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Abstract

Energetic, charged particles elicit an orchestrated DNA damage response (DDR)

during their traversal through healthy tissues and tumors. Complex DNA damage

formation, after exposure to high linear energy transfer (LET) charged particles, results

in DNA repair foci formation, which begins within seconds. More protein modifications

occur after high-LET, compared with low-LET, irradiation. Charged-particle exposure

activates several transcription factors that are cytoprotective or cytodestructive, or that

upregulate cytokine and chemokine expression, and are involved in bystander

signaling. Molecular signaling for a survival or death decision in different tumor types

and healthy tissues should be studied as prerequisite for shaping sensitizing and

protective strategies. Long-term signaling and gene expression changes were found in

various tissues of animals exposed to charged particles, and elucidation of their role in

chronic and late effects of charged-particle therapy will help to develop effective

preventive measures.

Keywords: DNA damage response; nuclear factor jB; DNA repair foci; linear energy transfer;
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Introduction

In radiotherapy, energetic charged particles are used because of their favorable dose

distribution with better sparing of healthy tissue [1] and greater biological efficiency in a

defined linear energy transfer (LET) range. High-LET radiation has greater DNA-

damaging capabilities than low-LET radiation has [2], resulting in more-effective cell

killing or proliferation stops [3, 4].

A major difference between low-LET and high-LET radiation is the microscopic dose

deposition. Charged particles deposit their energy along densely ionized tracks [5]. In

chromosomes within those tracks, complex damage is produced, defined as 2 or more

abasic sites, oxidized bases on opposing strands or the same strand, and strand breaks

on opposite DNA strands within a few helical turns (Figure 1) [5–12]. That damage is

difficult to repair and affects rejoining faithfulness [13–15]. DNA repair systems have an

intrinsic weakness in processing complex damages [16]. Molecular signaling in response

to charged-particle exposure is predominantly a DNA damage response (DDR), turning

the switch toward cellular survival or death (Figure 2).

http://theijpt.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/211558177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


However, complex DNA damage can be more efficient at killing tumor and healthy cells. In surviving cells, complex DNA

damage might induce long-lasting signaling and gene expression changes, which might be tumor promoting and/or cause

degenerative diseases.

Here, we summarize the current knowledge on molecular signaling after charged-particle exposure, and we highlight

quantitative and qualitative differences in molecular signaling after charged-article exposure compared with low-LET

irradiation.

Intracellular Molecular Signaling after Charged-Particle Exposure

Ionizing radiation induces multiple genotoxic, stress-induced signaling pathways that regulate cellular growth, proliferation, cell

cycle progression, DNA replication, DNA repair, cell death, apoptosis, and cell-cell adhesion [17–19]. That very efficient DDR

signaling network ensures the integrity of the genome by cell-cycle checkpoints and DNA repair. The DDR genes are also

involved in transcriptional regulation and chromatin remodeling [20].

Figure 1. Examples of complex DNA damage. For details, see text.

Adapted from Georgakilas [113], DNA structure from Wikimedia

Commons.
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DNA Repair Foci Formation

Ionizing radiation activates phosphatidylinositol-3-kinase-related enzymes, including ataxia telangiectasia mutant (ATM),

ataxia telangiectasia, Rad3-related protein (ATR), and DNA-dependent protein kinase (DNA-PK) [21]. The ATM and ATR are

recruited to complex double-strand breaks (DSBs) (Figure 3) [22].

Mutations in ATM cause radiation hypersensitivity in patients with the autosomal recessive disorder ataxia-telangiectasia

[16]. Mice with ATM haploinsufficiency develop cataracts earlier compared with wild-type animals, and the enhanced

sensitivity was greater for high-LET heavy ions compared with low-LET x-rays [23].

There are 4 autophosphorylation sites in ATM: Ser-367, Ser-1893, Ser-1981, and Ser-2996. Ser-1981 phosphorylation is

associated with ATM monomerization. In human fibroblasts, ATM phosphorylated at Ser-367 is recruited to DNA damage sites

after exposure to xenon ions (LET 800 keV/lm) [24].

Very early events include phosphorylation of the histone variant H2AX on Ser-139 (cH2AX) by ATM [25]. That results in

protein recruitment to the DNA lesions, forming foci in LET-dependent kinetics [26]. The fast-recruited proteins are responsible

for damage recognition, and slower accumulating proteins are predominantly involved in subsequent repair events [27].

