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Molecular dynamics simulations have been performed to investigate in detail collective modes spectra
of two-dimensional Coulomb fluids in a wide range of coupling. The obtained dispersion relations
are compared with theoretical approaches based on quasi-crystalline approximation, also known
as the quasi-localized charge approximation, in the plasma-related context. An overall satisfactory
agreement between theory and simulations is documented for the longitudinal mode at moderate
coupling and in the long-wavelength domain at strong coupling. For the transverse mode, satisfactory
agreement in the long-wavelength domain is only reached at very strong coupling, when the cutoff
wave-number below which shear waves cannot propagate becomes small. The dependence of the cutoff
wave-number for shear waves on the coupling parameter is obtained. Published by AIP Publishing.
https://doi.org/10.1063/1.5050708

I. INTRODUCTION

Two-dimensional and quasi-two-dimensional classical
interacting particle systems have attracted tremendous inter-
est over the years.1,2 This interest is at least twofold. First,
2D systems play an important practical role in a broad
range of phenomena occurring at fluid and solid surfaces
and various interfaces. Examples are atomic monolayers and
thin films on substrates, 2D electron fluid on the surface
of liquid helium,3 metallic and magnetic layer compounds,
colloidally stabilized emulsions and bubbles,4,5 colloidal
particles at flat interfaces,6,7 and complex (dusty) plasma
systems in ground-based laboratory conditions.8–10 Second,
physics in two-dimensions (2D) can be fundamentally differ-
ent from that in three-dimensions (3D). A celebrated exam-
ple is related to the nature of the fluid-solid phase transition
in 2D.2,11

The focus of the present study is on a particular realiza-
tion of classical 2D systems—a system of point-like charged
particles with Coulomb interactions. This system received con-
siderable attention in connection to electron clouds confined
in two dimensions,3,12,13 and, more recently, in the context
of charged particles in a weakly screened environment (e.g.,
colloids and complex plasmas).9,14–17 Our particular attention
will be on the properties of collective modes in the sys-
tem. Collective modes in 2D Coulomb solids are relatively
well understood.18 In 2D Coulomb fluids, collective modes
were actively investigated theoretically in the late 70’s and
80’s.19–22 Later, the approach known as the quasi-localized
charge approximation (QLCA) has been applied.23,24 How-
ever, to the best of our knowledge, these theoretical approaches

a)Electronic mail: Sergey.Khrapak@dlr.de
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have never been tested thoroughly against experiments and
numerical simulations. In fact, we are aware of only one
important numerical experiment performed by Totsuji and
Kakeya.25,26 The limited set of data obtained at that time was
not sufficient for a very detailed comparison with theoretical
predictions.

The purpose of this work is to fill this gap and report exten-
sive numerical simulations on the dynamics of 2D Coulomb
systems in a wide range of coupling. We have performed
molecular dynamics (MD) simulations with 104 particles using
the particle-particle particle-mesh (PPPM) Ewald summation
method.27 In this way, the dispersion relations of the longitu-
dinal and transverse collective excitations are obtained. These
dispersion relations are then compared with the results of
theoretical calculations based on the quasi-crystalline approx-
imation (QCA) approach. This approach is known to be a good
approximation to describe elastic collective modes in strongly
coupled fluids with soft long-range interactions (though it fails
in the limit of very steep hard-sphere or hard-disk interac-
tions28). We discuss to which extent it is reliable in the present
case of 2D Coulomb fluids. In particular, we demonstrate that
QCA should not be applied to short-wavelength excitations
and explain why it is so. For the transverse mode, QCA is only
meaningful at sufficiently strong coupling when the critical
wave number, below which transverse excitations cannot exist,
becomes numerically small. We report the measured depen-
dence of this critical (cutoff) wave number on the coupling
parameter.

Another purpose of the present work is to put the 2D
Coulomb system in the context of other classical soft inter-
acting particles in 2D geometry. In a series of papers, we have
reported detailed investigation of thermodynamics and dynam-
ics of several classical systems of soft-interacting particles
in 2D, such as one-component plasma (OCP) (characterized
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by logarithmic interaction between the particles),29,30 Yukawa
systems,31 and dipole-like systems (with ∝r−3 interaction).32

The present work represents a logical continuation of these
studies. The reported results complement those previously
obtained and complete the story.

