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Haptic Augmentation for Teleoperation through
Virtual Grasping Points

Michael Panzirsch, Ribin Balachandran, Bernhard Weber, Manuel Ferre, Jordi Artigas

Abstract—Future challenges in teleoperation arise from a new complexity of tasks and from constraints in unstructured environments.
In industrial applications as nuclear research facilities, the operator has to manipulate large objects whereas medical robotics requires
extremely high precision. In the last decades, research optimized the transparency in teleoperation setups through accurate hardware,
higher sampling rates and improved sensor technologies. To further enhance the performance in telemanipulation, the idea of haptic
augmentation has been briefly introduced in [Panzirsch et al., IEEE ICRA, 2015, pp. 312317]. Haptic augmentation provides supportive
haptic cues to the operator that promise to ease the task execution and increase the control accuracy. Therefore, an additional haptic
interface can be added into the control loop. The present paper introduces the stability analysis of the resulting multilateral framework
and equations for multi-DoF coupling and time delay control. Furthermore, a detailed analysis via experiments and a user study is
presented. The control structure is designed in the network representation and based on passive modules. Through this
passivity-based modular design, a high adaptability to new tasks and setups is achieved. The results of the user study indicate that the
bimanual control brings large benefits especially in improving rotational precision.

Index Terms—haptic augmentation, multilateral teleoperation, MPMT, TDPA.

✦

1 INTRODUCTION

ONE of the most sophisticated technologies developed for
telepresence is telemanipulation that allows separating in-

dividuals from the environment they manipulate, ideally without
even noticing. Therefore, a robot with manipulation capabilities
and a haptic interface are needed to allow a user to teleoperate the
robot and reproduce the sense of touch to the user based on the
physical interaction between the robot and the manipulated object.
The bilateral controller is a central element of any telemanipula-
tion system since it is responsible for conveying the commands
of the human operator from the haptic interface to the robot and
vice-versa. These commands describe current motions and forces
of both, human and robot. Bilateral control has long attracted
the attention of control engineers due to the special closed-loop
characteristics established by the communication channel between
robot and operator.

To increase manipulation capabilities by additional slave
robots [1], [2] or for training applications in a Mentor−Novice
training setup [3], [4] , research shifted on to multilateral control in
the recent past. More general, multilateral control allows control-
ling n robots throughm different haptic interfaces, where usually
but not necessarily,m≥ n [5], [6], [7]. Based on this method, in
[8], the concept of haptic augmentation has been introduced in a
Dual-Master-Single-Slave setup. Analogous to visually augmented
telepresence, using haptic augmentation, additional information
can be provided through the teleoperator’s haptic channel which
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Fig. 1. Slave Robot Grasping Pipe

has the potential of enhancing the operator’s feeling of immersion
in the remote environment, easing the task execution e.g. through
guidance or higher manipulation dexterity.

In this paper, the haptic augmentation focuses on the improve-
ment of precision in the rotatory degrees of freedom (DoF). Since
the assembly of large structures with bulky objects requires a high
level of dexterity, because translational and rotational movements
need to be properly combined, a pipe handling scenario is pre-
sented. Especially, the manipulation of large objects requires aids
since the point of interaction with the environment may be distant
from the grasping position on the object. For instance, placing a
long pipe in a hole requires high precision in rotatory motions at
one pipe end while maintaining the position (close to the hole) of
the other end of the pipe. Rotating one end of a long object may
cause unwanted translations at the other end. Comparable to a
baseball racket, the orientation of large devices can be more easily
set via two points of interaction. Similarly, the manipulation can be
haptically augmented by providing the operator with control and
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force feedback information on a second interaction point through
a second input device. In [8], this concept has been realized
with only one slave robot and two master devices as depicted
in Fig. 1 and Fig. 2. Via a multilateral coupling, the master M1
controls the robot hand S directly while the master M2 controls
a virtual grasping point VG as the point of interaction with the
environment. In this framework, a Cartesian task allocation can be
implemented that assigns the dominance of one master device in
a desired point of interaction. Besides the manipulation of large

Fig. 2. Operator with Two Masters and Virtual Pipe

objects, e.g. the manipulation of medical probes as ultrasonic
devices that need to be applied with especially high accuracy
is demanding with one hand or telemanipulator respectively. A
second hand helps to set the orientation, to maintain a contact
force and to compensate disturbances that can result e.g. from
the patient’s body or connected cables. Other tasks requiring
high rotational accuracy without environment interaction are the
measurement of temperature and distance, welding etc.. Note that
this concept is reasonable for teleoperation and haptic interaction
in virtual realities as well since it can be implemented in the
control algorithms of the master devices.