Meiotic recombination 11 homolog A (Mre11), Rad50 [28], p53-binding protein 1 (53BP1) [29], proliferating cell nuclear antigen

(PCNA) [30], x-ray repair cross-complementing 1 (XRCC1) [31], aprataxin [32, 33], p21 [28], RNF8 [34], and BRCA1 [35] form

foci at charged-particle–induced DNA lesions.

In addition to foci formation, a-particle irradiation (approximately 5.5 MeV) induces pannuclear phosphorylation of ATM and

H2AX in human peripheral blood lymphocytes and fibroblasts, and that cH2AX formation is dependent on ATM [36].

Poly(adenosine diphosphate [ADP]-ribose) synthesis by poly([ADP]-ribose) polymerase-1 (PARP-1) colocalizes with cH2AX

after proton exposure (3.2 MeV) in HeLa and V79 cells [37].

The Mre11/Rad50/NBS1 (MRN) complex has a central role as a DNA DSB sensor and is suggested to process a subclass

of high-LET radiation-induced complex DNA damage [38]. Moreover, MRN binds directly to the DSB strand ends forming the

inner focus [39] and supports efficient ATM activation and recruitment [40] as well as further H2AX phosphorylation. Mediators

of DNA-damage checkpoint protein 1 (MDC/NFBD1) must be recruited to cH2AX before MRN can bind in the outer focus. In a

final step, ATM binds to recruited MDC1 [39]. In U2OS cells, an acceleration of NBS and MDC1 foci formation was observed

up to an LET of 3000 and 9000 keV/lm, respectively [39].

Figure 2. Molecular signaling

and outcome after charged

particle exposure. For details,

see text
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The ATM substrate Rad50 was phosphorylated at Ser-635 within 15 to 120 min after exposure of U2OS cells to 197Au ions

(LET 13 050 keV/lm) [41].

MRE11, CTBP-interacting protein (CtIP), and exonuclease 1 (EXO1) are suggested to drive resection of complex DSBs

[22]. Furthermore, replication protein A (RPA) foci are formed at the sites of complex damages, indicating DSB resection after

accelerated-ion exposure [22].

In A549 lung carcinoma cells, carbon-ion exposure (LET 290 keV/lm) induced large BRCA1 foci and more p-ATM/p-ATR

foci per cell compared with c-irradiation [35]. BRCA1 activates DNA-end resection and thereby promotes homologous

recombination [42]. In a human bronchial epithelial cell line, c-rays and heavy-ion exposure initiated a BRCA1-centric DDR

involving CDKN1A, RBBP8, and RAD51 [43].

In addition, 53BP1 forms a barrier that inhibits DNA-end resection (42). In human neonatal dermal fibroblasts, cH2AX and

53BP1 foci colocalize in particle tracks (11B, 20Ne, LET approximately 135 keV/lm) [29].

XRCC1, a scaffold DNA repair protein for single-strand breaks, also colocalizes with cH2AX, but the foci are smaller and

disappear faster, and foci in heterochromatic regions are relocated to adjacent euchromatin [31]. Local heterochromatin

decondensation at the sites of ion hits allows DSB repair [31].

Aprataxin, a nuclear protein involved in DNA strand break repair, base excision repair [44, 45], and mitochondrial function

[46], accumulates at sites of iron or xenon-ion hits within seconds [32, 33]. It binds to MDC/NFBD1 in heavy-ion–exposed

HeLa cells, indicating its involvement in the repair of very high-LET radiation-induced DNA DSB [47]. Aprataxin colocalizes

with XRCC1 along tracks induced by uranium-ion (3.5 MeV/lm) exposure of HeLa cells [48].

Artemis has 50 to 30 exonuclease activity specific for single-stranded DNA, which can process damaged termini and is

involved with that activity in the repair of complex DNA damage [49]. Artemis is also involved in processing lesions induced by

76-MeV protons in the spread-out Bragg peak [50].

In addition, p21 forms foci within 2 min after exposure to lead or chromium ions, whereas p21 is diffusely spread after x-

irradiation [28].

The ubiquitin ligase RNF8, a key regulator of rapid DNA repair complex assembly, accumulates at DNA damage sites in a-

particle (3 MeV)-irradiated HTB96 U2OS cells within 30 min [34].

