)

max (|eig (Γed (PΘ,k,KΘ,k))|) < λmax (4.62b)

max (∆obs) < ∆obs,max. (4.62c)

The decision parameter vector ϕ gathers the tuning parameters of the state-observer and

LPV controller design according to

ϕ = [we,1 . . . we,nx
wn wb,h wb,r wb,p ww]

T . (4.63)

The new tuning parameter wn is introduced to trade-off measurement disturbances against

road disturbances during the observer design. The measurement disturbance weight Wn

is computed from the predetermined scaling factors of body acceleration wn,ẍb
, wheel

acceleration wn,ẍw
and damper velocity disturbances wn,ẋd

by

Wn = diag
([
wn,1 . . . wn,ny

]T
)

= wn diag
([

wT
n,ẍb

wT
n,ẍw

wT
n,ẋd

]T
)

, (4.64)

with wn,ẍb
= wn,ẍb

[1 1 1 1]T , wn,ẍw
= wn,ẍw

[1 1 1 1]T and wn,ẋd
= wn,ẋd

[1 1 1 1]T .

The parameters of the road model βr, αr and vref introduced in (C.6) are set as described

in Section 3.6 by a preliminary investigation.

As discussed in Section 3.6, inequality constraint (4.62b) is introduced to ensure that the

controller is implementable on real-time hardware with a given sample time Ts. Further-

more, inequality constraint (4.62c) prevents the controller from over-fitting to the specific

optimization scenario by restricting the maximum observation error max (∆obs) of the

performance signals ya. The observation error of the k-th element of the performance

signals ya is described by the relative Mean Square Error (MSE) ∆k given by

∆k =

∑N

n=1 (yak,n − ŷak,n)
2

∑N

n=1 (yak,n − yak,mean)
2
, (4.65)

with yak the respective signal of the nonlinear vehicle model, ŷak the corresponding ob-

served signal and yak,mean the mean value of yak . The maximum acceptable MSE value

∆obs,max is set to ∆obs,max = αobs∆obs,opt with the relaxation factor αobs > 1. In this way,

the major design targets ride comfort and road-holding determine the observer tuning

parameters and ∆obs,max only defines an upper bound of the observation error.

The optimization procedure described above is applied to the full-vehicle LPV controller

(LPV FVM) and the quarter-vehicle LPV controller (LPV QVM) of Section 3.5. The

quarter-vehicle LPV controller is designed in the same way as the full-vehicle controller,
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i.e. with a constant nominal damping d0. Subsequently, the control of the full-vehicle is

constructed by employing one quarter-vehicle controller for each vehicle suspension. The

full-vehicle control by four separate quarter-vehicle controllers approximates the vehicle

vertical dynamics by lumping the roll and pitch inertias into the quarter-vehicle body

mass. The synthesis of the front and rear LPV QVM controllers is performed with the

same values of the tuning parameters introduced Section 3.5.1 and 3.5.2, but the plant pa-

rameters are adjusted to the suspension, i.e. the front and rear LPV QVM controllers have

different spring stiffnesses. To give a state-of-the-art performance reference, additionally

the full-vehicle Skyhook-Groundhook (SH/GH) controller of Section 4.4 is implemented

and its gains are tuned with the optimization described above while neglecting the in-

equality constraints.

A sample time Ts = 0.5 ms is selected for implementation on the real-time hardware to

avoid restriction due to large sample times. The performance degradation depending on

the sample time is illustrated in Figure 4.11 for the SH/GH controller. A similar or even

worse degradation can be expected for the LPV controllers because a tighter inequality

constraint (4.62b) particularly restricts the LPV observer and controller design.

 

 

road-holding

ride comfort

n
or
m
al
iz
ed

cr
it
er
ia

sample time (ms)
0.5 2 4 8 10

1

1.05

1.1

1.15

1.2

Figure 4.11: Effect of sample time on ride comfort and road-holding performance of

SH/GH controller

Figure 4.12 shows the result of the Pareto optimization of ride comfort and road-holding

with the nonlinear full-vehicle model. The blue markers connected by the blue solid line

illustrate a variation of constant control signals ud = 0.1 . . . 1 A. All three controllers

clearly improve ride comfort and road-holding compared to the passive suspension con-

figurations. The LPV FVM controller achieves the best individual ride comfort and

road-holding performance and in particular, the best trade-off between ride comfort and

road-holding. The best achievable ride comfort of the full-vehicle and quarter-vehicle

LPV controllers is comparable with only slight improvements by the LPV FVM con-

trollers. This overall result corresponds to the expectation according to the literature,

e.g. Savaresi et al. (2010), as it is well known that a SH/GH controller provides a high

benchmark for ride comfort, while the rather rough system approximation involved with

the Groundhook control policy limits its road-holding performance. This is overcome by
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Figure 4.12: Result of Pareto optimization of ride comfort and road-holding with non-

linear full-vehicle model subject to stochastic road excitation

the two model-based LPV controllers and accordingly both LPV controller feature good

road-holding performance.

To verify the control design regarding the main plant disturbances; namely road distur-

bances, Figure 4.13 and 4.14 illustrate the frequency responses of the closed-loop with the

LPV FVM controller at frozen scheduling parameter values θ = θmax and θ = θmin. For

the visualization the LPV FVM controller with the best road-holding performance is used

because this controller also operates at the wheel resonance. The frequency responses of

Figure 4.13 show the body heave, roll and pitch velocities excited by pure heave, roll and

pitch road excitation, respectively. These excitations are generated by mapping the four

independent road disturbance inputs of (4.13) to one single disturbance input according

to:

heave: dg = [1 1 1 1]T dheave,

roll: dg = [1 -1 1 -1]T droll, and

pitch: dg = [-1 -1 1 1]T dpitch.

As specified during the control design, the open-loop and the closed-loop frequency re-

sponses with θ = θmin are almost the same as the LPV controller output is scaled towards

zero by the saturation matrix. In comparison, the frequency responses of the closed-loop

with θ = θmax show that the LPV controller mainly reduces the body resonance peaks

of all three transfer functions while leaving the low and high frequency responses almost

unaffected. This exactly corresponds to the specified controller behavior as on the one

hand the stationary system response cannot be changed by actuators with zero stationary

force capabilities like semi-active dampers and on the other hand the controller should
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Figure 4.13: Normalized frequency responses of open-loop and closed-loop with full-

vehicle from road disturbance to: top left - body heave velocity, top right - body roll

velocity, and bottom - body pitch velocity
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Figure 4.14: Normalized frequency responses of open-loop and closed-loop with full-

vehicle from heave road disturbance dheave to: left - front wheel velocity, and right - rear

wheel velocity

roll-off sufficiently fast to avoid the amplification of high frequency disturbances. The

frequency responses of the front and rear wheel velocities depicted in Figure 4.14 show a

similar behavior with an unaffected low and high frequency closed-loop response, but in

contrast to the responses of the body velocities in Figure 4.13 also the wheel resonance
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peaks are mitigated, especially at the rear suspension.

In addition to the above figures, Figure 4.15, 4.16 and 4.17 illustrate the frequency re-

sponse of the open loop and closed-loop system with frozen scheduling parameter θ = θmax

and θ = θmin from linear combinations of the disturbances d of plant PΘ used during the

DI controller synthesis to the performance signals ya. The considered disturbances are:

heave acceleration: d = [1 1 1 1 0 0 0 0 0 0 0 0]T da,h,

wheel acceleration: d = [0 0 0 0 1 1 1 1 0 0 0 0]T da,w,

damper velocity: d = [0 0 0 0 0 0 0 0 1 1 1 1]T da,d,

roll acceleration: d = [1 -1 1 -1 0 0 0 0 0 0 0 0]T da,r, and

pitch acceleration: d = [-1 -1 1 1 0 0 0 0 0 0 0 0]T da,p.

Furthermore, the figures show the corresponding performance bounds We (θ) imposed

on the frozen closed-loop system with θ = θmax according to (4.33). The closed-loop

frequency response of the body heave velocity at the grid point θ = θmax shown in Figure

4.15 is very similar to the heave velocity resulting from the road disturbance in Figure
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Figure 4.15: Normalized frequency responses of open-loop and closed-loop with full-

vehicle from disturbances d to body heave velocity



4.8 Four-Post Test-Rig Experiments 85

 

 

γW−1
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Figure 4.16: Normalized frequency responses of open-loop and closed-loop with full-

vehicle from disturbance d to: left - body roll velocity, and right - body pitch velocity
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e,ẋw

(θmax)

closed-loop Θmin

closed-loop Θmax

open-loop

frequency (Hz)

n
or
m
.
w
h
ee
l
ve
lo
ci
ty

100 101
10−2

100

102

104

 

 

γW−1
e,ẋw
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Figure 4.17: Normalized frequency responses of open-loop and closed-loop with full-

vehicle from disturbance d to: left - front wheel velocity, and right - rear wheel velocity

4.13-top left. The controller mainly reduces the body resonance peak and leaves the low

and high frequency behavior unaffected. Figure 4.16 shows the closed-loop frequency

responses of body roll and pitch velocities if excited by the roll and pitch acceleration

disturbances da,r and da,p. Again, the controller focuses on the reduction of the body

resonance peaks and yields a good roll-off at higher frequencies. Figure 4.17 illustrates

the closed-loop frequency responses of the front and rear wheel velocities subject to the

wheel acceleration disturbance da,w. Compared to the closed-loop frequency responses of

the body velocities, the controller shows less effect on the wheel velocities even though

the controller has been tuned for optimal road-holding. This results from the trade-off

between the reduction of the wheel resonance peak and the increase in amplitude in the

intermediate frequency range. Finally, Figure 4.18 illustrates the closed-loop control signal

uFd
of the front and rear dampers subject to a heave acceleration disturbance da,h.

4.8 Four-Post Test-Rig Experiments

The ride comfort oriented full-vehicle LPV controller is assessed by experiments with

the SC3-Bulli on the four-post test-rig of KW as shown in Figure 1.4. The synthesized
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Figure 4.18: Normalized frequency responses of open-loop and closed-loop with full-

vehicle from heave acceleration disturbance da,h to: left - front control signal, and right -

rear control signal

LPV controllers and the corresponding Skyhook-Groundhook controller are implemented

on a dSPACE MicroAutoBox II with a sample time of Ts = 0.5 ms. The logging data

needed for the evaluation of ride comfort, road-holding and suspension deflection usage

is recorded at a lower sample time of Tlog = 1 ms due to restrictions of the maximum

sample time of the test-rig. Additionally, the assessment considers two passive suspension

configurations: const. ud comfort and const. ud sport, which have been tuned together

with KW during preliminary experiments such that they provide good compromises for

ride comfort and sporty driving.

As introduced in Section 4.2, ride comfort is quantified according to ISO (2631-1:1997),

and road-holding Jrh and suspension deflection usage Jd are quantified by the RMS-values

of the dynamic wheel load and damper deflection, respectively. From the pool of test-rig

excitations four excitations have been selected for the experimental assessment:

1. a heave sweep excitation,

2. the stochastic road excitation (also used during the controller tuning),

3. a Spanish bumps excitation, and

4. a country road segment with a long-wave bump.

4.8.1 Experiments without Damper Malfunction

The fast Fourier transforms (FFT) of the data collected during the heave sweep experi-

ment are depicted in Figure 4.19 - 4.21. The frequency responses are computed by dividing

the sine sweep sequence into seven windows and by averaging the FFTs of all windows.

The frequency responses of the body heave acceleration of Figure 4.19 show that the con-

trollers provide vital damping of the body resonance peak located between 1 Hz and 2

Hz and furthermore, exploit the performance potential of the very low minimum damper

force curves in the frequency range between 2 Hz and 10 Hz. The frequency responses

of the body heave acceleration also feature an invariant point at 12 Hz close before the



4.8 Four-Post Test-Rig Experiments 87

 

 

PSfrag

LPV QVM ctrl

LPV FVM ctrl

SH/GH ctrl

const. ud sport

const. ud comfort

frequency (Hz)

ac
ce
le
ra
ti
on

C
oG

(m
/s

2
)

100 101
10−4

10−3

10−2

10−1

100

Figure 4.19: Frequency response of body heave acceleration of experimental vehicle

subject to heave sweep excitation

wheel resonance frequency. This corresponds well to the frequency response of the frozen

closed-loop depicted in Figure 4.13-top left, which exhibits the invariant point and the

wheel resonance at almost the same frequencies. The shape of the frequency responses,

however, is different and it clearly shows the nonlinearities of the experimental vehicle,

especially near the wheel resonance frequency. A comparison of the experimental fre-

quency response of the body heave acceleration of the closed-loop with SH/GH controller

in Figure 4.19 with the theoretical frequency response discussed in Savaresi et al. (2010,

p. 112), confirms the good parametrization of the SH/GH controller regarding ride com-

fort. As in Savaresi et al. (2010, p. 112), the SH/GH controller focuses its operation on

the body resonance peak and rolls-off at higher frequencies. Due to the comfort-oriented

parametrization of the illustrated controllers, especially the SH/GH controller, but also

the quarter-vehicle LPV controller, feature only small reductions of the resonance peaks

of the dynamic wheel loads at the wheel resonance frequency in Figure 4.20. The full-

vehicle LPV controller, however, achieves lower amplitudes of the dynamic wheel loads at

the wheel resonance frequency. The difference to the two other controllers is small at the

front suspension, but significant at the rear suspension. This behavior corresponds to the

result of the controller tuning in Figure 4.12 as firstly the LPV FVM controller provides

the best road-holding performance and secondly the dynamic wheel loads of the simulated

nonlinear vehicle model depicted in Figure 4.14 also exhibit the difference between front

and rear suspensions, namely no reduction of the dynamic wheel load amplitude at the

front axle versus a reduction at the rear axle. The analysis of the heave sweep experiment

is completed by the frequency responses of the damper velocity depicted in Figure 4.21.

These curves show that the LPV controllers feature smaller damper velocity amplitudes

at the body and wheel resonance frequencies and in particular, the LPV FVM controller
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Figure 4.20: Frequency response of dynamic wheel load of experimental vehicle subject

to heave sweep excitation: left - dyn. wheel load FR and right - dyn. wheel load RR
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Figure 4.21: Frequency response of damper velocity of experimental vehicle subject to

heave sweep excitation: left - damper velocity FR and right - damper velocity RR

vitally reduces the damper velocity amplitudes of the rear suspensions.

The graphs in Figure 4.22 illustrate the stochastic road, Spanish bumps and country road

excitations in time domain to provide an understanding for the differences between the

excitations. The curves show the displacement signals of the four test-rig posts with the

post position front left (FL), front right (FR), rear left (RL) and rear right (RR) denoted

by 1 - 4. The stochastic road excitation is about five times longer than the other two

excitations and has a total length of about 100 s. Figure 4.22-top left shows the first 20 s

of the road excitation to give a legible illustration of the post displacement. The Spanish

bumps excitation is a collection of single bump and pothole events. The amplitudes of the

bumps and potholes are about as large as the amplitudes of the stochastic road excitation

except for the first bump which is about twice as large. The country road excitation

corresponds to a stochastic excitation with a superimposed long-wave bump at 12 s. The

amplitude of the bump is about one third higher than the amplitudes of the Spanish

bumps excitation.

The results of the evaluation of the controller performance for the three excitations are

given in Table 4.3 - 4.5. The tables state the ride comfort criterion JcISO, the road-holding

criterion Jrh and the suspension deflection usage criterion Jrh normalized to the passive

suspension configuration const. ud comfort. The assessment of Table 4.3 - 4.5 shows,
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Figure 4.22: Post displacements: top left - stochastic road excitation, top right - Spanish

bumps excitation, and bottom - country road with long-wave bump excitation

that the LPV FVM controller achieves the best individual results for ride comfort and

road-holding, and the best trade-off between these two criteria. A closer examination of

the criteria values of the most relevant stochastic road experiments shows that the LPV

FVM controller improves ride comfort by about 12 % compared to the SH/GH controller

and by about 3 % compared to the LPV QVM controller. The same improvement of

about 9 % can be observed when evaluating road-holding of the LPV FVM and the

SG/GH controller. Compared to the LPV QVM controller, however, the road-holding

improvement of the LPV FVM controller of about 1 % is rather small. The assessment

of the Spanish bumps and the country road with ground wave reveals a similar result.

The LPV FVM controller achieves a ride comfort improvement of about 8 % for the

Spanish bumps and the country road compared to the SG/GH controller. The road-

holding improvement of the LPV FVM controller, however, is just 2%.

Figure 4.23 - 4.26 illustrate the behavior of the LPV FVM controller during the first large

bump of the Spanish bumps excitation. The test-rig’s post displacements depicted in

Figure 4.23-top left show that the displacements of the left and right wheels are identical

and consequently the bump mainly excites body heave and pitch. This can be confirmed

by the other graphs of Figure 4.23, which show the body heave, roll and pitch accelera-

tions. The body roll acceleration of Figure 4.23-bottom left exhibits only small amplitudes

and high frequency oscillations with minor correlation to the post displacement signals.

Conversely, the heave and pitch accelerations amplitudes are significant during this bump

excitation and the assessment of the vehicle response with LPV FVM controller compared
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Table 4.3: Performance assessment of stochastic excitation experiment; criteria in per-

centage relative to comfort-oriented passive suspension configuration

ride comfort

JcISO

road-holding

Jrh

suspension deflection

usage Jd

const. ud comfort 100 % 100 % 100 %

const. ud sport 112 % 103 % 88 %

SH/GH controller 89 % 105 % 109 %

LPV FVM controller 77 % 96 % 96 %

LPV QVM controller 80 % 97 % 99 %

Table 4.4: Performance assessment of Spanish bumps experiment; criteria in percentage

relative to comfort-oriented passive suspension configuration

ride comfort

JcISO

road-holding

Jrh

suspension deflection

usage Jd

const. ud comfort 100 % 100 % 100 %

const. ud sport 115 % 119 % 92 %

SH/GH controller 76 % 80 % 93 %

LPV FVM controller 68 % 78 % 102 %

LPV QVM controller 76 % 80 % 93 %

Table 4.5: Performance assessment of country road with long-wave bump experiment;

criteria in percentage relative to comfort-oriented passive suspension configuration

ride comfort

JcISO

road-holding

Jrh

suspension deflection

usage Jd

const. ud comfort 100 % 100 % 100 %

const. ud sport 99 % 107 % 100 %

SH/GH controller 83 % 94 % 93 %

LPV FVM controller 75 % 92 % 80 %

LPV QVM controller 79 % 90 % 86 %

to the SH/GH controller and the passive configurations emphasizes the ride comfort im-

provements of the LPV FVM controller. In particular, the heave acceleration in Figure

4.23-top right reveals a vital amplitude reduction by the LPV FVM controller. Figure

4.24 and 4.25 are important to provide the entire picture of the behavior of the LPV FVM
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Figure 4.23: Post displacement and body accelerations of experimental vehicle subject to

large bump excitation: top left - post displacements, top right - body heave acceleration,

bottom left - body roll acceleration, and bottom right - body pitch acceleration

controller. Even though the controller has been tuned for optimal ride comfort, the dy-

namic wheel loads and also the damper velocities should not drastically increase compared

to the SH/GH controller and the passive configurations; firstly to ensure a sufficient level

of road-holding and secondly to avoid excessive suspension deflections approaching the

bump stops. Finally, Figure 4.26 gives a comparison between the measured damper cur-

rents. Regarding the passive suspension configurations the two striking observations are

firstly that the comfort-oriented setting applies damper currents distinct higher than the

minimum values. This setting is necessary for ride comfort due to the very low damping
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Figure 4.24: Dynamic wheel load of experimental vehicle subject to large bump excita-

tion: left - dyn. wheel load FR and right - dyn. wheel load RR
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Figure 4.25: Damper velocities of experimental vehicle subject to large bump excitation:

top left - damper velocity FR, bottom left - damper velocity RR
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Figure 4.26: Damper current of experimental vehicle subject to large bump excitation:

top left - damper current FL, top right - damper current FR, bottom left - damper current

RL, and bottom right - damper current RR

provided by the minimum force curves of the semi-active dampers as discussed Appendix

E.1. Secondly, the rear damper currents of both passive configurations are slightly higher

than those of the front dampers to achieve a good pitch balance of the vehicle. The

comparison of the LPV FVM controller and the SH/GH controller shows that both con-

trollers operate the vehicle with minimum damper forces if the disturbances are small, but

command control signals beyond the actuator capacities of 1.4 A such that the maximum

damper forces are applied for some milliseconds.