In literature, different approaches have been presented to
provide additional assistance to the operator and that are com-
parable with the haptic augmentation concept. The authors of [9]
proposed a haptic intention augmentation concept for cooperative
telemanipulation that has been tested in a space setup. In [10],
the end-effector of a kinematically redundant slave manipulator is
controlled by one of the masters whereas the null space motion
is controlled by another, without influencing the end-effector pose
of the slave. An adaptive control is applied in [11] to introduce
projective force mappings which impose specific boundaries on
the slave robot’s motion. In [12], two master devices with different
degrees of freedom control a slave device with three DoFs wherein
the haptic feedback could be displayed only on the available DoFs
of the master devices. The concept of disjoint axis control was
introduced in [13] to distribute the control of the two subsets of the
available DoFs of a redundant slave robot (mobile platform with a
serial manipulator). Similar setups have been proposed in [14] and
[15]. In the bimanual telerobotic surgery setup of [16], the reaction
force of an action induced by one hand was haptically augmented
to the other hand to avoid instability issues. These works provide
control interfaces that are more powerful than simple bilateral
controllers. Still, the concept of haptic augmentation involving
the virtual grasping point method as well as the Cartesian task
allocation considered here was so far only presented in [8].

This paper is premised on the work in [8] which introduced
the basic concept and a rough evaluation through experiments.

First of all, the coupling implementation in separate DoFs in [8] is
replaced by a multi-DoF implementation using spatial springs. In
addition, novel haptic augmentation principles are introduced that
promise to increase the coupling rigidity and prevent constrained
robot configurations. Also, concepts are proposed that serve the
online adaption of the grasping point position and increase in-
tuitiveness so that the command of rotations via counteracting
forces is enabled. A more prevalent time delay control approach
than in [8] is applied and besides more detailed experiments, the
haptic augmentation is evaluated with a user study. For increased
experimental control and in order to underline the applicability
of haptic augmentation in virtual realities (VR), the user study
is performed in a VR environment. To emphasize the generality
of the proposed virtual grasping point approach, besides this
Dual-Master-Single-Slave setup, an application of the concept to
cooperatively grasping slaves with kinematic coupling is briefly
presented in the appendix of this manuscript.

The main contributions of this paper are:

• The multi-DoF implementation considering spatial springs
• An interface for online variation of the virtual grasping

point’s position with respect to the slave robot
• A controller extension that allows the command of rota-

tions through counteracting forces
• The enhancement of the task allocation in the Cartesian

space to achieve a more rigid coupling and for prevention
of constrained robot configurations

• Implementation of the Time Domain Passivity Approach
[17] in a multi-DoF setup with position-position architec-
ture

• An objective evaluation based on a user study
• The application of the virtual grasping point concept to

cooperatively grasping slave robots

The paper is structured as follows: In Section 2, the fundamen-
tal technologies are presented. The multi-DoF implementation of
the virtual grasping point method is presented and its stability
is evaluated in Section 3. The task allocation and the related
contributions are explained in Section 4. Furthermore, its passive
behavior will be discussed. The passivity control of the delayed
communication channel is presented in Section 5. Experiments
and a user study will be presented in Section 6 and Section 7
respectively. Section 8 summarizes the results to a conclusion.

2 FUNDAMENTALS

In this chapter, the basic control principles relevant for haptic
augmentation will be explained. First, the bilateral control scheme
for teleoperation and the applied stability principle are introduced.
Later, this setup is extended to the multilateral case.

2.1 Bilateral Track Design

In a general bilateral teleoperation system, a human operator (HO)
can command the motion of a robot (slave) in its environment
through his/her input device (master). A common method to
achieve this is to couple the slave robot electronically to the motion
of the master device through a PI controller. The proportional P-
part of the controller acts on the velocity error of both devices
similar to a damping element and the integrative I-part, on the
position error of both devices like a spring. Fig. 3 shows the
signal flow diagram of a Position-Position (PP, [18]) scheme,
which includes time delays in both directions,T1 andT2. In this
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configuration, position or velocity signals (delayed velocityvdel
3/9)

are exchanged and the feedback forcesF3/9 result from a pair of
PI-controllers.

+ − + −
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Fig. 3. Signal Flow Diagram of a Teleoperation System with
Position-Position Architecture

2.2 Stability Concept

To guarantee the stability of a bilateral system without time delay,
e.g. the frequency-based Routh-Hurwitz (stability of LTI systems),
Raisbeck (passivity) or Llewellyn (absolute stability) criteria can
be used. In order to handle the destabilizing effect of time delay,
methodologies like wave variable transformations, time domain
passivity approach (TDPA) or the two-layer approach [19] can be
applied. Those approaches rely on the passivity of a system with
statesx:

V(x(t))−V(x(0))≤

t
∫

0

s(u(τ),y(τ))dτ =

t
∫

0

yT(τ)u(τ)dτ. (1)

As long as the energy increase in the system sincet = 0,V(x(t))−
V(x(0)) is not higher than the integral of the power (supply rates,
inputu and outputy) that has entered the system, the system hasn’t
generated energy itself. In other words, the system is passive and
thusL2-stability can be guaranteed [20], [21].