Figure 3. Formation of

charged particle-induced foci

at sites of complex DNA

double strand breaks. For

details, see text. Only proteins

that were experimentally

shown to accumulate at

charged particle induced

damage sites are shown.

Adapted from Bekker-Jensen

and Mailand [114] and

references in the text. Not all

proteins shown here might

accumulate in every charged

particle-induced focus; for

example DNA-PK and Artemis

are generally involved in

nonhomologous end-joining,

and BRCA1 and RPA in

homologous recombination,

indicating the branching into

one of these DNA double-

strand break repair pathways.
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Protein Modifications

Compared with low-LET radiation, high-LET radiation causes greater protein modifications via posttranslational and oxidative

processes [51–55]. The ubiquitin/proteasome system might modulate the cellular radiation response by affecting protein

turnover [56] and acts together with phosphorylation, methylation, and acetylation of, for example, H2AX [57] and p53 [58],

ADP-ribosylation, and other ubiquitin-like modifiers [59].

In addition to fast phosphorylation (see DNA Repair Foci Formation), other protein modifications, with slower kinetics,

such as ubiquitinylation, have been reported. A recent study with HeLa and oropharyngeal squamous cell carcinoma cells

showed that the histone H2B is specifically ubiquitinylated at Lys-120 (H2Bub) several hours after irradiation in response to a

high dose (10 Gy) of high-LET a-particles (LET 121 keV/lm) and protons (LET 12 keV/lm) but not by low-LET protons (1

keV/lm) or x-rays/c-radiation [60]. The ubiquitin ligases MSL2 and the RNF20/RNF40 complex control H2Bub and are

essential for complex DNA-damage processing [60], and their knockdown results in reduced survival after proton exposure

(LET 12 keV/lm).

Signaling Pathways and Gene Expression Changes

Carbon (LET 30/70 keV/lm) and iron-ion exposure (LET 180 keV/lm) kills lymphoblastoid cells, independent of p53 [61]. High-

LET (.70-85 keV/lm) heavy-ion irradiation-induced, p53-independent apoptosis might be mediated by a mitochondria-

associated apoptotic pathway involving caspase-9 [62–64].

The cytoplasmic mitogen-activated protein kinase (MAPK) pathways, extracellular signal-regulated kinase (ERK;

cytoprotective), and c-Jun N-terminal kinase (JNK; proapoptotic), which feed into and are fed upon by DDR also have an

equally important role in deciding the fate of the irradiated cell [35]. Moreover, ERK is phosphorylated in A549 cells after

exposure to 1 Gy c-rays, but not after carbon-ion irradiation (LET 290 keV/lm), whereas JNK is transiently phosphorylated

only after carbon-ion exposure [35], suggesting proapoptotic signal predominance after carbon-ion exposure.

Heavy-ion beams suppressed serine/threonine kinase B (AKT) survival signaling and might enhance caspase activation for

carbon-ion–induced autophagy and apoptosis [65].

The DDR results in activation of several transcription factors (reviewed in Hellweg et al [66]). Nuclear factor jB (NF-jB) is

strongly activated in human cells by heavy ions, with an LET of 70 to 300 keV/lm [67, 68]. Its role in the radiation response as

a link to the immune system was recently reviewed in Hellweg [69]. That strong NF-jB activation by heavy ions does not

protect cells from heavy-ion–induced cell death, but it does induce stronger expression of several cytokines and chemokines

compared with x-irradiation [70].

The role of microRNAs in the cellular response to charged-particle exposure and in cellular radiosensitivity is still unclear;

for low-LET radiation, in addition to ATM, BRCA1, and transcription factors (p53, NF-jB, Myc, and E2F), DNp73 was

suggested as a potential microRNA expression regulator in that response [71].

Radiation quality has been suggested to be the most significant source of variation in cellular signaling and overall gene

expression [43, 70, 72–74].

Cardiovascular System

In the heart (and bone marrow) from 28Si ion (LET 77 keV/lm)-irradiated mice, cleaved PARP-1, activated NF-jB, and

interleukin (IL)-6 and IL-1b remained elevated for 1 week to 6 months [75]. In cardiomyocytes isolated from mice 28 days after

their exposure, Fe ions (LET 155 keV/lm, 150 mGy) regulated a long-lived signaling mechanism for ERK1/2 and p38 MAPK

signaling, with NFATc4, GATA4, STAT3, and NF-jB as regulators of the response [76].