In summary, the experimental results correspond well to the expectations of the controller

tuning. In particular, the developed LPV FVM controller achieves a consistent improve-
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ment of ride comfort and road-holding for all excitations. The achieved road-holding,

however is not as good as expected from the controller tuning. The deviation between

simulation and experimental results can be addressed to the approximations, in particular

to the negligence of the effects of the elastokinematics of the suspensions employed during

the development of the linear and nonlinear vehicle models and during control design.

4.8.2 Experiments with Damper Malfunction

In addition to the experiments with functioning semi-active dampers, this section inves-

tigates the controller performance in case of malfunction of the rear right damper such

that only the minimum damper forces are available, e.g. due to an electrical failure or

malfunction of the electro-hydraulic valve. This experiment assumes that the damper

fault has been detected and the fault information has been provided to the LPV con-

troller represented by θ̄4 = θmin. During the experiment the testing vehicle is excited

by the first large bump of the Spanish bump sequence depicted in Figure 4.27-top left.

The statistical assessment presented in Table 4.6 shows that the augmented LPV FVM

controller with force reconfiguration performs best during the experiments. In particu-

lar, the ride comfort degradation due to the damper failure of the LPV FVM controller

with force reconfiguration is only 7 % compared to the experiment with the LPV FVM

controller without damper failure. Furthermore, the ride comfort criterion of the LPV

FVM controller is 13 % better than the criterion of the SH/GH controller and about 30 %

better than the passive suspension configuration const. ud comfort. Conversely, the road-

holding and suspension usage criteria of the LPV FVM controller are worse compared to

the SH/GH controller and the passive suspension configurations. This result corresponds

to the design goals of the controller augmentation developed in Section 4.6, which focuses

on improving ride comfort neglecting road-holding and suspension deflection usage.

Figure 4.27 - 4.29 illustrate the counterparts with rear right damper malfunction to Figure

4.23 - 4.26 without damper malfunction. The effect of the rear right damper failure is most

Table 4.6: Performance assessment of large bump excitation experiment with rear right

damper failure; criteria in percentage relative to the LPV FVM controller without damper

failure

ride comfort

JcISO

road-holding

Jrh

suspension deflection

usage Jd

const. ud comfort 137 % 120 % 95 %

const. ud sport 166 % 135 % 87 %

SH/GH controller 120 % 107 % 96 %

LPV FVM controller 107 % 116 % 103 %



94 4 Full-Vehicle Control Design

 

 

post4post3post2post1

time (s)

d
is
p
la
ce
m
en
t
(m

)

0 1 2
−0.04

0

0.04

0.08

 

 

LPV FVM ctrl
SH/GH ctrl
const. ud sport
const. ud comfort

time (s)b
o
d
y
h
ea
ve

ac
ce
le
ra
ti
on

(m
/s

2
)

0 1 2 3
−5

0

5

10

 

 

LPV FVM ctrl
SH/GH ctrl
const. ud sport
const. ud comfort

time (s)

b
o
d
y
ro
ll
ac
ce
l.

(r
ad

/s
2
)

0 1 2 3

−2

0

2

4

 

 

LPV FVM ctrl
SH/GH ctrl
const. ud sport
const. ud comfort

time (s)

b
o
d
y
p
it
ch

ac
ce
l.
(r
ad

/s
2
)

0 1 2 3
−4
−2
0

2

4

6

8

Figure 4.27: Post displacement and body accelerations of experimental vehicle with rear

right damper failure subject to large bump excitation: top left - post displacements, top

right - body heave acceleration, bottom left - body roll acceleration, and bottom right -

body pitch acceleration

obvious at the dynamic wheel load of the rear right wheel depicted in Figure 4.28, which

heavily oscillates compared with the dynamic wheel load without damper failure in Figure

4.24. Figure 4.29 visualizes the damper currents recorded during the experiment. Due to

the simulated failure of the rear right damper, the corresponding damper current is almost

zero. The comparison with Figure 4.26 shows that the force reconfiguration particularly

increases the damper current of the rear left damper, but also that the reconfiguration

is heavily restricted by the force limits of the semi-active dampers. The experiment,

nevertheless, illustrates the suitability of the proposed augmented LPV FVM control

design for fault-tolerant control.

4.9 Discussion and Conclusion

This chapter presents a new active fault-tolerant full-vehicle LPV controller for a car

equipped with semi-active dampers. The controller employs actuator efficiencies and

saturation indicators to incorporate failures and the restrictive damper force constraints in

the LPV framework. In particular, this chapter proposes augmented saturation indicators

which integrate the actuator efficiency and saturation indicator concept into one joint

concept. To improve the performance of the LPV controller, the controller is extended

by a saturation indicator dependent force reconfiguration matrix which explores the weak
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Figure 4.28: Dynamic wheel load of experimental vehicle with rear right damper failure

subject to large bump excitation: left - dyn. wheel load FR and right - dyn. wheel load
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Figure 4.29: Damper current of experimental vehicle with rear right damper failure

subject to large bump excitation; top left - damper current FL, top right - damper current

FR, bottom left - damper current RL, and bottom right - damper current RR

actuator redundancy provided by four semi-active dampers. The proposed controller

features guaranteed stability and performance for all admissible conditions of saturation

and malfunction.

To reduce the computational cost during controller synthesis and code execution on real-

time hardware, the LPV output-feedback control design adopts a Disturbance-Information

scheme and employs a wide-meshed grid based on the minimum grid density necessary

for controller stability established in Section 2.5. The Disturbance-Information scheme

features the advantageous property that the output-feedback controller can be synthesized
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in a two-step approach, namely an observer design as the first step and a state-feedback

controller design as the second step. The observer based state-feedback structure of the

resulting controller simplifies the implementation of the controller.

The fault-tolerance properties of the LPV controller are verified by a simulation study

comparing the performance of the nominal LPV controller without consideration of ac-

tuator malfunction and the augmented LPV controller. The results of this investigation

confirm the feasibility of the proposed controller augmentation to reduce the performance

degradation in case of actuator failures.

Furthermore, the full-vehicle LPV controller is validated by experiments with the SC3-

Bulli of SR on a four-post test-rig. The results show that the augmented full-vehicle

LPV controller with force reconfiguration achieves a vital improvement of the trade-off

between ride comfort and road-holding compared to a full-vehicle Skyhook-Groundhook

controller. Moreover, an experiment with an assumed damper failure emphasizes the fault-

tolerant control properties of the full-vehicle LPV controller with force reconfiguration.

The comparison of the damper control signals without and with damper failure illustrates

the control signal shift from the faulty damper to the remaining healthy dampers, but

also that the reconfiguration is heavily restricted by the control signal limits of the semi-

active dampers. The experiment, nevertheless, confirms the suitability of the proposed

augmented LPV control design for fault-tolerant control.
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5 Roll Disturbance Feedforward Control

The two main disturbances to be attenuated by the semi-active suspension controller

are road disturbances and driver-induced load disturbances. As discussed in Chapter 1,

driver-induced disturbances, similar to road disturbances, significantly affect ride com-

fort, road-holding and vehicle handling. The driver-induced disturbances considered in

this chapter are roll disturbances which emerge from the steering inputs of the driver,

e.g. when driving on a curvy country road. The road disturbances and driver-induced

disturbances have distinct transmission paths and frequency ranges meaning that the rel-

evant frequency range of road disturbances is 0.5 - 20 Hz, while the relevant frequency

range of driver-induced disturbances is 0.1 - 3 Hz. In most vehicle applications, road dis-

turbances as considered in Chapter 3 and 4 are unknown at runtime, but driver-induced

disturbances can be estimated from the driver inputs by a suitable vehicle model like the

single-track model. Moreover, the authors in Williams and Haddad (1997) and Brezas and

Smith (2014) emphasize that feedback controllers which minimize the effect of road dis-

turbances only achieve medium ride comfort and road-holding regarding driver-induced

disturbances and vice versa. Smith and Wang (2002) address the control design of an

active suspension system in the presence of both road disturbances and driver-induced

disturbances by a special parametrization of an LTI controller for decoupled tuning of

the two disturbance transmission paths. In this way, independent performance goals can

be defined for each disturbance transmission path, e.g. ride comfort as defined in Section

4.2 for the road disturbance path and a well damped roll response for the driver-induced

roll disturbances. Compared to road disturbances, driver-induced disturbances are eas-

ier to compensate since they can be estimated from the driver inputs and the vehicle

states. This knowledge can be exploited by a two-degree-of-freedom control structure

with a disturbance feedforward path. Brezas and Smith (2014) present a two-degree-of-

freedom LQ control design of an active suspension system which simultaneously considers

both road and driver-induced disturbances. In particular, they observed that the LQ

controller with feedforward path achieves a significant improvement of ride comfort and

road-holding regarding driver-induced disturbances. In Brezas et al. (2015), the authors

adjust their approach to semi-active suspensions and present experimental results of a

cornering manoeuvre. Alternatively, the authors in Ahmadian and Simon (2004) present

a so-called steering input augmentation (SIA) of a Skyhook control such that the SIA-

Skyhook controller increases its control signal proportional to the steering input. This

concept is closer to industry than the preceding ones and its potential to enhance the roll

stability is validated by lane change experiments.

In contrast to Brezas and Smith (2014), this work pursues a feedforward-feedback decou-

pling approach as theoretically described in Prempain and Postlethwaite (2001, p. 18-19),

i.e. the separate design of the feedforward and feedback path. The two-step control design

has the appealing property that the feedback controller can focus on the attenuation of

unknown disturbances and the feedforward filter can achieve fast tracking and attenuation

of known disturbances. As proposed in Prempain and Postlethwaite (2001), the feedfor-
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ward filter can be obtained by solving the Full-Information (FI) problem introduced in

Appendix A. The FI control approach is simple and naturally extends to LPV plants as

shown in Prempain and Postlethwaite (2001, p. 23). Moreover, the FI control approach

can be applied to a multitude of feedforward design problems as illustrated by the LPV

helicopter control design application presented in Prempain and Postlethwaite (2000) and

the LPV missile control design example given in Theis et al. (2015). Regarding a two

degree-of-freedom control design, the FI control approach facilitates the coherent appli-

cation of the saturation indicator concept to both the feedforward and feedback control

design. In this way, the feedforward filter can be designed consistent to the feedback

controller such that the feedforward filter and the feedback controller simultaneously re-

duce their contribution to the control signal in the event of saturation according to the

value of the saturation indicators. The resulting two-degree-of-freedom LPV controller

attains guaranteed stability for all admissible saturation conditions and good performance

regarding the rejection of both disturbances.

The feedforward control design presented in this work focuses on shaping the body re-

sponse of the vehicle in the face of roll disturbances induced by the steering inputs of

the driver. The feedforward filter takes the expected lateral vehicle acceleration as input

and generates appropriate damper forces. The expected lateral vehicle acceleration is

estimated from the steering angle by a roll disturbance estimator which uses a simple

single-track model.

The feedforward control design discussed in this chapter elaborates the Full-Information

problem based feedforward control design presented in Fleps-Dezasse et al. (2018).

5.1 Roll Disturbance Feedforward Control Structure

Figure 5.1 illustrates the augmentation of the semi-active suspension controller developed

in Chapter 4 with the LPV feedforward filter NΘ. The combined control force uJ of

the two-degree-of-freedom semi-active susension controller is defined as the summation of

the control force ǫu of the original feedback controller and the control force um of the

feedforward filter NΘ with dr being the roll disturbance input signal. Both, the feedback

controller and the feedforward filter are scheduled by the saturation indicators θ. The roll

disturbance dr is estimated from the front wheel steering angle δF by a roll disturbance

estimator which is based on a single-track model. Compared to the feedback control

structure of Chapter 4, the output of the feedback controller is denoted ǫu because the

observer is fed by the modified measurements ǫy, which are calculated as the difference

between the measurements y and the estimated measurements ym of the feedforward

filter. Similar to the full-vehicle feedback control design of Chapter 4, the saturation

block and the inverse damper model are gathered in an augmented plant, which is then

employed for the LPV feedforward filter design.
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Figure 5.1: Two degree-of-freedom control structure of full-vehicle equipped with four

semi-active suspensions

5.2 Vehicle Model with Roll Disturbance Input

The roll disturbances induced by the steering inputs of the driver are modeled as proposed

in Brezas and Smith (2014, p. 550) by introducing the additional roll moment input dr
into the full-vehicle model of Section 4.3. Accordingly, equation 4.11 describing the body

roll dynamics extends to

Ixxẍb,roll = dr +
∑

i

lroll,i (kb,i (xw,i − xbs,i) + d0,i (ẋw,i − ẋbs,i) + Fs,i) , (5.1)

with i = 1, 2, 3, 4 denoting the respective suspension unit. This simple extension covers

the effect of driver-induced roll disturbances on the vehicle body, but neglects the ad-

ditional transmission paths to the wheels. The roll moment distribution between both

transmission paths is determined by the suspension kinematics, more precisely by the

distance between the body CoG and the vehicle roll axis. Regarding semi-active suspen-

sion control, however, only the response of the vehicle body to roll disturbances can be

essentially shaped by adjusting the damper forces. Using (5.1) and the equations of the

full-vehicle model from Section 4.3, the vehicle model with roll disturbance Gr can be

stated in state-space notation by

ẋ = Ax+B1dr + B̄2ΘuJ , (5.2)



100 5 Roll Disturbance Feedforward Control

n
or
m
.
b
o
d
y
ro
ll
ve
lo
ci
ty

frequency (Hz)

10−1 100 101
10−2

100

102

Figure 5.2: Transfer function from roll disturbance input dr to angular roll velocity of

vehicle body ẋb,roll

with the control input uJ , the roll disturbance moment input dr, the saturation indicator

matrix Θ and the state vector

x = [xb,roll ẋb,roll xw,1 ẋw,1 . . . xw,4 ẋw,4 xFd,1 . . . xFd,4] . (5.3)

Compared to the states of the full-vehicle model of Section 4.3, the state vector of Gr

neglects the body heave and pitch degrees-of-freedom because they are not excited by

the roll disturbance input. The vehicle model with roll disturbance input generates the

measurements y employed during the feedback control design presented in Section 4.5

according to

y = C2x+D21dr, (5.4)

with the output matrix C2 and the disturbance feedthrough matrix D21. The vehi-

cle model given in (5.2) includes the first-order actuator dynamics introduced in (3.18).

Therefore, the control signal uJ has no direct feedthrough to the measurements y.

Figure 5.2 illustrates the frequency response from the roll disturbance moment input dr
to the angular roll velocity of the body ẋb,roll of Gr. Obviously, the frequency response

of the vehicle body subject to the roll disturbance input dr approximately corresponds to

a mass-spring-damper system. The body motion is only weakly damped by the nominal

body damping d0, and shows a good roll-off at high frequencies and a zero steady-state

gain.

5.3 Roll Disturbance Feedforward Control Design

Figure 5.3 shows the interconnection of a two-degree-of-freedom controller consisting of

the feedback controller KΘ and the feedforward filter NΘ with the vehicle model with
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roll disturbance input Gr where Jm is given by

Jm =

[
0 I 0 I

−I 0 I 0

]

. (5.5)

The feedforward filter NΘ generates the reference measurements ym and the feedforward

control signal um from the roll disturbance input dr. Starting from the solution of the FI

problem, the feedforward filter NΘ is obtained as the interconnection of the FI controller

KFI with system PN according to

NΘ = Γed (PN ,KFI) , (5.6)

with PN given by

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

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 . (5.7)

The system PN particularly estimates the input of the FI controller KFI from the roll

disturbance input dr such that the control signal um of KFI minimizes the effect of the

disturbance dr on the plant Gr. Naturally, in the absence of disturbances dr, the control

structure of Figure 5.3 recovers the closed-loop with pure feedback. Moreover, as stated in

Prempain and Postlethwaite (2001, p. 21), for a perfectly known plant and the reference

measurements satisfying

ym = Gr

[
um

dr

]

, (5.8)

it is possible to achieve perfect rejection of the known disturbances dr. By perfect distur-

bance rejection it is meant that for zero-state initial condition, the reference measurements

ym of the feedforward filter equal the measurements y of Gr and the control signal uJ

equals the control signal um of the feedforward filter. In case of non-zero initial states

of feedforward filter and plant, y and u will asymptotically tend towards ym and um,

respectively.

The objective of the semi-active suspension control design is the rejection of driver-induced

roll disturbances. The performance criteria are ride comfort, road-holding and vehicle

handling. In a full-vehicle context ride comfort can be characterized according to ISO

(2631-1:1997) by the vehicle body heave, roll and pitch accelerations. The body heave

and pitch motions are only weakly excited by the considered roll disturbances and can

be neglected during the computation of the ride comfort criterion JcISO. Compared to

Section 4.2, the criterion simplifies to

JcISO =

√

1

T

∫ T

0

|¨̄xb,roll (t)|2 dt. (5.9)
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Figure 5.3: Two-degree-of-freedom closed-loop interconnection

The bar of ¨̄xb,roll indicates that the RMS value of the body roll acceleration is computed

after filtering the signal by the weighting filter given in ISO (2631-1:1997). The road-

holding criterion Jrh of a vehicle can be determined from the RMS value of the vectorial

dynamic wheel load signal Fwl as described in Section 4.2. The vehicle handling properties

can be only indirectly affected by semi-active suspension control. The authors in Williams

and Haddad (1995) discuss the contribution of suspension control which results from a

reduction of the (dynamic) wheel load transfer. In particular, they argue that the lateral

force capability of an axle decreases due to the wheel load transfer during cornering. The

main reason for this effect is the degressive side force characteristic of tires. Consequently,

the increase in side force due to the higher wheel load of one tire of the axle is smaller

than the decrease in side force due to the lower wheel load of the other tire of the axle.

This effect reduces the maximum side force capability of the vehicle. The driver then

has to compensate the larger side slip angles of the tires by larger steering inputs to still

follow the road. The RMS value Jh of the front wheel steering angle given by

Jh =

√

1

T

∫ T

0

|δF (t)|2 dt, (5.10)

is thus a good indicator of the vehicle handling properties.