2.2.1 Network Representation

The energy behavior of a system can be systematically analyzed
by the so-called network representation. To derive the network
representation of the signal-flow-diagram of Fig. 3, its subsystems
need to be transduced into their electrical analogues (Fig. 4).
The Methodology for Passivity-based Multilateral Teleoperation
(MPMT, [7]) provides two main modules for bilateral teleop-
eration networks: agents and tracks. An agent can be a human
operator with its master device or the slave in its environment.The
track represents the software part of the teleoperator containing
controllers and the time delay power network (TDPN) that has
been introduced in [22], [23]. The TDPNs guarantee the power
consistency of transmitted signals in the communication channel.
The electrical analogues of the proportional and the integrative
parts of the PI-controllers are resistance and capacitance respec-
tively. The set of PI controllers of trackΓi will be hereafter
referred to asPIΓi . The mechanical models of human operator
and the environment consist of mass, spring and damper which are
analogous to inductance, capacitance and resistance respectively in
the electrical domain. The master and slave devices are modeled as
mass-damper or inductance-resistance systems. The teleoperation
system is split up into two directions of energy flow:

• R2L: the communication from right to left, which is repre-
sented by the upper part of the track in Fig. 4 including

TDPN1 and PI1. The velocity sourcev9 represents the
power input from theAgentΛ2 side.

• L2R: the communication from left to right, which is repre-
sented by the lower part of the track in Fig. 4 including
TDPN2 and PI2. The velocity sourcev3 represents the
power input from theAgentΛ1 side.
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Fig. 4. Network Representation of a Position-Position Architecture
with MPMT Modules Track and Agent

In [24], it was shown that networks consisting of passive
subsystems are also passive and thereforeL2-stable. The agents
can be assumed to be passive as they behave passively in their
interaction. A human operator dissipates the energy that has been
introduced by the environment and vice-versa. Therefore, theL2-
stability of a bilateral system can be guaranteed if the track
subsystem is designed in a passive manner.

2.2.2 Energy Observation

In the network representation, the energy behavior of a 2-port (see
Fig. 5) can easily be analyzed.EP1/P2 are the energies on portP1

+

−

+

−

2-Port

EP1 EP2

Ein
P1

Ein
P2Eout

P1

Eout
P2

F1

v1

F2

v2

Fig. 5. In and Out Energies of a 2-port Network

or portP2 of a 2-port. To guarantee passivity the following has to
hold:

EP1(t)+EP2(t)≥ 0. (2)

The powerPP1/P2 can be computed based on conjugate power
pairs (force and velocity) at each port:

PP1/P2(t) = v1/2(t)F1/2(t) (3)

For instance, in the case of a delay in the 2-port, the energies
on left and right side cannot be calculated at the same time.
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Therefore, the power has to be split up considering the flow
directions (Pin/out

P1/P2) via the sign ofPP1/P2:

Pin
P1(t) =

{

0, if PP1(t)< 0
PP1(t), if PP1(t)> 0

and (4)

Pout
P1 (t) =

{

0, if PP1(t)> 0
−PP1(t), if PP1(t)< 0.

(5)

The subindicesin andout indicate the power (or energy) flowing
into andout of the network on the left or the right side respectively.
The in/out flowing energiesEin/out

P1/P2 on the left/right side of the 2-
port can be computed through integration over time:

Ein/out
P1/P2(t) =

t
∫

0

Pin/out
P1/P2(τ)dτ. (6)

2.3 Multilateral Structure

The aim of a multilateral teleoperation system is the haptic
coupling of multiple devices with the aid of control software.
The design of a multilateral system becomes very generic with
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Fig. 6. Network Representation of a Trilateral Teleoperation Sys-
tem with PCU [7]

the MPMT since different types of modules can be assembled.
Therefore, the system can be easily adapted for new tasks and
setups. Fig. 6 depicts a trilateral system consisting of two types of
agents, three tracks and three power control units (PCU). Those
PCU subsystems are MPMT modules that manage the power
distribution between one agent and the connected tracks. Since
the PCU [7] and Agents are passive, additionally, only the tracks
need to be designed in a passive manner to guarantee the overall
passivity of the multilateral system.

3 VIRTUAL GRASPING POINT

As mentioned before, a pipe handling scenario is presented that
represents several aspects of the large field of applications for
haptic augmentation concepts. A system with a bimanual input
device and a slave robot arm grasping a large pipe (compare Fig.
1 and Fig. 2) is considered.

Fig. 7 depicts the pipe kinematic-based coupling of the three
devices master M1, master M2 and slave S. The tool center points
(TCP) of the three devices with respect to the world frame are
depicted with the framesWHM1/M2/S. Note that the grasping frame
WHG in which the slave hand grasps the pipe, is defined by the
pipe axis and differs from the slave frameWHS. The vectorg

in WHS and the distanced+ a determines the pipe endWHVG

in which the virtual grasping point is defined. The VG position
WHVG (vector g and distanced) can be set e.g. automatically
through stereo vision. For the sake of simplicity the VG was
not matched automatically for the experiments later presented.
Though the virtual grasping point can be chosen arbitrarily in
the slave’s environment, the pipe end is the optimal location
for the focused task. Through an additional input device as a
pair of buttons, the scalara, the distance of the virtual grasping
point VG from the grasping point G, can be varied online. This
is reasonable in certain tasks like manipulation of an ultrasonic
device with virtual grasping points, since the rotational accuracy
increases with the distance but also larger motions of the master
M2 are necessary. Therefore, the distance should be adaptable.
The desired positionWHdes

VG of the VG with respect to master M2
is referred to the initial real VG positionWHVG. Analogously, the
desired positionWHdes

G of the grasping point G with respect to
master M1 is referred to the initial real grasping point position
WHG. WH ˜VG is the VG position with respect to master M1. The
spatial spring A couples master M1 and slave S in the grasping
point and spatial springs B and C couple master M2 and slave S
and master M1 and master M2 respectively in the virtual grasping
point VG. The nomenclature is summarized in Table 1.