The paper is organized as follows. In Sec. II, we describe in
detail the system under investigation, provide necessary details
about the MD simulations and data analysis, and describe
the QCA-based approaches to the collective modes disper-
sion relations. In Sec. III, main results from MD simulations
are presented and compared with theoretical approximations.
This is followed by our conclusion in Sec. IV. Some details on
the thermodynamic properties and on the derivation of analyti-
cal dispersion relations of 2D Coulomb fluids are summarized
in Appendixes A and B, respectively.

II. METHODS
A. Coulomb systems in two dimensions

The Coulomb potential reads

φ(r) = e2/r, (1)

where e is the particle charge and r is the interparticle distance.
The point-like particles interacting via the potential (1) are
immersed into a fixed neutralizing background to stabilize the
system and make thermodynamic properties meaningful. The
phase behavior of the systems is described by the Coulomb
coupling parameter

Γ = e2/aT , (2)

where T is the temperature (in energy units), a = (πn)−1/2 is the
2D Wigner-Seitz radius, and n is the areal (2D) density. The
system is conventionally referred to as strongly coupled when
the potential energy [see Eq. (A1) for the definition] dominates
over the kinetic energy, which occurs at Γ� 1. In the opposite
limit (Γ � 1), the system is called weakly coupled.

At very low Γ, the system properties are similar to those
of an ideal gas in 2D. When coupling increases, the sys-
tem forms a strongly coupled fluid phase, which can crys-
tallize into a triangular lattice upon further increase in Γ.3

The fluid-solid phase transition occurs at Γ ' 120–140.3,13

The nature of the fluid-solid phase transition in 2D sys-
tems is known to depend considerably on the potential soft-
ness.33 For the repulsive power-law interactions (∝r−α), it
has been recently demonstrated33 that for α & 6 the hard-
disk melting scenario holds with the first-order liquid-hexatic
transition and a continuous hexatic-solid transition.34 For
α . 6, the liquid-hexatic transition is continuous, with cor-
relations consistent with the Berezinsky-Kosterlitz-Thouless-
Halperin-Nelson-Young (BKTHNY) scenario.2 The systems
with extremely soft and long-ranged interactions with α < 6
are not yet accessible for large-scale simulations necessary
to establish the exact melting scenario in the thermodynamic
limit.33 However, no further change of scenario is expected,33

and the melting of the 2D Coulomb solid should be described
by the BKTHNY theory. This important point is beyond the
scope of this paper, which is mainly focused on collective
modes in the fluid phase.

Apart from the nature of the fluid-solid phase transition,
many other properties of the Coulomb systems in 2D have

been studied over decades. Particularly relevant for the present
work are the studies of static, dynamical, and elastic proper-
ties of Coulomb solids;18,35 thermodynamic properties of the
fluid and solid phases;13,29,36–40 collective modes of 2D elec-
tron fluids;19–26 and transport properties of the 2D Coulomb
fluids.41

The considered Coulomb system should not be confused
with a similar 2D system in which the interaction potential
is defined via the 2D Poisson equation and scales logarithmi-
cally with the distance. Both systems are often referred to as
the 2D one-component plasma (OCP). 2D OCP with logarith-
mic interactions has also received considerable attention,42–45

including collective modes description,30,46 but this will not
be discussed here.

B. Molecular dynamics simulations

We have performed extensive MD simulations of 2D clas-
sical Coulomb systems in the NVT ensemble consisting of
N = 104 particles. The point-like particles are interacting via
the Coulomb potential (1). We have used the PPPM Ewald
summation method27 to account for long-range Coulomb inter-
actions with the cut-off radius of 7.5n−1/2 for the short-range
part. The system evolves in the Langevin thermostat with a
sufficiently low dissipation rate so that the atomistic dynam-
ics is realized. The numerical time step has been chosen as
∆t = 5.6 × 10−4

√
ma3Γ/e2. All simulations have been per-

formed in a HOOMD-blue package.47,48 We have investigated
a wide range of coupling parameters corresponding to the fluid
phase, 1 ≤ Γ ≤ 100.

