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Abstract: A previously published SIR-ASI optimal control model of dengue fever is described
and the optimal control problem is solved in this paper by an alternative solution approach,
namely by a direct transcription method. In this method, the optimal control problem is
substituted by a nonlinear programming problem. The nonlinear programming problem is solved
by an interior point method. In the following an a posteriori check of the necessary optimality
conditions of optimal control, which has not yet been done, is performed with the discretized
states, adjoints, and controls. The check shows some accordance with the numerical results, but
unfortunately in this setting a seldom discrepancy is observed, which seems to be connected
with the modeling of the mechanical control.
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1. INTRODUCTION

Dengue fever is an infectious disease which occurs in
tropical and subtropical areas. According to the World
Health Organization (WHO (2017)) about 50% of the
world population is nowadays at risk. Dengue fever is
caused by viruses and transmitted to humans by the bite of
an infected mosquito, mainly of the species Aedes aegypti.
The symptoms of dengue fever include high fever, severe
headache, muscle and joint pains, and nausea. Compli-
cations occur in seldom cases, but may lead to severe
dengue, a potentially lethal course of the disease. A first
vaccine against dengue fever has only recently been made
available and several other vaccines are under develop-
ment. Furthermore, there is no specific anti-viral treatment
for dengue. For these reasons the best protection against
dengue fever at present is avoiding the contact with in-
fected mosquitoes, including the control of mosquitoes and
their eggs as described in WHO (2009).
The course of the disease in a population can be simu-
lated with mathematical models in order to make state-
ments about future developments and to suggest possible
strategies to attenuate the spread of the disease. The
investigation of a model describing an epidemic outbreak
of dengue fever in Cape Verde is the subject matter in
Rodrigues et al. (2013b). In this paper three vector control
operations are considered: larvicides which are distributed
in the water reservoirs in order to combat the mosquitoes
in the aquatic phase (eggs, larvae, and pupae); adulti-
cides against the adult mosquitoes which can be sprayed
in buildings or outdoor to achieve a fast and significant
decrease in the mosquito population; and the mechanical
control including the removal of standing waters and small
water reservoirs to get rid of possible breeding grounds.

The aim of using control measures is to keep the number
of infected individuals as low as possible. This also leads
to less medical treatment, hospitalizations, and absences
from work due to illness and thus to less costs. On the other
hand, the costs caused by the use of the controls should
also be as low as possible, including the development and
distribution of insecticides and search for breeding areas
and their subsequent elimination. The goal is to optimize
the tradeoff between costs and effectiveness.
Rodrigues et al. (2013a) consider an optimal control prob-
lem and solve it numerically, but no verification of the re-
sults is done. We apply an alternative numerical approach
for the solution of this optimal control problem by direct
transcription into a nonlinear programming problem, see
e.g. Betts (2001). The message along the line of Vanderbei
(2001); Dussault (2014) is that one has to be careful when
applying the direct transcription approach to optimal
problems which are non-convex in the controls which is
the case here for one of the three controls. We use the
solver IPOPT of Wächter and Biegler (2006) and compare
our results to Rodrigues et al. (2013a) to investigate if our
approach yields better outcomes. Furthermore, an a poste-
riori verification of the necessary optimality conditions of
optimal control is performed. We present analytical control
laws obtained from Pontryagin’s minimum principle and
use them to validate our numerical results.
In Section 2 the model is described. The numerical results
and the verification are shown in Section 3.

2. DENGUE SIR-ASI-MODEL

We firstly describe the model from Rodrigues et al.
(2013b). We consider a human population of Nh individu-
als and a mosquito population. Both populations are split
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into disjoint groups (compartments). The human popula-
tion is divided into three groups, the susceptibles Sh, the
infected and infectious Ih, and the recovered Rh. These
variables denote total numbers. By birth, all humans are
assumed to be susceptible which means they have not
yet been infected by dengue fever. Once they have been
bitten by an infected mosquito and become carriers of the
virus, they are infected and able to transmit the virus
to mosquitoes. After recovery the humans are healthy
and cannot contract the disease again. The total human
population Nh is assumed to be constant over time t, so
Nh = Sh(t)+Ih(t)+Rh(t). The mosquitoes are also divided
into three groups. For this classification it is necessary to
know the life cycle of the mosquitoes: Female mosquitoes
bite humans and lay their eggs in small water containers,
like empty cans or old car tyres. After a few days larvae
hatch from the eggs and mature further to pupae. The
adult mosquitoes emerge from the pupae. The first group
of the mosquitoes, Am, refers to the mosquitoes in the
aquatic phase and includes the egg, larva, and pupa stages.
The other two groups characterize the adult mosquitoes,
the susceptibles Sm and the infected Im. The mosquitoes
get infected and become vectors of the disease by taking
a blood meal from an infectious human. After that they
are able to transmit the virus to humans by biting them.
The mosquitoes live to briefly to become immune. Due to
this six compartments the model is also called an SIR-
ASI model. Individuals in one group are assumed to be
homogeneous and they can change between compartments
during the course of the disease. The dynamics of the flow
between the compartments is described using differential
equations. The mosquito population is affected by the use
of vector control measures. The three control variables
considered in this model include