Fig. 7. Real and Virtual Pipe with Coordinate Frames

TABLE 1
Nomenclature

Γ1 Track coupling master M1 and master M2

Γ2 Track coupling master M1 and slave S

Γ3 Track coupling master M2 and slave S
WHS Tool center point of slave S
WHM1 Tool center point of master M1
WHM2 Tool center point of master M2
WHG Grasping point in tool center point of slave S
WHVG Virtual grasping point w.r.t.WHG

WHdes
G Grasping point w.r.t. master M1

WH ˜VG Virtual grasping point w.r.t.WHdes
G

WHdes
VG Virtual grasping point in tool center point of master M2
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3.1 Implementation

Here, the multi-DoF implementation of the virtual grasping point
method is presented. The orientation of the slaveWRS has to be
projected onto their connecting axis through the rotation matrix
RPr into the grasping frameWRG:

WRG = WRSRPr (7)

with

RPr =
[

r1
‖r1‖2

, r2
‖r2‖2

, r3
‖r3‖2

]

and (8)

r1 = g, (9)

r2 =





0
−r1,3

r1,2



 , (10)

r3 = r1× r2. (11)

The poseWHVG of the virtual grasping point VG can be calculated
with the distanced+a as follows

WHVG =

[

WRG
W pS+

WRGde1+
WRGae1

0 1

]

, with (12)

e1 = [1 0 0]T . (13)

W pS is the position of the slave device andW pM1/M2 are the posi-
tions of left and right masters respectively. The desired positions
of the graspingW pdes

G and virtual grasping pointW pdes
VG are

W pdes
G = W pt0

S +W pM1−
W pt0

M1, (14)
W pdes

VG = W pt0
VG+W pM2−

W pt0
M2. (15)

With WRt0
VG = WRt0

G and

WRdes
VG = WRM2

M2Rt0
W

WRt0
VG, (16)

the current pose of the right masterWHdes
VG is

WHdes
VG =

[

WRdes
VG

W pdes
VG

0 1

]

. (17)

The current pose of the left master projected to the grasping frame
WHdes

G is

WHdes
G =

[

WRdes
G

W pdes
G

0 1

]

, with (18)

WRdes
G = WRM1

M1Rt0
W

WRt0
G. (19)

For the controller connecting the two master devices, the pose of
the virtual grasping point with respect to the left masterWH ˜VG has
to be calculated as:

WH ˜VG =

[

WR ¯VG
W p ¯VG+WR ¯VGae1

0 1

]

, (20)

with

WH ¯VG = WHdes
G

WH−1
G

WHVG. (21)

The input framesWH1 andWH2 of the three spatial coupling
springs A,B,C of Fig. 7 are listed in Table 2.

TABLE 2
VG Springs

Spatial Spring WH1
WH2 Track

A WHG
WHdes

G TrackΓ2

B WHVG
WHdes

VG TrackΓ3

C WH ˜VG
WHdes

VG TrackΓ1

As the spring’s wrench outputWA/B/C is in the frame ofWH1,
the wrench has to be transformed into base frame in order to
calculate the wrench commanded to the hardware:

SWA =
ST̄W

WT̄G
GWA, (22)

M1WA =
M1T̄W

WT̄G
GW̃A, (23)

SWB =
ST̄W

WT̄VGT̃ VGWB, (24)
M2WB =

M2T̄W
WT̄VG

VGW̃B, (25)
M2WC =

M2T̄W
WT̄ ˜VG

˜VGWC, (26)

M1WC =
M1T̄W

WT̄ ˜VGT̃
˜VGW̃C, (27)

with W̃i = −Wi . Note that transformation matricesnT̄m contain
only rotatory elements:

nT̄m =

[

nRm 0
0 nRm

]

. (28)

The matrix T̃ calculates the torques resulting from the forces
acting on the lever arm at a distance (d+a)

T̃ =









I3 03

0 0 0
0 0 (d+a)
0 −(d+a) 0

I3









. (29)

In the setup of [8], the rotation of the virtual pipe between
the master devices (seeWHdes

G and WHdes
VG in Fig. 7) has to be

demanded by rotations of the master devices. In reality, the pipe
can be rotated with counteracting forces at the two pipe ends. The
consideration of the lever arm(d+a) in T̃ allows the command
of rotations with counteracting forces.

3.2 Passivity Proof

As discussed above, the passivity of the track is crucial for the
chosen stability approach. Therefore, the energy behavior of the
virtual grasping point method is discussed here. The MPMT
modules of the virtual grasping point are introduced as projection
subsystems PR. Note that for the ease of comprehension the
PR blocks are presented separately from the track in Fig. 8
although they could be integrated into the track. Fig. 8 shows
in which tracks the intrinsically passive spatial springs A-C are
implemented. The PR blocks are added in trackΓ1 andΓ3 such
that the PI controllers of those tracks are implemented in the
virtual grasping point.