The spectra of collective modes in Coulomb fluids have
been determined by the standard approach,32,49,50 based on
measuring the velocity current

j(k, t) ∝
∑

s

vs(t) exp(ikrs(t)), (3)

where vs(t) and rs(t) are the velocity and radius vectors of the
sth particle, k is the wave vector, and the summation is over
all particles in the system. Then we evaluate the longitudinal
(l) and transverse (t) waves amplitudes

Cl,t(k,ω) ∝ Re
∫

dt
〈
jl,t(k, t)jl,t(−k, 0)

〉
eiωt , (4)

where jl(k, ω) and jt(k, ω) are projections of the velocity cur-
rent j(k, t) to the longitudinal and transverse directions, respec-
tively, andω is the frequency. Note that Cl ,t(k,ω) depend only
on k = |k| due to fluid isotropy. To obtain dispersion relations
ωl ,t(k), we fitted Cl ,t(k, ω) by the distribution32,50

fl,t(ω) ∝
1

(ω − ωl,t)2 + γ2
l,t

+
1

(ω + ωl,t)2 + γ2
l,t

(5)

for each wave-number k. Two examples of the obtained dis-
persion relations in terms ofωl ,t(k) and γl ,t(k), corresponding
to the strongly coupled regime, are shown in Figs. 1 and 2.

C. Theory

A powerful theoretical approach to describe collective
motion in classical systems of strongly interacting parti-
cles is the quasi-crystalline approximation (QCA).51,52 This
approach can be considered as either a generalization of the
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FIG. 1. Collective modes of the 2D Coulomb fluid with Γ = 100. Circles
correspond to frequencies ωl ,t and triangles to ωl ,t ± γl ,t , obtained by
applying a fitting function (5) to the MD data. Red (blue) color corresponds
to the longitudinal (transverse) dispersion. The solid and dashed curves of
the corresponding color correspond to the QCA approximation with kinetic
terms retained, Eq. (6), and without kinetic terms, Eq. (9). The green curve
corresponds to the generalized high-frequency bulk modulus of Eq. (12).

random phase approximation (RPA) or, alternatively, as a gen-
eralization of the phonon theory of solids51 (the latter explains
why it is often referred to as QCA). In the context of plasma
physics, an analog of the QCA is known as the quasi-localized
charge approximation (QLCA). It was initially proposed as a
formalism to describe collective mode dispersion in strongly
coupled charged Coulomb liquids in both 3D and 2D23,24,53,54

as well as other related systems (for a review, see Ref. 55). The
approach unilaterally links dynamic and structural properties
of the systems, i.e., it allows us to calculate collective mode
dispersion relations based on the interaction potential and pair
correlations. However, the inverse procedure is poorly under-
stood, and theory of pair correlations reconstruction using the
interaction potential and dynamic properties is well developed
only for crystals.56–59

The dispersion relation of the longitudinal and transverse
modes can be written60 as

FIG. 2. Same as in Fig. 1, but for the 2D Coulomb fluid with Γ = 50.

ω2
l =

k2

mn
[K∞(k) + G∞(k)],

ω2
t =

k2

mn
G∞(k),

(6)

where m is the particle mass, and K∞(k) and G∞(k) represent
the generalized high frequency (instantaneous) bulk and shear
moduli (we operate with infinite frequency moduli here; for
other purposes finite frequency or “relaxed” moduli may be
more appropriate61). These can be expressed as

K∞ = 2mnv2
T +

mn

k2

[
L2(k) − T 2(k)

]
,

G∞ = mnv2
T +

mn

k2
T 2(k),

(7)

where vT =
√

T/m is the particle thermal velocity scale (the
root-mean-square velocity in 2D is

√
2T/m) and the general

expressions for the configurational terms L(k) and T(k) are

L2(k) =
n
m

∫
∂2φ(r)

∂z2
g(r)[1 − cos(kz)]dr,

T 2(k) =
n
m

∫
∂2φ(r)

∂y2
g(r)[1 − cos(kz)]dr,

(8)

where g(r) is the radial distribution function (RDF) and
z = r cos θ is the direction of the propagation of the longitudinal
mode (the particles are confined to the zy plane).

In the present notation, the dispersion relations without
the kinetic terms, i.e.,

ω2
l = L2(k),

ω2
t = T 2(k),

(9)

would correspond to the standard QCA (or QLCA) approach.55

The dispersion relation (6) with kinetic terms retained follows
from the second-frequency-moment sum rules for the current
correlation functions.21 Despite difference in accounting for
the kinetic terms, below we will refer to both approaches
as QCA-based. Explicit expressions for L(k) and T(k) are
available.21,55 For completeness, they are also summarized in
Appendix B.

