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Introduction 

The trade-off between safety, comfort and wear is an essential aspect of nearly every research 
activity that deals with railway technology. Regarding the longitudinal railway dynamics the 
wheel-rail interaction strongly influences all of the three criteria. Current traction and braking 
systems like wheel slide and skid protection already ease the trade-off to a certain extent [1]. To 
further improve the smoothness of the longitudinal motion and reduce the wear of wheels and 
rails, advanced measures for the traction and brake control are necessary. 
Most of the advanced control algorithms require the knowledge of the full system states to 
continuously minimize the impact of the time- and path-dependent friction conditions in the 
wheel-rail interface. However, a direct measurement of all states is usually not feasible due to 
technical and economic reasons. Thus, the current longitudinal dynamics of the railway vehicle 
have to be estimated by an observer which provides information on each system state. 
Therefore, this work presents a model based observer synthesis for the longitudinal dynamics 
estimation of a wheelset. First of all, the implementation of a nonlinear analytical observer model 
is illustrated in the methods section. In addition, this section describes the parameter estimator 
method and the disturbance observer approach. These two methods are chosen to specifically 
consider the influence of the friction conditions in the wheel-rail interface and also the varying 
friction coefficient between the brake pads and the brake discs. In the results section, the two 
different observers are optimized and applied to measurement data. At the end, the results are 
discussed, a conclusion is drawn, and the contribution of the presented work is highlighted. 

Methods 

In the following, the wheelset on the test rig is considered as a nonlinear system in the form 
 

, y , (1) 

 

with the states , the inputs  and the outputs y. The system dynamics  are influenced by 

the system noise  and the measured outputs are affected by the sensor noise . The observer 

for this system is described by 
 

, , (2) 

 

with the observer feedback  that ensures convergence between  and , if it is properly 

defined. Thus, the observer design process covers three steps: implementation of the observer 

dynamics , definition of the measurement signals via , and specification of the 

observer correction . 

As this work focuses the longitudinal dynamics, the observer model only comprises the two 
states wheelset velocity  and roller velocity , which corresponds to the translational speed 

. The dynamics  are established using Lagrange’s equations [2] and  considers a 

nonlinear wheel-rail interface due to the implementation of the Polach contact [3], [4]. The inputs 

 are the roller torque  and the brake pressure of the axle brake units . The system (2) is 

observable for  as well as for . Nevertheless, both states are assumed to be 

outputs, since  and  (or  respectively) are continuously measured in modern trains. 

As mentioned above, a parameter estimator and a disturbance observer are implemented. The 
parameter estimator  
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,  (3) 

 

generates additional inputs  representing the variation of the 

friction conditions in the wheel-rail interface and the brake units. The disturbance observer  
 

,  (4) 

 

extends the state vector by the disturbance states  and the system dynamics 

are extended by the disturbance dynamics . 

Results 

This section illustrates the optimization of the observer parameters as well as some results of 

the test rig experiments. The observer feedback  is a time invariant matrix comprising 

the two parts  and . The extension by the integral part results in an improved 

performance. The disturbance observer is realized as a Kalman filter [5] with the diagonal 

covariance matrices  and  representing the process noise and the observation 

noise, respectively. The disturbance dynamics are defined as an exponential regression over 

time. Thus, there are eight parameters of , four parameters of , and two of  that are 

optimized via a multi case optimization [6]. 
Table 1 shows a comparison between the optimized observers and a model without feedback 
correction but with optimized friction parameters. The two columns on the left denote the 

deviations  of the observed and the measured brake distances. The two columns on the right 

show the deviations of the longitudinal wheel-rail forces  integrated over time and divided by 

the scenario specific mean value of  and the experiment duration . For both quantities the 

average values of the test scenarios as well as the maximum values are illustrated. 
 

 

 
 

average max average max 

optimized 
model 

178 429 0.50 0.97 

parameter 
estimator 

17.2 ( -90.4 %) 21.5 ( -95.0 %) 0.36 ( -27.7 %) 0.90 ( -6.4 %) 

disturbance 
observer 

0.08 ( -99.9 %) 0.16 ( -99.9 %) 0.39 ( -21.0 %) 0.61 ( -36.3 %) 

Table 1: Results of the observer synthesis for the optimization scenarios 
 

Both observers show a significantly improved accuracy of the brake distance estimation, since 

 is available to the observers. The observed wheel-rail forces indicate clearly the advantages 

of the observer methods, as the average values show an improvement of more than 20 % in 
relation to the optimized model. The enhancement of the maximum force deviation for the 
parameter estimator is comparatively slight due to the high frequency of the wheel slide 
protection. 

Conclusions and Contributions 

The previous sections give an overview on the entire observer synthesis from the setup of an 
observer model to the optimization of the observer parameters. The presented results show that 
the observers estimate the system states with a high accuracy and provide information 
regarding the longitudinal dynamics like the longitudinal wheel-rail force. Exploiting this 
information in an advanced control setup facilitates a row of promising applications to improve 
safety, comfort and wear all at once. First of all, the variation of brake distances might be 
minimized even on varying friction conditions, what essentially enhances the safety. 
Furthermore, the functionalities of the traction and braking systems can be upgraded, so that the 
gap between two trains can be shortened and the utilized capacity of the existing rail 
infrastructure increases. 



There are some aspects that are not yet investigated but are expected to lead to an even higher 
accuracy of the observer results. One of these features is a temperature and velocity dependent 

modelling of the disturbance dynamics . Another approach is the combination of state 

and parameter estimation that allows for a specific consideration of the quickly time-varying 
states and the slowly time-varying friction disturbances, cf. [7]. Further tasks to be tackled in the 
future are to adapt the observers to an entire train system and to validate them with data from 
track tests. 
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