The pipe can be regarded as a fixed coupling of two frames that
have a distance ofδH (e.g. between frameQ= WHdes

G and frame
K = WH ˜VG). The virtual coupling has been designed such that
the two frames Q and K have the same orientation and lie on the
same x-axis (compare equations (12)-(13)). Since a rotation of a
translationally steady frame K results in a translation and rotation
of frame Q, the power consistency of the force transformation is
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not obvious. Still, transforming the force and torque with matrix
T̃, the passivity of the transformation is guaranteed: Considering
a planar motion in the xy-plane, the powerPQ/K in frame Q and
K consists of two translational powersPQ/K

Fx
andPQ/K

Fy
as well as

a rotational powerPQ/K
M . Thus, the power in frame Q results in

PQ
Fx
+PQ

Fy
+PQ

Mz
= FQ

x vQ
x +FQ

y vQ
y +MQ

z ωz. (30)

The consideration of the lever arm(d+ a) in T̃ (MQ
z = MK

z −
FK

y (d+a)) assures the power consistency of the virtual grasping
point projectionPQ = PK :

MQ
z ωz+FQ

y vQ
y +FQ

x vQ
x = MK

z ωz+FK
y vK

y +FK
x vK

x , (31)

with FK
x = FQ

x , vK
x = vQ

x , vK
y = vQ

y − (d+ a)ωz and MQ
z = MK

z −
FK

y (d+ a). Analogously, the passivity of the 6-DoF kinematic
transformation of subsystem PR can be proven.

Therefore, the distancea does not influence the passivity of
the projection subsystem. If the springs B and C in the virtual
grasping points are deflected rotationally and the distancea is
increased, a potential energy is added in the spring translation.
This energy input is controlled by the operator who chooses the
distancea and can therefore be considered as a part of the supply
rate such that the passivity condition (1) is not violated. Note that
if the distance is varied during standstill of the devices (relaxed
springs) the energy injection is negligible.
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4 TASK ALLOCATION

This section introduces the Cartesian task allocation (TA) as
another virtual feature providing haptic augmentation.

Consider the manipulation of a large object (e.g. a long pipe)
by a human, without a telerobotic system: The right hand of the
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Fig. 9. Signal Flow Diagram of Position-Position Architecture with
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Fig. 10. Multilateral System with Virtual Grasping Point Projection
and Task Allocation

human grasping one end of the large object will be affected by
the motion of the left hand grasping the pipe at another point.
In case of difficult trajectories, or if high forces are necessary
for the manipulation, or if not one but two humans perform the
task cooperatively, it may happen that the motion of one hand
influences the motion of the other hand in an undesired manner
since the human may not compensate for all disturbances. This
manipulation could be eased e.g. through guide rails or similar
fixtures. These structures which support the human in performing
the manipulation can be regarded as a non-virtual task allocation.
In the case of teleoperators, the concept of task allocation allows a
much broader spectrum of supporting aids to the telemanipulation.
These support aids are virtual features which can augment visual
and haptic perceptions.

The TA concept of [8] is improved here considering the
coupling rigidity of slave and master M1. Furthermore, an ex-
tension that avoids constrained robot workspace configurations is
proposed.

Here, the TA aims at the following distribution: The task of
the right hand (master M2) is to locate the pipe end and to keep
the position until the pipe is correctly oriented. The task of the left
hand (master M1) is the reorientation of the pipe. A task allocation
is designed here which decouples the translational motion of the
pipe end from the left hand input such that the right hand feels
no forces (but torques) caused by the left hand motion. Thus, the
control of the pipe end is decoupled from unintentional commands
of the left hand and other disturbances.

4.1 Implementation

Similar to the method proposed in [7], the task allocation can be
implemented by parametersαM1/M2 that scale the stiffness and the
damping of the PI-controller or its force and torque feedback:

T/RαM1/M2 ∈ [0,1], (32)

T/RαM2 = 1− T/RαM1. (33)

The scalingTα acts on the forces (translation T) sent from the left
or right masterM1/M2. Rα acts on the torques (rotations R). Fig.
9 presents a general PP-architecture with task allocation scaling.
Note that the human may be positioned distantly from the slave. In
a bimanual setup with one operator, the delay between the master
devices is zero andT/RαL = T/RαM2 andT/RαR = T/RαM1. In the
master-slave coupling tracks, the master side scalingT/RαL = 1
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and T/RαR = T/RαM1 for master M1 andT/RαR = T/RαM2 for
master M2. To obtain a DoF-specific Cartesian task allocation
it is crucial that these PI controllers operate in the VG as the
task allocation is designed in the VG. Therefore, two PR blocks
need to be added to trackΓ2 as depicted in Fig. 10. In [8], the
spatial springs of tracksΓ2 andΓ3 are positioned in the virtual
grasping point. Therefore, the slave is coupled to two distant
controllers which leads to higher flexibility in the translational
DoFs and thus reduces the position accuracy. Here, in order to
improve the coupling rigidity, it is proposed to split the trackΓ2
into two directions of flow. Such that the PI of theR2L-part (which
determines the force feedback to master M1) can provide a direct
coupling between slave and master M1 in the grasping point G.
This is possible as the slave feedback to master M1 is not affected
by the TA and therefore doesn’t have to be calculated in the VG.
Thus, the coupling rigidity is increased such that the master M2
tracks the slave position better. The controller of theL2R-part
remains in the virtual grasping point to assure the task allocation
functionality.