The three design targets presented above can be simultaneously realized by the feed-

forward filter as their individual design specifications are very similar. With respect to

vehicle handling, the front wheel steering angle would be the first choice as performance

signal ea of the FI control design. Unfortunately, the front wheel steering angle is not

part of the control design problem with vehicle model Gr. However, vehicle handling

can be improved by a reduction of the wheel load transfer which is directly correlated to

the body roll motion. During the FI control design, the body roll velocity is employed

as performance signal. The roll velocity sufficiently emphasizes the body roll resonance

peak and offers a better roll-off than the roll acceleration. Compared to the roll angle,
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the roll velocity features a zero steady-state gain with respect to the roll disturbance in-

put dr. This is an essential property during the feedforward filter design of a semi-active

suspension because the dampers cannot produce any steady-state forces at constant roll

angles.

The body roll velocity performance signal is weighted by the saturation indicator depen-

dent weight Wa,roll (θ) given by

Wa,roll (θ) = wb,roll

(

1

nu

nu∑

i=1

θi

)

Gpt1,roll, (5.11)

with the scaling factor wb,roll and the first-order low-pass filter Gpt1,roll similar to (3.43),

but with a cut-off frequency of 10 Hz. The saturation indicator dependence of Wa,roll (θ)

is realized such that the performance signal is scaled by the mean value of the saturation

indicators θ as in (4.37) of the feedback control design. In this way, the performance

requirement is relaxed if the actuators are saturated. The control effort weighting function

Wu (θ) given by

Wu (θ) = Θ−1, (5.12)

is again realized as introduced in Section 2.4 such that the feedforward filter achieves the

desired behavior, i.e. the controller reduces its output with increasing actuator satura-

tion. Figure 5.4 illustrates the weighting scheme of the feedforward filter design with the

roll disturbance model Gr comprised of the saturation block and the unconstrained roll

disturbance model Ḡr. The saturation block limits the control signal um yielding the

constrained control signal σ (um) which can be computed from the saturation indicator

matrix Θ by

σ (um) = Θum. (5.13)

The generalized FI plant Pr gathering the vehicle model Gr and the weighting functions

Wa,roll (θ) and Wu (θ) can be stated by
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As discussed in Appendix A.4.5 and theoretically deduced in Prempain and Postlethwaite

(2001, p. 22), the feedforward filter corresponding to the FI problem (5.14) can be

designed via a state-feedback controller synthesis if the disturbances dr have no direct

feedthrough to the performance signals ea and eu. In the proposed feedforward filter

design withWu (θ) = Θ−1, this condition is always satisfied as long asWa,roll (θ) is strictly

proper. Once the optimal state-feedback gain F (θ) is determined, the feedforward filter
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Figure 5.4: Weighting scheme of feedforward control design

NΘ can be constructed according to (5.6). The corresponding state-feedback gain F (θ)

is given by

F (θ) = −Θγ2B̄T
2 Z, (5.15)

with Lyapunov matrix Z resulting from the controller synthesis.

Figure 5.5 illustrates the frequency response of the roll velocity of the interconnection

of the vehicle model Gr with feedforward filter NΘ for the grid points θ = θmin and

θ = θmax. According to the design specification, the feedforward filter with θ = θmax

significantly reduces the roll velocity resonance peak of the vehicle, while the response with

feedforward filter NΘmin
resembles the open-loop system. This behavior results from the

state-feedback gain (5.15) of the feedforward filter which linearly reduces its control signal
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Figure 5.5: Frequency response of plant Gr from roll disturbance moment input dr to

angular roll velocity ẋb,roll with and without feedforward filter NΘ
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um according to the value of the saturation indicators θ until the effect of the feedforward

filter vanishes. Due to the equal saturation indicator dependent weighting schemes of the

feedback and feedforward control design, the feedback and feedforward control signals are

equally reduced in the event of saturation according to the saturation indicators and the

two-degree-of-freedom controller achieves guaranteed stability for all admissible saturation

indicators. Furthermore, the feedback controller and the feedforward filter equivalently

contribute to the constrained control signal such that the feedforward filter does not

dominate the constrained closed-loop system.

5.4 Simulation Results

To verify the performance benefit of the two-degree-of-freedom controller with feedforward

filter NΘ, this section investigates a lane-change scenario. The investigation is enabled

by extending the simulation model of the SC3-Bulli introduced in Appendix E.2 by a

roll disturbance moment input. The vehicle model is then excited by the lateral acceler-

ation depicted in Figure 5.6-top. The roll disturbance moment resulting from the lateral

acceleration is computed according to (F.1).

Table 5.1: Performance assessment of two-degree-of-freedom controller with feedforward

filter during simulation of lane-change scenario

ride

comfort

JcISO

road

holding

Jrh

RMS

roll

angle

RMS

roll

velocity

const. ud comfort 100 % 100 % 100 % 100 %

const. ud sport 64 % 77 % 67 % 63 %

LPV FVM ctrl 71 % 82 % 78 % 73 %

LPV FVM

ctrl with NΘ

57 % 74 % 61 % 57 %

Table 5.1 presents the results of the simulation scenario. In addition to the criteria ride

comfort and road-holding employed during feedback control design, the evaluation of the

controller performance considers the RMS values of the roll angle and roll velocity of

the vehicle body. In contrast to the investigation with road disturbances of Chapter

4, the comfort-oriented passive suspension configuration achieves the worst performance

throughout all four criteria. At first glance, especially the bad ride comfort performance

is surprising because the comfort-oriented passive suspension has been tuned to achieve

good ride comfort. Unfortunately, good ride comfort regarding road disturbances and

driver-induced disturbances corresponds to different passive damper configurations. This
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Figure 5.6: Simulation of lane change manoeuver: top - lateral acceleration, bottom left

- body roll angle, and bottom right - body angular roll velocity

is further emphasized by the very good performance of the sporty-oriented passive sus-

pension configuration. The behavior can be justified by two reasons:

1. the transmission path of driver-induced disturbances to the body roll velocity shows

a much better roll-off after the body resonance frequency (Figure 5.2) than the

transmission path of road disturbances, and

2. the driver-induced disturbances are mainly low frequency disturbances up to 3 Hz.

Accordingly, the LPV FVM feedback controller tuned for good ride comfort regarding road

disturbances, shows only medium performance regarding driver-induced disturbances.

This is overcome by the two-degree-of-freedom LPV FVM controller with feedforward

filter NΘ, which improves the ride comfort and the RMS criteria of the roll angle and

the roll velocity by at least 14 %, and road-holding by 8 % compared to the LPV con-

troller without feedforward filter. Moreover, the LPV FVM controller with NΘ achieves a

slightly better performance than the sporty passive suspension configuration. This shows

that the feedforward filter could be parametrized even more aggressive to further im-

prove the performance regarding driver-induced disturbances. During combined road and

driver-induced disturbances, however, an aggressive feedforward filter reduces the overall

performance of the LPV FVM controller. Figure 5.6 - 5.9 illustrate the results of Table 5.1

by time series plots of the body roll angle, body roll velocity, damper velocities, dynamic

wheel loads and control signals. As suggested by the results of Table 5.1 the sporty pas-

sive suspension configuration and the LPV FVM controller with NΘ achieve the smallest
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Figure 5.7: Simulation of lane change manoeuver: top left - damper velocity FL, top

right - damper velocity FR, bottom left - damper velocity RL, and bottom right - damper
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Figure 5.8: Simulation of lane change manoeuver: top left - dyn. wheel load FL, top

right - dyn. wheel load FR, bottom left - dyn. wheel load RL, and bottom right - dyn.
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Figure 5.9: Simulation of lane change manoeuver: top left - control signal FL, top right

- control signal FR, bottom left - control signal RL, and bottom right - control signal RR

roll angles and roll angle velocities. The effect of the feedforward filter NΘ is particularly

obvious from the control signals depicted in Figure 5.9. Due to the feedforward filter NΘ,

the LPV FVM controller with NΘ commands much higher control signals and stabilizes

the body roll motion.

The control signals of the rear suspensions additionally visualize the vital asymmetry

of the force map of the rear semi-active dampers, which provide large rebound forces

and only small compression forces. Therefore, the commanded damper current during

compression is much higher than during rebound operation of the dampers.

5.5 Experimental Results

The proposed two-degree-of-freedom controller is evaluated by double lane change ex-

periments with the SC3-Bulli introduced in Appendix E. The lane change manoeuvers

are set-up according to ISO (3888-2:2011). The corresponding test track and parameters

are given in Figure 5.10 and Table 5.2. The lane change defined by ISO (3888-2:2011)

resembles an obstacle avoidance manoeuver and is performed at a vehicle speed of 50

km/h.

The roll disturbance acting on the vehicle is estimated by the roll disturbance estimator

presented in Appendix F. The roll disturbance estimator uses a single-track model to

compute the expected lateral acceleration ayS of a virtual acceleration sensor located a

position S along the longitudinal vehicle axis. The position of the virtual acceleration sen-
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Figure 5.10: Experiment set-up ISO (3888-2:2011) lane change

Table 5.2: Parameters of lane change manoeuvers according to ISO (3888-2:2011); all

quantities in (m)

a b c d e A B C h

12 13.5 11 12.5 12 1.1bv + 0.25 bv + 1 3 1

sor is used as a tuning parameter. It is determined by preliminary experiments according

to the evaluation of the vehicle handling properties by the test driver.

Figure 5.11-top illustrates the measured lateral acceleration and the estimated lateral ac-

celeration of the single-track model (STM) of the experiments with the passive suspension

configuration const. ud comfort. The figure provides a cross-validation of the performance

of the single-track model and confirms its suitability to estimate the vehicle lateral accel-

eration. Figure 5.11-bottom shows the measured lateral accelerations and steering angles

of the four suspension configurations const. ud comfort, const. ud sport, LPV FVM and

LPV FVM with feedforward filter NΘ of the lane change manoeuvers. Throughout all

four runs, the lateral accelerations and steering angles match very well during the first

2.5 s of the experiments. The vehicle with const. ud sport and LPV FVM with feedfor-

ward filter NΘ, however, is essentially easier to drive and less steering angle is needed by

the driver from 2.5 s onwards to the end of the manoeuver. This behavior is consistent

with the discussion of the vehicle handling properties in Section 5.3. The attenuation of

the body roll motion reduces the dynamics wheel load transfer and consequently the tire

side slip angles during the lane change manoeuver. Simultaneously, the resulting lateral

acceleration and the roll disturbance are also smaller. This behavior further enhances

the performance of the suspension configurations const. ud sport and LPV FVM with

feedforward filter NΘ.

Table 5.3 gives a comparison of ride comfort and the RMS values of the body roll an-

gle, the body roll velocity and the steering angle of the ISO (3888-2:2011) lane change
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Figure 5.11: ISO (3888-2:2011) double lane change at a vehicle speed of 50 km/h: top -

single-track model estimation, bottom left - lateral acceleration, and bottom right - front

wheel steering angle

manoeuver. Compared to the LPV FVM controller without feedforward filter, the two-

degree-of-freedom controller improves ride comfort by 15 % and reduces the RMS values

of the body roll angle and velocity by the same magnitude compared to the LPV controller

without feedforward. Moreover, the RMS value of the steering angle is also reduced by

Table 5.3: ISO (3888-2:2011) double lane change at a vehicle speed of 50 km/h: perfor-

mance assessment of two-degree-of-freedom controller with feedforward filter

ride

comfort

JcISO

RMS

roll

angle

RMS

roll

velocity

RMS

steer

angle

const. ud comfort 100 % 100 % 100 % 100 %

const. ud sport 88 % 78 % 81 % 84 %

LPV FVM ctrl 94 % 97 % 96 % 91 %

LPV FVM

ctrl with NΘ

79 % 76 % 81 % 78 %
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Figure 5.12: ISO (3888-2:2011) double lane change at a vehicle speed of 50 km/h: left

- body roll angle, right - body angular roll velocity

about 20 %. Figure 5.12 illustrates the corresponding body roll angle and velocity of the

four configurations and Figure 5.13 shows the damper current. As expected, the two-

degree-of-freedom controller commands much higher control signals to attenuate the roll

disturbance.

In summary, the results of the double lane change manoeuver correspond well to the

simulation results of Section 5.4. Even though the paths of the vehicle through the test

track vary from experimental run to run due to imperfect driver inputs, the individual runs

exhibit just small variations of the lateral acceleration at the beginning of the experiment.

time (s)

d
am

p
er

cu
rr
en
t
F
L
(A

)

0 2 4
0

0.5

1

1.5

time (s)

d
am

p
er

cu
rr
en
t
F
R

(A
)

0 2 4
0

0.5

1

1.5

time (s)

d
am

p
er

cu
rr
en
t
R
L
(A

)

0 2 4
0

0.5

1

1.5

 

 

LPV FVM with NΘ

LPV FVM
const. ud sport
const. ud comfort

time (s)

d
am

p
er

cu
rr
en
t
R
R

(A
)

0 2 4
0

0.5

1

1.5

2

2.5

Figure 5.13: ISO (3888-2:2011) double lane change at a vehicle speed of 50 km/h: top

left - damper current FL, top right - damper current FR, bottom left - damper current

RL, and bottom right - damper current RR



112 5 Roll Disturbance Feedforward Control

Moreover, the LPV controller with feedforward filter features a vital improvement of

ride comfort of 15 % compared to the LPV controller without feedforward filter. This

improvement is distinctly larger than the ride comfort variation due to the imperfect

driver input of experimental runs with the same suspension configuration.

5.6 Discussion and Conclusion

This chapter augments the full-vehicle LPV controller presented in Chapter 4 by an LPV

feedforward filter. The feedforward filter is designed by a Full-Information problem and

aims at an attenuation of the effect of driver-induced roll disturbances on ride comfort

and vehicle handling. Equally to the LPV feedback controller of Chapter 4, the feedfor-

ward filter employs saturation indicator parameters the incorporate the restrictive force

constraints of semi-active dampers in the control design. In this way, the control signal

of the feedforward filter also linearly reduces in the event of saturation depending on the

saturation indicators. The resulting two-degree-of-freedom controller features guaranteed

stability for all admissible saturation indicators. Moreover, the equal saturation indica-

tor dependent weighting schemes of the feedback and feedforward control design achieve

an equivalent contribution of the feedback controller and the feedforward filter to the

constrained control signal.

The proposed two-degree-of-freedom LPV controller is validated by lane change experi-

ments with SR’s SC3-Bulli experimental vehicle. The results show a vital improvement

of ride comfort and also a reduced body roll angle and velocity compared to the LPV

controller without feedforward filter.
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6 Conclusion and Outlook

This work elaborates the control design for a passenger car equipped with four semi-active

dampers. The typical software implementation of a vertical dynamics control algorithm

has been introduced in Chapter 1 Figure 1.3. As discussed there, the presented control

design focuses on the feedback controller and the roll feedforward control. All other

functions are mandatory parts of the entire vertical dynamics control algorithm and are

realized according to the state-of-the-art with minor adaptions to the application.

6.1 Conclusion

The main design goals of the vertical dynamics control problem are ride comfort, road-

holding and handling of the vehicle subject to road and driver-induced disturbances. To

exploit the performance potential of the vehicle with four semi-active dampers, the de-

sign goals are addressed by a two-degree-of-freedom controller. The feedback control part

of the two-degree-of-freedom structure, called feedback controller in Figure 1.3, focuses

on the attenuation of the unknown road disturbances, while the feedforward part, called

roll feedforward control, minimizes the effect of the estimated driver-induced roll distur-

bances. The vital control design challenges introduced by the restrictive state-dependent

force limitations of the semi-active dampers are overcome by a rigorous LPV control de-

sign utilizing saturation indicator parameters. The two-degree-of-freedom LPV controller

features the following advantageous properties.

• The controller explicitly considers the actuator force limitations by saturation indi-

cators and thus achieves a vital improvement of the design targets compared to a

full-vehicle Skyhook-Groundhook controller

• The controller guarantees stability and performance of the closed-loop in the event

of actuator saturation.

• The controller allows for the individual tuning of the body heave, roll and pitch

degrees-of-freedom based on a full-vehicle controller synthesis model.

• The controller reconfigures its control signal in case of saturation or malfunction of

the semi-active dampers.

• The controller allows for the separate specification of design goals regarding road

disturbances and driver-induced disturbances.

In order to achieve these properties, the presented LPV controller extends existing anti-

windup LPV control approaches by saturation indicator dependent weighting functions.

In particular, the saturation indicator dependence is realized such that the resulting LPV

controller features a linear dependence on the saturation indicators. In this way, the
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controller linearly reduces its control signal in the event of saturation. Moreover, the pre-

sented control design investigates the minimum required saturation indicator grid den-

sity to guarantee quadratic stability and introduces saturation transformer parameters

to extend the applicability of the saturation indicator concept to arbitrary time-varying

actuator constraints. The presented control design additionally integrates the saturation

indicator concept and the actuator efficiency concept to augment the full-vehicle controller

to an active fault-tolerant LPV controller. The augmentation of the saturation indicator

concept guarantees stability of the controller in the presence of saturation nonlinearities

and actuator malfunction. Furthermore, the active fault-tolerant controller reduces the

ride comfort degradation in the event of actuator malfunction by reconfiguring the force

distribution among the semi-active dampers. Finally, the coherent design of the feedback

controller and the feedforward filter, both utilizing saturation indicators to describe the

actuator constraints and equivalent saturation indicator dependent weighting functions,

results in equal contribution of the feedback controller and the feedforward filter to the

constrained control signal. This property of the entire two-degree-of-freedom controller is

achieved by the consistent linear dependence of the feedback controller and the feedfor-

ward filter on the saturation indicators such that the control signals of both are linearly

reduced in the event of saturation.

The proposed LPV control design is experimentally investigated in three steps. Firstly, a

quarter-vehicle test-rig assessment verifies the fundamental suitability of the anti-windup

LPV control design with saturation indicators for the semi-active suspension control prob-

lem. Secondly, the active fault-tolerant full-vehicle LPV controller is validated by exper-

iments on a four-post test-rig with SR’s SC3-Bulli experimental vehicle. Thirdly, double

lane change experiments confirm the attenuation of driver-induced roll disturbances by

the LPV feedforward filter. In summary, the experiments show that the proposed two-

degree-of-freedom controller improves ride comfort and road-holding by 10 % compared

to a full-vehicle Skyhook-Groundhook controller. The feedforward filter enhances the per-

formance of the LPV feedback controller regarding driver-induced roll disturbances by 15

%.

6.2 Outlook and Future Work

As part of this work, the proposed full-vehicle LPV controller has been implemented on a

dSPACE MicroAutoBox II and integrated in the SC3-Bulli experimental vehicle of SR. In

addition to the experimental assessments presented in Chapters 4 and 5, the full-vehicle

LPV controller has collected about 1000 km on highways and country roads. During

these test drives the controller confirmed its good performance and its easy integration

into vertical dynamics control algorithms. Compared to full-vehicle Skyhook-Groundhook

controllers, however, some challenges remain on the way to industrialization. On the one

hand, the implementation on automotive electronic control units (ECU) has to be verified.

Automotive ECUs provide far less computational power and memory than the dSPACE

MicroAutoBox. This may be a vital issue for the integration of the full-vehicle LPV
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controller, even though the observer-based state-feedback structure mitigates these issues

due to the distinct separation between observer and controller. On the other hand, imme-

diate controller tuning during test drives is common practice during the parametrization

of semi-active damper controllers. This requirement is easily satisfied by a Skyhook-

Groundhook controller which features tunable gain parameters to determine the control

signal height. In contrast, the LPV controller presented in this work has to be synthesized

with every adjustment of the tuning parameters. This can be overcome by introducing

further scheduling parameters which are dedicated to enable an online adaption of the

control targets. The effect of the tuning parameters, however, is less transparent and the

application engineer needs some insight into the LPV control design.