Endothelial cells can be relevant to pathophysiologic manifestations of radiation toxicity in many organs, and their

dysfunction was observed in response to c-irradiation [77]. Both helium-ion (LET 76 keV/lm) and x-ray (250 kV) exposure (0.1-

2 Gy) of human microvascular endothelial cells decreased TNF-a–induced leukocyte adhesion to endothelial cells under

laminar conditions [78]. Baselet et al [79] compared differences in signaling after exposure of endothelial cells from human

coronary arteries to x-rays and 56Fe ions (LET 155 keV/lm). Endothelial inflammation and adhesiveness increased with x-rays

(250 kV) but decreased after 56Fe-ion exposure (155 keV/lm). Moreover, 2-Gy x-rays and iron ions both enhanced the

expression of proteins involved in caveolar-mediated endocytosis signaling and cell-cell adhesion [79]. After x-irradiation,

genes involved in cell-cycle control were upregulated, whereas cell-adhesion genes were downregulated. After 56Fe-ion

exposure, p53 and genes controlling apoptosis were upregulated [79]. In the human endothelial cell line EA.hy926, 58Ni-ion

(LET 183 keV/lm) exposure induced expression of genes involved in endothelial permeability and apoptosis signaling [80].
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Iron ions induce proatherosclerotic processes in endothelial cells that are different in nature and kinetics than those induced by

x-rays [81].

Lung

In a human bronchial epithelial cell line, the acute phase response pathway was more strongly activated by heavy ions (56Fe,

LET 150 keV/lm; 28Si, LET 44 keV/lm) compared with c-irradiation (LET 0.2 keV/lm) [43]. In general, gene expression

patterns induced by different radiation species were related to distinct ionization densities but not to delivered dose [43]. Notch

signaling, which is involved in regulation of cell fate and differentiation, proliferation, and migration during development, was

specific to 56Fe-ion (LET 150 keV/lm), and phospholipase C signaling was specific to 28Si-ion (LET 150 keV/lm) irradiation,

whereas genes involved in inhibition of angiogenesis, cell migration, and invasion; proapoptosis signaling; and mechanisms of

viral exit from host-cells pathways responded only to c-irradiation [43].

Gastrointestinal Tract

The intestinal epithelium undergoes continuous renewal with proliferation, differentiation, migration, and apoptosis.

Deregulated WNT signaling with transcriptional coactivator b-catenin and ubiquitin-proteasome pathway has been implicated

in colorectal carcinogenesis [2].

In Fe-ion (LET 148 keV/lm, 1.6 Gy)–induced intestinal tumors in mice, long-term accumulation of the transcription factor

TCF4 and its coactivator b-catenin was found, which can upregulate the target genes c-Myc and cyclin D1. After exposure to

1.6 Gy 56Fe ions, compared with 2 Gy c-rays, a stronger decrease in expression of adenomatosis polyposis coli–independent

retinoid X receptor a (RXR-a) was observed in tumors and in tumor-free areas of the intestine [2, 82].

Immune System

Lymphocytes depend on survival signals and are particularly prone to radiation-induced apoptosis. Leukocytes decrease after

acute 56Fe-ions exposure in mice, and lymphocyte populations in blood and spleen exhibit varying degrees of susceptibility (B

. T . NK and T cytotoxic . T helper cells) [81].

In the p53 wild-type human lymphoblastoid cell line TK6, a large set of histone genes was downregulated 24 h after

exposure to equitoxic doses of high-LET (1.67 Gy 56Fe ions, LET 148 keV/lm) or low-LET (2.5 Gy c-rays) radiation [83]. Both

high- and low-LET radiation exposure negatively regulated histone gene expression in human lymphoblastoid cell lines

independent of p53 status [83].

Nervous System

Neuronal cells as terminally differentiated cells with long dendrites and an axon represent special charged particles’ targets. A

recent modeling approach visualizes the microscopic energy deposition in hippocampal neurons [84]. In rats, persistent

changes in the expression of NMDA receptor subunit genes were observed 3 months after exposure to 0.6 Gy iron ions (LET

150 keV/lm), affecting hippocampal glutamatergic transmission [85]. In hippocampal slices from proton-exposed mice,

inhibitory GABAergic synaptic transmission was decreased 3 month later [86]. In female mice, 2 and 12 months after exposure

to 1.6 Gy 56Fe ions (LET 150 keV/lm), levels of reactive oxygen species (ROS) were persistently raised in cerebral cortical

cells with concomitant lipid peroxidation. DNA repair proteins were decreased, whereas DDR marker proteins and expression

of nestin and glial fibrillary acidic protein (GFAP), the major intermediate filament protein of mature astrocytes, were increased

in the cerebral cortex [51].