• cm, the proportion of adulticides, (0 ≤ cm ≤ 1),
• cA, the proportion of larvicides, (0 ≤ cA ≤ 1), and
• α, the proportion of mechanical control (0 < αmin ≤
α ≤ 1).

Table 1. Parameters and values in the model
according to Rodrigues et al. (2013b)

Parameter Value Description

Nh 480000[−] total human population

B 0.8
[
bite
day

]
average number of bites of a mosquito
per day

1
µh

71 · 365[day] average lifespan of humans in days

βmh 0.375
[

1
bite

]
probability of disease transmission
from mosquitoes to humans per bite

βhm 0.375
[

1
bite

]
probability of disease transmission
from humans to mosquitoes per bite

1
ηh

3[day] duration of the infection in days

ϕ 6
[

1
day

]
number of eggs at each deposit per
mosquito per day

1
µm

10[day] average lifespan of adult mosquitoes in
days

µA
1
4

[
1

day

]
natural mortality rate of larvae per day

ηA 0.08
[

1
day

]
maturation rate from larvae to adult
per day

m 3[−] number of female mosquitoes per hu-
man

k 3[−] total number of larvae per human

susceptible  
humans Sh 

infected  
humans Ih 

resistant  
humans Rh 

susceptible  
mosquitoes Sm 

infected  
mosquitoes Im 

aquatic 
mosquitoes Am 

 µhNh 

µhSh 

 

µhIh 

 

µhRh 

 

µAAm 

 

µmSm 

 

µmIm 

 

ηhIh 

 

cAAm 

 

cmSm 

 

cmIm 

 

ϕ Sm 

 

ϕ Im 

 

ηAAm 

 

Bβhm 

Bβmh 

 

1
α  

Fig. 1. SIR for humans – ASI for mosquitoes

The first control combats the adult mosquitoes in the
compartments Sm and Im, while the latter two are directed
against the mosquitoes in the aquatic phase Am. The
maximal use of insecticides is attained at cm = 1 and
cA = 1. Since α 6= 0, because it appears in a denominator
in the model, we introduce αmin as a lower bound which
corresponds to the maximal use of mechanical control.
Here αmin = 0.001 is chosen. Note that the case cm =
0, cA = 0, and α = 1 means no control at all. The
parameters used in the model are summarized in Table 1
with the values of the Cape Verde data from Rodrigues
et al. (2013b). The state variables are Sh, Ih, Rh, Am,
Sm, and Im. Together with the control variables and
the transition and contact rates between the groups, the
model is described and a nonlinear system of differential
equations is obtained. Fig. 1 shows a scheme of this
model. For the analysis we use the normalized system.
The following transformations are carried out: sh = Sh

Nh
,

ih = Ih
Nh

, rh = Rh

Nh
, am = Am

kNh
, sm = Sm

mNh
, and im = Im

mNh
.

The model is thus given by:

dsh
dt

= µh − (Bβmhmim + µh) sh

dih
dt

=Bβmhmimsh − (ηh + µh)ih

drh
dt

= ηhih − µhrh (1)

dam
dt

= ϕ
m

k

(
1− am

α

)
(sm + im)− (ηA + µA + cA)am

dsm
dt

= ηA
k

m
am − (Bβhmih + µm + cm) sm

dim
dt

=Bβhmihsm − (µm + cm)im



3. OPTIMAL CONTROL

The costs and benefits of the controls should be weighed
and both epidemiological and economic goals considered.
This is taken into account in the objective function of
the optimal control problem. This function, that should
be minimized, is composed of the costs caused by the
presence of infected people ih and by the use of adulticides
cm, larvicides cA, and mechanical control α. The positive
constants γD, γS , γL, and γE serve as weights and enable
different evaluations of these costs. They are chosen so that
γD+γS+γL+γE = 1 is fulfilled. The constraints are given
by the normalized system (1) and the optimization prob-
lem is completed through appropriate initial conditions
for the states and bounds on the controls. The problem is
given by:

min

T∫
0

γDih(t)2 + γScm(t)2 + γLcA(t)2 + γE(1− α(t))2dt

s. t. equations (1),

sh(0) = 0.9999, ih(0) = 0.0001, rh(0) = 0, (2)

am(0) = 1, sm(0) = 1, im(0) = 0,

0 ≤ cm ≤ 1, 0 ≤ cA ≤ 1, 0 < αmin ≤ α ≤ 1.

3.1 Numerical results

A first-discretize-then-optimize approach is chosen to sim-
ulate the optimal control problem. Using a direct approach
we discretize both states and controls over a time grid
with a constant discretization step size. A period of one
year, or 365 days, respectively, is considered in all sim-
ulations. The simulations are accomplished with a step
size of 365

1000 . The control functions are approximated over
the time grid as piecewise constant functions. The com-
putations are performed using the implicit Euler method
and the cost functional of the optimal control problem (2)
is discretized with the rectangular formula. This yields a
nonlinear programming problem which is solved via the
modelling language AMPL of Fourer et al. (2003) and the
solver IPOPT developed by Wächter and Biegler (2006).
The latter is a well-known interior point algorithm for
solving large-scale nonlinear programming problems. One
reason to use this combination is the ability of AMPL
for automatic differentiation which provides IPOPT with
exact derivatives. Furthermore an easy and intuitive im-
plementation of optimal control problems is possible by
using AMPL. The simulations are carried out with the
data in Table 1. Solving problem (2) with the described
approach, we obtain the optimal application of the three
controls as shown in Fig. 2, over a period of one year with
equal weights. According to these results, a low use of the
control measures is optimal, while cm is the most used
control, specifically in the first 50 days. Fig. 3 shows a
comparison between the proportion of infected people in
a population without any controls and the corresponding
proportion with an optimal use of the controls. In addition,
the analogous figure for the proportion of recovered people
is shown. The proportion of infected humans can be re-
duced, from over 0.16 in peak without control to about 0.09
in the case with controls. So even a little use of the controls
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Fig. 2. Optimal control functions cm, 1 − α, and cA with
γD = γS = γL = γE = 0.25
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Fig. 3. Proportion of infected and recovered humans with
and without control

shows a great effect. Compared to the numerical results in
Rodrigues et al. (2013a) we obtain similar optimal control
functions. But there are differences in the values of the
objective function that should be minimized. For equal
weights we receive 0.0592 whereas in Rodrigues et al.
(2013a) a higher value of 0.0669 is reached.

3.2 Verification

After solving the nonlinear programming model with the
described approach, an a posteriori verification of the
numerical results is now carried out. In this step we try
to check the necessary optimality conditions of optimal
control in order to verify the candidate optimality of the
continuous problem via the approximate discrete optimal
solution. The optimality is checked by the use of Pontrya-
gin’s minimum principle and so the numerical results are
compared to an analytical optimal control law. Therefore
we firstly have to define the Hamiltonian function:

Definition 1. (The Hamiltonian). Let x be the state vari-
able and u the control variable of an optimal control prob-
lem. The integrand of the corresponding cost functional
is defined by f0(t, x, u) and f(t, x, u) = ẋ represents the
ODE constraints. The latter functions are assumed to be
sufficiently differentiable. Then the function

H(t, x, λ, u) = λ0f0(t, x, u) + λf(t, x, u) (3)

is called the Hamiltonian function, where λ is the adjoint
variable. Here λ0 is a scalar and λ a row vector of
appropriate size.

In general λ0 = 1 can be set. This definition follows
the direct adjoining approach described in Section 4 of
Hartl et al. (1995). For a proof of Pontryagin’s minimum
principle see Ioffe and Tihomirov (1979). We give here
only the most important conclusion of this principle which



is used in the following analyses. It states that for all
t ∈ [0, T ] the optimal control u∗ is the global minimizer
of the Hamiltonian function, pointwisely evaluated along
an optimal trajectory (x∗(t), λ(t)), where u lies in the
admissible region U :

H(t, x∗(t), λ(t), u∗(t)) = min
u∈U
H(t, x∗(t), λ(t), u) . (4)