The proposed LPV controller can easily incorporate plant nonlinearities like air spring

characteristics and nonlinear suspension kinematics by additional scheduling parameters.

This improves the performance of the LPV controller in applications with highly nonlinear

plants. Despite the direct consideration of nonlinearities and the reported good perfor-

mance of the LPV controller, however, the question: “How optimal is the LPV controller

in a semi-active suspension application?” remains. The question is difficult to answer

due to the highly nonlinear experimental vehicle, e.g. the semi-active dampers and the

kinematics and elastokinematics of the suspensions. During the LPV control design only

the most essential nonlinearity, the semi-active damper, has been explicitly considered. In

order to find the optimal control signal for a given disturbance scenario, offline trajectory

optimization might be a feasible approach.

The saturation indicator concept can be readily adjusted for vertical dynamics applica-

tions with fully-active actuators or a combination of semi-active dampers with slowly-

active actuators. As discussed in Koch et al. (2010), the combination of a semi-active

damper with a slowly-active actuator offers a vital potential for improvement of ride

comfort compared to a suspension configuration with only semi-active dampers. The ad-

vantages of the combined suspension are mainly the additional functions offered by the

slowly-active actuators like load leveling and active suppression of low frequency body

oscillations. Regarding fully-active suspension systems, the presented LPV controller

provides a good starting point for the control design. Naturally, the explicit considera-

tion of actuator constraints is crucial for fully-active actuators which also offer limited

force capability. Compared to the semi-active damper application, an application with

fully-active actuators may introduce the additional design goal of stationary accuracy. In

that case, the proposed anti-windup LPV control approach has to incorporate a windup

feedback signal according to Wu et al. (2000) and the weighting functions have to be

adjusted such that the low frequency range is emphasized if required.

The fault-tolerant control augmentation of the LPV controller can also readily be em-

ployed in an application with active actuators. Due to the less restrictive force constraints,

the performance degradation of the fault-tolerant LPV controller should be even smaller

than in the presented semi-active damper application. In both applications, the fault-

tolerant controller needs a fault-detection and diagnosis (FDD) algorithm which provides
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the fault information.

The augmentation of the LPV controller by the LPV feedforward filter which aims at

a reduction of the effect of driver-induced roll disturbances constitutes the first step to-

wards the cooperation of the vertical dynamics controller with the planar vehicle control

algorithms. The feedforward filter reduces the body roll motion and improves the tire

road contact. Thus, the tires can transmit larger longitudinal and lateral forces which

results in an improved planar vehicle dynamics. In such a cooperation, the planar vehicle

control algorithms could provide the expected longitudinal and lateral accelerations to

the vertical dynamics controller. This information could then be used to compute the

driver-induced disturbance inputs of the feedforward filters. Equally, the vertical dynam-

ics algorithm could provide an estimate of the dynamic wheel load to the planar dynamics

algorithms such that the longitudinal and lateral force capabilities of the tire could be

assessed more easily. Moreover, the integration of vertical vehicle dynamics and planar

vehicle dynamics control algorithms into one central controller could achieve vital per-

formance improvements in both fields. The main challenge of such an integrated vehicle

control approach arises from the significant increase in complexity of the control problem

due to the high-order full-vehicle model and the numerous design goals.

LPV control methods continue to be intensively investigated in the scientific community

and the numerous publications contain interesting developments like the integration of

LPV and MPC methods described in Satzger et al. (2017). As discussed in Mohammad-

pour and Scherer (2012) and Sename et al. (2013), most nonlinear control problems can

be cast into LPV control problems and it’s up to control engineers to explore the vast

possibilities of LPV methods.
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A LPV Control Design

This chapter introduces the basic LPV theory and methods required for the control design

in the subsequent chapters. The chapter focuses on LPV control methods that specify

performance by the closed-loop input-to-output response (Apkarian et al., 1995; Apkar-

ian and Gahinet, 1995; Wu et al., 1996; Becker and Packard, 1994). The presented LPV

methods conceptually expand well-known sub-optimal H∞ control theory of LTI plants

(Gahinet and Apkarian, 1994) to LPV plants, such that loop-shaping techniques presented

in Skogestad and Postlethwaite (2005, p. 399 ff.) can be employed to achieve the desired

closed-loop behavior. In particular, quadratic Lyapunov stability of LTI plants is extended

to quadratic Lyapunov stability of LPV plants, and finally to parameter-dependent Lya-

punov stability. The stability conditions together with the induced L2-norm performance

index are formulated in an LPV version of the Bounded Real Lemma. This theorem

states a sufficient condition in terms of an infinite dimensional parameter-dependent ma-

trix inequality to analyze stability and performance of the closed-loop system (Wu, 1995,

p. 67-70). The most common approaches according to Hoffmann and Werner (2015, p.

419) to transform the infinite dimensional matrix inequality into a finite dimensional one

can be classified into

• polytopic LPV control approaches,

• multiplier-based LFT LPV control approaches, and

• gridding-based LPV control approaches.

The LPV control design theory used in this work was developed as part of the PhD thesis

of Wu (1995). It pursues a gridding-based LPV control design which can be applied to a

large variety of LPV plants. Hughes and Wu (2012) provide a recent application example

with a brief review of the theory.

A.1 Definition of LPV Systems

LPV systems generalize standard LTI systems to linear plants with time-varying pa-

rameters ρ (t) called scheduling parameters. The scheduling parameters are assumed to

continuously evolve in time and to be measurable or estimable in real-time. Furthermore,

the rates of variation of the scheduling parameters are assumed to be bounded according

to

|ρ̇i (t)| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ} ∀t ∈ R
+ (A.1)

with nρ the number of scheduling parameters and the rate bounds ρ̇max,i > 0. The

scheduling parameter vector itself belongs to a compact set P ⊂ R
nρ . In the remainder of

this thesis, the notation ρ ∈ Fρ denotes time-varying trajectories with bounded rates in

the parameter variation set Fρ. Using the scheduling parameter ρ, Definition A.1 states a
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general continuous-time LPV system whose state-space matrices are continuous functions

of the scheduling parameters ρ and their derivatives ρ̇.

Definition A.1. An nx-th order linear parameter-varying (LPV) system Γed is given by

[
ẋ

e

]

=

[
A (ρ, ρ̇) B (ρ, ρ̇)

C (ρ, ρ̇) D (ρ, ρ̇)

] [
x

d

]

, (A.2)

withA ∈ C0 (Rnρ × R
nρ ,Rnx×nx),B ∈ C0 (Rnρ × R

nρ ,Rnx×nd),C ∈ C0 (Rnρ × R
nρ ,Rne×nx),

D ∈ C0 (Rnρ × R
nρ ,Rne×nd) and ρ ∈ Fρ, and the vectors x, e and d of appropriate di-

mension.

Remark. The time-dependence of matrices and vectors, e.g. ρ (t) is omitted in equations

if the time-dependence is clear from the context.

Compared to LTV systems whose system matrices A (t), B (t), C (t), and D (t) are

general functions of time, the system matrices of LPV systems feature a prescribed de-

pendence on the scheduling parameters ρ. The interest in LPV systems is motivated by

the fact that nonlinear dynamics can be often cast into LPV systems by choosing a suit-

able set of scheduling variables. LPV systems whose scheduling parameters are functions

of the system state ρ (t) = f (x (t)) are called quasi-LPV systems. During controller syn-

thesis, the state-dependent scheduling parameters of quasi-LPV systems are treated as

exogenous signals just as scheduling parameters of ordinary LPV systems. The drawback

of this approximation may be a more conservative controller, however, the advantages of

LPV methods outweigh in most applications (Huang and Jadbabaie, 1999, p. 87). In the

remainder, this thesis does not distinguish between quasi-LPV systems and LPV systems

with real exogenous scheduling parameters.

A.2 Stability of LPV Systems

Compared to the stability analysis of LTI systems, the stability analysis of LPV systems

is more involved, because the analysis has to cover the whole parameter variation set Fρ.

In particular, stability of time-varying systems such as LTV and LPV systems cannot be

verified by separately analyzing frozen systems, e.g. in the LPV case Γed (ρk) with fixed

parameter vectors ρk. Even if the system matrix A (ρk) of the frozen systems is Hurwitz,

stability of the LPV system cannot be inferred as discussed in Amato (2006, p. 13).

Nevertheless, the stability of LPV systems can be analyzed by means of the well-known

Lyapunov stability theory. According to Wu (1995, p. 4 and p. 54 ff.), Lyapunov stabil-

ity of LPV systems can be divided into quadratic stability of LPV systems with constant

Lyapunov matrices and quadratic stability of LPV systems with parameter-dependent

Lyapunov matrices. Throughout this work, quadratic stability of LPV systems with

constant Lyapunov matrices is called quadratic stability, while quadratic stability of LPV

systems with parameter-dependent Lyapunov matrices is called parameter-dependent sta-

bility. The two concepts gradually extend quadratic Lyapunov stability of LTI systems:
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firstly to quadratic stability of LPV systems and subsequently to parameter-dependent

stability of LPV systems.

A.2.1 Quadratic Lyapunov Stability

Similar to Lyapunov stability of LTI systems, quadratic Lyapunov stability of LPV sys-

tems involves a single constant Lyapunov matrix, but the Lyapunov conditions have to

hold over the compact parameter set P . The quadratic Lyapunov stability conditions of

LPV system without explicit dependence on scheduling parameter derivatives

[
ẋ

e

]

=

[
A (ρ) B (ρ)

C (ρ) D (ρ)

] [
x

d

]

, (A.3)

with ρ ∈ P , A ∈ C0 (Rnρ ,Rnx×nx), B ∈ C0 (Rnρ ,Rnx×nd), C ∈ C0 (Rnρ ,Rne×nx), and D ∈
C0 (Rnρ ,Rne×nd) and the vectors x, e and d of appropriate dimension can be deduced from

the Lyapunov conditions of nonlinear systems. The stability conditions with quadratic

Lyapunov function υ (x) are firstly

υ (x) = xTZx > 0 ∀x 6= 0 and υ (0) = 0, (A.4)

with positive definite Lyapunov matrix Z > 0 and Z ∈ R
nx×nx and secondly

υ̇ (x,ρ) < 0 ∀x 6= 0 and ρ ∈ P . (A.5)

The conditions can be summarized in the following definition.

Definition A.2 (Quadratic stability of LPV systems). The LPV system Γed given in

(A.3) without explicit dependence on the scheduling parameter derivatives is quadratically

stable if there exists a positive definite matrix Z > 0 and Z ∈ R
nx×nx , such that for all

ρ ∈ P

AT (ρ)Z +ZA (ρ) < 0. (A.6)

This definition of quadratic stability can be found in Becker and Packard (1994, p. 206)

and (Wu, 1995, p. 4). The conditions hold for arbitrary state trajectories and for arbi-

trarily fast rates of variation of the scheduling parameters as long as ρ ∈ P .

A.2.2 Parameter-Dependent Lyapunov Stability

In many control applications, the scheduling parameters are a continuous and slowly vary-

ing function of time, e.g. the velocity of an airplane or passenger car. In these applications,

the quadratic stability approach with constant Lyapunov function and arbitrarily fast pa-

rameter variation rates may result in extremely conservative designs or may not be able

to prove stability at all. This is emphasized by Wu (1995, p. 55-57), who shows an exam-

ple of an LPV system with parameter-dependent state-feedback whose stability cannot



120 A LPV Control Design

be proven by quadratic Lyapunov stability with a constant Lyapunov matrix, but nev-

ertheless by considering the maximum parameter variation rates quadratic stability can

be proven by a suitable parameter-dependent Lyapunov function. This is possible as the

stability analysis can exploit the additional degrees-of-freedom introduced by a parameter-

dependent Lyapunov matrix which leads to a far less conservative results. Definition A.3

states the quadratic Lyapunov stability conditions based on the parameter-dependent

Lyapunov function υ (x,ρ) = xTZ (ρ)x as described in Wu (1995, p. 58 ff.).

Definition A.3 (Parameter-dependent stability of LPV systems). The LPV sys-

tem Γed given in (A.2) is quadratically stable via a parameter-dependent Lyapunov func-

tion in P × Ṗ if there exists a continuously differentiable matrix function Z (ρ) > 0

with Z (ρ) ∈ C1 (Rnρ ,Rnx×nx), such that for all ρ ∈ P and βi with |βi| ≤ ρ̇max,i ∀i ∈
{1, 2 . . . , nρ}

AT (ρ,β)Z (ρ) +Z (ρ)A (ρ,β) +

nρ∑

i=1

∂Z (ρ)

∂ρi
βi < 0. (A.7)

A similar definition of quadratic Lyapunov stability via parameter-dependent Lyapunov

functions is presented in Amato (2006, p. 93). In Definition A.3, the derivatives of the

scheduling parameters ρ̇ ∈ Ṗ are substituted by β ∈ Ṗ to emphasize that the scheduling

parameters ρ and their derivatives β are treated as independent parameters during the

stability analysis. The stability condition has to be verified for all (ρ,β) ∈ P × Ṗ .
Each of Definition A.2 and A.3 by itself provides only sufficient conditions for exponential

stability of LPV systems (Amato, 2006, p. 94). This means that both conditions are

conservative in the sense that there are LPV systems whose exponential stability prop-

erty cannot be verified by them. Nevertheless, the conditions recover the necessary and

sufficient conditions for exponential stability of LTI systems presented in Gahinet and

Apkarian (1994, p. 6).

A.3 Induced L2-Norm Performance

The induced L2-norm of LPV system Γed given in (A.2) characterizes the worst-case

energy gain from its input d to its output e. Figure A.1 illustrates the L2-norm of the

LPV system Γed. Mathematically, the induced L2-norm of the LPV system Γed for all

admissible scheduling parameter trajectories ρ ∈ Fρ is defined as

‖Γed (ρ, ρ̇)‖i2 = sup
ρ∈Fρ, ‖d‖2 6=0,

d∈L2

‖e‖2
‖d‖2

= sup
ρ∈Fρ, ‖d‖2 6=0,

d∈L2

‖Γed (ρ, ρ̇)d‖2
‖d‖2

< γ, (A.8)

with the induced L2-norm performance level γ. The conditions ‖d‖2 6= 0 and d ∈ L2

ensure that the L2-norm of the input signal d is well defined. A proof of the existence

of an upper bound of the induced L2-norm of a stable LPV system Γed, i.e. γ < ∞,

can be found in Wu (1995, p. 61 ff.). The induced L2-norm is a generalization of the
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H∞-norm known from LTI systems to LPV systems. Consequently, the induced L2-norm

of LTI systems is equal to their H∞-norm. The close relation of the induced L2-norm to

the H∞-norm facilitates the application of well-known design techniques like loop-shaping

to the design of LPV controllers. In particular, the H∞-norm is equal to the maximum

singular value of the LTI system ‖Γlti‖∞ = supω∈R ςmax (Γlti (jω)) and can be interpreted

as the minimal upper bound of the worst-case energy gain of the LTI system.

Γed (ρ, ρ̇)
e (t)d (t)

i2

Figure A.1: Induced L2-Norm of LPV system Γed

The generalized Bounded Real Lemma formulated in Wu (1995, p. 63) and Wu et al.

(1996, p. 985) states a sufficient condition to analyze the induced L2-norm of an LPV

system.

Theorem A.1 (Generalized Bounded Real Lemma of LPV systems). Consider

a compact set P ⊂ R
nρ, finite non-negative bounds ρ̇max,i with i ∈ {1, 2 . . . , nρ} and the

LPV system Γed in (A.2). If there exists a continuously differentiable function Z (ρ) ∈
C1 (Rnρ ,Rnx×nx) such that Z (ρ) > 0 and






AT (ρ,β)Z (ρ) +Z (ρ)A (ρ,β) +
∑nρ

i=1
∂Z(ρ)
∂ρi

βi Z (ρ)B (ρ,β) γ−1CT (ρ,β)

BT (ρ,β)Z (ρ) −Ind
γ−1DT (ρ,β)

γ−1C (ρ,β) γ−1D (ρ,β) −Ine




 < 0

(A.9)

for all ρ ∈ P and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ}, then

1. the function A (ρ,β) is parametrically-dependent stable over P, and

2. there exists a scalar δ with 0 ≤ δ < γ such that ‖Γed (ρ,β)‖i2 ≤ δ

Proof. The proof of this theorem can be found in Wu (1995, p. 63 ff.) and Wu et al.

(1996, p. 985-986).

A comparison of Theorem A.1 with Definition A.3 shows that parameter-dependent sta-

bility is contained in the generalized Bounded Real Lemma. Equally, by restricting Z in

Theorem A.1 to constant positive-definite matrices Z > 0 with Z ∈ R
nx×nx , the theorem

obviously contains quadratic stability of LPV systems (A.3) without explicit dependence

on the scheduling parameter derivatives discussed in Section A.2.1. Furthermore, Theo-

rem A.1 recovers the necessary and sufficient conditions of the LTI version of the Bounded

Real Lemma described in Gahinet and Apkarian (1994, p. 6).
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A.4 LPV Controller Synthesis

The controller design interconnects the open-loop LPV plant P and the LPV controller

K according to the general control configuration illustrated in Figure 2.1. The resulting

closed-loop system is denoted by Γed (P ,K). In this configuration, the measurements

y of the open-loop plant P drive the controller K yielding the control signal u. The

performance of the controller is specified by the induced L2-norm of the closed-loop system

Γed with the disturbance input d shaped by the filter Wd and the performance output e

weighted by the filter We.

G

K

ed

u y

Wd We

P

Figure A.2: General control configuration

The close relation of the induced L2-norm and the H∞-norm facilitates the application

of loop-shaping techniques during the design of LPV controllers. Hence, LPV controllers

can be developed according to the two-stage loop-shaping design process well-established

in H∞ control, see e.g. Kwakernaak (1993, p. 261 ff.) and Skogestad and Postlethwaite

(2005, p. 399 ff.). In this process, the original open-loop LPV plant G is augmented by

input and output weighting filters Wd and We to specify the desired closed-loop shape.

In comparison to LTI systems, the frequency response of LPV systems is only defined

for frozen scheduling parameters ρk. The application of loop-shaping, which specifies

design objectives in frequency domain, nevertheless, achieves a successful control design

because LPV control approaches with induced L2-norm performance index generalize

LMI based H∞ control from LTI to LPV systems. Furthermore, the induced L2-norm

inherently defines an upper bound for all frozen LPV systems Γed (ρk). In the literature,

the augmented open-loop plant P is referred to as a generalized plant and its state-space

representation is given by





ẋ

e

y



 =





A (ρ) B1 (ρ) B2 (ρ)

C1 (ρ) D11 (ρ) D12 (ρ)

C2 (ρ) D21 (ρ) D22 (ρ)









x

d

u



 , (A.10)
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with ρ ∈ Fρ, x ∈ R
nx , d ∈ R

nd , e ∈ R
ne , u ∈ R

nu , and y ∈ R
ny . The corresponding state-

space matrices are continuous functions of the scheduling parameters ρ and of appropriate

dimensions.

