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Abstract

During space missions, real time tele-operation of a rover is not practical because
of significant signal latencies associated with inter planetary distances, making
some degree of autonomy in rover control desirable. One of the challenges to
achieving autonomy is the determination of terrain traversability. As part of this
field, the determination of motion state of a rover on rough terrain via the estima-
tion of wheel-terrain contact angles is proposed.

This thesis investigates the feasibility of estimating the contact angles from the
kinematics of the rover system and measurements from the onboard inertial mea-
surement unit (IMU), joint angle sensors and wheel encoders. This approach does
not rely on any knowledge of the terrain geometry or terrain mechanical properties.

An existing framework of rover velocity and wheel slip estimation for flat terrain
has been extended to additionally estimate the wheel-terrain contact angle along
with a side slip angle for each individual wheel, for rough terrain drive. A random
walk and a damped model are used to describe the evolution of the contact angle
and side slip angle over an unknown terrain. A standard strapdown algorithm for
the estimation of attitude and velocity from IMU measurements, is modified to
incorporate the 3D kinematics of the rover in the implementation of a nonlinear
Kalman filter to estimate the motion states. The estimation results from the filter
are verified using tests performed on the ExoMars BB2. The obtained contact
angle estimates are found to be consistent with the reference values.

Keywords: Contact Angle, Side Slip Angle, Nonlinear Kalman Filter, Differential
Kinematics, ExoMars BB2, Planetary Exploration Rovers
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Chapter 1
Introduction

The use of rovers for planetary exploration has become an attractive solution to
getting scientific payload into territories previously not investigated. Lunokhod 1,
a Soviet rover on the moon launched in 1970, was the first successfully operated
remote-controlled rover on an extra-terrestrial surface. Sojourner, part of NASA’s
Mars Pathfinder mission, became the first rover to be successfully operated on
another planet. The ExoMars rover by ESA is scheduled to be launched in 2020.
Consequently, the past few decades have seen a lot of research and development in
the design of rover systems and modelling of their system dynamics and control.
The discussion in this thesis is limited to wheeled rovers, although rovers in general
could have legs, skis, or other mechanisms for locomotion.

1.1 Motivation

The need for full or partial autonomy of rover systems is motivated by signal la-
tency between Earth-based ground station and rover telecommunication systems,
which can have detrimental consequences for the rover in times of emergency. For
example, if the rover were approaching a cliff, the time it takes this information to
be transmitted to an Earth-based ground station and a response relayed back to a
rover, limits the scope for implementation of a contingency plan. Signal latency is
an inherent drawback for any interplanetary mission and therefore calls for auton-
omy in rover operations.

A rover with a good degree of autonomy attained by the monitoring of several
system indicators could minimize the risk of it getting trapped in irrecoverable
situations. Terrain traversability is one of the challenges that, when not well deter-
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Chapter 1. Introduction

mined, can hamper with the mobility of a rover. This, in turn, can compromise its
most essential and distinguishing advantage over a space exploration module like
a lander. Traversability can be determined from characterization of terrain proper-
ties that affect traction, like soil cohesion and friction. Traversability can also be
determined by characterizing the terrain geometry to know if it is smooth, rocky
or non-geometric like loose sand. The latter is a problem encountered on Martian
terrain, for example by NASA’s Opportunity. Stuck in loose sand, it experienced
excessive slip and sinking of the wheels.

In order to tackle the challenges associated with terrain traversability, several ap-
proaches could be adopted. For example, the mechanical design of the rover mech-
anism could be improved for better manoeuvrability, the center of mass of the rover
could be actively redistributed (Iagnemma et al., 2000), the design of wheel and
grousers could be improved for better traction, the motion control could be im-
proved by optimizing wheel torques and speeds to minimize wheel slip, and so on.
In this thesis one of the challenges to achieving autonomy is dealt with, which is
to understand the motion state of a rover better by means of estimating the wheel-
terrain contact angles.

1.2 Research problem

For motion control, the motion state of a rover has to be defined by some param-
eters and/or variables. From a dynamics perspective, one of the possibilities is to
look at the forces, stresses and torques developed at the wheel-terrain interface.
This would help to know how much resistance force and torque needs to be over-
come for locomotion. This would require the installation of heavy and expensive
force-torque sensors and/or elaborate dynamic modelling and estimation of the
contact forces. Furthermore, this may require the knowledge of certain soil pa-
rameters, which are unknown or difficult to estimate for extra-terrestrial terrain.

From a kinematics perspective, the knowledge of position, velocity and accelera-
tion of the rover would help define the motion state of the rover. A rover on an
extra-terrestrial surface has no access to navigation satellite systems to track its
exact location and thereby determine its speed of travel. The position of the rover
is commonly determined by visual odometry. However it is a computationally ex-
pensive approach to process the data from the onboard cameras. The pose of the
rover can be estimated from measurements of the IMU, star sensors, sun sensors
and/or other sensors onboard. Weight, expense and implementation difficulties of
sophisticated sensors and limited computational capacity of onboard processors
are some of the factors that necessitate simple and reliable solutions to determin-
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Chapter 1. Introduction

ing the motion state of a rover. Other motion state indicators include longitudinal
and lateral wheel slips, vehicle skid etc. This thesis focuses on one of the motion
state indicators – the contact angle of a wheel with terrain, which is related to the
inclination of the terrain and gives insight into the unevenness of wheel climb on
rough terrain. The knowledge of contact angles could be used to better optimize
wheel motion control and thereby minimize wheel slip.

The contact angle, as defined in this thesis, captures the vertical component of
wheel velocity (introduced in Section 5.1). By introducing a contact angle, it ac-
counts for possible vertical motion of the wheel, unlike the case of smooth terrain
drive where only longitudinal wheel motion in the wheel frame is considered. The
existing framework of estimation at DLR, estimates the rover velocity and wheel
slips for a smooth terrain, assuming contact angles to be zero. In order to extend
this framework to the estimation of rover velocity and wheel slip when the wheels
have non-zero contact angles on a rough terrain, an estimation of the contact angles
themselves is required to be developed.

1.3 Research goal

The scope of research in this thesis is to investigate the feasibility of estimating the
wheel-terrain contact angles from purely the rover 3D kinematics and measure-
ments from the IMU, joint angle sensors and wheel encoders. No prior knowledge
of the terrain, for example an elevation map or soil properties, are used for the
estimation. This thesis extends the estimation of rover velocity and wheel slip
for rough terrain by modifying the existing framework of estimation for smooth
terrain with the estimation of contact angles.

1.4 Approach

First the differential kinematics of the rover from the existing framework is elabo-
rated in Chapter 4. In this context the wheel-terrain contact angle is defined, mod-
elled and incorporated into the system model to account for vertical wheel motion
of a rover travelling on uneven or rough terrain. Additionally a wheel side slip
angle, which captures lateral motion of the wheels, is similarly defined, modelled
and introduced into the system model. With the introduction of both the contact
and side slip angle the wheel velocity is captured in three dimensions. Two models
are developed which account for wheel motions in addition to the longitudinal di-
rection. First, a contact angle model, which accounts for additional vertical wheel
motion. Second, a contact & side slip angle model which accounts for additional
vertical and lateral wheel motions. The rover motion in this thesis is captured

3



Chapter 1. Introduction

by the rover velocity, wheel slip, contact angles and side slip angles. A standard
strapdown algorithm which is used for estimating attitude and rover velocity, is
modified to incorporate the 3D differential kinematics of the rover for the estima-
tion of the aforementioned motion states using a nonlinear Kalman filter. Lastly
the implementation and results of the filter are verified against tests conducted on
the ExoMars BB2 at the Planetary Exploration Lab (PEL), DLR.

Autonomy of robot systems used in planetary exploration involves its guidance,
navigation and control. The more reliable the estimates of the states of the system
are, the more robust the controller which guides the rover can be. With reliable
estimates of the contact angles (and side slip angles), the rover velocity and wheel
slip estimation for rough terrain is developed. The three topics broadly covered in
the thesis are :

- extension of the existing differential kinematics of the rover

- definition and modelling of contact angle and side slip angle

- extension of existing nonlinear Kalman filter framework for estimation of
contact angles (and side slip angles).

1.5 Document Structure

Chapter 1 – Introduction
This chapter describes the motivation, research problem and objective of the the-
sis, and the brief outline of the approach used to solve the problem.

Chapter 2 – Theoretical background
This chapter briefly describes the mathematical concepts on which the differential
kinematics and the filter algorithm are based.

Chapter 3 – State of the Art
This chapter brings the reader up to date on the relevant research that has been con-
ducted in the topics of rover kinematics, development/estimation of wheel-terrain
contact angle and estimation filter theory.

Chapter 4 – Velocity and slip estimator for smooth terrain
This chapter details the existing framework of estimation for rover velocity and
wheel slip on smooth terrain.

4



Chapter 1. Introduction

Chapter 5 – Extension of estimator for uneven terrain
This chapter defines the contact angle and side slip angle and describes the exten-
sion of the filter framework. A short discussion on the nonlinearity of the entire
system model is also presented.

Chapter 6 – Results and verification
This chapter presents the results and analysis of the filter from the contact angle
model and contact & side slip angle model for hypothetical scenarios and real tests
conducted on the ExoMars rover at PEL.

Chapter 7 – Conclusions and Future Work
This chapter summarizes the thesis, conclusions from the results and suggests pos-
sible future work.

5



Chapter 2
Theoretical Background

Some of the basics required to model the system and estimate the states are covered
in this chapter. For all notations refer to the Nomenclature listed before Chapter 1.

2.1 Coordinate transformation

Any orientation can be expressed as a sequence of three consecutive rotations ac-
cording to Euler’s rotation theorem (Marcel J, 1997). The basic rotations are given
by Eq. (2.1).

Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(ψ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (2.1)

Given 2 frames {A} and {B} as shown in Fig. 2.1 the rotation matrix that gives
the orientation of frame {A} with respect to frame {B} is given by Eq. (2.2). The
rotation sequence XYZ is used to obtain the rotation matrix in Eq. (2.2) using Euler
angles ψ, θ, φ for yaw, pitch and roll.

6
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Za

Ya

Xa

Xb

Yb

Zb

ra
a,b

{A}

{B}

{A} {B}
Ra

b

pa

pb

Figure 2.1: Coordinate transformation

Ra
b = Rz(ψ)Ry(θ)Rx(φ) =cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ
sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ


(2.2)

The vector ra
a,b is the path along which frame {B} needs to be translated for its

origin to coincide with that of frame {A}. A point pb expressed in frame {B} can
be transformed to frame {A} as per Eq. (2.3).

pa = Ra
bpb + ra

a,b (2.3)

Some useful properties of orthogonal rotation matrices:

1. det Ra
b = 1

2. Rb
a = (Ra

b)−1 = (Ra
b)T

3. Ra
c = Ra

bRb
c

4. Ṙa
b = Ra

b[ωb
a,b×] = [ωa

a,b×]Ra
b

7



Chapter 2. Theoretical Background

A homogeneous transformation matrix combines the rotation and translation be-
tween frames in a compact form.

Ta
b =

[
Rb

a ra
a,b

0 1

]
(2.4)

[
pa

1

]
= Ta

b

[
pb

1

]
(2.5)

Ta
c = Ta

bTb
c (2.6)

Using homogeneous coordinates the complete transformation is given by Eq. (2.5).
Consecutive transformation between frames can be done using Eq. (2.6).

2.2 Denavit-Hartenberg convention

The Denavit-Hartenberg convention is the most commonly used convention for
assigning coordinate frames to joints of robotic manipulators and defining the ho-
mogeneous transformation matrices between them with the help of 4 parameters
per transformation. These parameters are called the DH parameters. The rules for
defining the frames are:

• the zi axis is taken along the axis of rotation of the ith joint if it is a revolute
joint, and along the sliding motion in the case of a prismatic joint.

• the xi axis is defined along the common normal between the zi−1 and zi
axes and intersects both the z axes when extended.

• the origin of the joint frame is at the intersection of the joint’s corresponding
xi and zi axes.

• the yi axis completes the triad

The 4 DH parameters used to map transformation between each joint are:

• θi - angle of rotation about zi−1 axis to align the xi−1 axis along the common
normal (xi)

• di - distance of translation along zi−1 axis to the common normal

• αi - angle of rotation about transformed xi axis to align the zi−1 axis along
the zi axis

• ai - distance of translation along transformed xi axis

8



Chapter 2. Theoretical Background

With these 4 parameters systematically mapping each consecutive frame to the
other, the transformation matrix for the end effector to base frame is given by
Eqs. (2.7) and (2.8).