This law is used to validate our (discretized) numerical
results at least approximately. In the interior of the ad-
missible region holds for all components u∗j of the optimal
control vector u∗

dH
du∗j

= 0 . (5)

Eq. (4) is a necessary optimality condition. So the (dis-
cretized) numerical solution of states, adjoints, and con-
trols of the NLP from IPOPT should provide the global
minimum of the Hamiltonian with respect to the admis-
sible controls. The Hamiltonian function for our dengue
model, with f0 defined in the cost functional of (2) and f
from the differential equations in (1), is given by:

H= γDi
2
h + γSc

2
m + γLc

2
A + γE(1− α)2

+ λ1(µh − (Bβmhmim + µh)sh)

+ λ2(Bβmhmimsh − (ηh + µh)ih)

+ λ3(ηhih − µhrh) (6)

+ λ4

(
ϕ
m

k

(
1− am

α

)
(sm + im)− (ηA + µA + cA)am

)
+ λ5

(
ηA

k

m
am − (Bβhmih + µm + cm)sm

)
+ λ6(Bβhmihsm − (µm + cm)im)

This function can be split into a sum of four functions H1,
H2, H3, and H4, as follows:

H(cm, cA, α) = H1(cm) +H2(cA) +H3(α) +H4 . (7)

The function H1 is composed of the terms of H which
depend on the control cm, the same applies to the functions
H2 and H3 and the controls cA and α, respectively. The
function H4 summarizes all terms of H where none of
the controls appear. According to the minimum principle
the requested optimal controls minimize the Hamiltonian
function H at any point of time. H is separated in cm, cA,
and α, since no mixed terms of these controls occur. So the
minimum of the Hamiltonian function (6) with respect to
the controls can be expressed as the sum of the minima of
the three single functions H1, H2, and H3:

min
(cm,cA,α)

H(cm, cA, α) = min
cm
H1(cm) + min

cA
H2(cA)

+ min
α
H3(α) +H4

(8)

H4 is a constant in this minimization, so it can be
neglected in the following. Now we compute the minima
of the functions H1, H2, and H3 separately and compare
them to the corresponding solution of IPOPT. These
functions are deduced from (6) and thus given by:

H1(cm) = γSc
2
m − λ5(t)sm(t)cm − λ6(t)im(t)cm

H2(cA) = γLc
2
A − λ4(t)am(t)cA (9)

H3(α) = γE(1− α)2 − λ4(t)ϕ
m

k

am(t)

α
(sm(t) + im(t))

Note that H1 and H2 are strictly convex functions of cm
and cA, respectively, but that H3 is a non-convex function
of α. The states am, sm, and im, as well as the adjoints
λ4, λ5, and λ6, which appear in these equations, are time-
dependent. So there is a Hamiltonian function for each
t ∈ [0, T ] which has to be minimized. At first we consider
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Fig. 5. Comparison of the two results for cm: obtained
from IPOPT and (11) from the minimum principle,
with γS = 0.25

the optimal control cm of adulticides and the minimum
of H1(cm). IPOPT provides the values for the states and
adjoints in each time step. Fig. 4 shows examples of the
course of the function H1(cm) at four time steps. The
function does not vary much for different times t and
different weights γS , so just a selection of these four cases
is shown. As can be seen, the (global) minimum of the
function lies approximately between 0 and 0.2 for all time
steps. For a detailed analysis the minimum of the function
H1 is now computed by using (5). The (global) minimum
of the optimization problem can either lie in the interior of
the admissible set of control values or on the edge of this
range. In case the (global) minimum is in the interior of
the set, it is given by setting the derivative of H1 to zero
and solving this equation for cm:

dH1

dcm

!
= 0 ⇒ cintm =

λ5sm + λ6im
2γS

. (10)

If cintm /∈ (0, 1) we have to clip its values to [0, 1], corre-
sponding to the bounds given in (2). Thereby we obtain
for the optimal control c∗m:
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c∗m = min
{

1,max
{

0, cintm
}}

. (11)

Fig. 5 illustrates this optimal control derived from the
minimum principle and the state and costate trajectory
derived from IPOPT. This control is compared to the con-
trol solution found by IPOPT in the previous subsection.
As shown in the figure, the two results coincide since the
shapes of the functions are almost identical. The figure also
shows the difference of these two results which varies in a
very small range. The same procedure is applied to the
optimal control of larvicides cA. The corresponding part of
the Hamiltonian function, H2 from (9), is shown in Fig. 6
at four time steps. Again, the shapes of the function show
only very slight changes for different times and different
weights γL. The minimum in the interior of the admissible
set is calculated in the same way as before:

dH2

dcA

!
= 0 ⇒ cintA =

λ4am
2γL

. (12)