In contrast to the spring setup in Section 3 and to the task
allocation design of [8], this new task allocation concept requires
four coupling springs A-D (compare Table 3). The spring D is
located in the virtual grasping point VG and spring A remains in
the grasping point.

TABLE 3
TA Springs

Spatial Spring WH1
WH2 Track

A WHG
WHdes

G Γ2 R2L

D WHVG
WH ˜VG Γ2 L2R

The feedback forces of the springs change:

SWA = [0 0 0 0 0 0]T (34)
M1WA =

M1T̄W
WT̄G

GW̃A, (35)
SWB =

ST̄W
WT̄ ˜VGT̃κRCκTA

M2
VGWB, (36)

M2WB =
M2T̄W

WT̄VGκRCVGW̃B, (37)
M2WC =

M2T̄W
WT̄ ˜VGκRCκTA

M1
˜VGWC, (38)

M1WC =
M1T̄W

WT̄ ˜VGT̃κRCκTA
M2

˜VGW̃C (39)
SWD =

ST̄W
WT̄VGκTA

M1T̃ VGWD, (40)
M1WD = [0 0 0 0 0 0]T . (41)

The matricesκRC will be used to reduce the right robot’s
workspace limitations in the next step but can be first assumed
to be equal to the unity matrixI6 ∈ R6x6. The multi-DoF task
allocation can be implemented through the matricesκTA

M1 andκTA
M2

κTA
M1 =

[

TαM1I3 03

03 RαM1I3

]

(42)

and

κTA
M2 =

[

TαM2I3 03

03 RαM2I3

]

, (43)

with the zero matrix03 and the unity matrixI3 ∈ R3x3.

In the chosen scenario, the translational task allocation factors
should be chosen as follows:

TαM2 ∈ [0.7,1], (44)

TαM1 = 1− TαM2. (45)

If only master M1 would control the rotations, the translations
in the right hand could be disturbed by unexpected rotational
motions in the operator’s right hand. Therefore, the rotational
task allocation values remain unaltered (Rα i = 0.5) for now. The
feedback from slave to the masters is not scaled since the slave’s
motion should always be correctly perceived at the master devices.

4.2 Robot Workspace Limitations

Especially in robots with serial kinematics, the workspace is con-
strained by singularities and dynamic nonlinearities. These issues
can negatively affect the precision and smoothness of motion when
large motions are required. The presented setup might have limited
workspace depending on the robots’ configuration.

To reduce these effects, the orientation of the master device
M2 can be decoupled from the pipe orientation such that it
is able to change its orientation freely. This leads to a variety
of M2 configurations such that singularities or other limitations
can be avoided. Master M2 can then still be used to control
the translations of the pipe end. The only drawback is that this
robot can then set a desired orientation only through forces in
cooperation with the second input device and not through torques.
The torques of the controllers coupling the right master to the
other devices can be set to zero to achieve this behavior. Therefore

TκRC has to be chosen as:

TκRC=

[

I3 03

03 03

]

. (46)

4.3 Passivity Discussion
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with Task Allocation

In the MPMT, the allocation factorsκTA
M2 andκTA

M1 can be de-
signed as dependent power sources (compare Fig. 11) with direc-
tion depending energy behavior [25] such that the powerPP4 and
PP8 are reduced by the task allocation factors (0≤ T/RαM1/M2 ≤ 1)
in R2L and L2R direction respectively:

PP3(t) = T/RαM2PP4(t) = v4(t)T/RαM2F4(t), (47)

PP9(t) = T/RαM1PP8(t) = v8(t)T/RαM1F8(t). (48)

For example, the power sourceκTA
M2 in the R2L part of the track

has an effect only inR2L direction. In this direction, it has
a dissipating characteristic. In contrast, the same power source
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κTA
M2 has an energy generating behavior inL2R direction but the

injected energy is dissipated by the dependent flow sourcev9 and
thus, is not transmitted to the right part of the track. This holds
analogously for the power sourceκTA

M1.

5 TIME DELAY

If the communication channel has a time delay, energy is produced
by the TDPN subsystem representing the communication link
which may lead to instability. Concerning literature on multi-
lateral systems, the issue of time delay is addressed in [7] and
[26] applying the TDPA, whereas, wave variable transformation
method has been followed in [6] and [27]. A closer analysis of
the effects of time delay in different types of cooperative control
methods in MMMS systems is carried out in [28]. A trilateral
system with bounded time delay is introduced in [29] where
the system stability is studied through an appropriate Lyapunov
like function. Here, it is presented, how the TDPA [17], [23],
[30] can be integrated into the multilateral multi-DoF structure
in combination with the haptic augmentation concepts. The
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TDPA provides passivity observers (PO) and passivity controllers
(PC). The positions of the PCs in the track containing PR and
TA subsystems are depicted in Fig. 12. The POs measure the
energies flowing in the respective directions at the ports of the
TDPN subsystems. Thus, the energy generation of the system
can be analyzed. If the observed TDPN has generated energy, the
corresponding passivity controller preservesL2-stability through
the dissipation of the excessive energy. The POs are located at
ports 6a and 7a (R2L) and ports 5b and 6b (L2R) respectively such
that the energy generated in the TDPNs can be measured. Two
PCs added next toTDPN1 and TDPN2 dissipate this energy in
the corresponding direction of energy flow. In the PP architecture,
admittance type PCs are used that alter the velocity fed to the PI
controllers.