0Tn =0 T1.
1T2...

n−1Tn (2.7)

i−1Ti =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1

 (2.8)

2.3 Jacobian matrix

The Jacobian matrix J is the matrix that gives the forward instantaneous kinematics
of a chain of robotic links (Siciliano and Khatib, 2008). It relates the velocity of
the end effector v0

0,n to the joint rates. The vector q contains all the joint DOFs
involved in the kinematic chain between the base frame and end effector.

v0
0,n = J(q)q̇ (2.9)

2.4 Euler angle differential kinematic equation

The angular velocity vector ωb
a,b of rotation of a body frame {B} with respect to

frame {A} can be written as (Marcel J, 1997)

ωb
a,b = ωxx̂b + ωyŷb + ωz ẑb

ωb
a,b = Rx(φ)Ry(θ)Rz(ψ)

0
0

ψ̇

+ Rx(φ)Ry(θ)

0

θ̇
0

+ Rx(φ)

φ̇0
0

 (2.10)

ψ̇θ̇
φ̇

 =
1

cos θ

 0 sinφ cosφ
0 cos θ cosφ − cos θ sinφ

cos θ sin θ sinφ sin θ cosφ

ωb
a,b (2.11)

The differential kinematic equations for the Euler angles can then be solved as per
Eq. (2.11). Note that there is a singularity in the Euler angle differential kinematics
at θ = ±90◦.

9



Chapter 2. Theoretical Background

2.5 Nonlinear Kalman filtering

For theoretical understanding of the concept of the filters refer to Section 3.3. Only
the mathematical description of the algorithm is provided below.

Consider a system/process and sensor/measurement model of the form where x is
the state, up the process input, um the measurement input, np the process noise
and nm the measurement noise.

Process equation,
x[k + 1] = f(x[k],up[k],np[k]) (2.12)

Measurement equation,

y[k] = h(x[k],um[k],nm[k]) (2.13)

2.5.1 Extended Kalman Filter

The algorithm for state estimation via the EKF is given below (Wan and Van
Der Merwe, 2001).

Initialization of state and covariance,

x̂[0] = E(x[0])

Px[0] = E((x[0]− x̂[0])(x[0]− x̂[0])T) (2.14)

Predict step (a prioiri estimates),

x̂−[k] = f(x̂[k − 1],up[k − 1], n̄p)

P−x [k] = F[k − 1]Px[k − 1]FT[k − 1] + L[k]Q[k]LT[k] (2.15)

Correct step (a posteriori estimates),

K[k] = P−x [k]HT[k](H[k]P−x [k]HT[k] + M[k]R[k]MT[k])−1

x̂[k] = x̂−[k] + K[k](y[k]− h(x̂−[k],um, n̄m))

Px[k] = (I−K[k]H[k])P−x [k] (2.16)

Here E(•) represents the expected value of (•) and n̄• is E(n•) which is equal to
zero for Gaussian noise. F,L,H,M are Jacobians given by Eq. (2.17).
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Chapter 2. Theoretical Background

F[k] =
∂f(x,up[k], n̄p)

∂x

∣∣∣
x̂k

L[k] =
∂f(x̂−[k],up[k],np)

∂np

∣∣∣
n̄p

H[k] =
∂h(x,um[k], n̄m)

∂x

∣∣∣
x̂[k]

M[k] =
∂h(x̂−[k],um[k],nm)

∂nm

∣∣∣
n̄m

(2.17)

2.5.2 Unscented Kalman Filter

The algorithm for state estimation via the UKF is given below (Wan and Van
Der Merwe, 2001).

State and covariance is intialized same as Eq. (2.14). An augmented state and
covariance matrix is used to generate the sigma points in a non-additive noise
model as follows,

x̂a[0] = E[xa[0]] =
[
x̂T[0] 0 0

]T
Pa[0] = E[(xa[0]− x̂a[0])(xa[0]− x̂a[0])T] =

P[0] 0 0
0 Q 0
0 0 R


χa[k − 1] = [x̂a[k − 1], x̂a[k − 1] + γ

√
Pa[k − 1], x̂a[k − 1]− γ

√
Pa[k − 1]]

(2.18)

Predict step,

χx[k|k − 1] = f(χx[k − 1],up[k − 1],χnp [k − 1])

x̂−[k] =
2L∑
i=0

W
(m)
i χx

i [k|k − 1]

P−[k] =

2L∑
i=0

W
(c)
i (χx

i [k|k − 1]− x̂−[k])(χx
i [k|k − 1]− x̂−[k])T

Yk|k−1 = h(χx[k|k − 1],χnm [k − 1])

ŷ−[k] =

2L∑
i=0

W
(m)
i Y i[k|k − 1] (2.19)
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Correct step,

Pyy[k] =
2L∑
i=0

W
(c)
i (Y i[k|k − 1]− ŷ−[k])(Y i[k|k − 1]− ŷ−[k])

Pxy[k] =
2L∑
i=0

W
(c)
i (χi[k|k − 1]− x̂−[k])(Y i[k|k − 1]− ŷ−[k])T

K[k] = Pxy[k]P−1
yy [k]

x̂[k] = x̂−[k] +K[k][y[k]− ŷ−[k]

Px[k] = P−[k]−K[k]Pyy[k]KT[k] (2.20)

where

xa = [xT nT
p nT

m]T

χa = [(χx)T (χnp)T (χnm)T]

γ =
√
L+ λ

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β

W
(m)
i = W

(c)
i =

1

2(L+ λ)

λ = α2(L+ κ)− L

L is the dimension of the augmented state, κ is a secondary scaling parameter
normally set to L − 3, α determines the spread of the points which is normally
set to a small value like 10−4, β is used to determine the type of distribution, for
gaussian distributions β = 2 is optimal.
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Chapter 3
State of the Art

This chapter reviews relevant literature to help put the development of topics ad-
dressed in this thesis into context. The state of the art covers the following topics:

- differential kinematic modelling of rovers

- terrain traversability and wheel-terrain contact angle

- estimation of states using nonlinear Kalman filters

3.1 Rover differential kinematics

The kinematic modelling of rovers is most often done using the Denavit-Hartenberg
(DH) convention because of its simplicity (refer Section 2.2). In (Muir and Neu-
man, 1987) however the kinematic modelling of the rover is done using the Sheth-
Uicker convention. The Sheth-Uicker convention has the advantage that it can be
used to model links with multiple joints, in this case, an omnidirectional rolling
wheel having 3 DOFs (2 translational and 1 rotational). This cannot be captured
by the DH convention easily. Since the ExoMars rover does not have omnidirec-
tional wheels, a regular approach to the kinematic modelling with the use of DH
parameters is adopted.

In (Tarokh and McDermott, 2007) a generalization of the kinematic modelling for
modern rovers using the DH parameters is proposed. They start with the basic
velocity propagation equations for robotic links and derive them in terms of the
DH parameters. They arrive at the equations relating velocity and rotation rates
in the rover reference frame (denoted by g) to those in the wheel contact frame
(denoted by c) as shown in Eq. (3.1)

13
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[
vg

i,g

ωg
i,g

]
= En

[
vc

i,cn

ωc
i,cn

]
+ FnṖn (3.1)

Here the index n refers to the nth wheel, E,F are matrices that are solely depen-
dent on the DH parameters, Ṗ is the matrix containing the derivatives of the DH
parameters. The approach used in this thesis is equivalent to the one described
above.

Recently, in (Toupet et al., 2018) the modelling of the kinematics of the rover
is done not with the use of DH parameters, but with a simple systematic follow-
through of link velocities. This is done in an intuitive manner by taking the rotation
rates and lever arms concerned with the various links to arrive at the kinematics
relating velocity in reference frame to that in wheel frame. Although this approach
is manageable for a simple rover system with not too many links, it offers no
significant advantage over the standardized DH parameters.

3.2 Terrain traversability & wheel-terrain contact angle

3.2.1 Terrain traversability

The motivation behind studying the wheel-terrain interaction is to in some way
predict the traversability of the terrain. A lot of research has been dedicated to
studying the mechanics of interaction between the wheels and terrain. This branch
of study is broadly termed terramechanics. In this domain determining terrain
traversability is done mostly via the study of wheel-terrain contact forces (Ray,
2009) and the soil mechanical parameters like cohesion and friction (Iagnemma
et al., 2004; Hutangkabodee et al., 2006; Li et al., 2018).

Aside from terrain parameter and force estimation, traversability can also be stud-
ied from the inertial navigation system. The inertial navigation system determines
the acceleration and rotation of the vehicle commonly with the use of onboard
accelerometers and gyroscopes. Normally the measurements from the accelerom-
eter and gyroscope are very noisy and unreliable especially for slow speed rovers.
Therefore to purely rely on the IMU for the velocity and orientation is not a good
choice. In (Stavens and Thrun, 2012) the terrain roughness is estimated for au-
tonomous driving of off-road vehicles from the inertial navigation system. Here
a machine learning algorithm is implemented for determining the second deriva-
tive of the ground to characterize the terrain roughness by training the lasers used
for visual odometry with shock data from accelerometers. This approach requires
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large onboard computing capabilities and additional sensors like cameras which
are expensive.

3.2.2 Wheel-terrain contact angle

Figure 3.1: Entrance (θ1) and exit (θ2) angle of a wheel in relation to sinkage z. Image
adapted from (Iagnemma et al., 2004) Copyright ©2004, IEEE.

Studies related to wheel-terrain contact in the field of terramechanics mainly in-
cludes the study of stresses and forces developed at the wheel-terrain contact patch.
In this context the contact angle (Junlong et al., 2017; Reina et al., 2008; Li et al.,
2018) or contact region (Doumiati et al., 2008) or contact arc (Cross et al., 2013)
refers to the angle formed by the arc between the point of exit and entry of the
wheel in the soil (refer Fig. 3.1). The shear stresses and normal pressure distribu-
tion across the contact region, when integrated between the entry and exit angles
of the wheel, give the resistance force and torques developed at the wheel-terrain
interface. The estimation of resistance force and torques are useful in the compu-
tation of the wheel motor power needed to overcome them. A contact model that
predicts the contact forces and reaction torques has been developed with the esti-
mation of entry and exit angles in (Leite et al., 2012). However here the mechani-
cal properties of the soil, namely, friction angle and cohesion which are parameters
needed for the estimation, have been assumed to be known a priori, which is not
the case for planetary exploration terrain. The entrance and exit angles have been
calculated in (Li et al., 2018) from measured values of wheel sinkage. The wheel
sinkage is related to the entrance and exit angle by z = rw(1 − cos θ) where z is
the wheel sinkage at the entrance or exit, rw the wheel radius, θ the corresponding
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entrance or exit angle. These angles are then used to calculate the reaction forces
and torques. A visual method has been used to determine similar contact angles
to compute the wheel sinkage (Reina et al., 2008) as a characterization of mobil-
ity on the concerned terrain. Similarly, specially designed wheels equipped with
magnetic angular sensors (Junlong et al., 2017) have been employed to measure
contact angles and then calculate the wheel sinkage. These are a few examples of
studies on contact angle as referred to in the context of terramechanics.

Figure 3.2: Contact angles as defined by from a kinematic perspective. Image taken from
reprint in (Iagnemma et al., 2003) Copyright ©2003, Kluwer Academic Publications

It is important to make the distinction in the terminology of contact angle in the
exiting literature and therefore for the sake of completeness this perspective of
contact angle was described above. However this thesis does not deal with the
contact angle in the context of entrance and exit points of wheel-terrain contact.
The contact angle, as addressed in this thesis, is an indicator of terrain unevenness.
In this context the wheel-ground contact angles have been estimated using onboard
sensors to improve traction and reduce motor power consumption (Iagnemma and
Dubowsky, 2000b). The wheel-ground contact angles influence how the vehicle
applies force on the ground (Iagnemma et al., 2001). The contact angle estimates
are used in the development of actively articulated suspensions for rovers to im-
prove stability in (Iagnemma et al., 2003). Here it is stated that, ’an “effective”
wheel-terrain contact angle is defined as the angular direction of travel imposed
on the wheel by the terrain during motion’. An analytical solution to the contact
angles is derived from the kinematics of the rover which is reproduced in Eq. (3.3).
Fig. 3.2 shows the schematic used to develop the kinematics. The constraint ap-
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plied to the kinematics is a geometric constraint where the distance between the
wheels attached to a bogie cannot change and therefore equating the components
of velocity in the direction of the link connecting the wheels in Eq. (3.2) gives the
solution for contact angles as in Eq. (3.3).

v1 cos(γ1 − α) = v2 cos(γ2 − α)

v2 sin(γ2 − α)− v1 cos(γ1 − α) = lα̇ (3.2)

v1, v2 are the respective wheel velocities, γ1, γ2 the respective contact angles, α
the pitch angle, and l the distance between wheels attached to a bogie. Solving
Eq. (3.2) analytically, the contact angles are

γ1 = α− cos−1(h)

γ2 = cos−1(h/b) + α (3.3)

where,

h =
1

2a

√
2a2 + 2b2 + 2a2b2 − a4 − b4 − 1; a =

lα̇

v1
; b =

v2

v1

Iagnemma et al. model the contact angle state as a random walk i.e. its rate of
change is equal to random noise. The reasoning for this being that it is not known
how the contact angles will evolve over time without the knowledge of the terrain.
This approach is also adopted in this thesis. Iagnemma et al. also assume that the
wheel velocities can be approximated using the wheel turn rates and wheel radii.
This means that wheel slip is ignored in the estimation, which is not a good as-
sumption for all terrains, for example sandy loose soils. This thesis will address
the estimation of contact angles along with wheel slip.