Since the bounds for the use of larvicides are again given
by 0 and 1, we obtain the optimal control c∗A by

c∗A = min
{

1,max
{

0, cintA
}}

. (13)

This result achieved by the application of the minimum
principle is depicted in Fig. 7 in comparison to the so-
lution of IPOPT. As in the previous case with cm, the
two results are well matched. The differences of the two
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functions occur in a very small extent. In comparison to
the adulticides cm, much less of the larvicides cA is used in
an optimal case. The situation with the mechanical control
α is different. Differentiating the corresponding part of the
Hamiltonian function in (9) we obtain:

dH3

dα
= −2γE(1− α) + λ4ϕ

m

k
am(sm + im)

1

α2

!
= 0 . (14)

Solving this equation for α yields three solutions. The
shape of the Hamiltonian function H3 shows greater vari-
ations than in the previously considered cases for H1

and H2. This is shown in Fig. 8, which illustrates this
function at four time steps. For small times the minimum
of the function lies on the edge of the admissible set, at
αmin = 0.001. Additionally there is a local minimum of
the function close to one. Around the time step t141 the
position of the global minimum changes and is from that
moment until the end of the considered time interval near
one. Nevertheless this observation cannot be generalized
because there are also significant variations of the Hamil-



tonian function H3 for different values of the weight γE .
Fig. 9 shows four cases of this function for γE = 0.3. In this
case, the minimum lies near one for small times, then from
about t20 to t109 near zero on the edge of the set, and then
from that point on again near one. The optimal solution
for the mechanical control α found by IPOPT is already
known and the function 1 − α is shown in Fig. 2. As a
result, the function α is near one for all time steps. This is
a contradiction to the solution which is found by using the
minimum principle. In this approach the minimum of the
Hamiltonian function is on the edge of the admissible set
for certain times that means maximal control in this case.
Fig. 10 shows the differences between the two results for α,
corresponding to the right hand side plots in Figs. 5 and
7 for the other two controls. Since no analytical result for
α is available, Fig. 10 compares the result of IPOPT with
the values of α at which the minimum of H3 is reached,
for both γE = 0.25 and γE = 0.30. These γE values corre-
spond to Figs. 8 and 9. For some time steps the difference
is nearly 100%. Since the minimum principle provides a
necessary optimality condition which is violated here, the
solution provided by IPOPT for the discretized NLP turns
out to be not the minimum of the underlying optimal
control problem. The proposed numerical solution provides
an optimal solution for cm and cA, but does not for α. Due
to the good coding of the algorithm we are sure that we
have at least found a local minimum (or at least a KKT
point) of the NLP problem. In practice the suboptimality
might not be a concern since the function values of the
cost functional for the presented numerical solution and
the true solution might not be very different due to the
mixing principle. Note that the NLP problem (and the
optimal control problem) is non-convex in the control α.
Since we have to deal with a non-regular Hamiltonian, it
is known that difficulties are to be expected and finding
a global minimum of the optimal control problem in this
case is hard.
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Fig. 10. Difference of two results for α: obtained from
IPOPT and value of α at the minimum of H3(α) at
each time step, with γE = 0.25 resp. γE = 0.30

4. CONCLUSION

In this paper a mathematical model about the dynamical
development of dengue fever is described and measures to
control the transmission vector are introduced. To find the
optimal extent of the measures, and to give recommenda-
tions about the amount of their use in affected areas, an
optimal control approach is applied. The numerical results
using AMPL and IPOPT are presented and a verification
of these results using the minimum principle of optimal
control theory is performed. The simulations with the

results of IPOPT are very promising, because they show
that even a little use of the insecticides and the mechanical
control can reduce the number of infected individuals. The
numerical computed solution does fulfill a local minimum
principle of the Hamiltonian but unfortunately not the
global minimum principle of the Hamiltonian. Therefore
the numerical computed solution seems not to be the best
possible one. On the other hand, the new numerical solu-
tion gives a better value of the cost functional in contrast
to the original papers Rodrigues et al. (2013b,a), which
is a good motivation of pursuing our approach. However,
one has to keep in mind in this comparison that the
discretization error of the ODE as well as the error in the
discretized constraints might be different. The observed
discrepancies have to be addressed in future research.
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