In case of time delay, the passivity condition (2) has to be
reformulated:

EL,TDPN1(t)+ER,TDPN1(t) = EL,TDPN1
in (t −T1)

−ER,TDPN1
out (t)+ER,TDPN1

in (t −T2)−EL,TDPN1
out (t)≥ 0

(49)

and split up into

EL,TDPN1
in (t −T1)−ER,TDPN1

out (t)≥ 0, (50)

ER,TDPN1
in (t −T2)−EL,TDPN1

out (t)≥ 0. (51)

Thus it is sufficient if e.g,PCR2L dissipates the observed time
delayed energy differenceEobs:

ER2L,TDPN1
obs = ER,TDPN1

in (t −T1)−EL,TDPN1
out (t). (52)

The velocityvR2L
PC which is generated by the admittance type

PCR2L and sent to the left sidePI1 in a sum withv6a is then
calculated as follows:

vR2L
PC (t) =−

ER2L,TDPN1
obs (t)

∆TF2
6a(t)

F6a(t).

The admittance type PC based TDPA can be integrated into
the multi-DoF structure as follows: The pose vectorr with three
positions and three angles respectively can be calculated from the
componentsp, R of the homogeneous transformation matrixH:

r =

[

p
ωΘ

]

,

with the angle-axis representationωΘ that can be calculated from
the rotation matrixR:

Θ = arccos(
tr(R)−1

2
),

ω =
1

2sin(Θ)





iR3,2−
i R2,3

iR1,3−
i R3,1

iR2,1−
i R1,2



 .

The elements of the pose vectorr can be passivity controlled
separately, resulting in a new pose vectorrPC. The matrixHPC

fed to the spatial spring can be found from the passivity control
output via Rodrigues’ rotation formula:

RPC = I+sin(ΘPC)[ωPC]x+(1−cos(ΘPC))[ωPC]x⊗ [ωPC]x,

where[ωPC]x is the skew symmetric cross product matrix of the
axis vectorωPC.

The effects of the TDPA and the delay itself on transparency
is discussed in the experiments in Section 6. In [31], it was
shown that the TDPA provides good performance compared to
other frequently used methods. Due to the modular structure of
the MPMT, the wave variables method can also be applied.

6 EXPERIMENTS

In this chapter, the proposed multilateral system will be analyzed
experimentally with focus on the virtual grasping point and the
task allocation. The DLR HUG which consists of two redundant 7
DoF light weight robots served as the bimanual haptic input device
(see Fig. 2). The left arm of the humanoid robot DLR SpaceJustin
(see Fig. 1) has been used as the single slave device.

The DLR Hit hand (Wessling Robotics) was used as the tool to
grasp the pipe. The CyberGlove (CyberGlove Systems) served as
the hand interface. The grasped pipe was a light plastic pipe made
of polypropylene. The human operator could see the environment
of DLR SpaceJustin through the robot’s stereo cameras via a head-
mounted display.

All robots have been linked using the position-position teleop-
eration scheme and no force sensors have been applied in the con-
trol loop although endeffector FTS have been used on all devices
for measuring interaction forces. The controller constants have
been chosen as depicted in Table 4 (rotational and translational
dampingBi and stiffnessKi). No local damping has been applied.
To tune each coupling controller, only the respective track was
activated. The controller spring (I-gain of the controller) was tuned
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TABLE 4
Control Parameters

Track KT [N/m] BT [Ns/m] KR [Nm/rad] BR [Nms/rad]

Γ 1 400 3 15 1

Γ 2 300 6 10 0.45

Γ 3 300 6 10 0.45
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Fig. 13. Exp1a: Virtual Pipe Motion in a Bilateral Master-Master
Setup without Task Allocation (Devices M1, M2 and Track Γ1)

to achieve a stiff coupling. The passivity analysis of Section 3 and
4 assuming a continuous time system does not limit the controller
stiffness but only requires a positive semi-definite damping. The
damping (P-gain of the controller) was set to counterbalance the
destabilizing effects of discretization. This damping is necessary,
independent of the stability approach (passivity, Routh-Hurwitz
etc.) being used. Therefore, the passive track design does not lead
to high conservatism and promises good performance w.r.t. trans-
parency measures as position error and transmitted impedances
between the coupled devices. In contrast, the time delay control
approach affects the control gains through an adaptive damping.
Therefore, the transparency is mainly reduced in case of a delay
in the communication channels. Still, the TDPA promises good
performance in delayed coupled systems compared to other time
delay control methods [31].