Intercellular Molecular Signaling after Charged Particle Exposure

In bystander effects, unirradiated cells receive signals either from nearby irradiated cells [8, 87] via gap-junction and

medium-mediated diffusion or are cultured in medium transferred from previously irradiated cell cultures [88, 89]

(reviewed in Prise and O’Sullivan [90]). After tumor irradiation, rescue or sparing effects mediated by healthy tissue, as

well as detrimental effects on bystander cells, can occur [91]. The DDR is a sensible starting point for bystander signaling

after exposure to high-LET irradiation. Bystander effects elicited by exposure to carbon ions (LET 76 keV/lm) were

diminished after inhibition of DNA-PKcs and ATM in irradiated cells [92]. After a-particle exposure, ATM initiates

bystander signaling, which is mediated via NF-jB regulated cytokines (IL-6, IL8, IL-33, TNF, and TRAIL) and leads to

activation of different pathways, such as JAK2-Stat3, MAPK, or NF-jB, in bystander cells [93]. NF-jB activation,
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cyclooxygenase-2 (COX-2) upregulation, and DNA damage in bystander cells form a positive-feedback loop (LET 13-

1130 keV/lm) [94–96]. Activation of ERK and p38 signaling pathways in bystander cells occurred after a-particle

exposure (LET 120 keV/lm) as well as p53-independent ROS production after C-ion (LET 30/70 keV/lm) and Fe-ion (LET

180 keV/lm) exposure [61, 97]. Gap-junction inhibition diminished bystander effects after C-ion exposure (LET 76 keV/

lm) [98].

Relevance of Molecular Signaling for Particle Therapy

Molecular signaling is important for the therapeutic outcome of proton and carbon-ion radiotherapy via (1) killing of tumor cells,

(2) acute damage to healthy tissue, and (3) chronic and late effects.

Killing Tumor Cells

The DDR proteins represent excellent targets to augment radiotherapy. Clinical trials combining DDR inhibitors, radiation, and

genotoxic chemotherapy are ongoing [16]. High-LET charged particles induce an intense DDR. The potential of DDR inhibitors

should be evaluated for radiosensitization of tumors with defective or enhanced signaling. Patient-derived glioblastoma cell

lines were more resistant to x-rays and carbon ions when ATM signaling is impaired [99]. Human non–small cell lung cancer

models were sensitized to photon and carbon-ion (in the spread-out Bragg peak region) irradiation by ATM and DNA-PK

inhibitors, whereby the sensitizing effect for carbon-ion exposure was stronger for the DNA-PK inhibitor compared with the

ATM inhibitor [100].

An understanding of direct effects of charged-particle irradiation on the immune system [101] and indirect effects on immune

cells via immunogenic death of tumor cells [101, 102] with release of damage-associated molecular patterns (DAMPs) [103,

104] is a prerequisite for developing effective immunotherapy in combination with charged-particle irradiation [105]. Currently,

there is a lack of preclinical in vivo data combining proton therapy and immunotherapy, and the number of preclinical studies

with carbon ions is very limited [101].

Acute Damage to Healthy Tissue

In spite of excellent healthy tissue sparing by the favorable dose distribution in charged-particle therapy, concerns about

healthy tissue exposure in carbon-ion therapy exist because of higher relative biologic effectiveness [2]. Cell death-associated

healthy-tissue complications might result. Therefore, DDR mitigation is suggested for radioprotection of healthy tissue [16].

Furthermore, the stronger cytokine and chemokine expression after heavy-ion exposure [70] might contribute to inflammatory

reactions and represent a suitable target for reduction of acute side effects.