Throughout the control design of this work, the generalized plant P has to satisfy the

following assumptions:

(a1) D11 (ρ) = 0, D22 (ρ) = 0,

(a2) D12 (ρ) full column rank for all ρ ∈ P ,

(a3) D21 (ρ) full row rank for all ρ ∈ P ,

(a4) the pair (A (ρ) ,B2 (ρ)) parameter-dependent stabilizable, and

(a5) the pair (A (ρ) ,C2 (ρ)) parameter-dependent detectable.

Assumption (a1) restricts the generalized plant P to systems without direct feedthrough of

the control signals u to the measurements y and furthermore without direct feedthrough

of the disturbance inputs d to the performance outputs e. As discussed in Wu (1995,

p.68), the relaxation of assumptions (a2) and (a3) leads to a singular controller synthesis

problem. Using assumptions (a1) - (a3) the open-loop generalized plant can be rewritten

as







ẋ
[
ea

eu

]

y







=








A (ρ) B11 (ρ) B12 (ρ) B2 (ρ)
[
C11 (ρ)

C12 (ρ)

] [
0

0

] [
0

0

] [
0

Inu

]

C2 (ρ) 0 Ind2
0















x
[
d1

d2

]

u







, (A.11)

with ρ ∈ Fρ, d1 ∈ R
nd1 , d2 ∈ R

nd2 , ea ∈ R
nea , and eu ∈ R

neu . This step particularly ex-

ploits assumptions (a2) and (a3) by norm-preserving transformations of the disturbance

inputs d and the performance outputs e, and invertible transformations of the control

signals u and measurements y such that D12 (ρ) = [0 Inu
]T and D21 (ρ) = [0 Ind2

] as

described in Wu (1995, p. 25 and p. 68) and Becker and Packard (1994, p. 209). These

transformations are not only advantageous during controller synthesis from a computa-

tional point of view, but also from a design point of view as the performance outputs e

of the transformed plant given in (A.11) are structured into the performance signals ea

and the control effort signals eu according to e =
[
eT
a eT

u

]T
. To sum up, assumptions

(a1) - (a3) substantially simplify the control design as discussed in Doyle et al. (1989,

p. 834) and should only be relaxed if essential for the application. The LPV control

design presented in Chapters 3, 4 and 5 directly achieves open-loop generalized plants P

corresponding to (A.11) by a suitable formulation of the control design problem.

The analytical assessment of the stabilizability and detectability assumptions (a4) and

(a5) of the LPV system, e.g. by evaluating the stronger notions of controllability and

observability is much more involved for LPV systems than for LTI systems. In particu-

lar, because the generalized controllability matrix and observability matrix include time
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derivatives of the pair (A (ρ) ,B2 (ρ)) and (A (ρ) ,C2 (ρ)), respectively. In this work, the

plant models are large, and stabilizability and detectability are implicitly checked during

the controller synthesis as proposed in Wu (1995, p. 97 ff.).

The definition of the finite dimensional controller K of Figure A.2 given below can be

found in Wu (1995, p. 69).

Definition A.4 (Parameter-dependent controller). Given a compact set P ⊂ R
nρ

and an integer nK ≥ 0, denote the parametrically-dependent, nK-dimensional linear feed-

back controller as K with the continuous functions AK ∈ C0 (Rnρ × R
nρ ,RnK×nK ), BK ∈

C0 (Rnρ × R
nρ ,RnK×ny), CK ∈ C0 (Rnρ × R

nρ ,Rnu×nK ) and DK ∈ C0 (Rnρ × R
nρ ,Rnu×ny).

The controller K (ρ, ρ̇) depends on the scheduling parameters and their derivatives, and

is given by

[
ẋK

u

]

=

[
AK (ρ, ρ̇) BK (ρ, ρ̇)

CK (ρ, ρ̇) DK (ρ, ρ̇)

] [
xK

y

]

. (A.12)

with ρ ∈ Fρ, and xK are the nK-dimensional controller states.

Using Definition A.4, the closed-loop system Γed (P ,K) with state xclp = [x xK ]
T can

be expressed as

[
ẋclp

e

]

=

[
Aclp (ρ, ρ̇) Bclp (ρ, ρ̇)

Cclp (ρ, ρ̇) Dclp (ρ, ρ̇)

] [
xclp

d

]

. (A.13)

with

Aclp (ρ, ρ̇) =

[
A (ρ) +B2 (ρ)DK (ρ, ρ̇)C2 (ρ) B2 (ρ)CK (ρ, ρ̇)

BK (ρ, ρ̇)C2 (ρ) AK (ρ, ρ̇)

]

, (A.14)

Bclp (ρ, ρ̇) =

[
B11 (ρ) B12 (ρ) +B2 (ρ)DK (ρ, ρ̇)

0 BK (ρ, ρ̇)

]

, (A.15)

Cclp (ρ, ρ̇) =

[
C11 (ρ) 0

C12 (ρ) +DK (ρ, ρ̇)C2 (ρ) CK (ρ, ρ̇)

]

, and (A.16)

Dclp (ρ, ρ̇) =

[
0 0

0 DK (ρ, ρ̇)

]

. (A.17)

The fundamental question of the control design problem is to determine if there exists a

controller K according to Definition A.4 and a parameter-dependent Lyapunov function

such that the closed-loop satisfies Theorem A.1.

During the formulation of the state-feedback problem and the output-feedback problem,

the analysis condition of the generalized Bounded Real Lemma (Theorem A.1) is refor-

mulated as a group of linear matrix inequalities (LMI) of the performance index γ, the

controller and the continuously-differentiable Lyapunov function. The minimal upper

bound γ of the induced L2-norm of the LPV system Γed (P ,K) can then be computed
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by using these LMI conditions to form a convex optimization problem. Unfortunately,

the optimization problem is infinite-dimensional firstly due to the open dependence of the

parameter-dependent Lyapunov matrix on the scheduling parameters ρ and secondly due

to the infinite-dimensional parameter space of the scheduling parameters themselves. As

mentioned in the introduction of this chapter, the three most common types of relaxation

of the infinite-dimensional scheduling parameter space into a finite-dimensional one are

classified into polytopic, LFT-based and gridding-based LPV methods. The gridding-

based LPV approach presented in Wu (1995, p. 87 ff.) and Wu et al. (1996, p. 993 ff.)

pursued in this work approximates the parameter space by a finite number of grid points.

Additionally, the infinite function space of the parameter-dependent Lyapunov function

is approximated with a finite number of basis functions according to

Z (ρ) =

nf∑

i=1

fi (ρ)Zi, (A.18)

with fi (ρ) the continuously differentiable basis functions, Zi the corresponding coefficient

matrices and nf the number of basis functions. As a result, the optimization problem

becomes finite dimensional and can be efficiently solved using Semi-Definite Programming

(SDP). An SDP is an optimization problem with linear cost function and LMI constraints.

With respect to LPV controller synthesis, the SDP is defined as

min
γ,K,Z

γ s. t. (A.19a)

‖Γed (P (ρ) ,K (ρ, ρ̇))‖i2 < γ ∀ρ =
{
ρ1,ρ2, . . . ,ρng

}
and ∀ρ̇ = {ν1,ν2, . . . ,νnν

} ,
(A.19b)

with ng the number of grid points, νi denoting the vertices of the space of scheduling

parameter derivatives and nν the number of vertices. The optimization calculates the LPV

controller K that minimizes the induced L2-norm performance index γ of the closed-loop

system Γed constructed by interconnecting the open-loop plant P and the controller K as

illustrated in Figure A.2. The requirement of LMI constraints of SDPs restrict conditions

(A.19b) to matrix inequalities with an affine dependence on the decision variables γ, K

and Z.

A.4.1 State-Feedback Problem

This section presents the parameter-dependent state-feedback problem illustrated in Fig-

ure A.3, i.e. the feedback control problem where the full plant state vector x is available

either from measurements or through estimation. A detailed presentation of the state-

feedback problem can be found in Wu (1995, p. 70 ff.) and Amato (2006, p. 130 and

134). The state-feedback problem with controller Kx according to

u = F (ρ)x (A.20)

is stated in the following definition.
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Px

F

d e

xu

Figure A.3: General control configuration state-feedback problem

Definition A.5 (Parameter-dependent state-feedback problem). Consider a com-

pact set P ⊂ R
nρ , the performance level γ > 0, and the LPV system Px

[
ẋ

e

]

=

[
A (ρ) B1 (ρ) B2 (ρ)

C1 (ρ) 0 D12 (ρ)

]




x

d

u



 . (A.21)

with ρ ∈ Fρ. The parameter-dependent state-feedback problem is solvable if there ex-

ist continuously differentiable matrix functions Z (ρ) ∈ C1 (Rnρ ,Rnx×nx) and F (ρ,β) ∈
C0 (Rnρ × R

nρ ,Rnu×nx) such that for all ρ ∈ P and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ},
Z (ρ) > 0 and






AT
F (ρ,β)Z (ρ) +Z (ρ)AF (ρ,β) +

∑nρ

i=1
∂Z(ρ)
∂ρi

βi Z (ρ)B1 (ρ) γ−1CT
F (ρ,β)

BT
1 (ρ)Z (ρ) −Ind

0

γ−1CF (ρ,β) 0 −Ine




 < 0

(A.22)

with AF (ρ,β) = A (ρ) +B2 (ρ)F (ρ,β) and CF (ρ,β) = C1 (ρ) +D12 (ρ)F (ρ,β).

Unfortunately, condition (A.22) ist not affine in the decision variables γ, F and Z and

hence cannot be cast into a SDP optimization. This issue is overcome by reformulating

the existence condition such that they depend only on state-space data of the open-loop

system as shown in (Wu, 1995, p. 71). Using assumption (a2), (A.21) can be rewritten

as




ẋ

ea

eu



 =





A (ρ) B1 (ρ) B2 (ρ)

C11 (ρ) 0 0

C12 (ρ) 0 I









x

d

u



 (A.23)

similar to (A.11). The existence conditions of the state-feedback controller Kx can then

be expressed by LMIs of the state-space data of the open-loop (A.23). The reformulated

conditions are summarized in the following theorem.
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Theorem A.2 (LMI conditions of the parameter-dependent state-feedback

problem). Consider a compact set P ⊂ R
nρ, the performance level γ > 0, and the

LPV system Px in (A.23). The parameter-dependent state-feedback problem is solvable

if and only if there exists a continuously differentiable function X (ρ) ∈ C1 (Rnρ ,Rnx×nx)

such that for all ρ ∈ P, X (ρ) > 0 and






X (ρ) ÂT (ρ) + ÂT (ρ)X (ρ)− ∂X (ρ)−HB2
(ρ) X (ρ)CT

11 (ρ) γ−1B1 (ρ)

C11 (ρ)X (ρ) −Ine1
0

γ−1BT
1 (ρ) 0 −Ind




 < 0

(A.24)

with

Â (ρ) = A (ρ)−B2 (ρ)C12 (ρ) ,

HB2
(ρ) = B2 (ρ)B

T
2 (ρ) ,

∂X (ρ) =

nρ∑

i=1

±
(
∂X (ρ)

∂ρi
ρmax,i

)

.

Proof. The proof of Theorem A.2 can be found in Wu (1995, p. 72 ff.).

As shown during the proof of Theorem A.2, the resulting state-feedback controller natu-

rally takes on the parameter-dependent state-feedback gain F (ρ) given by

F (ρ) = −
(
γ2BT

2 (ρ)Z (ρ) +C12 (ρ)
)
= −

(
BT

2 (ρ)X−1 (ρ) +C12 (ρ)
)
, (A.25)

with X (ρ) = γ−2Z−1 (ρ). In contrast to the general LPV controller of Definition A.12,

the optimal state-feedback gain F (ρ) does not depend on derivatives of the scheduling

parameters. The state-feedback gain F (ρ) of the original state-feedback problem given in

(A.21) is obtained from (A.25) by undoing the transformation of the control signal which

yields

F (ρ) = −
(
DT

12 (ρ)D12 (ρ)
)−1 (

γ2BT
2 (ρ)Z (ρ) +DT

12 (ρ)C1 (ρ)
)
. (A.26)

A.4.2 State-Observer Problem

This section presents the state-observer problem and shows the duality between the state-

observer problem and the state-feedback problem. The objective of the state-observer

problem is to find the observer gain L (ρ) that minimizes the induced L2-norm from

the disturbances d to the weighted observation errors ∆e of the closed-loop system

Γ∆ed (Po,O). The considered observer O features the structure of a classical Luenberger

observer given by

˙̂x = (A (ρ)−L (ρ)C2 (ρ)) x̂+L (ρ)y +B2 (ρ)u (A.27a)

ŷ = C2 (ρ) x̂, (A.27b)
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with the matrices A (ρ), B2 (ρ) and C2 (ρ) as defined in the general plant (A.10) and

satisfying assumption (a5).

The differential error equation of the observer can be derived by substituting the derivative

of the plant state ẋ and the derivative of the observer state ˙̂x into ∆ẋ = ẋ − ˙̂x. The

resulting differential error equation is given by

∆ẋ = (A (ρ) +L (ρ)C2 (ρ))∆x+B1 (ρ)d+L (ρ)D21 (ρ)d (A.28a)

∆y = C2 (ρ)∆x. (A.28b)

Next, the differential error equation can be used to formulated the observer design prob-

PO

L

d ∆e

∆y∆v

Px,L

LT

d e

xu

Figure A.4: General control configuration state-observer problem

lem in the general control framework as illustrated in Figure A.4-left. In this configura-

tion, the observation error ∆y multiplied with the observer gain L (ρ) yields the state

correction ∆v according to

∆v = L (ρ)∆y = L (ρ) (C2 (ρ)∆x+D21 (ρ)d) . (A.29)

The generalized plant Po of the observer problem can be stated as





∆ẋ

∆e

∆y



 =





A (ρ) B1 (ρ) I

C1 (ρ) 0 0

C2 (ρ) D21 (ρ) 0









∆x

d

∆v



 . (A.30)

From the general results on duality for LTV systems presented in Kalman (1963, p.

163), duality of the LPV state-observer problem and the LPV state-feedback problem

follows as special case. A discussion of duality of state-feedback and state-observation

for LTI systems can be found e.g. in Zhou et al. (1996, p. 295 ff.). Duality means, that

the state-observer problem can be reformulated as a state-feedback problem, see Figure

A.4 - right. The duality becomes clear by comparing the state-feedback and the state-

observer conditions derived from the Bounded Real Lemma given in Theorem A.9. In

the following the conditions for quadratic stability are considered for simplicity, duality

for parameter-dependent stability can be shown in an analogous manner. The Schur
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complement (Amato, 2006, p. 178) of the state-feedback condition in (A.22) can be

expressed as

AT
F (ρ)Z (ρ)+Z (ρ)AF (ρ)+γ−2CT

F (ρ)CF (ρ)+Z (ρ)B1 (ρ)B
T
1 (ρ)Z (ρ) < 0. (A.31)

In the same way, the Schur complement of the state-observer condition derived by sub-

stituting Γ∆ed (Po,O) into the Bounded Real Lemma in Theorem A.9 is given by

AT
L (ρ)V (ρ)+V (ρ)AL (ρ)+γ

−2CT
1 (ρ)C1 (ρ)+V (ρ)BL (ρ)B

T
L (ρ)V (ρ) < 0, (A.32)

with AT
L (ρ) = A (ρ) + L (ρ)C2 (ρ) and BT

L (ρ) = B1 (ρ) + L (ρ)D21 (ρ). After left-

right multiplication of (A.32) with γ−1V −1 (ρ) and substitution of γ−1V −1 (ρ) with

γ−1V −1 (ρ) = Z (ρ), (A.32) can be reformulated as

AL (ρ)Z (ρ)+Z (ρ)AT
L (ρ)+γ−2BL (ρ)B

T
L (ρ)+Z (ρ)CT

1 (ρ)C1 (ρ)Z (ρ) < 0. (A.33)

A comparison of the latter state-observer condition (A.33) and the state-feedback con-

dition in (A.31) reveals that the state-observer problem can be solved as state-feedback

problem by substituting

AF (ρ) = AT
L (ρ) (A.34a)

B1 (ρ) = CT
1 (ρ) (A.34b)

CF (ρ) = BT
L (ρ) . (A.34c)

into the state-feedback problem. The solution of the modified state-feedback problem is

the transpose observer gain LT (ρ).

A.4.3 Separation Principle

In LTI system theory, the separation principle states that any combination of a stable

state-observer and a stable state-feedback controller yields a stable closed-loop system

as described in Aström and Murray (2008, p. 211 ff.). This property of observer-based

state-feedback controllers can be generalized to LPV systems as shown in Wu (1995, p.

36 ff.). The separation principle for LPV systems is summarized in the following theorem:

Theorem A.3 (Separation principle of LPV systems). Given the LPV system P

in (A.10) satisfying assumptions (a1) - (a5). The observer-based state-feedback controller

KOS given by

[
˙̂x

u

]

=

[
A (ρ) +B2 (ρ)F (ρ)−L (ρ)C2 (ρ) L (ρ)

F (ρ) 0

] [
x̂

y

]

, (A.35)

comprised of a state-feedback controller Kx with state-feedback gain F (ρ) and a state-

observer O with state-observer gain L (ρ), parameter-dependently stabilizes the closed-loop

system Γed (P ,KOS) for all ρ ∈ P and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ},
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(a) if and only if the closed-loop with state-feedback Γed (Px,Kx) is parameter-dependent

stable, i.e. there exists a continuously differentiable matrix function Z (ρ) ∈ C1 (Rnρ ,Rnx×nx)

with Z (ρ) > 0 such that AF (ρ) = A (ρ)+B2 (ρ)F (ρ) and Z (ρ) satisfy condition (A.7)

of Definition A.3 for all ρ ∈ P and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ}, and
(b) if and only if the observation error dynamics is parameter-dependent stable, i.e.

there exists a continuously differentiable matrix function V (ρ) ∈ C1 (Rnρ ,Rnx×nx) with

V (ρ) > 0 such that AL (ρ) = A (ρ)− L (ρ)C2 (ρ) and V (ρ) satisfy condition (A.7) of

Definition A.3 for all ρ ∈ P and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ}.

Proof. The closed-loop system Γed (P ,KOS) can be expressed by






ẋ
˙̂x

e




 =






A (ρ) B2 (ρ)F (ρ) B1 (ρ)

L (ρ)C2 (ρ) A (ρ) +B2 (ρ)F (ρ)−L (ρ)C2 (ρ) L (ρ)D21 (ρ)

C1 (ρ) D12 (ρ)F (ρ) 0










x

x̂

d



 .

(A.36)

Next, the closed-loop dynamics matrix Aclp (ρ) can be brought to a triangular structure

by a state transformation according to

[
x

ηK

]

=

[
I 0

I −I

] [
x

xK

]

. (A.37)

The states of the transformed closed-loop are the original open-loop plant state x and the

observation error ηK = x− x̂. The transformed closed-loop system can then be stated as





ẋ

η̇K

e



 =






A (ρ) +B2 (ρ)F (ρ) −B2 (ρ)F (ρ) B1 (ρ)

0 A (ρ) +L (ρ)C2 (ρ) Hη (ρ)

C1 (ρ) +D12 (ρ)F (ρ) −D12 (ρ)F (ρ) 0










x

ηK

d



 , (A.38)

with Hη = B1 (ρ)−L (ρ)D21 (ρ). The triangular structure of the closed-loop dynamics

matrix Aclp (ρ) in (A.38) lends itself to conclude stability of the closed-loop Γed (P ,KOS)

since the matrices A (ρ)+B2 (ρ)F (ρ) and A (ρ)+L (ρ)C2 (ρ) are parameter-dependent

stable by assumption and the matrix −B2 (ρ)F (ρ) is norm bounded.