In (Balaram, 2000) a damped model is considered in modelling the dynamic state
of contact angle. The assumption made is that the terrain has a moderate curva-
ture. The damped model brings the contact angle back to a steady-state which is
desirable for a smooth terrain. Additionally it is assumed that the contact points
on wheels attached to the same bogie are symmetrical and can be modelled with
a single contact state. This approximation however will not hold true for a rough
terrain. In this thesis the contact angle of each individual wheel is taken to be in-
dependent of the others.

Contact angles, defined similar to (Iagnemma and Dubowsky, 2000a), are calcu-
lated with an input reference rover velocity mapped down to wheel velocities us-
ing rover orientation and joint angle measurements in (Peynot and Lacroix, 2003).

17



Chapter 3. State of the Art

The velocities of wheels derived from the wheel rate measurements are then com-
pared with those obtained from the previously calculated contact angles for wheels
attached to a rigid link. There will be discrepancies if any of the wheels experi-
ence slip and these discrepancies are a measure of what they term speed coher-
ence indicators. These speed coherence indicators are then fed into a complex
algorithm combining supervised learning results and probabilistic determination
of rover state, to minimize slippage of rover on rough terrain. In this paper the
approximate contact angle is calculated as an ad hoc parameter that is used as an
input to an algorithm that then monitors the locomotion with some indicators and
adapts the motion control accordingly. In this thesis the primary focus is to esti-
mate the actual contact angles with good accuracy along with an estimation of the
rover velocity and wheel slips from measurements of onboard sensors. No refer-
ence velocities or desired turn rates will be used for the estimation.

In (Tarokh and McDermott, 2005) the contact angle is defined as the angle between
the steering axis and the normal to the direction of wheel velocity (refer Fig. 3.3).
The relation between the pose of the rover and the degrees of freedom vector is
derived and the final equation is as per ( Eq. (3.4)).

Figure 3.3: Contact angles as defined by Tarokh et al. Image adapted from (Tarokh and
McDermott, 2007) Copyright ©2005, IEEE. A refers to the steering frame and C to the

contact frame.
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
I6

I6
...

I6


[

vg
i,g

ωg
i,g

]
= J(q)q̇

Eu = J(q)q̇ (3.4)

vg
i,g is the rover velocity, ωg

i,g the rotation rates of the rover and q the vector con-
taining all the joint angles, wheel rates, contact angles, turn slip, roll slip and
side slip for all wheels. J is the kinematic Jacobian relating the rover linear and
rotational velocities to the degrees of freedom vector. E is a matrix of stacked
identity matrices equal to the number of wheels and u is the pose of the rover.
The measured and non-measured parameters are seperated out from Eq. (3.4) as
in Eq. (3.5). The subscripts m and nm refer to measurable and non-measurable
quantities respectively.

[
Em Enm

] [ um
unm

]
=
[
Jm(q) Jnm(q)

] [ q̇m
q̇nm

]
(3.5)

Eq. (3.5) can be rearranged as in Eq. (3.6) and then a weighted least squares method
is applied to solve for unknown quantities. The velocity vector, yaw rate, slip rate
and contact angle rates are taken as non-measured quantities and the roll rate,
pitch rate, joint angles and wheel rates are taken as measured quantities. W is a
weighting matrix.

[
Enm −Jnm(q)

] [unm
q̇nm

]
=
[
−Em Jm(q)

]
.

[
um
q̇m

]
AX = BY

X = (ATWA)−1ATWBY (3.6)

This approach is however validated with an elevation map from a known terrain in
the simulation and therefore does not truly address the estimation of unknown con-
tact angles. Although the quantities are separated into measured and non-measured
quantities, they cannot be seperated out from the Jacobians which depend on the
entire vector q which contains the unknown contact angle.

Recently in (Toupet et al., 2018), the contact angle, which is defined as in (Tarokh
and McDermott, 2005), has been estimated. An equivalent definition of contact
angle is adopted in this thesis (introduced in Section 5.1). The objective in (Toupet
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et al., 2018) is to calculate the ideal zero-slip wheel rates for which the contact
angle is required to be estimated first. In order to estimate the contact angle an
initial assumption made is that the rover velocity can be approximated to that on
smooth ground i.e lateral and vertical velocities set to zero. The requirement is to
operate the rover at maximum speed and to calculate the ideal wheel speeds with
the knowledge of contact angles. An approximation for the rover velocity is made
for straight-driving conditions. The wheel velocity is then calculated from the
kinematics using the suspension angles and rates as measurements. The contact
angle is then computed as the angle between the components of the wheel veloc-
ity in the wheel plane. In order to compute the ideal wheel rates, now a reverse
calculation of rover velocity is done by first setting all wheels to maximum wheel
rate and incorporating the previously computed contact angles. The lateral rover
velocity component is assumed zero to negate any sideways motion. The rover
velocity computed from each wheel will be different when any of the wheels have
unequal non-zero contact angles. The wheel that leads to the minimum absolute
rover velocity, taken as a limiting value, is then set to the maximum wheel rate
and the ideal wheel rates for the remaining wheels calculated from the kinematics.
This paper shows a simple application of contact angle however the focus is not
on estimating them accurately and therefore several assumptions are made. In this
thesis for the contact angle model a similar assumption of ignoring lateral wheel
velocities is made. However the contact & side slip angle model takes into account
both vertical and lateral wheel velocities in the estimation of contact angles.

3.3 Estimation

Several estimation techniques exist like the maximum likelihood, least squares
and the Kalman filter, to name a few (Saridis, 1983). In (Tarokh and McDermott,
2005) a weighted least squares approach is used to estimate the unknowns (includ-
ing contact angle rates) and an analysis of the existence of solutions is done based
on the ranks of the matrices. The focus in this thesis is on nonlinear Kalman fil-
ters and therefore the discussion ahead is restricted to these. The Kalman filter,
credited to R E Kalman (Kalman, 1960), is a recursive algorithm which is used
to find the optimal estimate of the state of the system by minimizing the mean
of the square error (Welch and Bishop, 2006). The current state of the system is
propagated through the linear process/state equation to generate the a priori mean
and covariance of the states in the predict step (refer Section 2.5.1 for complete
algorithm). The predicted states are propagated through the linear measurement
equation to generate the predicted measurement. The error between the predicted
and actual measurement is then compensated for in the a posteriori state with a
weighting of the error that determines how much the filter trusts the a priori state
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against the innovation term. The weighting term is called the Kalman gain. The
Kalman filter is however only applicable to linear systems. The algorithm can
work in real-time and it only requires the estimate of the previous state and current
inputs (Wan and Van Der Merwe, 2001). For nonlinear systems, most commonly
the extended Kalman filter (EKF) or unscented Kalman filter (UKF) are used to
find the best estimates.

The EKF is an extension of the Kalman filter to handle nonlinear systems (May-
beck, 1979). Here the Kalman gain is computed from the Jacobians using first-
order linearization of the state transition and measurement matrices. The algo-
rithm for non-additive process and measurement noise EKF taken from (Wan and
Van Der Merwe, 2001) is given in Section 2.5.1 . The UKF was proposed by
Julier and Uhlmann to tackle highly nonlinear systems where the first-order lin-
earization used in EKF resulted in highly inconsistent and sometimes divergent
estimates (Julier and Uhlmann, 1997). The UKF does not require the computa-
tion of state transition and measurement Jacobians and its accuracy is at par with
a second-order linearisation of the nonlinear system. The algorithm generates a
number of sample points from a gaussian distribution called sigma points with the
mean and covariance of the current state. These sigma points are then propagated
through the nonlinear state equation which generates a number of predicted states.
A gaussian distribution is fit to these predicted states and the new mean and covari-
ance computed. Similarly sigma points are generated and propagated through the
measurement equation. The Kalman gain is computed with the covariances of the
states and measurements and the innovation term is weighted to get the corrected
state. The algorithm for non-additive process and measurement noise UKF taken
from (Wan and Van Der Merwe, 2001) is given in Section 2.5.2.

In (Iagnemma and Dubowsky, 2000a) for the estimation of contact angles mod-
elled as a random walk, an EKF is implemented and the possibility of a UKF is
suggested. As mentioned before in Section 3.2.2 since the wheel velocities which
are needed for computing the contact angles, are approximated from wheel rates
and radii, the slip is ignored in the EKF implementation.

Balram implements the contact angle as a damped model and uses an EKF for
the estimation of rover velocity (Balaram, 2000). The wheel slip is related to the
forward kinematics of the rover for each wheel. In the extended Kalman filter
implementation, a deterministic value of slip for smooth terrain is calculated and
used as a measurement in the filter. The rotation slip of the wheel is approximated
with a deterministic value computed from the turn rate and steering angles, and the
transversal slip induced during turns is similarly computed for non-steered wheels.
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In this thesis the wheel slip is not approximated, instead, it is estimated along with
the rover velocity and contact angles.

To summarize, this thesis develops on ideas inspired by the approaches reviewed
above in the area of differential kinematic modelling of the rover, definition and
modelling of wheel-terrain contact angle and estimation of contact angle using
nonlinear Kalman filters. As previously stated, the existing framework at DLR
only estimates the rover velocity and wheel slip for smooth terrain drive. The
following chapter details the kinematics and filter implementation for this existing
framework, upon which the following work in this thesis is built.
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Chapter 4
Velocity and slip estimator for
smooth terrain

This chapter describes the existing framework for the estimation of rover velocity
and wheel slip. The idea is to first develop the kinematic relations between the
rover velocity and the individual wheel velocities. In this thesis it shall be referred
to as the wheel Jacobian, which is a Jacobian relating the wheel velocity to the
joint rates of the rover, the rover velocity and its orientation. Then the kinematic
equations of motion describing the states of the system that are of interest are
developed. Upon establishing the kinematic model of the whole system, measure-
ments from various sensors (IMU, potentiometers, wheel encoders) are fused using
a filter to estimate the rover velocity and wheel slip. The system, once modelled,
is a nonlinear one and therefore a nonlinear filter is proposed for state estimation,
in this case, the extended or unscented Kalman filter.

The existing framework for rover velocity and wheel slip estimation was devel-
oped under the condition that the rover travels on smooth terrain and the lateral
and vertical wheel velocities are assumed to be zero. Section 4.1 first defines the
wheel slip, Section 4.2 derives the wheel Jacobian. Following this, in Section 4.3
the kinematic equations of motion used to develop the state equations for the non-
linear Kalman filter are explained. Section 4.4 describes the set-up of the process
and measurement models for the nonlinear Kalman filter and in Section 4.5 the
parameter settings for the filter implementation are discussed. Section 4.6 briefly
comments on a limitation of the measurement equation used in the filter.
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4.1 Longitudinal wheel slip

The longitudinal wheel slip is defined as the ratio of slip speed to pure rolling
speed along the wheel rolling plane

s =
ωwrw − vx
ωwrw

= 1− vx
ωwrw

(4.1)

where ωw, and rw are the measurable rotational wheel speed and known wheel
radius and vx is the longitudinal component of wheel velocity in the wheel frame
considered. The interpretation of the slip values is summarized below

s < 0 : wheel moves faster than its rolling speed

s = 0 : pure rolling motion

0 < s < 1 : wheel moves slower than its rolling speed

s = 1 : pure slip when wheel is in rotation without translation

s > 1 : wheel moves opposite to the direction of rolling velocity

The longitudinal slip definition has a singularity when the wheel rate is zero.

4.2 Wheel Jacobian

Table 4.1 and Fig. 4.1 show the frames and notations used to develop the kinemat-
ics. Note that the frames are assigned such that they are fixed to the concerned
joint but do not rotate with the corresponding link, rather with the preceding link.
For example, the steering frame does not rotate with the steering link but with the
preceding link i.e. the bogie. Also note that the link between the body frame con-
taining the CoG frame and the bogie frame has no degree of freedom, therefore it
is a fixed link.

Table 4.1: Notations used. Note -a,b, c refer to frames

Notation Description
rc

a,b Position vector from origin of a to b expressed in c

vc
a,b Velocity of b with respect to a expressed in c

ωc
a,b Angular velocity of b with respect to a expressed in c

Rb
a Rotation matrix transforming a to b
qb Bogie rotation
qs Steering rotation
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The wheel Jacobian for a single wheel is first derived under the assumption that the
rover is travelling on a smooth terrain with zero lateral and vertical wheel velocity
components. Refer to Section 2.1 for basics of coordinate transformations. Fig. 4.2
shows a schematic representation of the frames in vector space which can be used
to easily derive the kinematics of the rover.