In the QCA-based approaches, the dispersion relations
are directly and relatively simply expressed in terms of the
RDF g(r) and the pair interaction potential φ(r).62 Only very
minor modifications (e.g., related to the presence or absence of
the neutralizing background) are required to apply the scheme
to various physical systems, characterized by distinct inter-
actions and dimensionality. It is this relative simplicity and
generality, which have made QCA-based approaches to collec-
tive modes particularly popular, although more involved and
sometimes more accurate theories (like for instance mode cou-
pling theory63–65) also exist. In addition, in some cases QCA
can be further simplified by taking a model RDF, which allows
for analytical integration in Eq. (8) and results in particularly
simple fully analytical expressions for the dispersion curves
without free parameters. Two-dimensional Coulomb systems
represent one of such cases and the corresponding expressions
are derived in Appendix B.

The main idea behind these simplified QCA (sQCA)
expressions is as follows. Since the dispersion relations (as
well as certain thermodynamic properties) depend on the RDF



134114-4 Khrapak et al. J. Chem. Phys. 149, 134114 (2018)

g(r) only under the integral sign, it is not very unreason-
able to assume that a simple model RDF can be constructed,
which allows us to describe the required integral properties.
The model RDF can be quite different from the actual RDF,
it should only capture the essential properties affecting the
magnitude of the integrals involved. For very soft long-ranged
potentials, the contribution from the distant interactions is
important, where the fluid RDF exhibits small-amplitude oscil-
lations around g(r) = 1. At strong coupling, the contribution
from the short distances is small because the particles cannot
approach close to each other due to strong repulsion. Effec-
tively, a correlational hole is formed and g(r) ' 0 inside this
hole. A simplest possible model g(r) satisfying these properties
is of the form

g(r) = θ(r − R), (10)

where θ(x) is the Heaviside step function and R is the cor-
relational hole radius (which is of the order of the mean
interparticle separation at strong coupling). Previously, a sim-
ilar RDF was employed to analyze the main tendencies in the
behavior of specific heat of liquids and dense gases at low tem-
peratures66 and to calculate the dispersion relation of Coulomb
bilayers and superlattices at strong coupling.67 In the context
of QCA approach, an appealing benefit of this simple RDF is
that it allows the analytical integration for certain interaction
potentials. Particularly simple and elegant expressions have
been recently derived for Yukawa systems and one-component
plasma in 3D68–70 and one-component plasma with logarith-
mic interactions in two dimensions.30 Somewhat less elegant,
but still tractable, expressions have been also derived for the 2D
system with dipole-like (∝r−3) interaction.32 In Appendix B,
we complement these results by deriving fully analytical dis-
persion relations for the considered case of the 2D Coulomb
fluid; see Eqs. (B3) and (B4).

In addition to the dispersion relations arising in the QCA-
based approaches, we will also consider a long-wavelength
hydrodynamic longitudinal dispersion19,22

ω2
l = ω

2
0ka +

1
m

(
∂P
∂n

)
s
k2, (11)

where ω0 =
√

2πne2/ma is the characteristic 2D plasma fre-
quency (note that the reduced wave number q = ka is also
extensively used throughout the paper). The derivative of the
pressure P with respect to the density is taken under the
condition of constant entropy. The hydrodynamic description
applies because 2D Coulomb systems are collisionally domi-
nated.19,71 A potential generalization of the long-wavelength
hydrodynamic dispersion (11) is

ω2
l =

k2

mn
K∞(k). (12)

It will be demonstrated below that the right-hand sides of (11)
and (12) are indeed very close to each other (although not iden-
tical) across coupling regimes in the long-wavelength limit. It
will be also shown that, at moderate coupling, the dispersion
relation of the form (12) is particularly close to the dispersion
relation measured in the MD experiment.

III. RESULTS
A. Transverse mode

The standard QCA-based approaches are not very useful
to describe the transverse dispersion relations in fluids because
damping effects are not included.32,55 For example, in Figs. 1
and 2 clear disagreement between the QCA and MD spectra is
observed at short wavelengths. The main reason is that QCA
does not take into account effects of anharmonicity, which
are responsible, in particular, for damping of collective exci-
tations. Indeed, the particles in fluid are considered within the
framework of QCA as “frozen” near their equilibrium posi-
tions, whose statistics is determined by the actual fluid RDF
g(r). Then, the excitation spectra are calculated in the harmonic
approximation using perturbation theory for small displace-
ments of particles around equilibrium positions. An account
of particles’ jumps (important for the physics of fluids) cannot
be done within the framework of perturbation theory.72 Anhar-
monicity is related to the short-range region of the interaction
potential, which corresponds to large q in the reciprocal space
and results in the observed growing discrepancy between the
QCA and MD spectra.