Chronic and Late Effects

Potential late radiation effects encompass secondary cancers, hereditary effects, and degenerative diseases. The major

degenerative late effects [106] that can result from exposure to high-energy charged particles are: late damage to the central

nervous system, cataract formation, cardiovascular diseases (vascular damage, accelerated atherosclerosis, myocardial

fibrosis, and cardiac conduction and valve abnormalities), fibrosis, and other diseases related to accelerated senescence,

including digestive and respiratory diseases and endocrine and immune system dysfunctions [107–111]. Recent

investigations have shown strikingly long-lasting changes in molecular signaling. Small-molecule inhibitors targeting the

involved pathways might interrupt the deleterious signaling changes.

Behind the tumor, a low-dose tail is produced by particles travelling beyond the Bragg peak [112]. After sublethal doses, the

failure to eliminate mutated cells or cells with chromosomal aberrations can result in carcinogenesis and cataracts [112]: for

example, after pelvic irradiation, a secondary cancer in the colorectal region might develop [56]. Recent studies have revealed

the role of the ubiquitin-proteasome pathway for secondary tumor formation in the gastrointestinal tract after Fe-ions exposure

[2].

Discussion
Charged particles induce complex DNA damage, resulting in immediate recruitment of DNA damage sensors and repair

proteins and growth of DNA repair foci for up to 1 hour and in DDR initiation. Because repair of complex damage is slow and

incomplete, a strong and sustained DDR might shape the cellular response and possible acute and late effects. Cellular

signaling after radiation exposure varies among different cell types and also depends on time, dose, and radiation quality,
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where in general, the effect of high-LET charged particles on signaling can be more pronounced and longer lasting compared

with low-LET radiation because of complex DNA damage [79]. Signaling pathways elicited by densely ionizing radiation can be

quite different to those activated by sparsely ionizing radiation [106]. Many studies were performed with HeLa, U2OS or 293/

human embryonic kidney cells, or human fibroblasts, and fragmented knowledge for some relevant organ systems exists. In

tumors, cell-specific abnormalities in the DDR machinery might exist [1].

The initial repair foci formation after charged particle exposure is already described in detail, but many of those studies

were performed with very high-LET heavy ions (.1000 keV/lm), which do not represent the therapeutically relevant LET

range of approximately 30 to 70 keV/lm carbon ions. In addition, many studies were performed with heavy ions relevant

for the chronic cosmic ray exposure during spaceflight, such as 1 GeV/n Fe ions, which have a higher relative biologic

effectiveness for various endpoints than do therapy relevant carbon ions. Knowledge about pathway activation by

charged particles, in addition to the central foci formation, DNA repair induction, and cell cycle arrest, is rather

fragmented, with a focus on the role of p53, LET-dependent activation of NF-jB, and MAPK regulation. The criteria for

selection of a particular cell-death pathway, considering the full concert of signaling pathways, warrant further

investigation after charged-particle exposure, in tumor cells as well as healthy cells. There is also a huge knowledge gap

between these signaling events occurring within the first hours up to 1 day after exposure and the sustained signaling

changes observed in irradiated animals weeks or months later, when complex damage should be repaired. The

underlying mechanisms for those long-term changes are still under investigation; for example, mitochondrial damages

and sustained ROS production are suggested. With hypofractionation (1-3 fractions with a very high dose [up to 25-30

Gy]), more or other pathways might be modulated compared with lower doses per fraction. Therefore, molecular profiling

studies with relevant tumors in the high dose range are required to personalize radiotherapy in cases of therapy

resistance.

More research on the healthy tissue response to charged particle irradiation is required to understand the role of signaling in

low-dose tissue effects at tumor margins because gene expression might affect the risk of radiation-induced, secondary

cancer.
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Cardoso MC, Hehlgans S, Rödel F, Fournier C. Measuring leukocyte adhesion to (primary) endothelial cells after photon

and charged particle exposure with a dedicated laminar flow chamber. Front Immunol. 2017;8:627.

79. Baselet B, Azimzadeh O, Erbeldinger N, Bakshi MV, Dettmering T, Janssen A, Ktitareva S, Lowe DJ, Michaux A, Quintens

R, Raj K, Durante M, Fournier C, Benotmane MA, Baatout S, Sonveaux P, Tapio S, Aerts A. Differential impact of single-

dose Fe ion and x-ray irradiation on endothelial cell transcriptomic and proteomic responses. Front Pharmacol. 2017;8:

570.