{g}

{b}{s}

{d}

Frame Description
i Inertial frame
g Rover CoG frame
b Bogie frame
s Steering frame
d Drive frame at wheel hub

Figure 4.1: Coordinate frames assigned to the ExoMars BB2 model. Green, red and blue
depict the x,y and z axes respectively. Image adapted from (Patel et al., 2010) Copyright

©2010, ISTVS.
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Figure 4.2: Coordinate frames in vector space
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From Fig. 4.2
ri

i,d = ri
i,g + Ri

grg
g,d (4.2)

By taking the derivative of Eq. (4.2) and transforming it to the drive frame

vd
i,d = Rd

gvg
i,g + Rd

g [ωg
i,g×]rg

g,d + Rd
gvg

g,d (4.3)

vg
i,g is the rover velocity that is to be estimated along with wheel slip, ωg

i,g is the
rotation rate of the rover taken from the IMU gyroscope measurements, rg

g,d and
vg

g,d are derived from the kinematics of the rover as

rg
g,d = rg

g,b + Rg
brb

b,s + Rg
s rs

s,d

vg
g,d = Rg

b[ωb
b,s×]rb

b,s + Rg
bṙb

b,s + Rg
s [ωs

b,s×]rs
s,d (4.4)

rg
g,b is constant since there is no degree of freedom between the CoG and bogie

frame as stated earlier, and rs
s,d is also constant since the rotation about the steering

axis is aligned with the direction of rs
s,d, i.e the vector joining the origin of the two

frames. However rb
b,s is not constant since the steering frame rotates with respect to

the bogie frame by the bogie angle qb and ṙb
b,s is unknown. Alternatively Eq. (4.4)

can be written as

rg
g,d = rg

g,b + Rg
s rs

b,s + Rg
s rs

s,d

vg
g,d = Rg

s [ωs
b,s×](rs

b,s + rs
s,d) (4.5)

rs
b,s is constant since the steering frame is rotating with the bogie and therefore the

vector pointing from the origin of steering frame to origin of bogie frame as seen
from the steering frame is always a constant. Inserting Eq. (4.5) into Eq. (4.3)

vd
i,d = Rd

g

(
vg

i,g + [ωg
i,g×](rg

g,b + Rg
s (rs

b,s + rs
s,d)) + Rg

s [ωs
b,s×](rs

b,s + rs
s,d)
)

(4.6)

where,

Rd
g = Rd

s (qs)Rs
b(qb)Rb

g

vg
i,g =

[
ẋ ẏ ż

]T
ωs

b,s =
[
0 0 q̇b

]T
(x, y, z) is the position of the rover in inertial space and ωg

i,g is the rover angular
velocity vector measured by the IMU gyroscope. Eq. (4.6) is the traditional ex-
plicit deduction of motion of the end-effector and so far only a single wheel was
considered. Instead of expanding the velocity and position of the wheel in the
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drive frame with respect to the CoG frame as in Eq. (4.5), it is commonly derived
in robotics from the DH transformation matrices (refer Section 2.2) and then the
Jacobian matrix is computed (refer Section 2.3). Table 4.2 shows the DH param-
eters for the ExoMars rover. Eq. (4.6) is now replaced with the Jacobian derived
from DH parameters and the formulation extended to all wheels of the rover.

Table 4.2: DH table for ExoMars BB2

Link θi di ai αi
g→ bFL π 0.1600 −0.3305 π/2
g→ bFR 0 0.1600 0.3305 π/2
g→ bR −π/2 0.2300 0.0000 π/2
bFL → sFL π + qbFL

0.5933 0.3200 π/2
bFL → sML π + qbFL

0.6013 −0.3200 π/2
bR → sRL π + qbR

0.6980 0.6043 π/2
bR → sRR π + qbR

0.6980 −0.5963 π/2
bFR → sMR π + qbFR

0.5933 0.3200 π/2
bFR → sFR π + qbFR

0.6013 −0.3200 π/2
sFL → dFL qsFL −0.2160 0.0000 −π/2
sML → dML qsML −0.2160 0.0000 −π/2
sRL → dRL −π/2 + qsRL −0.2860 0.0000 −π/2
sRR → dRR −π/2 + qsRR −0.2860 0.0000 −π/2
sMR → dMR π + qsMR −0.2160 0.0000 −π/2
sFR → dFR π + qsFR −0.2160 0.0000 −π/2

FL : Front Left; FR : Front Right; R : Rear;
ML : Middle Left; MR : Middle Right;

RL : Rear Left; RR : Rear Right

The transformation matrix for the nth wheel derived from the DH parameters is

Tg
dn

=

[
Rg

dn
rg

g,dn

0 1

]
vg

g,dn
=
∂rg

g,dn

∂q
q̇ = Jn q̇ (4.7)

The subscript n ∈ {FL,ML,RL,RR,MR,FR} is used to index the drive and
steering frames associated with the respective wheels. q is the full vector com-
prised of all the bogie and steering angles.

q =
[
qbFL

qbFR
qbR

qsFL qsML qsRL qsRR qsMR qsFR

]T
27



Chapter 4. Velocity and slip estimator for smooth terrain

Substituting for rg
g,d and vg

g,d from Eq. (4.7) into Eq. (4.3) and rewriting in the
Jacobian form

vdn
i,dn

=
[
vJn

ωJn
qJn

]︸ ︷︷ ︸
wheel Jacobian

vg
i,g

ωg
i,g

q̇

 (4.8)

Eq. (4.8) shows the wheel Jacobian for the nth wheel where

vJn = Rdn
g (q)

ωJn = Rdn
g (q)[−rg

g,dn
×]

qJn = Rdn
g (q) Jn

It shall be further seen how the longitudinal slip of the wheel is related to its ve-
locity. The longitudinal component of wheel velocity can be written as a function
of slip and wheel rotation speed from Eq. (4.1).

vdn
i,dn
· x̂dn = (1− sn)ωwnrwn

The (·) operator refers to the dot product performed on two vectors. x̂dn is the unit
vector pointing along the x axis of the nth drive frame. Rearranging Eq. (4.8) for
the wheel rate, it can now be written as ωwn

vdn
i,dn
· ŷdn

vdn
i,dn
· ẑdn

 =

ωwn

0
0

 =

 1
(1−sn)rwn

0 0

0 1 0
0 0 1

 vdn
i,dn

(4.9)

Eq. (4.9) gives the wheel rate and y, z components of wheel velocity (assumed
to be zero) in the drive frame for the nth wheel. The combined equations for all
wheels can be written by clubbing all the wheel rates and, y, z components of the
wheel velocities one below the other as



ωwFL

ωwML

...
ωwFR

06×1

06×1


=



1
(1−sFL)rw

1
(1−sML)rw

. . . 06×12
1

(1−sFR)rw

012×6 I12×12


RJ(q)

vg
i,g

ωg
i,g

q̇



(4.10)
RJ is the combined wheel Jacobian for all wheels of the rover. Note that in the
case of the ExoMars rover all the wheel radii are the same.

28



Chapter 4. Velocity and slip estimator for smooth terrain

4.3 Kinematic equations of motion

The kinematic equations of motion describe the temporal behaviour of the system.
The evolution of rover velocity and wheel slip with time is what is of interest here.
Therefore these are the states taken into consideration. Additionally the orienta-
tion of the rover given by the Euler angles is also taken as a state, the reason for
this is explained in Section 4.3.2. The differential kinematic equations of motions
describing the rover velocity and orientation for the implementation in the nonlin-
ear Kalman filter are taken from a standard strapdown algorithm (Wendel, 2007).
Note that the term homing used in the following sections, refers to an initialization
of the system done before starting to drive the rover – this includes initializing the
gravity vector and calculating the covariances of the sensor measurements.

4.3.1 Rover velocity

The rate of change of rover velocity is the acceleration of the rover which can be
measured from the IMU accelerometer. In continuous time, the rate of change of
rover velocity can be derived as

ṙi
i,g = vi

i,g = Ri
gvg

i,g

v̇i
i,g = ai

i,g = Ri
g[ωg

i,g×]vg
i,g + Ri

gv̇g
i,g

v̇g
i,g = −ωg

i,g × vg
i,g + ag

i,g (4.11)

ωg
i,g is the rotation rate of the rover taken from the IMU gyroscope and ag

i,g is the
acceleration of the rover which can be taken from the IMU accelerometer. The
IMU accelerometer however measures the specific force fg

i,g acting on the rover
which includes the acceleration due to gravity which needs to be subtracted to get
the rover’s acceleration as

fg
i,g = ag

i,g + gg (4.12)

gg is calculated by rotating the initialized gravity vector measured during homing,
gi with the Euler angles that determine the roll (φ), pitch (θ) and yaw (ψ) of the
rover. Substituting Eq. (4.12) into Eq. (4.11)

v̇g
i,g = −ωg

i,g × vg
i,g + fg

i,g − Rg
i gi (4.13)

The rotation matrix Rg
i in Eq. (4.13) is a function of (φ, θ, ψ) and is derived from

Eq. (2.2).
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4.3.2 Orientation

In order to compute the rotation matrix in Eq. (4.13) it is required to know how the
roll, pitch and yaw evolve with time. Since the attitude of the rover is not available
as a direct measurement, it is taken as a state and estimated from the gyroscope
measurement. Let the orientation vector be Θ =

[
ψ θ φ

]T then the rate of
change of Euler angles (refer Section 2.4) is given by Eq. (4.14)

Θ̇ =

ψ̇θ̇
φ̇

 =
1

cos θ

 0 sinφ cosφ
0 cos θ cosφ − cos θ sinφ

cos θ sin θ sinφ sin θ cosφ

ωg
i,g (4.14)

4.3.3 Wheel slip

The slip is modelled as a damped model as

ṡn = −Asn (4.15)

sn is the longitudinal slip of the nth wheel. In the damped model the rate of change
of slip is approximated with a factor,−A of the slip value. For smooth terrain driv-
ing this is a reasonable assumption since the terrain is assumed to be smooth and
therefore would not induce sharp changes in the slippage of the vehicle. The minus
sign indicates that the slip stabilizes itself to its nominal value of zero.

The differential kinematics of the rover (Section 4.2) combined with the equations
of motion given by the rover velocity, orientation and wheel slip (Section 4.3),
cover the entire system model for the rover driving on smooth terrain. Note that
the entire system model here only refers to the differential kinematics and not
ground contact forces and so on. In the following section implementation of the
system model within the framework of a nonlinear Kalman filter to estimate the
rover velocity and wheel slip is described.

4.4 Filter framework

To implement the Kalman filter the continuous time state equations are discretized
with a time step ts. The discretization is done with a first order solution of the
ODEs using Euler method. The uncertainties in the system model and sensor
noises are added as Gaussian noise. Fig. 4.3 shows a quick overview of the in-
puts going into the filter and the state estimates output by the filter.

30



Chapter 4. Velocity and slip estimator for smooth terrain

Nonlinear  
Kalman 
Filter 

(3) IMU gyro

(3) IMU acc

(6) wheel rates

(3/3) bogie angles/rates

(6/6) steering angles/rates

orientation (3)

rover velocity (3)

slip (6)

Figure 4.3: Inputs to and outputs from the nonlinear Kalman filter. Numbers in
parenthesis show the number of components in each measurement/state.

4.4.1 Sensor noise

Before developing the process and measurement model for the Kalman filter, the
sensor models used for the additional inputs in the filter are described. The sensors
are modelled with the addition of Gaussian noise with their covariances calculated
during the homing of the rover. Sensor bias is assumed zero. The sensors used as
additional inputs to the filter are the IMU accelerometer and gyroscope, and the
potentiometers for joint angles and derived joint rate measurements. The sensor
models used are

ωg
i,g[k] = ω̃g

i,g[k]− nω[k]

fg
i,g[k] = f̃g

i,g[k]− nf [k]

q[k] = q̃[k]− nq[k]

q̇[k] = ˜̇q[k]− nq̇[k] (4.16)

˜(•) is the measured value from the sensor, from which the noise is subtracted to
get the true value and [k] refers to the kth time step. n•[k] is the noise at the kth

time step with a normal distrubition having zero mean and covariance calculated
during homing of the rover.

4.4.2 Process model

Eqs. (4.11), (4.14) and (4.15) in the discretized form represent the process model
of the Kalman filter given below.
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Θ[k + 1] = Θ[k] + Θ̇[k]ts + nΘ[k]

vg
i,g[k + 1] = vg

i,g[k] + v̇g
i,g[k]ts + nv[k]

s[k + 1] = s[k] + ṡ[k]ts + ns[k] (4.17)

s is the longitudinal slip vector for all wheels combined, n• here is the uncertainty
associated with (•) state and ts is the time step between two consecutive iterations
of the filter. Substituting the sensor noise models in Eq. (4.16) into Eqs. (4.11),
(4.14) and (4.15), their discretized form is given below.