Further details regarding the separation principle of LPV systems and a similar proof of

Theorem A.3 are provided by Wu (1995, p. 36 ff.) and Amato (2006, p. 124). There exists

also extensive literature, see Aström and Kumar (2014, p. 18), on the separation principle

regarding linear quadratic Gaussian (LQG) control, i.e. the combination of a Kalman filter

with a linear state-feedback controller. A discussion of the separation principle for LTV

systems can be found in Kwakernaak and Sivan (1972, p. 378).

A.4.4 Special Control Problem: Disturbance-Information

The Disturbance-Information problem represents a special type of output-feedback con-

trol problem. It is extensively discussed in Zhou et al. (1996, p. 297 ff. and p. 423
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ff.) and Doyle et al. (1989, p. 837 and p. 844 ff.) together with three correspond-

ing special problems: the Full-Information, the Full-Control and the Output-Estimation

problem. In the literature, the Disturbance-Information problem is often referred to as

Disturbance-Feedforward problem, e.g. in Zhou et al. (1996), however, to clearly distin-

guish the feedback control of Chapters 3 and 4 from the feedforward control of Chapter 5,

the expression “Feedforward” in the term Disturbance-Feedforward is replaced by “Infor-

mation” throughout this work. Even though, Zhou et al. (1996) and Doyle et al. (1989)

discuss the Disturbance-Information problem for LTI systems, the results can be readily

extended to LPV systems as shown in Prempain and Postlethwaite (2001, p. 23) and

Saupe (2013, p. 133 ff.). Applications of the Disturbance-Information problem and the

Full-Information problem to LPV systems can be found in Prempain and Postlethwaite

(2000), Saupe and Pfifer (2011) and Theis et al. (2015).

The state-space realization of a generalized plant PDI corresponding to a Disturbance-

Information problem is given by





ẋ

e

y



 =





A (ρ) B1 (ρ) B2 (ρ)

C1 (ρ) 0 D12 (ρ)

C2 (ρ) I 0









x

d

u



 . (A.39)

The DI plant has to satisfy the assumptions

(b1) (A (ρ)−B1 (ρ)C2 (ρ)) parameter-dependent stable, and

(b2) D21 (ρ) = I,

Assumption (b1) and (b2) can be easily satisfied by properly adjusting the input dis-

turbances d and their weighting function Wd illustrated in Figure A.2. In particular,

assumption (b2) determines the measurements y as a linear combination of the system

states x and the disturbances d according to

y = C2 (ρ)x+ d, (A.40)

such that the disturbances d have an identity feedthrough to the measurements y, and

assumption (b1) is satisfied if e.g. B1 (ρ) is the state-observer gain of the related state-

observer problem. The closed-loop interconnection of plant PDI with DI controller KDI

is depicted in Figure A.5.

One advantageous property of DI controllers is that they can be constructed by the

sequential synthesis of a state-observer and a state-feedback controller as described in

Saupe (2013, p. 133 ff.). In contrast to ad-hoc observer-based state-feedback controllers

KOS, discussed in Section A.4.3, DI controllers KDI achieve a guaranteed performance

index γ of the closed-loop system Γed (PDI ,KDI) equivalently to general output-feedback

controllers. This property of DI controllers is stated in the following theorem.
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PDI

KDI

d e

yu

Figure A.5: General control configuration Disturbance-Information (DI) problem

Theorem A.4 (Performance of Disturbance-Information controllers). Consider

the LPV system PDI in (A.39) satisfying assumptions (a1) - (a5) and (b1) - (b2). The

DI output-feedback controller KDI given by

[
ẋK

u

]

=

[
A (ρ) +B2 (ρ)F (ρ)−B1 (ρ)C2 (ρ) B1 (ρ)

F (ρ) 0

] [
xK

y

]

, (A.41)

comprised of a state-feedback controller Kx with state-feedback gain F (ρ), parameter-

dependently stabilizes the closed-loop system Γed (PDI ,KDI) and renders its induced L2-

norm less than the performance index γ for all ρ ∈ P and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ},
if and only if the closed-loop with state-feedback Γed (Px,Kx) is parameter-dependent stable

and its induced L2-norm less than the performance index γ, i.e. there exists a continuously

differentiable matrix function Z (ρ) ∈ C1 (Rnρ ,Rnx×nx) with Z (ρ) > 0 such that AF (ρ) =

A (ρ) +B2 (ρ)F (ρ) and Z (ρ) satisfy condition (A.22) of Definition A.5 for all ρ ∈ P
and |βi| ≤ ρ̇max,i ∀i ∈ {1, 2 . . . , nρ}.

Proof. The proof of Theorem A.4 uses the state transformation (A.37) introduced as part

of the proof of the separation principle in Section A.4.3. After the state transformation,

the states of the transformed closed-loop represent the original open-loop plant states x

and the errors between the plant states and the controller states ηK = x − xK . Due to

the structure of the DI controller (A.41), the controller states xK can be interpreted as

the states of an observer with observer gain B1 (ρ) and consequently ηK corresponds to

the observation errors. The transformed closed-loop system can be stated by





ẋ

η̇K

e



 =






A (ρ) +B2 (ρ)F (ρ) −B2 (ρ)F (ρ) B1 (ρ)

0 A (ρ) +B1 (ρ)C2 (ρ) 0

C1 (ρ) +D12 (ρ)F (ρ) D12 (ρ)F (ρ) 0










x

ηK

d



 . (A.42)

As shown during the proof of the separation principle in Section A.4.3, parameter-

dependent stability of the closed-loop system can be easily concluded by exploring the

upper triangular structure of the dynamics matrix since stability of A (ρ)+B1 (ρ)C2 (ρ)
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is guaranteed through assumption (b1) and stability of A (ρ) +B2 (ρ)F (ρ) is given as

F (ρ) is obtained from the solution of the associated state-feedback problem. As stated

in Wu (1995, p. 38), the closed-loop system is stable if its dynamics matrix has stable

diagonal entries and the off-diagonal matrix is norm bounded.

In contrast to the general closed-loop (A.38) with ad-hoc observer-based state-feedback

controller KOS, the observation errors ηK are not affect by the disturbances d in the

closed-loop (A.42) with DI controller due to Hη = 0. Consequently, the dynamics of ηK

have no influence on the induced L2-norm of the closed-loop ‖Γed (PDI ,KDI)‖i2 and ηK

can be removed from the design problem yielding a state-feedback problem with plant

Px.

As described in Skogestad and Postlethwaite (2005, p. 415), controllers with observer-

based state-feedback structure have several advantages compared to general output-feedback

controllers:

• The functionality of the controller can be described more easily, especially to people

who are not familiar with advanced control theory.

• The computational complexity of the controller synthesis is reduced compared to

the design of a general output-feedback controller.

• The observer-based state-feedback structure can be exploited during the implemen-

tation of the controller.

• The observer can be easily augmented with known disturbance signals.

• The observer can be tuned and verified with measurement data to ensure good

performance on the real plant.

In summary these properties make the design of observer-based controllers like ad-hoc

observer-based state-feedback controllers or DI controllers very attractive in complex ap-

plications, e.g. in applications which require high-order plant models.

Remark. Even though, the choice of input weights Wd of a DI problem is not restricted

to weights yielding the disturbance input matrix B1 (ρ) equal to a precalculated state-

observer gain L (ρ), this selection of the input weight is natural due to the structure of

the resulting controller.

Remark. As discussed in Skogestad and Postlethwaite (2005, p. 409) and Sefton and

Glover (1990, p. 303) for LTI systems, observer-based state-feedback controllers have the

particularly nice property not to be subject to pole-zero cancellations in the closed-loop

system. This can also be concluded from the remarks on poles and zeros in Skogestad

and Postlethwaite (2005, p. 141 and p. 146 item 7). There the authors state that systems

with outputs containing direct information about the full state vector, i.e. C2 = I and

D22 = 0, have no zeros.
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A.4.5 Special Control Problem: Full-Information

The Full-Information problem represents a special type of control problem where the plant

states x and the disturbances d are available as measurements. As shown in Zhou et al.

(1996, p. 297 ff. and p. 423 ff.) and Doyle et al. (1989, p. 837 and p. 844 ff.), the

Full-Information problem is equivalent to the Disturbance-Information problem in the

sense that the closed-loop interconnections of the FI plant PFI with FI controller KFI

depicted in Figure A.6 and the closed-loop interconnections of the DI plant PDI with the

DI controller KDI depicted in Figure A.5 result in equivalent closed-loop systems

Γed (PFI ,KFI) = Γed (PDI ,KDI) , (A.43)

if the initial conditions of plant and controller are identical.

PFI

KFI

d e

[
x

d

]

u

Figure A.6: General control configuration Full-Information (FI) problem

The generalized plant PFI corresponding to the general control configuration depicted in

Figure A.6 can be expressed by
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x

d
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

 , (A.44)

with the general assumptions (a1) - (a4) and the specific FI assumptions:

(c1) (A (ρ) ,B1 (ρ)) parameter-dependent stabilizable, and

(c2) C2 (ρ) = [I 0]T , D21 (ρ) = [0 I]T .

Figure A.7 further emphasizes the equivalence of the FI and the DI problem by illustrating

the interconnection of both problems. The DI controller KDI can be expressed as the

interconnection of the FI controller KFI with the dynamical system VO according to

KDI = KFIVO. (A.45)
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The system VO given by





ẋ

x

d


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

A (ρ)−B1 (ρ)C2 (ρ) B1 (ρ) B2 (ρ)

I 0 0

−C2 (ρ) I 0
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
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

x

y

u



 . (A.46)

calculates the system states x and disturbances d from the measurements y and control

signals u. Depending on the interpretation of Figure A.7 as FI problem or DI problem VO

is part of the plant forming PFI or integrated into the DI controller forming KDI . In the

latter case, VO represents an observer estimating the system states x and disturbances d.

PDI

VO

ed

u

y

KFI

PFI

KDI

[
x

d

]

Figure A.7: Equivalence of Full-Information controller KFI and Disturbance-

Information controller KDI

Conversely, the FI controller KFI can be computed from the DI controller KDI according

to

KFI = KDI [C2 (ρ) I] , (A.47)

with C2 (ρ) of the DI plant in (A.39). Moreover as shown in Prempain and Postlethwaite

(2001, p. 22), for proper FI plants like (A.44), i.e. with D11 = 0, the FI controller KFI

can be designed via a pure state-feedback synthesis and therefore reduces to

KFI = [F (ρ) 0] . (A.48)

Of course, this result corresponds to the expectation due to the equivalence between FI

and DI controllers which naturally implies that if the DI controller can be designed by a

state-feedback synthesis, likewise can the FI controller.
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A.4.6 Computational Considerations

As mentioned in the introduction of this chapter, the LPV control design presented in

this thesis pursues a gridding approach as proposed in Wu (1995, p. 87 ff.) and Wu

et al. (1996, p. 993 ff.). This LPV approach is applicable to a large variety of nonlinear

control problems and in particular does not impose as restrictive assumptions on the LPV

plants as polytopic LPV methods. The gridding-based LPV control approach has been

implemented in the MATLAB toolbox LPVTools by Hjartarson et al. (2013, 2015).

As discussed in Wu (1995, p. 87 ff.), the gridding approach involves two approximation

steps to formulate the controller synthesis as a tractable convex optimization problem.

Firstly, the infinite dimensional function space of the parameter-dependent Lyapunov

function has to be approximated with a finite number of basis functions and secondly

the infinite dimensional scheduling parameter space P has to be approximated with a

finite number of grid points. The grid density employed during the controller synthesis is

crucial for a successful control design. Unfortunately, there is a design conflict between

the accuracy of the approximation of the scheduling parameter space and the computa-

tional cost of the controller synthesis. Hence, the required grid density constitutes an

important design parameter and is generally determined during a preliminary analysis.

This preliminary analysis is usually as simple as a variation of the grid density from loose

to dense until the induced L2-norm stays almost the same. The controller design is then

performed as a two-stage process: firstly the tuning parameters are determined with a

rather loose grid and subsequently the controller is verified with the required high grid

density.

The main drawback of the gridding-based LPV methods arises from the complexity of

the controller synthesis and implementation. This is obvious because the number of grid

points hP of the overall grid of an LPV plant P is determined by

hP =

nρ∏

i=1

hi (A.49)

with the number of grid points hi of scheduling parameter ρi. For example, the optimiza-

tion of a state-feedback controller with constant Lyapunov function consists of hP LMIs

as given in (A.24). Additionally, if a parameter-dependent Lyapunov function X (ρ) is

employed, the worst-case partial derivative of the Lyapunov matrix ∂X (ρ) has to be de-

termined at each grid point. Unfortunately, the worst-case of ∂X (ρ) is unknown, but can

be found by evaluating ∂X (ρ) at all vertices of the polytope formed by the maximum rates

of the scheduling parameters ρ̇max,i ∀i ∈ {1, 2 . . . , nρ}. Consequently, the number of LMIs

of the controller optimization problem with parameter-dependent Lyapunov function is

2nρ×hP and thus 2nρ times larger than the number of LMIs of the controller optimization

with constant Lyapunov function. The complexity of the controller optimization problem

is further increased by the additional decision variables of the coefficient matrices of the

basis functions used to approximate the function space of the parameter-dependent Lya-

punov function. To illustrate the effect of a parameter-dependent Lyapunov function on
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the number of decision variables, an example with linear basis functions is considered

X (ρ) = X0 + ρ1X1 + ...+ ρnρ
Xnρ

. (A.50)

Compared to a controller design with constant Lyapunov function X0 and nd0 decision

variables, the number of decision variables in the controller design problem with linear

basis functions increases by nρ × nd0. The definition of appropriate basis functions is

therefore essential for a successful control design exploring the performance benefit of

parameter-dependent Lyapunov functions. Up to now, the definition of basis functions

relies on the experience of the control engineer as there exists no theoretical rigor in

determining the best basis functions.

To sum up, the complexity issues during implementation and synthesis of LPV controllers

limit the applicability of LPV control to plants with few scheduling parameters and few

states. The applicability can be extended to slightly larger plants with more states and

scheduling parameters by designing observer-based state-feedback controllers like the DI

controller instead of general output-feedback controllers due to the reduced size of the

involved LMIs. A detailed discussion of implementation and synthesis complexity can be

found in Hoffmann and Werner (2015, p. 421 ff.).
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B Semi-Active Force Actuator

This work employs semi-active force actuators, henceforth called semi-active dampers, to

improve ride comfort and road-holding of passenger cars. As ordinary passive dampers,

semi-active dampers are subject to the passivity constraint, meaning that they cannot in-

ject energy to the suspension system. This property distinguishes semi-active suspensions

from active ones, which feature pneumatic, hydraulic or electro-mechanic force actuators

and are able to lift the vehicle. Table B.1 gives a comparison between passive, semi-active

and active suspensions regarding their most vital properties from a control perspective

similar to Fischer and Isermann (2004, p. 1356) and Savaresi et al. (2010, p. 24). Cur-

rent state-of-the-art semi-active dampers have high bandwidths of up to 100 Hz and large

controllable areas bounded by their minimum and maximum force curves (denoted by the

black dashed lines in the figures in Table B.1. They offer a significant potential to mitigate

the design conflict between ride comfort and road-holding and thus improve the overall

performance. In contrast to active suspensions, however, semi-active suspensions cannot

achieve an equal performance and moreover cannot provide additional functionality like

load-leveling.

performance

potential

system

cost

energy

consumption

passive
semi-active
active

Figure B.1: Conflict triangle of suspension types; large values indicate better perfor-

mance, lower energy consumption and lower system cost

Figure B.1 illustrates the conflict triangle consisting of performance potential, energy

consumption and system cost of passive, semi-active and active suspensions. Compared to

active suspensions, semi-active suspensions provide much better performance-to-cost and

performance-to-energy consumption trade-offs. This makes their integration in passenger

cars very attractive and has contributed to their wide spreading in the automotive market.

Additionally, semi-active suspensions can be combined with a slowly-active suspension to

exploit their complementary properties and achieve a similar performance than a fully-

active suspension, but with lower system cost and energy consumption (Koch et al., 2010).
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Table B.1: Classification of electronically controlled suspensions

Suspension

type
Force constraint

Actuator

bandwidth

Power

request

Performance

potential

passive
v

F

- 0 W o

semi-active
v

F

20-100 Hz < 50 W ++

slowly active
t

F

1-5 Hz < 5 kW +

fully active
t

F

20-30 kW
5-10

kW
+++

B.1 Semi-Active Damper Technology

Automotive industry and academia to-date investigate three types of semi-active damper

technologies:

• electro-hydraulic (EH) dampers: these dampers are equipped with an solenoid valve

to modify the cross section in the orifice and hence change its flow resistance,

• magneto-rheologic (MR) dampers: these dampers are equipped with a solenoid

which generates a magnetic field to modify the viscosity of the MR fluid and hence

change the flow resistance in the orifices,

• electro-rheoligic (ER) dampers: these dampers are equipped with a parallel-tube
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condensator which generates an electric field to modify the viscosity of the ER fluid

and hence change the flow resistance in the orifices.

The dampers employed for the experiments in this work are EH dampers. Therefore, this

section briefly explains their principle structure and function. On the left-hand side Figure

B.2 shows a mono-tube EH damper with a controllable piston valve and on the right-hand

side Figure B.2 shows a mono-tube EH damper with a controllable external valve. The

main difference regarding the controlled solenoid valve between the damper with the

internal controlled valve and the external controlled valve is the oil flow direction. The

flow through the internal solenoid valve goes in both directions depending on the current

damper state, e.g. compression or rebound, while the flow through the external solenoid

valve goes only in one direction independent of the current damper state. This property

allows to specifically optimize the external valve for its flow direction and simplifies the

design of the solenoid valve. The drawbacks of course are the additional space required

by the housing of the external valve as obvious from Figure B.2 and the larger oil flow

distances between the compression and rebound cambers.

oil camber

gas camber

bottom valves

(passive)

oil flow

compression

electric

connector

oil camber

oil flow

rebound

piston valves

(controlled)

co
m
p
re
ss
io
n

re
b
ou

n
d

1) controllable piston valve

oil camber

gas camber

bottom valves

(passive)

oil flow

compression

electric

connector

oil camber

oil flow

rebound

piston valves

(passive)

external valve

(controlled)

2) controllable external valve

Figure B.2: Schematic of semi-active dampers with controllable electro-hydraulic valves

B.2 Semi-Active Damper Model

The common component models for semi-active dampers can be separated into the fol-

lowing groups depending on the kind of modeling:
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• full physical models: these models consist of detailed models of the mechanic, electric

and hydraulic subsystems. The hydraulic subsystem constitutes the most involved

part due to the complex fluid flow, especially through the passive and controlled

valves,

• semi-physical models: these models partly cover the mechanic and electric subsys-

tem and approximate the hydraulic subsystem by an empirical model, and

• black-box models: these models are purely empirical models without any physical

insight.