Even in the regime of long wavelengths, the application
of QCA-based approaches is problematic. In particular, disap-
pearance of the transverse mode at long-wavelengths and the
existence of a q-gap (minimum wave number q∗, also referred
to as the “critical” or “cutoff” wave number, below which
shear waves cannot propagate)73–75 are not reproduced by the-
ory. From the data presented in Figs. 1 and 2, we observe that
the theory is only relatively close to the numerical data at very
strong coupling, Γ & 100, where the q-gap is narrow. At lower
coupling, the width of the q-gap increases with decreasing
coupling (weakening correlations) as shown in Fig. 3. This
behavior is similar to that documented previously for vari-
ous kinds of simple fluids.72–77 For 2D Coulomb fluids, the
dependence of q∗ on Γ can be fitted by a simple formula
q∗ ' 15.2Γ−0.9.

There exists a simple phenomenological recipe to improve
the theoretical description. In the long-wavelength limit, the
generalized hydrodynamic description of the transverse mode
yields75,78 ω2

t ' C2
t k2 − 1/(2τr)2, where Ct is the transverse

sound velocity and τr is the relaxation time. The condition

FIG. 3. Reduced cutoff wave number q∗ of the transverse mode in strongly
coupled 2D Coulomb fluids versus the Coulomb coupling parameter Γ. In
the strongly coupled regime, a decrease of q∗ with Γ can be reasonably well
described by a simple function q∗ ' 15.2Γ−0.9, shown by the solid line.
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q∗ ' a/(2Ctτr) determines the cutoff wave-number. The
procedure is then to simply add the term −1/(2τr)2 to the
right-hand side of the corresponding theoretical dispersion
relation.70,73 In this way, the dispersion relation improves in
the long-wavelength low-frequency regime, whilst in the high-
frequency regime, whereωτr� 1, this correction is negligible.
The important real problem of how to estimate the relaxation
time from macroscopic or microscopic information available
on the system is not yet completely solved (for a recent discus-
sion, see, e.g., Refs. 79 and 80). This problem is beyond the
scope of the present article. However, the obtained dependence
for q∗(Γ) can potentially be useful to test various theoretical
approximations.

In the strongly coupled limit, when the width of the
q-gap diminishes, QCA performance is satisfactory up to the
first maximum in the transverse mode dispersion at q ' π
(see Fig. 1). In the long-wavelength limit, the transverse sound
velocity can be easily related to the system excess energy; see
Eq. (B2). This relation is applicable both in fluid and crys-
talline phases. In this respect, we mention a simple melting
criterion of 2D crystals with soft long-ranged interactions pro-
posed recently.81 It states that the ratio of the transverse sound
velocity of an ideal crystalline lattice to the thermal velocity
is a quasi-universal number close to 4.3 at melting.

In the short-wavelength limit, the configurational contri-
bution to the transverse dispersion relation is given by the
square of the Einstein frequency, ω2

t ' Ω
2
E = (ω2

0/2) ∫
∞

0

g(x)dx/x2. This again applies to both liquid and crystalline
phases (in the latter case, we should sum up instead of
integrate). For an ideal crystalline lattice, the summation
involved represents just the lattice sum for the dipole-dipole
(∝r−3) potential.32,82 For the triangular lattice, this yields Ω2

E
' 0.399 256ω2

0.

B. Longitudinal mode

It is useful to start with the analysis of the long-wavelength
regime. The long-wavelength expansion of the longitudinal
dispersion relation reads

ω2
l ' ω

2
0ka + Ck2v2

T , (13)

where C is the coefficient to be discussed. Theoretically, the
first of Eq. (6) yields C ' 3 + 5

8 uex, which reduces to the
random phase approximation (RPA) ω2

l ' ω2
0ka + 3k2v2

T in
the absence of correlations. It is known, however, that the
mean field approximation is inadequate in the weakly coupled
regime of 2D Coulomb systems.20,22,83 On the other hand, the
hydrodynamic description should be appropriate as discusses
above, which results inC = γµ, where γ = cP/cV is the adiabatic
index and µ = (1/T )(∂P/∂n)T is the reduced inverse compress-
ibility modulus. The dispersion based on the high-frequency
bulk modulus (12) implies C ' 2 + 3

4 uex (see Appendix B
for the relation between C and uex in different theoretical
models).