Θ̇[k] =

1

cos θ[k]

 0 sinφ[k] cosφ[k]
0 cos θ[k] cosφ[k] − cos θ[k] sinφ[k]

cos θ[k] sin θ[k] sinφ[k] sin θ[k] cosφ[k]

 (ω̃g
i,g[k]− nω[k])

v̇g
i,g[k] = −(ω̃g

i,g[k]− nω[k])× vg
i,g[k] + f̃g

i,g[k]− nf [k]− Rg
i [k]gi

ṡ[k] = −As[k] (4.18)

Therefore the process model is of the form

x[k + 1] = f(x[k],np[k],up[k]) (4.19)

where f is the state transition function and

x =

Θ
vg

i,g

s

 ,up =

ω̃g
i,g

f̃g
i,g

gi

 ,np =


nΘ

nv
ns
nf
nω


4.4.3 Measurement model

Eq. (4.10) is taken as the measurement model for the Kalman filter where the
wheel rates measured from the encoders are one set of measurements, and the y
and z components of the wheel velocity in the drive frame assumed to be zero for
smooth driving terrain, are taken as the second set of measurements. Substituting
the sensor noise models in Eq. (4.16) into Eq. (4.10), the discretized form is given
below.
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

ωwFL

ωwML

...
ωwFR

06×1

06×1


[k]

=



1
(1−sFL)rw

1
(1−sML)rw

. . . 06×12
1

(1−sFR)rw

012×6 I12×12


[k]

RJ(q̃[k]− nq[k])

 vg
i,g

ω̃g
i,g − nω
˜̇q− nq̇


[k]

+

nw

nvy
nvz


[k]

(4.20)

nw is the noise associated with wheel encoder measurements with a normal distri-
bution whose covariance is calculated during homing. nvy ,nvz are the uncertain-
ties associated with the modelling of the kinematics. Therefore the measurement
model is of the form,

y[k] = h(x[k],nm[k],um[k]) (4.21)

where h is the measurement function and

y =

ωw

0
0

,um =

ω̃g
i,g

q̃
˜̇q

 ,nm =



nω
nw

nq
nq̇
nvy
nvz


Now that the sensor models, process model and measurement model have been set
up in the standard filter framework, the implementation settings are presented in
the following section.

4.5 Filter implementation

From the process and measurement model it can be seen that the system has nonlin-
earities (discussed in more detail in Section 5.7) and therefore a nonlinear Kalman
filter like the extended (EKF) or unscented Kalman filter (UKF) needs to be im-
plemented to estimate the states of the system. MATLAB has predefined classes
that implement the two filters and the functions extendedKalmanFilter()
and unscentedKalmanFilter() allow objects of these classes to be created.
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By creating an object of the class, certain properties of the filter can be set and the
predict() and correct() functions, which perform the predict and update
step (refer Sections 2.5.1 and 2.5.2) of the Kalman filter respectively, can be called
with the object.

Filter properties:

1. State transition function - is the function f taken from Eq. (4.19)

2. Measurement function - is the function h taken from Eq. (4.21)

3. Initial state - is set to the best guess of the state at time t = 0 i.e. x(0)

4. Initial state error covariance - is a diagonal matrix with covariances rep-
resenting the confidence in the initial state guess

5. Process noise covariance - is the covariance associated with the vector np
taken from Eq. (4.19), calculated during homing.

6. Measurement noise covariance - is the covariance associated with the vec-
tor nm taken from Eq. (4.21), calculated during homing.

7. Process noise characteristics - is taken as non-additive since the augmented
process noise covariance matrix includes noises associated with the up terms
which are handled in a non-additve manner within the state transition func-
tion

8. Measurement noise characteristics - is taken as non-additive since the
augmented measurement noise covariance matrix includes noises associated
with the um terms which are handled in a non-additve manner within the
measurement function

Once the filter properties are set the predict() and correct() functions are
called with the concerned filter object and the additional inputs up and um are
passed as arguments.

4.6 Filter drift & limitation of measurement equation

It is a common problem with the Kalman filter estimates that the velocity estimates
accumulate errors as the state equation for it is nothing but an integration of the
IMU accelerometer readings which are noisy. The drawback of the measurement
model is that it is unable to constrain the velocity and slip. The rover Jacobian has
a rank deficiency when all wheels are parallel. Therefore the correct step, which
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uses the measurement equation, is not able to determine how much of the error is
to be weighted to the velocity and how much to the slip, in a unique way. Therefore
depending on the scenario and the noise in the measurements the performance of
the filter can vary. It is left to the predict step to make a reliable prediction which
depends on how accurately the process states are modelled. There can be several
inaccuracies in the state equation related to the rover velocity, for example, the
gyroscope bias is assumed zero or the initialization of the gravity vector may be
inaccurate. Also, the wheel slip is modelled as a damped model which is a stochas-
tic guess. The choice of covariance for the various states effects the Kalman gain
computation which determines how much of the predicted states to trust in com-
parison with those from the update step. Defining the right covariances for the
model uncertainties is a common challenge in Kalman filtering.

This chapter completes the description of the existing framework of estimation of
rover velocity and wheel slip for smooth terrain. The following chapter introduces
the contact angle and additionally a side slip angle, which are then integrated into
the existing framework to estimate them together with the rover velocity and wheel
slips for rough terrain.
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Chapter 5
Extension of estimator to uneven
terrain

The rover kinematics and equations of motion developed so far were for vehi-
cle travel over a smooth terrain where the assumption that the lateral and vertical
components of the wheel velocity are zero, was reasonable. However for travel
over uneven terrain, this assumption does not hold true and therefore additional
variables are needed to account for the lateral and vertical components of velocity
imposed on the wheel by the unevenness of the terrain. In this chapter these ad-
ditional variables needed to fully capture the wheel velocity in three dimensions
shall be defined.

Section 5.1 defines the contact angle, which is used to account for the vertical
component of the wheel velocity and Section 5.2 defines the side slip angle which
accounts for the lateral component. Following the definition of the two additional
variables, the longitudinal wheel slip is redefined in Section 5.3 and the kinematics
to arrive at the wheel Jacobian are developed in Section 5.4. Section 5.5 presents
the extended equations of motion and Section 5.6 summarizes the changes made
to the extended filter framework and implementation. Finally a review of the non-
linearity of the system equations is presented in Section 5.7.

5.1 Contact angle

The angle in the wheel plane between the normal to the steering axis and the di-
rection of wheel velocity is defined as the contact angle (refer Fig. 5.1). v is the
total wheel velocity.
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Figure 5.1: Definition of contact angle

With respect to the drive frame, the contact angle can be written as

γ = tan−1 −v · ŷd

v · x̂d

A new frame called the contact frame denoted by ’c’ is defined. This is obtained
by rotating the drive frame about its z axis by the contact angle γ to align the x axis
of the new contact frame with the direction of wheel velocity in the wheel rolling
plane. Note that a positive contact angle is defined for a negative rotation about ẑc

axis such that an ’upward’ wheel velocity leads to a positive contact angle and a
’downward’ wheel velocity to a negative contact angle. Additionally a rotation of
90◦ about the transformed x axis is done to keep the z axis of the contact frame
aligned with the axis of side slip rotation in keeping with the DH convention (refer
Section 5.4). For the assumption that the lateral component of wheel velocity is
zero, velocities in the contact frame can be summarized as,

vc
i,c · x̂c cos γ = v · x̂d

vc
i,c · ŷc = 0

vc
i,c · ẑc = 0 (5.1)

If a lateral component of wheel velocity is considered then vc
i,c · ŷc 6= 0. The defi-

nition of contact angle has a singularity at γ = ±90◦ i.e. when the x component
of the wheel velocity in drive frame is zero. This corresponds to wheels moving
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Figure 5.2: Definition of side slip angle

purely in the direction of steering axis. This occurs when the entire bogie is mov-
ing upward or downward in the bogie frame or, when the front bogies are in pure
rotation about the center of line joining wheel centers with no translational motion.

5.2 Side slip angle

The angle between the wheel velocity and the wheel plane as seen from the top
view of the contact frame of the wheel is defined as the side slip angle (refer
Fig. 5.2). Note that the notation vc

i,c|x is equivalent to vc
i,c · x̂c. These two notations

shall be used interchangeable henceforth. The side slip angle with respect to the
contact frame is

β = tan−1 v · ŷc

v · x̂c

A new frame called the side slip frame denoted by ’ss’, is introduced by rotating
the contact frame about its z axis by the side slip angle β. A positive side slip
angle is defined for a positive rotation about the ẑss axis corresponding to a leftward
wheel velocity as seen from the top view and a negative side slip angle corresponds
to a rightward wheel velocity. The wheel velocity in the side slip frame can be
summarized as

vss
i,ss · x̂ss = |v|

vss
i,ss · x̂ss cosβ = vc

i,c · x̂c

vss
i,ss · ŷc = 0

vss
i,ss · ẑc = 0 (5.2)

The definition of side slip angle has a singularity similar to the contact angles
when the x component of the wheel velocity in the drive frame is zero. The singu-
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larity in this case is cascaded. If there exists only a z component of wheel velocity
in the drive frame, this corresponds to a motion of the wheel purely perpendicular
to the wheel plane. Here the side slip angle should be 90◦ but since the side slip
angle is defined in the contact frame and the singularity is cascaded, the side slip
angle becomes undefined.

5.3 Longitudinal wheel slip

In the previous chapter the longitudinal wheel slip was defined with respect to the
x component of wheel velocity in the drive frame. This definition holds for the
assumption that the lateral and vertical wheel velocities are zero. As this chapter
deals with motion on uneven terrain, the rover has non-zero lateral and vertical
wheel velocities. The longitudinal wheel slip in this case is redefined as the ratio
of slip speed to pure rolling speed in the effective direction of wheel velocity in the
wheel plane. Therefore the longitudinal slip is now defined with respect to the x
component of wheel velocity in the contact frame regardless of whether the lateral
component is non-zero or not.

vc
i,c · x̂c = (1− s)ωwrw

From Eq. (5.2) the longitudinal slip can be related to the wheel velocity in the side
slip frame via the side slip angle as

vss
i,ss · x̂ss =

(1− s)ωwrw

cosβ
= |v|

The singularities associated with the longitudinal slip definition have already been
discussed in the previous chapter.

5.4 Extended wheel Jacobian

The equations developed previously in Section 4.2 are modified to incorporate the
contact angle and side slip angle to arrive at the kinematic Jacobian for a single
wheel. Two separate models are developed - one considering only contact angle
where it is assumed that lateral wheel velocity is zero, and the second considering
both the contact and side slip angle where the lateral wheel velocity is also taken
into account. A summary of the equations leading up to the wheel Jacobian for the
two models is presented in Table 5.1

The wheel Jacobian can be extended to include all six wheels using the extended
DH table shown in Table 5.2 as done in Chapter 4. The rover Jacobian in this case
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Table 5.1: Kinematics leading to the wheel Jacobian for contact angle model and contact
& side slip angle model for a single wheel

Contact angle model Contact & Side slip angle model

vc
i,c = Rc

gvg
i,g + Rc

g[ωg
i,g×]rg

g,c + Rc
gvg

g,c vss
i,ss = Rss

g vg
i,g + Rss

g [ωg
i,g×]rg

g,ss + Rss
g vg

g,ss

Rc
g = Rc

d(γ)Rd
s (qs)Rs

b(qb)Rb
g Rss

g = Rss
c (β)Rc

d(γ)Rd
s (qs)Rs

b(qb)Rb
g

Tg
g,c =

[
Rg

c rg
g,c

0 1

]
Tg

g,ss =

[
Rg

ss rg
g,ss

0 1

]
vg

g,c =
∂rg

g,c

∂q
q̇ = J q̇ vg

g,ss =
∂rg

g,ss

∂q
q̇ = J q̇

q =
[
qb qs γ

]T q =
[
qb qs γ β

]T
vc

i,c =
[
vJ ωJ qJ

] vg
i,g

ωg
i,g

q̇

 vss
i,ss =

[
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0
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 vss
i,ss

would include the additional rotation matrices that transform the wheel velocities
to the contact frame and the side slip frame respectively in the corresponding mod-
els described in Table 5.1.

5.5 Extended equations of motion

The evolution of rover velocity, orientation and wheel slip with time was covered
in Section 4.3. In addition to these states of the system, two additional states for
the contact and side slip angles need to be developed. In Section 3.2.2 two state
models for the contact angle were discussed. A random walk was used in (Iag-
nemma et al., 2004) and a damped model in (Balaram, 2000) to model the contact
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Table 5.2: DH table continued from table 4.2

Link θi di ai αi
(contd.)... ... ... ... ...
dFL → cFL −γFL 0.0000 0.0000 π/2
dML → cML −γML 0.0000 0.0000 π/2
dRL → cRL −γRL 0.0000 0.0000 π/2
dRR → cRR −γRR 0.0000 0.0000 π/2
dMR → cMR −γMR 0.0000 0.0000 π/2
dFR → cFR −γFR 0.0000 0.0000 π/2
cFL → ssFL βFL 0.0000 0.0000 0
cML → ssML βML 0.0000 0.0000 0
cRL → ssRL βRL 0.0000 0.0000 0
cRR → ssRR βRR 0.0000 0.0000 0
cMR → ssMR βMR 0.0000 0.0000 0
cFR → ssFR βFR 0.0000 0.0000 0

angle state. The same model used for contact angle state shall be used to model
the side slip angle state.

Damped model:

γ̇n = −Aγγn + ñγ

β̇n = −Aββn + ñβ (5.3)

Random walk:

γ̇n = ñγ

β̇n = ñβ (5.4)

Eqs. (5.3) and (5.4) are the state equations for a damped model and random walk.
γn and βn are the contact and side slip angles for the nth wheel respectively. A• is
a damping parameter and ñ• is the Gaussian noise associated with (•) state.