Descriptions of a physical damper models can be found in Duym et al. (1997) and Duym

(2000). These models are useful during damper design to facilitate the layout of the

fluid flow, especially of the orifices, however, their computational complexity makes them

inappropriate for control design. Conversely, semi-physical and black-box models feature

a drastically reduced computational complexity, while still accurately modeling the input-

output behavior of the semi-active damper. An extensive overview of semi-physical models

can be found in Spencer et al. (1997) and Butz and von Stryk (2001). These two papers

give an introduction to semi-active damper modeling and describe several semi-physical

models like the Bingham and the Bouc-Wen damper models. A simple semi-physical look-

up table based damper model is developed in Unger (2012). The authors in Savaresi et al.

(2005) develop a black-box damper model based on a nonlinear autoregressive exogenous

(ARX) description and show that the ARX model slightly outperforms a Bouc-Wen model

according to Spencer et al. (1997).

This work does not develop new damper models. Nevertheless, the suitability of existing

damper models for the forthcoming semi-active damper control design has been investi-

gated during the preliminary study presented in Fleps-Dezasse et al. (2014). The crucial

selection criteria for the damper model are:

• appropriate accuracy of the control input to force output behavior, in particular,

coverage of the asymmetric compression and rebound characteristic of state-of-the-

art automotive dampers,

• easy invertibility of the input-to-output response, and

• real-time capable computational complexity.

These criteria are best met by the extended Bouc-Wen model from Spencer et al. (1997)

and a simple look-up table based model as used in Unger (2012). The Bouc-Wen model

has been experimentally validated for symmetric compression and rebound characteristics,

e.g. in Savaresi et al. (2005) and Guglielmino et al. (2008) and is widely acknowledged to

accurately model semi-active dampers. Therefore, the preliminary study in Fleps-Dezasse

et al. (2014) compared a simple look-up table based model with the more sophisticated

extended Bouc-Wen model.
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The output force of a semi-active damper is a function of the control signal ud, in case

of an EH-damper the current through the solenoid valve, and the damper states xdamper.

The most important damper state is the damper velocity ẋd, but also the damper position

xd and acceleration ẍd may have a vital effect on the output force, e.g. if the gas volume

inside the damper generates significant forces. The output force of a semi-active damper

can be mathematically stated by

Fd = f (ud, xdamper) . (B.1)

The look-up table based damper model, called force map (FM) model, considers only

mandatory variables. It treats the damper velocity ẋd and the control signal ud as input

signals and requires no additional signals such as the damper position and acceleration.

Consequently, the force map model approximates the damper force by

Fd ≈ fFM (ud, ẋd) . (B.2)

The force map damper model fFM stated in (B.2) should also account for the dynamics

of the damper force during control signal transients. This is achieved by a proper pre-

filtering of the control signal ud with the transfer function Gud
(s) as proposed in Spencer

et al. (1997). The force map model fFM (ud, ẋd) with 2D-look-up table f2D (ud, ẋd) and

constrained control signal σ (ud) can be expressed as

fFM (ud, ẋd) = f2D (ud, ẋd)Gud
(s) σ (ud) . (B.3)

The saturation function σ is defined as introduced in (2.4). Figure B.3 illustrates a

normalized 2D-look-up table f2D (ud, ẋd) in a damper force vs damper velocity diagram

with incrementally increasing control signal. The 2D-look-up table easily considers
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• asymmetric compression and rebound forces,

• nonlinear damper force to damper velocity relations, and

• nonlinear damper force to control signal relations.

Due to these properties the force map damper model achieves a similar modeling accuracy

as the much more complex extended Bouc-Wen model. The results of the damper model

investigation with constant control signals from Fleps-Dezasse et al. (2014) depicted in

Appendix B.4 emphasize the high accuracy of the force map model.

B.3 Inverse Semi-Active Damper Model

The controllers developed in this work all generate a demand value Fsa for the damper

force. The controller output signal Fsa is subsequently transformed into the control signal

ud of the semi-active damper by the inverse semi-active damper model g2D (Fsa, ẋd) as

depicted by the control structure in Figure 3.1. The inverse semi-active damper model

g2D (Fsa, ẋd) is computed from the force map damper model fFM (ud, ẋd) by point-wise

inverting the damper force map shown in Figure B.3 for each damper velocity grid point

i according to

ud = g2D (Fsa, ẋd,i) = f−1
2D (ud, ẋd,i) ∀i ∈ {1, 2 . . . , nẋd

} , (B.4)

with nẋd
the overall number of damper velocity grid points. Figure B.4 illustrates the

underlying concept of the control input transformation from the damper control signal

ud to the controller output signal Fsa. The computation of the inverse damper model

neglects the control signal dynamics Gud
(s) and saturation σ (ud) modeled by the force

map damper model fFM (ud, ẋd). These two properties of semi-active dampers are di-

rectly considered during the LPV control design. Therefore, the inverse damper model

is essentially represented by the control signal map shown in Figure B.5. The major

Fsa Fdud

damper model fFM

σ (ud) σ̄ (ud)

inversion g2D

ẋd

Gud

f2D

ẋd

Figure B.4: Inversion of force map damper model

difficulty during the computation of the control signal map g2D (Fsa, ẋd) constitutes the
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force singularity of the damper force map depicted in Figure B.3 at zero damper velocity.

The inversion (B.4) of the damper force map at zero damper velocity yields an infinite

control signal ud for any controller output Fsa. This behavior may be not an issue during

simulation due to

g2D (Fsa, ẋd,i) f
−1
2D (ud, ẋd,i) = 1 ∀i ∈ {1, 2 . . . , nẋd

} , (B.5)

in hardware applications, however, such a behavior is not desirable, because the control

signal ud is the physical output of the damper power electronics unit. The increase of

the control signal ud to its maximum near zero damper velocity deteriorates the energy

consumption of the semi-active suspension system. Additionally, the ride comfort and

road-holding performance are also affected due to the imperfect cancellation between the

inverse damper model and the real semi-active damper. Unger (2012, p.101 and 134-135)

describes a common approach to overcome this issue by suppressing the control signal ud
near zero damper velocity with a damper velocity dependent scaling. This approach has

the drawback that the damper control signal ud is essentially independent of the controller

output Fsa near zero damper velocity. In contrast, the control signal map g2D (Fsa, ẋd)

depicted in Figure B.5 is computed from a modified force map f2D (ud, ẋd) with relaxed

singularity. The relaxation is achieved by modifying the force curves of the force map in

Figure B.3 such that the force curves have a small offset at zero velocity. As a result, the

inverse damper model g2D (Fsa, ẋd) computed from the relaxed force map outputs finite

control signals ud and the inverse damper model requires no additional control signal

suppression.
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B.4 Results of Semi-Active Damper Model Assessment

This section presents the results of the Bouc-Wen and force map damper model assessment

from Fleps-Dezasse et al. (2014).

The top plots of Figure B.6 show the time series of the damper force if the damper is

excited by a sine sweep signal. The control signal is constant during the whole experiment

and set to ud = 0.1 on the left plots and to ud = 0.5 on the right ones. The plots

in the middle show the same experiments with the damper force plotted over damper

deflection and the bottom plots show the damper force plotted over damper velocity. As

expected because of the inherent limitation of the force map damper model, the force map

model predicts the mean damper force with very high accuracy, but cannot reproduce the

hysteresis of the damper. The influence of the hysteresis is particularly obvious for low

damper velocities in the plots in Figure B.6-right. Nevertheless, the overall modeling

accuracy of the force map model is perfectly sufficient.

The pre-filter Gud
(s) is selected such that the predicted damper force due to control

signal changes at constant damper velocities matches the measured damper force. For

the EH dampers employed in this work, a first-order low-pass dynamics with input delay

represents a sufficiently good approximation of the damper behavior. This is emphasized

by the control signal step experiments illustrated in Figure B.7. The left plot in Figure

B.7 shows the control signal and the right plot the related damper force measurements

and the predicted damper forces by the extended Bouc-Wen and the force map damper

model. Due to the appropriate pre-filtering of the control signal with Gud
(s) the damper

models achieves a high accuracy during control signals transients.
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C Vertical Dynamics Road Excitations

Due to the nonlinearities of the semi-active damper, the performance criteria introduced

in Section 3.2 not only depend on system properties like body and wheel masses, but

strongly depend on road excitation properties like amplitude and frequency spectrum. The

dependence on the excitation can be emphasized by considering the damper force curve

of a medium constant control signal, e.g. ud = 0.3, of the force map of the semi-active

damper depicted in Figure B.3. The degressive damper force behavior leads to a strong

damped system behavior for small excitation amplitudes, e.g. if the damper velocities

stay below 0.2 m/s. Conversely, the system exhibits a distinct weaker damped behavior

if the road excitations yield damper velocities around 1 m/s. A detailed discussion of

road excitations relevant for suspension design is presented in Mitschke and Wallentowitz

(2004, p. 280 ff.). The most essential road excitations regarding semi-active damper

control are stochastic road, sine sweep and bump excitations.

C.1 Stochastic Road Excitation

The evaluation of measured road profile data reported in ISO (8608:1995) shows that road

profiles of common roads like highways, country roads and urban roads can be described

by stochastic signals with given power spectral density (PSD). Even though the PSD of

individual roads is unique, in general as shown in ISO (8608:1995) and Mitschke and

Wallentowitz (2004, p. 289 ff.), the PSD Φh (Ω) of all types of roads can be approximated

by a simple formula

Φh (Ω) = Φh (Ω0)

(
Ω

Ω0

)−w

. (C.1)

This representation expresses the road profile PSD Φh (Ω) as a function of the angular

spatial frequency Ω. ISO (8608:1995) defines the reference angular spatial frequency

Ω0 = 1 m−1 and the exponent w = 2 for all road types. The advantage of describing the

road profile PSD Φh as a function of the angular spatial frequency Ω is that the actual

values of the road profile PSD Φh (Ω) are independent of the vehicle speed vv. The angular

spatial frequency Ω = 1
L
is defined as the reciprocal of the wave length L and related to

the frequency ω by

ω = vvΩ. (C.2)

The road profile PSD Φh (ω) with respect to ω can be computed from Φh (Ω) according

to

Φh (ω) =
1

vv
Φh (Ω) . (C.3)

Figure C.1 illustrates the approximations of Φh (Ω) and Φh (ω) of the road types A - very

good, B - good, C - medium and D - bad as defined by ISO (8608:1995). In the double-

logarithmic plots both representations of the road profile PSDs show a linear decrease
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Figure C.1: Road profile PSD: solid lines - approximated PSD Φh according to (C.1);

dashed lines approximated PSD Φ̄h according to (C.4) with βr = 0.2

of the road profile amplitude with increasing frequency. Additionally, the dashed curves

in Figure C.1 show a modified approximation Φ̄h of the road profile PSD with finite

amplitude for Ω = 0 discussed in Mitschke and Wallentowitz (2004, p. 297 ff.). This

modified road profile PSD Φ̄h is given by

Φ̄h (Ω) =
αr

β2
r + Ω2

, (C.4)

with the parameter αr = Φh (Ω0) and the parameter βr > 0. The generation of the plots

in Figure C.1 has been done with βr = 0.2. The PSD defined by (C.4) can be realized by

a first-order low pass filter as shown in Unger (2012, p. 9). This filter can be expressed

as a function of the travel distance ls according to

δ

δls
xg (ls) = −βrxg (ls) +

√
αrξ (ls) . (C.5)

For a given vehicle speed vv, the travel distance dependent filter in (C.5) can be reformu-

lated as a function of time given by

ẋg = −βrvvxg +
√
αrvvξ. (C.6)

The input signal ξ driving the road profile height xg is a white noise signal with unit PSD.

The characterization of stochastic road excitations according to (C.6) will be employed

in the following LPV controller design to shape the road disturbance input.

C.2 Sine Sweep Excitation

Experiments with sine sweep excitations provide a means to assess the frequency response

of nonlinear systems like semi-active suspension systems. Even though, the frequency

response of the suspension system may change depending on the amplitude and frequency
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Figure C.2: Illustration of sine sweep excitation with amplitude spectrum similar to

stochastic road excitations according to ISO 8608:1995: top - time series plots; bottom -

frequency domain plots

progression of the sine sweep, if properly defined, sine sweep excitations allow to analyze

the frequency behavior of suspension systems as discussed in Savaresi et al. (2010, p. 76

ff.). Sine sweep signals suitable for the development of semi-active suspension controllers

should cover the relevant frequency range f ∈ [0.5 20] Hz. Moreover, the body and

wheel resonance frequencies should both be roughly equivalently excited. The latter

property can be achieved by adjusting the amplitude of the sine sweep signal such that

it decreases with increasing frequency similar to the amplitude of the road profile PSD

shown in Figure C.1. In particular, the sine sweep amplitudes should also linearly roll-

off if plotted in a double-logarithmic manner. Figure C.2 illustrates the time series plot

and the corresponding frequency domain plot of the sine sweep excitation employed in

this work. The frequency domain curves show that the selected sine sweep signal gives a

good approximation of the linear roll-off for frequencies larger than 3 Hz, but is subject

to small amplitude oscillation for lower frequencies. These oscillations result from the

trade-off between the total signal length and the frequency resolution at low frequencies.

A detailed discussion of the use of sine sweep signals to compute a “nonlinear frequency

response” can be found in Savaresi et al. (2010, p. 76 ff.) and Bünte (2011).
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D The Quarter-Vehicle Test-Rig

The performance of the LPV controller is experimentally investigated using the quarter-

vehicle test-rig of the University of the Federal Armed Forces in Munich shown in Figure

D.1. A description of the test-rig setup and the control algorithm of the hydraulic cylinder

can be found in Ahmed and Svaricek (2013) and Ahmed and Svaricek (2014).

spring and

CDC damper

wheel

load cell 2

displacement sensor

load cell 1

hydraulic cylinder

Figure D.1: Quarter-vehicle test-rig of the University of the Federal Armed Forces in

Munich

D.1 Hardware and Software Setup

The quarter-vehicle test-rig consists of a McPherson suspension with spring, and semi-

active damper that is assembled together and mounted at a fixed frame. The wheel

acceleration is measured using an accelerometer with a range of ±50 g and a resolution of

0.005 g rms. A load cell with a range of ±50 kN is placed under the wheel for measuring

the dynamic wheel load (load cell 1). To measure forces acting on the chassis another

load cell is mounted between the suspension strut and frame (load cell 2). The suspension

deflection is measured by a displacement sensor with a range of 200 mm. The generation

of road profiles is carried out by a hydraulic servo system, which is controlled using the

Non-Model based Adaptive Control (NMAC) algorithm given in Ahmed and Svaricek

(2014) at a sampling rate of 1000 Hz.

No body mass was applied to the quarter-vehicle test-rig, as can be seen in Figure D.1.

The chassis acceleration is obtained virtually based on a predefined body mass value and
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the measured contact force of load cell 2. This set-up features the advantage to operate

the test-rig with different body mass values without any hardware changes. The virtual

body acceleration ẍb,tr is determined by

ẍb,tr =
1

m̄b

Fb,tr, (D.1)

with the virtual body mass m̄b and the measured contact force Fb,tr. With the assumption

of a perfectly known initial body position and velocity, the body position xb of a reference

quarter-vehicle is equivalent to the position xb,tr of the virtual body obtained by double

integration of the virtual chassis acceleration ẍb,tr. The major challenge resulting from

the virtual body mass constitutes the realization of the reference quarter-vehicle spring

displacement and damper velocity at the test-rig. Therefore, the wheel position xw,tr at

the test-rig has to fulfill

xw,tr = xw − xb, (D.2)

with wheel position xw and body position xb of the reference quarter-vehicle. Moreover,

the tire deformation of the test-rig and the reference quarter-vehicle should be identical

such that

xp,tr − xw,tr = xg − xw, (D.3)

with the post position xp,tr of the test-rig and the road profile xg. By substituting (D.2) in

(D.3), it can be deduced that in order to realize condition (D.3) the virtual body position

xb,tr must be subtracted from the road profile xg yielding

xp,tr = xg − xb. (D.4)

The block diagram shown in Figure D.2 illustrates the operation of the test-rig. As derived

in (D.1) - (D.4), the demand value of the post position xp,tr of the test-rig is not simply the

road profile xg, but a synthetic signal comprised of the road profile xg and the position of

the virtual body xb,tr. According to Kuncz (2007), the approximations involved with the

virtual body mass result in a relative amplitude error of the LTI test-rig model compared

to the LTI reference quarter-vehicle of 2 % at the body resonance frequency and of 16 %

at the wheel resonance frequency. Due to measurement errors, like noise and biases, and

nonlinearities, the deviation between the reference quarter-vehicle and the quarter-vehicle

with virtual body mass are expected to be larger at the test-rig.

The control of the test-rig is carried out using a DS1103 real time computer from dSPACE

with the processor PPC 750GX 1 GHz. The controllers themselves are implemented on

a dSPACE MicroAutoBox II at a sampling rate of 1000 Hz. The sensor signals and the

control signal are exchanged as analog signals between the real-time platforms.
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Figure D.2: Block diagram illustrating the test-rig operation

D.2 Modeling and Simulation

To tune and verify the performance of the LPV controller according to Section 3.5.1

and 3.5.2 before the test-rig experiments, the reference quarter-vehicle is implemented in

Modelica (Otter, 2013; Fleps-Dezasse and Brembeck, 2013). The semi-active damper is

modeled by the force map damper model introduced in Section B.2 and the linear sus-

pension spring with bump stops is modeled by a 1D look-up table. Table D.1 summarizes

the parameters of the quarter-vehicle test-rig and corresponding reference quarter-vehicle.

Additionally, Figure D.3 shows the minimum and maximum damper force characteristics

of the semi-active damper at the test-rig. A closer examination of the reference quarter-

Table D.1: Quarter-vehicle test-rig model: symbols and parameters

Symbol Quantity Value Unit

m̄b (quarter) body mass 350 kg

mw wheel mass 50 kg

kb suspension spring stiffness 30000 N/m

kw tire stiffness 180000 N/m

dw tire damping 200 Ns/m

ωd damper bandwidth 50 rad/s

vehicle properties with a constant damping of db,lti = 1500 Ns/m, which approximates the

minimum damper characteristics, reveals that the LTI reference quarter-vehicle features

a body resonance frequency of about 1.5 Hz and a damping ratio D calculated by

D =
db,lti

2
√
kbm̄b

(D.5)
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of D = 0.23. As described in Mitschke and Wallentowitz (2004, p. 261), this damping

ratio already corresponds to a comfortable passenger car, i.e. the minimum damping of the

semi-active damper already provides sufficient damping of the body and wheel resonance

amplitudes. Regarding semi-active suspension control design, this basic suspension setting

tightens the performance margin as discussed in Section 3.7.
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Figure D.3: Force map of semi-active damper at quarter-vehilce test-rig
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E The SC3-Bulli Experimental Vehicle

The performance of the developed LPV controller is validated by experiments with the

SC3-Bulli experimental vehicle of SR shown in Figure 1.4. The SC3-Bulli constitutes

SRs testing vehicle for safety critical connected control with the vertical dynamics topic

being the first application.