It is interesting to compare the predictions of these dif-
ferent models with the actual dispersion relation measured in
our numerical experiment. We have, therefore, determined the
coefficient C from MD simulations in a wide range of coupling.
We have also calculated C theoretically using the thermody-
namic functions summarized in Appendix A. The results are

FIG. 4. The coefficientC in the long-wavelength expansion of the longitudinal
dispersion relation (13) versus the coupling parameter Γ. Panel (a) corresponds
to moderate coupling 1 . Γ . 10, while panel (b) to the strong coupling
10 . Γ . 100 regime. Note that C changes sign from positive to negative near
Γ' 3.

plotted in Fig. 4. For clarity, we show separately the results for
moderate (a) and strong (b) coupling regimes. It is observed
that at moderate coupling, the actual C is very close to that
obtained either from the hydrodynamic dispersion (11) or from
the high frequency bulk modulus (12). The two values are
hardly distinguishable from each other. The QCA dispersion
relation with kinetic terms (6) yields significantly higher values
of C. Omitting kinetic terms and retaining only the configura-
tional terms [Eq. (9)] would result in negative values of C for
all Γ, which is clearly irrelevant at moderate coupling, and
the corresponding results are not shown in Fig. 4(a). When Γ

FIG. 5. Long-wavelength portion of the longitudinal mode dispersion of 2D
Coulomb fluid for Γ = 100 (a), Γ = 50 (b), and Γ = 10 (c). Symbols cor-
respond to the MD simulation data. Red curves are the results of the QCA
calculations with the actual RDF. Blue curves are the sQCA calculations using
Eq. (B3).
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FIG. 6. Dispersion relation of the longitudinal mode in moderately coupled 2D Coulomb fluids. The results are shown for Γ = 10 (a), Γ = 5 (b), Γ = 3 (c), and
Γ = 1 (d). Circles correspond to the main frequency ωl and triangles mark the range ωl ± γl , as obtained from MD simulations. The red curves correspond to
the QCA approach with kinetic contribution: ω2

l = 3k2v2
T + L2(k). The green curves correspond to the generalized high-frequency bulk modulus of Eq. (12).

The blue curves show a phenomenological approach ω2
l = 2k2v2

T + L2(k) suggested previously for 2D Yukawa fluids.73

increases, the actual values of C tend to those predicted by the
QCA approach, as observed in Fig. 4(b). The configurational
contribution of Eq. (9) is particularly close to MD data. Note
however that kinetic terms are numerically small in this regime,
and it is virtually unimportant whether they are retained or
not. The hydrodynamic and the high-frequency bulk modulus
expressions are again practically coinciding, but both slightly
underestimate the MD results.

In Fig. 4(a), we see that C changes sign from positive to
negative at about Γ ' 3. This is consistent with the observa-
tion of Totsuji and Kakeya25,26 who reported that this change
occurs somewhere between Γ = 2.29 and Γ = 7.09. This phe-
nomenon is reminiscent to the onset of negative dispersion
in convenient OCP.12,84–87 The only difference is the charac-
ter of long-wavelength dispersion, which is ω ∼ ωp in OCP
and ω ∼ ωp

√
q in the 2D Coulomb system (ωp is the plasma

frequency, equal to ω0 in the considered case). It is observed
that both the hydrodynamic and the high-frequency bulk mod-
ulus approaches are in good quantitative agreement with the
simulations results. In the OCP case, the conventional hydro-
dynamic approach is inadequate because of the high-frequency
character of the dispersion. On the other hand, the approach
based on the analysis of the excess component of the high fre-
quency bulk modulus allows us to capture correctly the onset
of negative dispersion.87

For shorter wavelengths, the arguments presented in the
beginning of Sec. III A regarding inappropriateness of the
QCA approach to describe short-wavelength excitations apply.
We observe in Figs. 1 and 2 that the QCA description agrees
with numerical data up to q . 0.6π and is off MD simulation
data for higher q. The dispersion relation based on the gen-
eralized high-frequency bulk modulus (12) is only applicable
in the long-wavelength limit, but underestimates considerably
the MD frequencies at shorter wavelengths. At strong coupling
with Γ = 100, a non-physical region with ω2

l < 0 is observed
around q ' π [see Fig. 1(a)]. In the regime where QCA is reli-
able, the magnitude of kinetic terms is relatively small, which is
manifested by closeness of the solid and dashed curves. More-
over, in this regime the fully analytical expression of sQCA,
Eqs. (B3) and (B4) are in rather good agreement with the “full”
QCA approach as well as with the MD data. This is illustrated
in Fig. 5.