5.6 Extended filter framework & implementation

The Kalman filter framework is the same as in Section 4.4 but with the addition
of the extended states given by Eq. (5.3) or Eq. (5.4) depending on the choice of
state model. The sensor noise models, process model and measurement model are
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Chapter 5. Extension of estimator to uneven terrain

extended to include the contact and side slip angles.

γ[k + 1] = γ[k] + γ̇[k]ts + nγ [k] (5.5)

β[k + 1] = β[k] + β̇[k]ts + nβ[k] (5.6)

In addition to the process model in Eq. (4.17), for the contact angle model Eq. (5.5)
is incorporated and for the contact & side slip angle model both Eqs. (5.5) and (5.6)
are incorporated. Note that the noise terms in Eqs. (5.5) and (5.6) are equivalent
to the ñ• term in Eqs. (5.3) and (5.4) multiplied by a factor equal to the time step
ts. γ is the contact angle vector and β the side slip angle vector for all wheels
combined. Similarly the appropriate measurement equations from Table 5.1 are
used for the contact angle model and contact & side slip angle model.

Fig. 5.3 shows the filter inputs and outputs as in Section 4.4 with the addition of
the extended states. As the process and measurement models of the extended filter
framework also have nonlinearities, a nonlinear Kalman filter like the EKF or UKF
can be used to estimate the states. A short study on the nonlinearity of the system
is presented in the following section.

Nonlinear  
Kalman 
Filter 

(3) IMU gyro

(3) IMU acc

(6) wheel rates

(3/3) bogie angles/rates

(6/6) steering angles/rates

orientation (3)

rover velocity (3)

slip (6)

contact angles (6)

side slip angles (6)

Figure 5.3: Filter framework with extended states

5.7 Study of nonlinearity of the system

The EKF algorithm linearizes the state transition and measurement function about
the current state. The linearization of both the state transition and measurement
function is done with respect to the state vector and the noise vector (refer Sec-
tion 2.5.1). Therefore these Jacobians are what are of interest to see if they rep-
resent good linearizations of the system or not. The linearization works well for
moderately nonlinear systems if the variation in state is small in the time step of
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Chapter 5. Extension of estimator to uneven terrain

linearization considered. However it may lead to divergence of the filter for highly
nonlinear systems since the variation in state may be large over the time step of
linearization considered. The system equations considered here are for the contact
& side slip angle model.

A moderately nonlinear function is one which has no discontinuities or sharp
changes in the output for the variation of states within the step size of discretiza-
tion considered. Fig. 5.4 shows the difference between a moderately nonlinear and
highly nonlinear system.

y
error of 

linearization

Moderately nonlinear

f (x)

y

x

error of 
linearization

Highly nonlinear

f (x)

Δx

x

Δx

Figure 5.4: Nonlinear systems. Adapted from Mathworks:Understanding Kalman Filters

In the EKF algorithm the four Jacobians used are

F =
∂f
∂x

∣∣∣∣
x[k],n̄p,up[k]

and L =
∂f
∂np

∣∣∣∣
x[k],n̄p,up[k]

H =
∂h
∂x

∣∣∣∣
x[k],n̄m,um[k]

and M =
∂h
∂nm

∣∣∣∣
x[k],n̄m,um[k]

The idea is to understand the nonlinearities of the system to see if these Jacobians
can make good approximations of the state transition and measurement functions.
Table 5.3 summarizes the nonlinearities of the functions f and h with respect to
the variables x,np and nm. In the process model keeping up and np constant the
nonlinearities associated with the state transition function f are summarized below.

- Euler angles vary nonlinearly because of the trigonometric functions associ-
ated with them

- The rover velocity varies nonlinearly because of the term Rg
i depends non-

linearly on the Euler angles.
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Chapter 5. Extension of estimator to uneven terrain

Table 5.3: Overview of system nonlinearities

x f h np f nm h
Θ X - nΘ × nω ×
vg

i,g X × nv × nw ×
s × X ns × nq X
γ × X nγ × nq̇ ×
β × X nβ × nvy ×

nf × nvz ×
nω ×

X- function in column has nonlinearity associated with variable in row.
× - function in column has no nonlinearity associated with variable in row.

- The wheel slip, contact and side slip angles vary linearly.

Similarly, keeping x and up constant, state transition function f varies linearly with
the noise vector np.

In the measurement model keeping um and nm constant the nonlinearities associ-
ated with the measurement function h are summarized below.

- The wheel rates vary nonlinearly with the wheel slip as a 1/(1− s) function

- The wheel rates, vss
i,ss|x and vss

i,ss|y also vary nonlinearly with the contact and
side slip angles due to trigonometric functions associated with them in the
rover Jacobian RJ

- The rover velocity vg
i,g varies linearly

Similarly, keeping x and um constant, measurement function h varies linearly
with all components of the noise vector nm except nq which varies nonlinearly
as trigonometric functions are associated with them in the rover Jacobian RJ.

The four Jacobians used in the EKF algorithm have several trigonometric functions
associated with the rotation matrices involved. The Euler angles have a singularity
when the pitch θ = π

2 . Trigonometric functions are nonlinear functions with the
sinus and cosine functions continuous and differentiable in the range (−π,+π)
and tangent in the range (−π

2 ,+
π
2 ). The period of sinus and cosine is 2π and that

of tangent is π. In the trigonometric expressions involved in the state transition
function and the measurement function, the period of the arithmetically combined
sinus and cosine functions is still 2π. This is a very low frequency associated with

44



Chapter 5. Extension of estimator to uneven terrain

the nonlinearity since for the time step considered in the filter (1 millisecond), the
change in state x would be very small such that the nonlinearity could be easily
approximated with a linearization.

In the discussion above, up and um were considered constant. However this is
actually not the case as these inputs are time-varying parameters and some of them
even vary nonlinearly. This makes the analysis of nonlinearity more complex.
However as mentioned earlier, the time step of the filter is small enough that large
changes in up and um are not expected in that time step. The true feasibility of
the EKF filter in handling the nonlinear system dynamics can be seen when a test
scenario is taken and the results compared from those obtained from a UKF (dis-
cussed in the following chapter).

Now that the extended estimator for rough terrain has been set up in this chapter,
the results and analysis of estimation for a few test scenarios is presented in the
following chapter.
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Chapter 6
Results and verification

In this chapter two steps are followed for the verification of the contact and side
slip angle estimation using the extended framework developed in Chapter 5. The
first step is a verification of the estimator against hypothetical scenarios with arti-
ficial measurements and the second step is a verification of the estimator against
tests conducted in the lab with real measurements. Note that all estimation results
presented here are performed offline.

A brief discussion on the reference signals generated to compare the estimates
against, is discussed in Section 6.1. Remarks on the choice of results presented
in the subsequent sections and some filter settings are listed in Section 6.2. Sec-
tion 6.3 and Section 6.4 present the hypothetical scenarios to verify contact an-
gle estimation and the side slip angle estimation respectively. Section 6.5 further
presents the results of the estimator when applied to a lab test conducted specially
to study the development of contact angles and Section 6.6 for a lab test that fo-
cuses on the side slip angles. A thorough understanding of the test scenarios is
presented to be able to anticipate intuitively what the estimates must look like be-
fore discussing the estimation results.

6.1 Generating reference

In order to be able to verify the results of the estimation a reliable reference signal
is needed. To generate the reference for rover velocity, wheel slip, contact and side
slip angles in case of hypothetical scenarios is straightforward since in the ideal
scenarios the ideal rover velocity and wheel rates are taken, from which the contact
angles, side slip angles and wheel slip are computed using the kinematic relations.
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Chapter 6. Results and verification

For the tests conducted in the lab, the reference velocity of the rover is determined
using a tracking system that measures the rover’s position and orientation in the
test bed at a frequency of 60Hz. The measurements from the tracking system can
be used to derive the velocity and rotation rate of the rover which can then be used
to derive the contact and side slip angles from the kinematics. Additionally the
wheel encoders give the wheel rate measurements which are used to compute the
reference wheel slip thereafter.

6.2 Choice of results and settings

1. The estimates from the EKF were not differentiable from those of the UKF
for the tests presented in this chapter although there was a significant differ-
ence in estimation time. For example, the computation time on a standard
office PC for the test in Section 6.5 taken by the UKF for a scenario length
of 2 min using the contact & side slip angle model was 13 min. The same
scenario with the EKF took 7 min. Here the EKF algorithm uses Jacobians
(refer Section 2.5.1) computed numerically by MATLAB. Analytical Jaco-
bians generated using the symbolic toolbox in MATLAB and fed to the esti-
mator further reduced the estimation time to 54 sec. Therefore all the results
shown in the following sections are generated using the EKF with analytical
Jacobians.

2. The filter results from the random walk and damped model of contact and
side slip angles were seen to produce indistinguishable estimates for the
hypothetical scenarios for a damping value of 10−3s−1. All the results pre-
sented in the following sections are generated using the random walk model
for the contact and side slip angles.

3. For the hypothetical scenarios, the covariances for the sensor noise are cal-
culated from previously conducted lab tests (see Table 6.1). The remaining
covariances, which include those of the Euler angles, rover velocity, wheel
slip, contact angles, side slip angles and the y, z components of wheel veloc-
ity in the final frame considered, are set arbitrarily to 10−5 (with respective
units). Better results were found for wheel slip covariances set to 10−6 for
the hypothetical scenarios.

4. For the lab scenarios, the covariances for the sensor noise is calculated dur-
ing homing which is used to initialize the filter (see Table 6.1). The re-
maining covariances, as mentioned above, are set arbitrarily to 10−5 (with
respective units). Better results were found for wheel slip covariances set to
10−7 and rover velocity covariances set to 10−4m2s−2 for the lab scenarios.
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Table 6.1: Covariances of sensor noise

Sensor noise
covariance

FL ML RL RR MR FR

nqs(×10−11rad2) 0 0 0 0.1298 0 0
nq̇s(×10−10rad2 s−2) 0 0 0 0.4767 0.3200 0
nw(×10−11rad2 s−2) 0.4313 0.4335 0 0 0.4070 0

FL FR R

nqb(×10−5rad2) 0.1454 0.1026 0.0506
nq̇b(×10−3rad2 s−2) 0.2523 0.3246 0.2431

x y z
nω(×10−4rad2 s−2) 0.3932 0.5048 0.3797
nf (m2 s−4) 0.0013 0.0015 0.0049

Note: A small value of 10−12 is added to all the covariance values to ensure non-zero
values for the filter implementation. Noise terms - steering angle (nqs ), steering velocity

(nq̇s ), wheel rate (nw), bogie angle (nqb ), bogie velocity (nq̇b ), gyroscope (nω) and
accelerometer (nf )

6.3 Hypothetical test for contact angle estimation

To verify contact angle estimation, a simple hypothetical scenario is considered
from which the nature of the contact angles developed by the wheels can be pre-
dicted intuitively. These theoretical contact angles are then compared with those
obtained from the estimator. The estimation framework for the contact angle
model is used here.

Scenario

A hypothetical flying rover is considered that has one of its front bogies rotated
steadily for a brief amount of time. Artificial measurements with noise properties
taken from the known covariances of the real sensors onboard the ExoMars rover
are generated to feed as inputs to the estimator. The front left bogie is rotated for
10 s at a constant rate of 0.06 rad/s or roughly 3 deg/s. The rover is flying in the
forward direction with a speed of 3 cm/s. The wheel rates are calculated from the
rover velocity and the wheel radius, and maintained the same for all wheels. All
other measurements are taken to be zero except the gravity vector, which is taken
to be pointing down with a value equal to the Earth’s gravitational constant. This
is also taken into account in the artificial measurements generated for the IMU’s
accelerometer. Fig. 6.1 shows the artificial measurements generated for the bogie
angles and velocities.
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Figure 6.1: Bogie angles and velocities for FL bogie rotation scenario

The following analysis presents what the contact angles for the wheels should look
like when only the front left bogie is rotated. All other bogies and steering axes are
maintained at their nominal position and the rover is considered to have a purely
straight forward motion. The schematic in Fig. 6.2 helps visualize the discussion
below.

- The contact angles for all wheels except the ones attached to the FL bogie
will be zero

- Rotation of the FL bogie leads to wheel velocity components in the xy plane
of the drive frame

- Addition of the y component of the wheel velocity in drive frame contributes
to contact angle

- The rotational velocity of the bogie and the forward velocity of the rover
contribute to the wheel velocities and their relative magnitudes combined
with the bogie angle determine the contact angles

From Fig. 6.2 it can be seen that as the bogie angle changes, the orientation of
the drive frame changes along with the direction of the bogie velocity while the
rover velocity direction stays the same (since the rover is assumed to have pure
forward motion in the artificial measurements). This leads to a gradual decrease in
the absolute value of contact angle for the FL wheel and a gradual increase for the
ML wheel (Fig. 6.2 sketch (b)). Once the bogie stops rotating, the contact angle
is constant and equal to the bogie angle for both wheels (Fig. 6.2 sketch (c)). The
development of contact angles described above can be seen in the reference values
computed from the kinematics of the rover shown in Fig. 6.3.
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Figure 6.2: Schematic showing the development of contact angle. The schematic is
drawn as seen from the left view of the rover in the xy plane of the drive frame
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Filter results

Along with the reference, the estimates from the implementation of the contact
angle model in the nonlinear Kalman filter framework are also shown in Fig. 6.3.
Fig. 6.4 shows the corresponding wheel slip and rover velocity estimates. A short
description of the estimates is presented below.