E.1 Hardware and Software Setup

The experimental vehicle is equipped with the semi-active dampers from its successor

model, namely the VW T6 van, where they are offered as supplemental equipment. Fig-

ure E.1-right depicts the normalized minimum and maximum force characteristics of the

front and rear semi-active dampers. Both damper characteristics feature asymmetrical

compression and rebound forces and a nonlinear force-over-velocity relationship. Com-

pared to the semi-active damper of the quarter-vehicle test-rig of Section D, the minimum

damping curves of the front and rear suspensions are much lower and can be approximated

by a linear body damping of about db,lti = 500 Ns/m. The corresponding damping ratio

D of the vehicle body heave motion given by

D =
4db,lti

2
√
4kbmb

, (E.1)

and calculated with the parameters from Table E.2 is D ≈ 0.1. Complemented by very

low static and sliding friction forces, the minimum curves provide insufficient damping

and the vehicle oscillates heavily if operated in this configuration. Nevertheless, semi-

active dampers with such a low minimum damping are perfectly suitable for semi-active

suspension control as discussed in Section 4.7. Due to the large payload of the experi-

mental vehicle, especially the rear dampers have large rebound forces to provide sufficient

damping at maximum payload. The current of the electromagnetic valve of each damper

is controlled by a SISO controller with proportional and integral action with anti-windup.

A damper current of ud = 0.1 A corresponds to minimum damping and a damper current

of ud = 1.4 A to maximum damping. Figure E.1-left shows the spring characteristics of

the front and rear suspensions. To prevent large suspension strokes and minimize bump

stop interferences at maximum payload, the rear springs feature a stiffer and more pro-

gressive characteristic than the front springs. The front axle of the SC3-Bulli is realized

by classical McPherson suspension systems with the semi-active damper mounted inside

the body spring and the rear suspension systems are realized by transverse control arms.

The SC3-Bulli is equipped with a dSPACE MicroAutoBox II which runs the semi-active

suspension control algorithm. The damper demand signals calculated on the MicroAuto-

Box are then processed by a power electronics unit. The power electronics generates the

current of the electromagnetic valves and provides current measurements to the MicroAu-

toBox. As input signals to the control algorithms, the SC3-Bulli offers wheel acceleration

measurements, suspension height measurements and body acceleration measurements.
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Figure E.1: Left - suspension spring characteristic, right - semi-active damper charac-

teristic of SC3-Bulli

Table E.1 illustrates the corresponding specifications of the body and wheel acceleration

and the suspension height sensors. All sensors are standard automotive components: the

acceleration sensors are from Continental (2016) and the suspension height sensors are

parts of the VW T6 van.

Table E.1: Sensor specification SC3-Bulli

quantity range sensitivity output

body accelerometer 4 ±1.6 g 0.9375 V/g analog

wheel accelerometer 4 ±15 g 0.133 V/g analog

height sensor 4 3×±60 deg 1,6deg
percentage duty cycle

PWM (800 Hz)

E.2 Modeling and Simulation

In addition to the linear full-vehicle model presented in Section 4.3, a nonlinear full-vehicle

model is implemented in Modelica (Otter, 2013; Fleps-Dezasse and Tobolár̆, 2015). This

model is used for off-line simulation of the closed-loop behavior and for controller tuning.

The model includes the most essential nonlinearities like

• the semi-active dampers,

• the nonlinear spring characteristics, and

• the transmission between wheel position and spring and damper deflection,

but neglects the elastokinematics of the suspension systems and the bump stops due to

missing component information. Furthermore, the nonlinear full-vehicle model approxi-

mates the tires by linear spring-damper elements and features no planar vehicle motions
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output over vertical wheel position

like yaw and longitudinal or lateral displacements. Figure E.2 depicts the measured trans-

mission of the front and rear damper deflection relative to the wheel position with fixed

body position. Both curves show an approximately linear relationship between damper

deflection and wheel position. After negligence of the static offset of the curves, the

slopes of the curves correspond to the transmission ratios between damper deflection and

wheel position. The transmission ratio of the front damper rdamper,f is almost one, while

the transmission ratio of the rear damper is rdamper,r = 0.58. The small rear transmis-

sion ratio significantly reduces the effect of the corresponding damper forces as shown in

(4.25). In addition to the damper deflection related transmission ratios, the nonlinear full-

vehicle model also accounts for the spring deflection related transmission ratios rspring,f
and rspring,r. At the front suspension the spring and the damper are coaxially mounted

and consequently rdamper,f = rspring,f . Conversely, the springs and dampers have different

mounting positions at the rear suspensions and separate transmission rations have to be

considered as stated in Table E.2. The nonlinear full-vehicle model also considers a

Table E.2: Symbols and parameters of SC3-Bulli vehicle model

Symbol Quantity Value Unit

mb body mass 2400 kg

Ixx roll inertia 850 kgm2

Iyy pitch inertia 2500 kgm2

mw wheel mass 50 kg

k̄b,f/ k̄b,r suspension spring stiffness (front/ rear) 30/ 100 kN/m

kw tire stiffness 280 kN/m

dw tire damping 300 Ns/m

ωd damper bandwidth 80 Hz

rspring,f/ rspring,r transmission ratio spring (front/ rear) 0.95/ 0.75 -

rdamper,f/ rdamper,r transmission ratio damper (front/ rear) 0.95/ 0.58 -
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simple approximation of sliding friction of each damper given by

Fsf,i = Fsf,nom tanh

(
ẋd,i
ẋd,ref

)

, (E.2)

with the nominal friction force Fsf,nom determined during measurements on the damper

test-rig. The parameter ẋd,ref determines the transition from negative to positive damper

velocities. To generate realistic measurements as input to the controllers, the simulated

sensor signals of the vehicle model are corrupted by white noise and additionally the

acceleration sensor signals are corrupted by small biases.

The vehicle model is simulated by a fourth-order Runge-Kutta algorithm with a step size

TnFVM = 0.5 ms.
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F Estimation of the Roll Disturbance Moment

The roll disturbance moment dr acting on the vehicle body due to the steering inputs of the

driver can be computed from the corresponding lateral vehicle acceleration ay according

to

dr = tτay, (F.1)

with the transmission factor tτ determined by

tτ = −mb (hb,CoG − hroll) . (F.2)

The transmission factor tτ transforms the lateral acceleration into a lateral force acting

on the vehicle body using the body mass mb and furthermore, into the roll disturbance

moment through the lever arm between the point of application of the lateral force and

the vehicle roll axis. The lever arm of the lateral force corresponds to the vertical distance

between the vehicle CoG and the roll axis.

In Figure 5.1, the roll disturbance moment dr acting on the vehicle is provided by the roll

disturbance estimator subsystem. This function gathers (F.1) and the expected lateral

acceleration estimated by a linear single-track model processing the steering angle input of

the driver. The linear single-track model presented in Mitschke and Wallentowitz (2004,

p. 547 ff.) and Schramm et al. (2014, p. 223 ff.) approximates the planar motion of a

passenger car. The main limitations of the single-track model as listed in Schramm et al.

(2014, p. 223 ff.) are:

• constant longitudinal velocity of the vehicle CoG along the trajectory,

• negligence of body heave, roll and pitch motion,

• left and right tires conflated to one single tire per front and rear axle, and

• constant wheel-load distribution front to rear.

Table F.1: Single-track model: symbols and parameters

Symbol Quantity Value Unit

mv vehicle mass 2600 kg

Izz yaw inertia 3007 kg

cαF cornering stiffness front 96000 N/m

cαR cornering stiffness rear 199000 N/m

lvF distance vehicle CoG to front axle 1.37 m

lvR distance vehicle CoG to rear axle 1.63 m

lS distance vehicle CoG to sensor 1.37 m

td output delay 0.1 s
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As discussed in Mitschke and Wallentowitz (2004, p. 560 ff.), the validity of the linear

single-track model is limited to lateral accelerations of the vehicle CoG smaller than

ayCoG = 4 m/s2. This property, however, does not imposes significant restrictions during

the presented application because the lateral accelerations attained by drivers mostly

stay below ayCoG = 4 m/s2 (Mitschke and Wallentowitz, 2004, p. 559 ff.). The following

equations present the state-space description of the linear single-track model with front

steering angle input δF and the system states xSTM given by

xSTM =
[

ψ̇ βSTM

]T

. (F.3)

The states of the single-track model are composed of the yaw rate ψ̇ and the vehicle

side slip angle βSTM which characterizes the angle between the direction of the velocity

of the vehicle CoG and the vehicle’s longitudinal axis. The single-track model outputs

the lateral acceleration ayS of a virtual acceleration sensor S with distance lS along the

longitudinal axis from the vehicle CoG. Positive values of lS indicate a location to the

front of the vehicle, e.g. lS = lvF means that the virtual acceleration sensor is located at

the front wheels. The state-space representation of the linear single-track model is then

given by
[
ẋSTM

ayS

]

=

[
ASTM BSTM

CSTM DSTM

] [
xSTM

δF

]

, (F.4)

with the related state-space matrices

ASTM =

[

− cαF l2vF+cαRl2vR
Izzvv

− cαF lvF−cαRlvR
Izz

−1− cαF lvF−cαRlvR
mvv2v

− cαF+cαR

mvvv

]

, (F.5)

BSTM =
[

cαF lvF
Izz

cαF

mvvv

]T

, (F.6)

CSTM =
[

−
(

cαF lvF−cαRlvR
mvvv

+ lS
cαF l2vF+cαRl2vR

Izzvv

)

−
(

cαF+cαR

mv
+ lS

cαF lvF−cαRlvR
Izz

) ]

, (F.7)

and

DSTM =
cαF
mv

+ lS
cαF lvF
Izz

. (F.8)

Table F.1 introduces the corresponding symbols and parameters of the single-track model.

Figure F.1 and F.2 illustrate the two reference manoeuvers which have been employed to

tune the parameters of the single-track model. The first manoeuver roughly corresponds

to a constant radius cornering with increasing vehicle speed and the second manoeuver

consists of several steering angle step inputs. Overall, the parametrized single-track model

achieves a high accuracy in reproducing measured lateral accelerations. In particular, as

emphasized by Figure F.2-bottom right, the simulated transient response of the linear

single-track model corresponds very well to the measured transient response of the vehicle.

Equally, the simulated and measured steady-state lateral accelerations during the constant

radius cornering manoeuver depicted in Figure F.1-bottom right also agree with high

accuracy.



160 F Estimation of the Roll Disturbance Moment

 

 

ve
h
ic
le

sp
ee
d
(m

/s
)

time (s)
0 50 100
0

20

40

60

80

 

 

st
ee
ri
n
g
an

gl
e
(◦
)

time (s)
0 50 100

−10

0

10

20

 

 

simulation
measurement

ya
w

ra
te

(r
ad

/s
)

time (s)
0 50 100

−0.5

0

0.5

1

 

 

simulation
measurement

la
te
ra
l
ac
ce
le
ra
ti
on

(m
/s

2
)

time (s)
0 50 100

−5

0

5

10

Figure F.1: Estimation error of single-track model with parameters according to Table

F.1 during quasi steady-state cornering at a constant radius
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Figure F.2: Estimation error of single-track model with parameters according to Table

F.1 during steering angle steps
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G Gain-Scheduled H∞ Control vs LPV Control

This section presents a comparison between the LPV controller design presented in Chap-

ter 3 and 4 and corresponding H∞ controllers. Firstly, the induced L2 and H∞ perfor-

mance levels of a state-feedback LPV controller and H∞ controller are compared in a

quarter-vehicle application. Secondly, the ride comfort and road-holding performance of

the full-vehicle LPV controller of Section 4.5 is compared to a gain-scheduled H∞ con-

troller.

G.1 γ-Performance Level Comparison

Figure G.1 gives a comparison between the body velocity and wheel velocity frequency

responses of the closed-loop with the H∞ controller of the unconstrained system and

closed-loop with the LPV controller with frozen saturation indicators θmin and θmax. Both

controllers, the H∞ controller and the LPV controller are designed as state-feedback

controllers assuming the availability of the plant state as measurements. As in Chapter

3 and 4, the control design problem is formulated in generalized plant notation. For

the example here, the quarter-vehicle plant presented in (3.19) is extended by the road

disturbance model (C.6) and the nominal damping d0 is assumed constant. The LPV and

H∞ control design problems minimize the induced L2 and H∞-norms of the closed-loop

systems with road disturbance input dg and body velocity performance signal ea. The

generalized plant of the LPV control design problem is given by





ẋ
[
ea
eu

]



 =





A B1 B̄2θ
[
C11 (θ)

0

] [
0

0

] [
0

I

]









x

dg
uFd



 , (G.1)

with the state vector x = [xb ẋb xw ẋw xFd
xg]

T and the matrices

A (d0) =












0 1 0 0 0 0
−kb
mb

−d0
mb

kb
mb

d0
mb

1
mb

0

0 0 0 1 0 0
kb
mw

d0
mw

−kb−kw
mw

−d0−dw
mw

− 1
mw

kw−dwβrvref
mw

0 0 0 0 −ωd 0

0 0 0 0 0 −βrvref












, (G.2)

B1 =
[

0 0 0 dwαrvref
mw

0 αrvref

]T

, (G.3)

B̄2 =
[
0 0 0 0 ωd 0

]T
and (G.4)

C11 =
[
0 wbθ 0 0 0 0

]
. (G.5)
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The above generalized plant includes the control effort weight

Wu = θ−1, (G.6)

introduced in Chapter 2 and weights the body velocity performance signal by

Wa = wbθ. (G.7)

The LPV controller is synthesize with a constant Lyapunov matrix and a grid density of

two points, namely θmin and θmax. The H∞ controller is synthesize with the unconstrained

plant by setting the saturation indicator to one, i.e. θ = 1.

As expected according to the discussion in Section A.4, the H∞ performance level γ∞
is smaller than the induced L2-norm performance level γθ of the LPV control design.

Furthermore, the H∞ controller achieves a better attenuation of the body resonance peak

of the unconstrained system. In the LPV case the unconstrained system corresponds to

θ = 1.
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Figure G.1: Comparison of frequency responses of body and wheel velocity of closed-

loop with H∞ control of the unconstrained system and closed-loop with LPV control of

system with frozen saturation indicators θmin and θmax

The evaluation of the performance levels provides some insight into the amount of conser-

vatism of the LPV control design with saturation indicators compared to an H∞ control

design. The assessment, however, is only valid for the unconstrained closed-loop sys-

tem, i.e. without consideration of the actuator force constraints. The H∞ controller can

be adjusted to application with actuator constraints by the clipping approach as intro-

duced in Section 1.1.3. This ad-hoc adjustment, however, entails the loss of the original

performance and stability properties of the H∞ controller. In contrast, the mathemati-

cally rigorous LPV control design offers performance and stability guarantees for the fast

saturation indicator variations present in semi-active suspensions and for all admissible

actuator saturation conditions.

G.2 Ride Comfort and Road-holding Performance Comparison

In semi-active suspension design, the performance level of the controller synthesis is far

less important than the actual ride comfort and road-holding performance. Therefore, in
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addition to the previous section, this section investigates the ride comfort and road-holding

performance of the full-vehicle LPV controller Kθ of Section 4.5 and a gain-scheduled H∞

controller KgsH∞
. The gain-scheduled H∞ controller is designed with the same grid as

the LPV controller, but instead of one LPV controller for the entire admissible saturation

indicator range, separate H∞ controllers for each grid point are synthesized. Similar to

the LPV controller, the controller output is then obtained by interpolation of the grid

points. Both controllers are tuned by the optimization procedure described in Section

4.7. The achievable Pareto fronts of the controllers are depicted in Figure G.2. Figure

G.2-left shows the evaluation of the multi-excitations and Figure G.2-right shows the

evaluation of the stochastic road excitation. In contrast to the investigation of the γ-

performance levels in the previous section, the ride comfort and road-holding performance

of the LPV controller and the gain-scheduled H∞ controller are almost identical. This

shows that, at least in the considered semi-active suspension application, a proper tuning

of the controller parameters can overcome the conservatism of the LPV control design

noticed in the previous section.
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H Robust Performance of the Full-Vehicle LPV Con-

troller

This section investigates the robust performance of the full-vehicle LPV controller of

Chapter 4. To this end, firstly the body mass of the nonlinear full-vehicle model of

Section E.2 is varied from 2200 kg to 3000 kg and the ride comfort performance as defined

in Section 4.2 is evaluated. This investigation emulates typical body mass variation of

the SC3-Bulli starting from the nominal body mass of 2400 kg, e.g. due to additional

payloads. Secondly, the effect of an imperfect inverse damper model is evaluated. For this

investigation it is assumed that the imperfect inverse damper model results in a scaling

of the damper control signal ud, i.e. the multiplication of the inverse damper model and

the damper model according to (B.5) amounts to values distinct from one.

Figure H.1 shows the results of both simulation investigations with the nonlinear vehicle

model subject to the stochastic road excitation. As expected, the ride comfort perfor-

mance of both the Skyhook-Groundhook (SH/GH) controller and the full-vehicle LPV

controller improves with increasing body mass due to the better isolation regarding road

disturbances. Moreover, the ride comfort performance of the full-vehicle LPV controller

shows a slightly larger improvement of ride comfort, which indicates that the full-vehicle

LPV controller features a better robust performance regarding body mass variation than

the Skyhook-Groundhook controller. Figure H.1-right shows the result of the investigation

of the imperfect inverse semi-active damper model. Overall, the ride comfort performance

of both controllers exhibits good robustness regarding the considered scaling error result-

ing from the inverse semi-active damper model. The Skyhook-Groundhook controller,

however, seems to be slightly more insensitive to these errors.
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I Implementation in Simulink

This section presents two screenshots of the implementation of the vertical dynamics

algorithm in Simulink. Figure I.1 shows the top level of the Simulink model and Figure

I.2 illustrates the implementation of the full-vehicle LPV controller. The overall vertical

dynamics software consists of seven main subsystems:

sensors and can: this subsystem collects the input signals from the sensors and

the vehicle CAN bus and converts them to physically meaningful signals,

prepare inputs: this subsystem estimates the lateral acceleration of the vehicle

from the steering angle and the vehicle speed and handles the offsets of the ac-

celerometers,

params and adaptions: this subsystem calculates the road index and determines

most of the parameters of the damper control algorithm,

vehicle CtrlAlgo: this subsystem incorporates the full-vehicle LPV controller or

the Skyhook-Groundhook controller,

damper mode selector: this subsystem determines the operating modes of the

dampers, namely const. ud comfort, const. ud sport, controlled comfort, etc.

damper CtrlAlgo: this subsystem features the local damper current controller,

to Damper: this subsystem outputs the demand values of each damper.

This modular architecture allows for an easy substitution of subsystems and functions like

the Skyhook-Groundhook controller and the LPV controller. Furthermore, the vertical

dynamics software can be easily adapted to the requirements of new application, e.g. by

removing some of the subsystems or adding new ones.

Figure I.2 shows the implementation of the full-vehicle LPV controller with feedforward

consisting of the main subsystems:

observer: this subsystem collects the input signals from the sensors and estimates

the states of the full-vehicle,

LPV stateFeedback: this subsystem computes the LPV state-feedback gain using

look-up tables,

roll feedforward: this subsystem incorporates the LPV feedforward filter,

calc theta: this subsystem calculates the saturation indicators.

The structure of the controller particularly emphasizes the advantages of DI controllers

compared to general output-feedback controller. In particular, DI controllers can be

implemented by separate subsystems for the observer and for the state-feedback part.
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Figure I.1: Overview of Simulink implementation of the vertical dynamics algorithm
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Figure I.2: Simulink implementation of the full-vehicle LPV controller with feedforward
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