In the moderately coupled regime, the dispersion is char-
acterized by the competition between the kinetic and configu-
rational contributions. The main results relevant to this regime
are summarized in Fig. 6. Good description of the MD results
in this regime is provided by the generalized high-frequency
bulk modulus, Eq. (12). Alternatively, one can combine the
QCA configurational term L(k)2 with the 2D ideal gas kinetic
term 2k2v2

T . Such a phenomenological approach has been pre-
viously proposed in the context of collective modes in 2D dusty
plasmas with Debye-Hückel (Yukawa) interaction.73

IV. CONCLUSION

Using the MD simulations, we have invetsigated the col-
lective modes dispersion of 2D Coulomb fluids in a wide
regime of coupling, from Γ = 1 to Γ = 100. The obtained
new results have been critically compared with theoretical
approaches based on the quasi-crystalline approximation.

Our main results can be shortly summarized as follows.
QCA approach is a simple and useful theoretical tool to
describe long-wavelength portions of the longitudinal and
transverse dispersion relations of 2D Coulomb fluids at strong
coupling. For transverse waves, this applies only to the very
strong coupling regime, where the q-gap becomes sufficiently
narrow. In this strongly coupled regime, good agreement with
the MD results is observed at q . 0.6π for the longitudinal
mode and q . π for the transverse mode. In this range of wave-
numbers, a simplified QCA with the step-wise RDF g(r) results
in fully analytical parameter-free formulas, which are in good
agreement with the MD results as well. In this domain, the dis-
persion relations are dominated by configurational terms and
kinetic terms can be omitted. The dependence of the cutoff
wave-number q∗, below which shear waves cannot propagate,
on the coupling parameter Γ has been obtained.

In the regime of moderate coupling, the longitudinal mode
dispersion relation is characterized by the competition between
the kinetic and configurational contributions. The dispersion
relation based on the generalized high-frequency bulk modulus
is consistent with the simulation results. The kinetic term that
dominates the dispersion of weakly coupled 2D Coulomb fluid
at short wavelengths is 2k2v2

T , different from the Bohm-Gross
term 3k2v2

T , occurring in OCP systems (in 3D and 2D).
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The obtained results complement and improve previously
reported results on the dynamical properties and collective
modes in 2D Coulomb systems and, more generally, in 2D
classical systems with soft long-ranged interactions.
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APPENDIX A: THERMODYNAMIC FUNCTIONS
OF 2D COULOMB FLUIDS

All required thermodynamic functions can be expressed
in terms of the dependence of the reduced excess (configura-
tional) energy uex on Γ. The integral equation for the reduced
excess energy in case of the 2D Coulomb system with the fixed
neutralizing background is

uex =
n

2T

∫
φ(r)h(r)dr = Γ

∫ ∞
0

h(x)dx, (A1)

where h(r) = g(r) − 1 and x = r/a.
When uex(Γ) is known, other thermodynamic quantities

are obtained as follows. The reduced system energy per particle
u = U/NT is

u = 1 + uex. (A2)

The compressibility Z = PV /NT (reduced pressure) is

Z = 1 + pex = 1 +
1
2

uex. (A3)

The inverse reduced isothermal compressibility modulus
µ = (1/T )(∂P/∂n)T is

µ = 1 +
1
2

uex +
Γ

4
∂uex

∂Γ
. (A4)

The reduced isochoric heat capacity cV = (1/N)(∂U/∂T )V is

cV = 1 + uex − Γ
∂uex

∂Γ
. (A5)

The adiabatic index γ = cP/cV of the 2D Coulomb fluid is

γ = 1 +
(cV + 1)2

4µcV
. (A6)

The product γµ is

γµ = µ +
(cV + 1)2

4cV
. (A7)

In the weakly coupled regime (µ ' 1, cV ' 1), we get γµ ' 2
as expected for 2D geometry. In the strongly coupled regime
(µ� 1, γ ' 1), we get γµ ' µ.

As for the dependence uex(Γ), we have used a simple two-
term expression29

uex = MΓ + 0.231 ln(1 + 2.798Γ), (A8)

where M ' −1.1061 is the Madelung constant (triangulat lat-
tice sum) of a 2D Coulomb solid. This functional form has
been proven to be very useful for various fluids characterized
by soft long-ranged interactions in 2D.31,32,88,89

APPENDIX B: SIMPLIFIED EXPRESSIONS
FOR L AND T

The explicit expressions for L(k) and T(k) for the 2D
Coulomb system are21,55

L2(k) = ω2
0q + ω2

0

∫ ∞
0

h(x)

2x2

[
1 − J0(qx) + 3J2(qx)

]
dx,

T 2(k) = ω2
0

∫ ∞
0

h(x)

2x2

[
1 − J0(qx) − 3J2(qx)

]
dx,

(B1)

where Jα(x) are Bessel functions of the first kind, q = ka, and
x = r/a. In the long-wavelength limit (q→ 0), series expansion
up to O(q2) terms yields

L2(q) = ω2
0q +

5
8

k2v2
T uex,

T 2(q) = −
1
8

k2v2
T uex.