- The contact angles for all wheels except those attached to the FL bogie are
zero as anticipated

- γFL and γML follow the reference at the start when the bogie starts to rotate

- vg
i,g|x and all the six wheel slip estimates are consistently drifting away from

the reference

- The absolute values of γFL and γML are underestimated for the duration of
bogie rotation

- γFL and γML follow the reference again once the bogie stops rotating
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Figure 6.3: Contact angle estimates for FL bogie rotation scenario
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Figure 6.4: Rover velocity and wheel slip estimates for FL bogie rotation scenario
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Table 6.2: RMS errors of estimates for FL bogie rotation scenario

Rover velocity+ Wheel slip∗ Contact angle∗
(ms−1) (-) (deg)

O ND O ND O ND
0.1361 0.0033 4.5195 0.1467 18.8466 10.8803
0.0001 0.0002 4.5199 0.1080 13.5646 10.0483
0.0042 0.0006 4.5324 0.1077 2.4683 5.5500

4.5391 0.1033 1.3199 2.2906
4.5435 0.1054 1.1245 0.5632
4.5436 0.1053 1.1276 0.2298

O - errors from original estimates. ND - errors from estimates where non-diagonal
elements of Px hard reset to zero. + - estimate errors listed in order x, y, z

∗ - estimate errors listed in order FL,ML,RL,RR,MR,FR

Discussion

When the rover velocity is being overestimated, revisiting the schematic in Fig. 6.2,
it can be seen that if the vg

i,g|x component is increased, the absolute value of con-
tact angles for both wheels decrease and this is seen in the estimation results of
γFL and γML. The rover velocity and wheel slip, although they drift a lot from
the reference, are consistent with the definition of slip as detailed in Section 4.1.
It can be seen that for a negative value of slip the wheel velocity corresponds to
being greater than the rolling speed and hence is translated to an increase in vg

i,g|x
estimates.

Stepping through the iterations of the filter, a closer inspection of the state error
covariance matrix Px (refer Section 2.5.1), revealed large values along the non-
diagonal elements. This is reflected in the slip and velocity estimates as the filter is
estimating large cross covariances between the contact angle states, and the wheel
slip and rover velocity states. As a workaround to this problem, a hard resetting
of the non-diagonal elements of the state error covariance matrix to zero was tried
between the update and predict steps of the filter. The estimation results for the
workaround are shown in Figs. 6.5 and 6.6. These estimates now follow the refer-
ence very closely and verify the contact angle estimation by the filter framework
using the contact angle model. The reason for the inability of the filter model to
estimate the rover velocity and wheel slip reliably is mentioned in Section 4.6.

Table 6.2 shows the Root Mean Square Errors (rmse) between the estimates and
reference. The rmse of contact angle estimates for the FL and ML wheels de-
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Figure 6.5: Contact angle estimates for FL bogie rotation scenario

creases by roughly 8◦ and 3◦ respectively after the hard reset of Px. The rmse
of vg

i,g|x decreases from 13.61cm s−1 to 0.33cm s−1. Wheel slip estimate rmse
reduces on average to 0.1127 from 4.533.

6.4 Hypothetical test for side slip angle estimation

For the verification of the side slip angle estimation a hypothetical scenario is
needed where the development of side slip angles is easily interpreted. The side
slip angle estimation is done using the contact & side slip angle model built into
the nonlinear Kalman filter framework.

Scenario

For the same flying rover model previously mentioned, by rotating the rear bogie
the development of side slip angles on the two rear wheels can be predicted easily.
The same parameters for bogie speed and rover velocity from Section 6.3 are used
to generate artificial measurements for the rotation of the rear bogie. Similar to
the analysis done for the contact angles, a consequence of rotating the rear bogie is
summarized below. The schematic in Fig. 6.7 helps visualize the discussion below.
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Figure 6.6: Wheel slip and rover velocity estimates for FL bogie rotation scenario
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- Side slip and contact angles for all wheels except the ones attached to the
rear bogie will be zero

- Rotation of the rear bogie leads to wheel velocity components in the yz
plane of the drive frame

- Addition of the z component of the wheel velocity in drive frame contributes
to side slip angle

- Addition of the y component of the wheel velocity in drive frame contributes
to contact angle

It can be seen that as the rear bogie rotates, the orientation of the drive frame
changes and with it the direction of the bogie velocity. The vd

i,d|y being constant
throughout the bogie rotation, the contact angles γRL and γRR remain constant
(Fig. 6.7 sketch (b)). Also vc

i,c|y(= vd
i,d|z) being the same at all times of the bogie

rotation, the side slip angles βRL and βRR remain constant (Fig. 6.7 sketch (c)).
It can be seen that the contact and side slip angles will be independent of the rear
bogie angle.

Filter results

The development of side slip angles (and contact angles) described above can be
seen in the reference values in Fig. 6.8. The estimates shown are obtained from
the implementation of the contact angle & side slip angle model in the nonlin-
ear Kalman filter framewor. The original estimates and those obtained by hard
resetting the non-diagonal elements of Px to zero are shown. Fig. 6.4 shows the
corresponding wheel slip and rover velocity estimates. Table 6.3 shows the RMS
errors between the estimates and reference. A short description of the estimates is
presented below.

- The contact and side slip angle estimates are zero for all wheels other than
the RL and RR wheels except for small spikes seen at the instant when the
bogie rotation stops

- The absolute values of βRL, βRR, γRL and γRR are underestimated for the
entire duration of bogie rotation in the original estimates and for the first
3 sec in the estimates from the hard reset of Px

- vg
i,g|x and all the six wheel slip estimates are consistently drifting away from

the reference for the original estimates

- Overall filter estimates improve when the non-diagonal elements of Px are
hard reset to zero
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Figure 6.7: Schematic showing the development of contact angle. The schematic is
drawn as seen from the left view of the rover in the xy plane of the drive frame

Discussion

In the original estimates as the filter overestimates vg
i,g|x, the absolute values of

γRL and γRR decrease (refer Fig. 6.7 sketch (b)) which results in increase of the
respective vc

i,c|x. As the vc
i,c|x increases, the absolute value of βRL and βRR de-
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Table 6.3: RMS errors of estimates for Rear bogie rotation scenario

Rover velocity+ Wheel slip∗ Contact angle∗ Side slip angle∗
(ms−1) (-) (deg) (deg)

O ND O ND O ND O ND
0.1248 0.0019 4.1605 0.0542 0.1166 0.4809 0.5788 1.1080
0.0015 0.0005 4.1605 0.0541 0.1256 0.2222 0.6385 0.6931
0.0003 0.0002 4.1286 0.1461 14.2250 10.1665 4.7350 3.2424

4.1332 0.1507 14.2221 8.2933 4.8228 3.4059
4.1589 0.0672 0.2172 0.9909 0.6177 0.7210
4.1589 0.0672 0.1395 0.5518 0.5966 0.9403

O - errors from original estimates. ND - errors from estimates where non-diagonal
elements of Px hard reset to zero. + - estimate errors listed in order x, y, z

∗ - estimate errors listed in order FL,ML,RL,RR,MR,FR

crease (refer Fig. 6.7 sketch (c)). These are reflected in the underestimated values
of βRL, βRR, γRL and γRR. The relation between the drift in vg

i,g|x and wheel slips
is the same as seen in the previous section and likewise the filter estimates are im-
proved by hard resetting the non-diagonal elements of the state error covariance
matrix to zero. The results then follow the reference very closely.

The rmse in the side slip angle estimates for the rear wheels reduce by roughly 1.4◦

(refer Table 6.3) after the hard reset of Px. The rmse in contact angle estimates of
the RL and RR wheels reduce by roughly 4◦ and 6◦ respectively. The improvement
in the rmse of wheel slip and rover velocity estimates is similar to the results from
the FL bogie rotation scenario. The estimates obtained after the hard-reset of Px
are therefore in fairly good agreement with the reference and thus verifies the side
slip angle estimation by the filter framework using the contact & side slip angle
model.

6.5 Lab test for contact angle estimation

The estimation of contact angles has so far been verified only with a hypothetical
scenario. Now a real scenario from a test conducted in the PEL lab at DLR is fed
to the estimator.

Scenario

A test was performed by driving the right side of the rover over an obstacle and the
measurements from the sensors fed to the estimator. Fig. 6.10 shows the FR wheel
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Figure 6.8: Side slip angles and contact angle estimates for Rear bogie rotation scenario
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Figure 6.9: Wheel slip and rover velocity estimates for Rear bogie rotation scenario
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Figure 6.10: FR wheel climbing obstacle. Courtesy DLR.

of the rover climbing over the obstacle at the PEL. A time series of events of the
test scenario is summarized in Fig. 6.11 along with the reference contact angles for
the scenario. A quick overview of how the contact angles are developed is given
below.

- When the rover is stationary, the contact angle is undefined. A non-zero
constant value is seen in the reference in Fig. 6.11. This is because the
reference is generated so as to maintain the previous value of contact angle
in cases of singularity. Therefore this large value is a result of noisy tracking
measurement leading to an erroneous contact angle that is maintained for the
period that the rover stands still.

- As the rover starts to drive and the FR wheel touches the obstacle, its contact
angle grows initially and then starts decreasing as the bogie joint passively
starts to comply with the shape of the obstacle

- In this time the absolute value of contact angle on the MR wheel increases
as the bogie angle increases

- When the FR wheel rolls over the peak of the obstacle the contact angle
crosses from a positive to negative value and increases briefly until the bogie
angle starts to decrease again, after which the contact angle drops to zero.

- In this time the contact angle on the MR wheel drops to zero as the bogie
angle comes back to zero.
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- The contact angle developed on the MR and RR wheels while climbing the
obstacle can be understood in a similar way

- The climbing of RR wheel on the obstacle also leads to small contact angles
on the FR and MR wheels because of small pitch angles developed by the
rover.

Filter results & discussion

The estimation for this scenario was carried out using both the contact angle model
and the contact & side slip angle model built into the estimator framework. For the
sake of brevity in the discussion that follows the two models shall be referred to as
model C and model C+SS respectively. Figs. 6.12 and 6.13 show the estimation
results along with the reference. Table 6.4 shows the RMS errors between the
estimates and reference for both models. Note that the RMS errors are calculated
only for estimates of the rover when it is in motion.

Table 6.4: RMS errors of estimates for wheels climbing obstacle scenario

Rover velocity+ Wheel slip∗ Contact angle∗ Side slip∗
(ms−1) (-) (deg) angle(deg)

C C+SS C C+SS C C+SS C+SS
0.0062 0.0037 0.2573 0.1300 8.5180 9.4303 21.5050
0.0015 0.2196 0.0134 0.1062 8.5517 9.9061 20.0045
0.0044 0.1994 0.0041 0.1014 7.9867 9.4233 38.0807

0.1602 0.1155 13.9642 13.6912 64.8442
0.1805 0.1308 14.2626 16.7634 19.4695
0.1950 0.1715 13.1198 15.3854 21.9920

C - errors from contact angle model. C+SS - errors from contact & side slip angle model.
+ - estimate errors listed in order x, y, z. ∗ - estimate errors listed in order

FL,ML,RL,RR,MR,FR

Contact angles: Between t = 0 and t = 18 sec estimates do not follow reference.
This is the period where the rover is stationary (case of singularity). Estimates fol-
low reference with a slight lag for all wheels that are climbing the obstacle. From
t = 108 sec to end of scenario, estimates deviate from reference. t = 108 sec is
the instant when the RR wheel climbs off the obstacle and there are huge vibra-
tions induced on the rover which were manifest in the spikes observed in all sensor
measurements. The average rmse of contact angle estimates, excluding regions of
singularity, is 11.0672◦ for model C and 12.4422◦ for model C+SS.
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Time (sec) Description
t = 0 Rover stationary
t = 18 All wheels straight; starts
t = 35 FR wheel climbs obstacle
t = 45 FR wheel at obstacle peak
t = 55 FR wheel off obstacle
t = 60 MR wheel climbs obstacle
t = 70 MR wheel at obstacle peak
t = 80 MR wheel off obstacle
t = 90 RR wheel climbs obstacle
t = 100 RR wheel at obstacle peak
t = 108 RR wheel off obstacle
t = 112 Rover stops
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Figure 6.11: Lab test: Right wheels of rover climbing obstacle
Reference contact angles for (a) FR wheel (b) MR wheel (c) RR wheel climbing obstacle
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Figure 6.12: Contact angles and rover velocity estimates for wheels climbing obstacle
scenario
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Figure 6.13: Wheel slip and side slip angle estimates for wheels climbing obstacle
scenario
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Rover velocity: Between t = 18 and t = 112 sec, the rover is in motion except at
t = 32 sec where a short stop was made before driving the rover over the obstacle.
At the start of motion and at the instant when the RR wheel climbs off the obstacle
and induces large vibrations, the estimates show some spikes. For both models,
the vg

i,g|x estimates are marginally overestimated. With model C+SS the vg
i,g|x es-

timates improve but vg
i,g|y estimates deteriorate. vg

i,g|y estimates from model C+SS
take a while to stabilize at the start of motion. Errors in vg

i,g|y, v
g
i,g|z estimates from

model C+SS are seen to increase by 2 orders of magnitude (refer Table 6.4). After
the MR wheel climbs off the obstacle between t = 60 and t = 80 sec, they deviate
significantly.