80. Beck M, Rombouts C, Moreels M, Aerts A, Quintens R, Tabury K, Michaux A, Janssen A, Neefs M, Ernst E, Dieriks B, Lee

R, De Vos WH, Lambert C, Van Oostveldt P, Baatout S. Modulation of gene expression in endothelial cells in response to

high let nickel ion irradiation. Int J Mol Med. 2014;34:1124–32.

81. Pecaut MJ, Dutta-Roy R, Smith AL, Jones TA, Nelson GA, Gridley DS. Acute effects of iron-particle radiation on immunity,

part I: population distributions. Radiat Res. 2006;165:68–77.

82. Suman S, Kumar S, Fornace AJ, Jr., Datta K. Decreased RXRa is associated with increased b-catenin/TCF4 in 56Fe-

induced intestinal tumors. Front Oncol. 2015;5:218.

83. Meador JA, Ghandhi SA, Amundson SA. P53-independent downregulation of histone gene expression in human cell lines

by high- and low-LET radiation. Radiat Res. 2011;175:689–99.

84. Alp M, Parihar VK, Limoli CL, Cucinotta FA. Irradiation of neurons with high-energy charged particles: an in silico modeling

approach. PLoS Comput Biol. 2015;11:e1004428.

85. Machida M, Lonart G, Britten RA. Low (60 cGy) doses of 56Fe HZE-particle radiation lead to a persistent reduction in the

glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiat Res. 2010;174:618–23.

86. Marty VN, Vlkolinsky R, Minassian N, Cohen T, Nelson GA, Spigelman I. Radiation-induced alterations in synaptic

neurotransmission of dentate granule cells depend on the dose and species of charged particles. Radiat Res. 2014;182:

653–65.

87. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of a bystander mutagenic effect of a
particles in mammalian cells. Proc Natl Acad Sci U S A. 2000;97:2099–104.

88. Mitchell SA, Marino SA, Brenner DJ, Hall EJ. Bystander effect and adaptive response in C3H 10T1/2 cells. Int J Radiat Biol.

2004;80:465–72.

89. Mitchell SA, Randers-Pehrson G, Brenner DJ, Hall EJ. The bystander response in C3H 10T1/2 cells: the influence of cell-

to-cell contact. Radiat Res. 2004;161:397–401.

90. Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9:351–60.

Hellweg et al. (2018), Int J Particle Ther 71

Charged-particles induced signaling



91. Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects

that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. J Radiat Res.

2015;56:502–8.

92. Tu W, Dong C, Konishi T, Kobayashi A, Furusawa Y, Uchihori Y, Xie Y, Dang B, Li W, Shao C. G(2)-M phase-correlative

bystander effects are co-mediated by DNA-PKcs and ATM after carbon ion irradiation. Mutat Res Genet Toxicol Environ

Mutagen. 2016;795:1–6.

93. Ivanov VN, Zhou H, Ghandhi SA, Karasic TB, Yaghoubian B, Amundson SA, Hei TK. Radiation-induced bystander

signaling pathways in human fibroblasts: a role for interleukin-33 in the signal transmission. Cell Signal. 2010;22:1076–87.

94. Kanasugi Y, Hamada N, Wada S, Funayama T, Sakashita T, Kakizaki T, Kobayashi Y, Takakura K. Role of DNA-PKcs in

the bystander effect after low- or high-LET irradiation. Int J Radiat Biol. 2007;83:73–80.

95. Tomita M, Matsumoto H, Funayama T, Yokota Y, Otsuka K, Maeda M, Kobayashi Y. Nitric oxide-mediated bystander

signal transduction induced by heavy-ion microbeam irradiation. Life Sci Space Res (Amst). 2015;6:36–43.

96. Wang TJ, Wu CC, Chai Y, Lam RK, Hamada N, Kakinuma S, Uchihori Y, Yu PK, Hei TK. Induction of nontargeted stress

responses in mammary tissues by heavy ions. PLoS One. 2015;10:e0136307.

97. Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, Yu Z, Lieberman HB, Hei TK. Mechanism of radiation-

induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci U S A. 2005;102:14641–6.

98. Autsavapromporn N, Liu C, Konishi T. Impact of co-culturing with fractionated carbon-ion-irradiated cancer cells on

bystander normal cells and their progeny. Radiat Research. 2017;188:335–41.

99. Dokic I, Mairani A, Brons S, Schoell B, Jauch A, Krunic D, Debus J, Régnier-Vigouroux A, Weber KJ. High resistance to x-
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