(B2)

For a simplified RDF accounting for a correlational hole at
short interparticle separations and the absence of correlations
at long separations, g(x) = θ (x − R) (R is now expressed in
units of a), the integration in Eq. (B1) can be done analytically,
resulting in

L2(q)

ω2
0

= q +
1

2R
+

J1(qR)

2qR2

[
2 + 2q2R2 − πq3R3H0(qR)

]

−
J0(qR)

2R

[
2 + 2q2R2 − πq2R2H1(qR)

]
(B3)

and
T 2(q)

ω2
0

=
1

2R
−

J1(qR)

qR2
. (B4)

Here H0(x) and H1(x) denote the Struve functions of order 0
and 1, respectively.

The reduced correlational hole radius R is not a free
parameter of the model. It should be determined from the con-
dition that the energy or pressure integral equations yield ade-
quate results when the model RDF is substituted.68 For inverse
power potentials, the energy and pressure routes are equiva-
lent. Substituting the model RDF in Eq. (A1), we immediately
get

R = −uex/Γ. (B5)

R is then determined with the help of (A8). In the strongly
coupled regime, the static (Madelung) contribution to the
excess energy is dominant and we obtain R ' 1.1061. Closer
value of R =

√
6/5 ' 1.095 was previously obtained for the

strongly coupled 3D Coulomb system.68 In the 2D OCP with
logarithmic interaction, the pressure equation yields30 R = 1.0.

Alternatively, to obtain R at strong coupling, we can ana-
lyze the long-wavelength expansion of Eqs. (B3) and (B4)
which read

L2(q) ' ω2
0

(
q −

5Rq2

16

)
,

T 2(q) ' ω2
0

Rq2

16
.

(B6)

We then compare these expansions with the corresponding
expansions of Bonsall and Maradudin18 for the low-q limit of
collective modes in the ideal hexagonal lattice (this is appro-
priate because the QCA approach reduces to the conventional
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phonon theory of solids when applied to an ideal crystalline
lattice),

ω2
l ' ω

2
0

(
q − 0.345 657q2

)
,

ω2
t ' ω

2
0(0.069 13q2).

(B7)

Comparing (B6) and (B7), we recover R ' 1.1061, as should
be expected.

1J. Kosterlitz and D. Thouless, Prog. Low Temp. Phys. 7, 371 (1978).
2J. M. Kosterlitz, Rev. Mod. Phys. 89, 040501 (2017).
3C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
4V. Poulichet and V. Garbin, Proc. Natl. Acad. Sci. U. S. A. 112, 5932 (2015).
5S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko,
N. V. Penkov, N. P. Kryuchkov, and N. F. Bunkin, Langmuir 32, 11245
(2016).

6E. V. Yakovlev, K. A. Komarov, K. I. Zaytsev, N. P. Kryuchkov, K.
I. Koshelev, A. K. Zotov, D. A. Shelestov, V. L. Tolstoguzov, V. N. Kurlov,
A. V. Ivlev, and S. O. Yurchenko, Sci. Rep. 7, 13727 (2017).

7P. V. Ovcharov, N. P. Kryuchkov, K. I. Zaytsev, and S. O. Yurchenko,
J. Phys. Chem. C 121, 26860 (2017).

8H. M. Thomas and G. E. Morfill, Nature 379, 806 (1996).
9V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov,
Phys.-Usp. 47, 447 (2004).

10G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
11V. N. Ryzhov, E. E. Tareyeva, Y. D. Fomin, and E. N. Tsiok, Phys.-Usp. 60,

857 (2017).
12M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980).
13R. C. Gann, S. Chakravarty, and G. V. Chester, Phys. Rev. B 20, 326 (1979).
14V. E. Fortov, A. Ivlev, S. Khrapak, A. Khrapak, and G. Morfill, Phys. Rep.

421, 1 (2005).
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63W. Götze and M. Lücke, Phys. Rev. A 11, 2173 (1975).
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