Wheel slip: Between t = 0 and t = 18 sec estimates deviate from reference.
This is the period where the rover is stationary (case of singularity). The remain-
der of the estimates show some similarity in trend with the reference, however the
estimates lag and drift steadily over time. As the slip estimates drift, the vg

i,g|x es-
timates are overestimated. The wheel slip estimates from model C+SS are seen to
improve over those from model C for the right wheels.

Side slip angle: As with the other estimates, when the rover is stationary (case
of singularity) and when the RL wheel climbs off obstacle, the estimates devi-
ate greatly from reference. The deviation in side slip angle estimates between
t = 18 and t = 30 sec are consistent with the deviation seen in the vg

i,g|y esti-
mates. Between t = 35 and t = 55 sec which is when the FR wheel climbs over
the obstacle, the estimates for the rear wheels are in good agreement with the ref-
erence. For the duration of the MR and RR wheels climbing over the obstacle
the estimates predict a leftward lateral wheel velocity which is seen in the positive
values of vg

i,g|y being estimated. The overall side slip angle estimates have huge
variations with an average rmse of 30.9827◦.

6.6 Lab test for side slip angle estimation

In order to verify side slip angle estimation with a real scenario, a lab test was
performed to induce side slip of the wheels of the rover.

Scenario

The FL wheel of the rover was steered incrementally while maintaining all other
wheels at zero steering angles. A time series of events describing the test scenario
is shown in Section 6.6. The test was performed such that the steering of one wheel
different from the other parallel wheels did not cause the rover to turn significantly.
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Therefore the rover continued to travel almost in a straight line. The analysis of
how the side slip angles develop for this test scenario is described below.

- The steering of the wheel adds wheel velocity components in the xz plane
of the drive frame

- Recall that a leftward lateral wheel velocity in the drive frame as seen from
the top view leads to a positive side slip angle

- Since the FL wheel is steered leftward the rover velocity in the rotated drive
frame is now manifest as a rightward lateral wheel velocity and therefore a
negative side slip angle is developed

- Since the rover essentially travels in a straight line when the FL wheel is
steered incrementally, the side slip angle is nearly equal in magnitude to the
steering angle (refer Fig. 6.14).

Time (sec) Description
t = 0 Rover stationary
t = 4 All wheels straight; starts (backwards)
t = 25 FL wheel steered to +10◦

t = 38 FL wheel steered to +20◦

t = 53 FL wheel steered to +30◦
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Figure 6.14: Lab test: FL wheel of rover steered incrementally
FL wheel steered to (a) 10◦ (b) 20◦ (c) 30◦

Filter results & discussion

Fig. 6.13 shows the estimation results along with the reference. Table 6.5 shows
the RMS errors between the estimates and reference. Note that the RMS errors are
calculated only for estimates of the rover when it is in motion.
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Table 6.5: RMS errors of estimates for FL wheel incrementally steered scenario

Rover velocity+ Wheel slip∗ Contact angle∗ Side slip angle∗
(ms−1) (-) (deg) (deg)
0.0018 0.0784 6.6249 4.2948
0.0023 0.0746 6.6725 4.4154
0.0024 0.0528 6.6132 4.7044

0.0357 6.3794 4.4368
0.0460 7.1936 4.2025
0.0455 6.5520 4.4611

+ - estimate errors listed in order x, y, z
∗ - estimate errors listed in order FL,ML,RL,RR,MR,FR

Side slip angle: Between t = 0 and t = 4 sec, the estimates deviate from refer-
ence. This is the region of singularity since the rover is stationary. The side slip
angles between t = 4 and t = 12 sec are overestimated. βFL follows the reference
well, showing the side slip induced by the incrementally steered wheel. Between
t = 30 and t = 40 sec, the estimates deviate slightly from reference. The rmse of
estimates is on average 4.4192◦.

Rover velocity: vg
i,g|x estimates follow reference closely till about t = 50 sec,

after which it drifts slightly. Between t = 8 and t = 12 sec, vg
i,g|y deviates from

reference and this is reflected in the overestimation of side slip angles mentioned
previously. Between t = 30 and t = 40 sec, the deviation in estimates from the
reference is consistent with the drift in the corresponding side slip angles. The
estimates of y, z components of the rover velocity are a bit noisy compared to the
estimates of x component, subsequently, their rmse are slightly larger.

Wheel slip: From around t = 20 sec for the front and middle wheels, and
t = 40 sec for the rear wheels, the wheel slip estimates drift from the reference.
The deviations are consistent with those seen in the vg

i,g|x estimates. The average
rmse of the estimates is 0.0557.

Contact angles: The first t = 4 sec is the period when the rover is stationary
and therefore the contact angle is not defined. The variation in the estimates for
the remainder of the scenario appear largely random with a mean roughly equal to
zero. The rmse is equal to 6.6726◦ on average.

The estimates from the filter built on contact & side slip angle model were seen
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to be poor for the side slip estimates in the scenario of the rover climbing over the
obstacle. In contrast the estimates of side slip angles in the scenario of individual
wheel steer show good adherence to the reference values. Therefore it appears that
the estimator is unable to estimate both the side slip and contact angle reliably for
the case of non-zero contact angles like in the obstacle scenario. Also the steering
of the single wheel largely induced side slip in that particular wheel alone, there-
fore this is a more simple scenario with less dynamics as compared to the obstacle
scenario.

An oscillation in cross-coupling of states was seen in the estimates of Px between
the predict and correct steps of the filter. The predict step produced non-zero cross
covariances in the Euler angles and rover velocity states, and the correct step lead
to cross-covariances for all states excluding the Euler angles. Upon hard resetting
the non-diagonal elements of Px to zero between the correct and predict step the
filter estimates largely improved.

This chapter presented scenarios that focused on contact and side slip angle es-
timation. The results show the feasibility of estimating the wheel-terrain contact
angles and additionally side slip angles for uneven terrain using the extension of
the estimation framework for rover velocity and wheel slip. Several challenges
to obtaining good results for all the states without compromising one or the other
are seen. Certain estimates are not understood clearly and require further work
to ascertain the nature of estimation given the complexities of the system. The
following chapter concludes the thesis work and suggests scope for future work.
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Figure 6.15: Side slip angle and rover velocity estimates for FL wheel incrementally
steered scenario
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Figure 6.16: Wheel slip and contact angles estimates for FL wheel incrementally steered
scenario
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Chapter 7
Conclusions and Future Work

7.1 Conclusion

The determination of motion states of a rover while travelling on uneven terrain
is a challenging task. The goal of the research was to be able to estimate the mo-
tion states of the rover using the 3D differential kinematics and sensor fusion from
relatively inexpensive sensors onboard like the IMU, potentiometers and wheel en-
coders. This thesis thereby presented an approach to achieving this goal without
the use of additional sensors or terrain knowledge.

The existing framework described in Chapter 4 was capable of capturing the mo-
tion states of a rover only while driving on smooth terrain which assumed purely
longitudinal motion of wheels. The motion states estimated were the rover veloc-
ity and wheel slip. In Chapter 5 the introduction of a wheel-terrain contact angle
was proposed to account for vertical motion of wheels on uneven terrain. A side
slip angle was also introduced to account for possible lateral motion of wheels.
The 3D differential kinematics of the rover were extended to include the contact
and side slip angles. In the absence of knowledge of the terrain, the dynamic be-
haviour of contact and side slip angle states were modelled as a random walk. The
3D differential kinematics and contact and side slip angle states were added to the
existing framework of estimation by modifying a standard strapdown algorithm.
A nonlinear Kalman filter was used for the combined estimation of rover velocity,
wheel slip, contact angle and side slip angle.

In Chapter 6 the filter framework developed was verified for contact angle and side
slip angle estimates against hypothetical scenarios and tests conducted at the PEL,
DLR.

72



Chapter 7. Conclusions and Future Work

The initial results from the filter presented problems with the state error covari-
ances estimated. Large cross covariances of the states estimates deteriorated the
results. As a workaround to this problem the cross covariances of the state error
covariance estimates were hard reset to zero in each iteration of the filter. Subse-
quently the estimates were found to be in good agreement with the reference values
with a few difficulties like drift in rover velocity and wheel estimates still persist-
ing. The estimates in general showed poor adherence to the reference in cases of
singularities i.e. when the rover was motionless. The contact angle estimates from
the filter framework built upon the contact angle model for a scenario of one side
of the rover climbing over an obstacle had a RMS error on average of 11.0672
degrees on average. The contact angle estimates from filter built upon the contact
& side slip angle for the same scenario had a RMS error of 12.4422 degrees on
average. However the estimates of the side slip angles were seen to be quite unre-
liable which was reflected in the deterioration of lateral velocity estimates of the
rover.

The side slip angle estimates for a scenario of incrementally steering an individual
wheel had an average RMS error of 4.4192 degrees. Therefore the contact & side
slip angle mode is able to handle the estimation of side slip angle for an individual
wheel experiencing side slip well. However it is unable to produce good estimates
for the case when there are non-zero contact angles for several wheels as in a sce-
nario with one side of the rover climbing over an obstacle.

With regard to the nonlinear Kalman filter performance, the estimation of motion
states using the EKF were indistinguishable from those using the UKF, but with a
significantly shorter computation time. Therefore the linearization of state transi-
tion and measurement functions done in the EKF algorithm was seen to be capable
of handling the nonlinearities of the system discussed in Section 5.7.

7.2 Future work

The development of the wheel-terrain contact angle estimation in this thesis forms
a basis for the concept verification and demonstration of the feasibility of estimat-
ing the contact angles from minimal sensors and simple kinematic modelling of
the rover. Future improvements could include making the filter capable of han-
dling the singularities associated with the definition of wheel slip, contact angle
and side slip angle. The limitations of the measurement model discussed in Sec-
tion 4.6 could also be addressed in future work.
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The covariances used to describe the uncertainties in the system modelling could
be optimized for better filter results. An analytical technique to compute the ini-
tialization of state error covariance matrix based on the covariances of the system
states is presented in (Kneip et al., 2010). This could be implemented along with
the aforementioned optimization of state covariances.

More rigorous testing of the filter estimation capabilities need to be performed
with different scenarios. A study on the limiting cases, if any, could be done to de-
termine under what operating conditions the EKF algorithm may lead to divergent
results for the linearization of the system.

The reason for the large cross coupling of states estimated by the filter algorithm
could be investigated. This may reveal a deeper understanding of the physical dy-
namics of the system, apart from numerical errors in the computation of the state
error covariance matrix.

The system response may be studied for longer durations of bogie rotations in the
hypothetical scenarios presented in Chapter 6. It would be interesting to see if
the contact and side slip angle estimates reach a steady state error or if the errors
grow continually. The results from the hard resetting of Px also appear to have the
characteristics of a second-order linear system with a longer settling time and zero
steady-state error. Whereas the original estimates seem to have a shorter settling
time with an overshoot and steady-state error. With the hard resetting of Px, the
system appears to behave as if an integrator were added to the system model. This
could be further studied.

The analysis of the results may suffer from inadequacies due to the nature in which
the references were calculated. Therefore the RMS errors indicated in the discus-
sion of results are not the final truth. Better techniques to more reliably develop
an accurate reference could be developed to provide a more credible comparison
between the true and estimated states of the rover.

Possible areas of interest could also be in the comparison of random walk and
damped models for the modelling of contact and side slip angles to identify cases
when one might be better than the other. Furthermore the influence of the value
of damping parameter chosen could be investigated. Alternatively a different ap-
proach to modelling the dynamic behaviour of contact and side slip angle could be
researched.
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The filter framework is currently coded in MATLAB. The generation of C code
for the nonlinear Kalman filter estimation could be done to speed up the estima-
tion process and give it real-time capabilities. The online estimation of the motion
states is the next step to making the estimates of the contact and side slip angles
useful for real-time decision-making and control.

To reduce the gradual drift in the rover velocity and wheel slip estimates, an update
could be performed with the estimates obtained from the visual odometry. The vi-
sual odometry estimates are calculated at lower time intervals (in the range of a
seconds) compared to the filter estimates (in the range of milliseconds). There-
fore every time the visual odometry estimates are available, they could be used to
correct the drifting estimates from the filter.
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