The first experiment Exp1 focuses the application in virtual
environments. Therefore, the bilateral link with virtual pipe cou-
pling between master M1 and master M2 (TrackΓ1) is analyzed.
A rotation around the pipe end at master M2 is performed. The
performance with (Exp1b) and without task allocation (Exp1a)
is compared. Fig. 13 (pipe color indicates time) depicts the
motion of the virtual pipe without task allocation. The virtual pipe
represents the link ofWHdes

G andWHdes
VG. Master M1 rotates around

master M2 which tries to fix its initial position on the left hand
side of the plot. The computed PI controller forcesFcomp that are
demanded from the robots have opposite signs for master M1 and
master M2 (compare Fig. 14). The force valuesFmeas measured
by the force sensor differ, as the operator hands have to counteract
e.g. against the link masses. The task allocation is activated for
Fig. 15. The task allocation values have been chosen as noted in
Table 5 (bilateral case). It is obvious that master M2 can maintain
its translational position more easily if the task allocation is active.
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Track Γ1)

−0.15−0.1

−0.4

−0.3

−0.2

−0.1

0

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

 

x [m]

y [m]

z
[m

]

virt .Pipe

Fig. 15. Exp1b: Virtual Pipe Motion in a Master-Master Bilateral
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TABLE 5
Task Allocation Settings for Bilateral and Multilateral Experiments

α bilateral Value α multilateral Value

T αM1 0 T αM1 0.3

RαM1 0.5 RαM1 0.5

T αM2 1 T αM2 0.7

RαM2 0.5 RαM2 0.5
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Fig. 17. Exp2a: Virtual Pipe Motion in a Bilateral Master-Slave Setup
(Devices M1, S and Track Γ2)

Fig. 16 shows that all the forcesFcomp sent to master M2 are
canceled if task allocation is active. The measured forcesFmeas

at master M2 side are constant during the rotational procedure
as the right operator hand does not need to resist against the left
hand’s demand (TαM1 = 0). Comparing Fig. 14 and Fig. 16, one
can see that in order to rotate the pipe, the right hand at master
M2 has to act with a forceFmeas

z against the rotation only if the
task allocation is not active.

The next set of experiments Exp2 compares the steadiness
of the pipe end during rotation around the pipe end. In the
first part Exp2a (see Fig. 17), a bilateral system with direct
coupling between master M1 and slave (TrackΓ2) is evaluated.
As the rotational position following of master M1 and slave is not
optimal, the resulting translational position error in the pipe end is
high. The average position of the pipe end is depicted with a star
shape.

In the next step (Exp2b), the trackΓ3 is activated such that a
real multilateral coupling as depicted in Fig. 8 can be evaluated
in Fig. 18. The task allocation is not active. As the additional
coupling via trackΓ3 makes the system stiffer, especially the
slave’s position following is improved compared to Fig. 17.

Comparing the rotational accuracy in experiments Exp2a to
Exp2b, the mean valuemeanVG0 of distance from pipe end
position VG (WHVG) to the initial pose of pipe end position
S (WHVG(t0)) is lower for Exp2b with virtual grasping point
(meanVG0(Exp2a) =0.0201,meanVG0(Exp2b) =0.0099). This
shows that the PE steadiness can be improved using bimanual
control.

For experiment Exp2c, the task allocation is activated and the
track Γ2 is split in to parts corresponding to Fig. 10. Thus, the
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Fig. 18. Exp2b: Virtual Pipe Motion in a Multilateral Setup without
Task Allocation (Devices M1, M2, S and Tracks Γ1, Γ2 and Γ3)
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Fig. 19. Exp2c: Virtual Pipe Motion in a Multilateral Setup with Task
Allocation (Devices M1, M2, S and Tracks Γ1, Γ2 and Γ3)

position of the pipe end is more steady in Fig. 19. The task
allocation values have been chosen as in Table 5 (multilateral
case) which, when subjectively evaluated, resulted in the best
performance. Because of cross couplings caused by the available
robot workspace, the task allocation was chosen such that master
M1 gained 30% authority (TαM1 = 0.30) on the pipe end’s
translational motion. Comparing Fig. 18 and Fig. 19 one can see
that the steadiness of the pipe end during reorientation is slightly
more precise if task allocation is active. Another benefit of the task
allocation is that the workload of the operator may be reduced, as
he needs to apply less forces for the desired motions. Comparing
the rotational accuracy in experiments Exp2b and Exp2c, the
mean valuemeanVGof distance between MasterM2 (WHdes

VG)
and VG (WHVG) is clearly lowest for Exp2c with task allocation
(meanVG(Exp2b) =0.00533,meanVG(Exp2c) =0.00162). Still,
only in a user study, the performance can be evaluated reliably.

The next set of experiments (Exp3) presents a procedure with
rotation in the xy-plane around the virtual grasping point with
subsequent plug-in of the pipe into a hole. This experiment with
contact forces has been performed in a bilateral setup (direct
Master 1 - Slave coupling, Fig. 20 and Fig. 21) as well as in a
multilateral setup with task allocation (TracksΓ1, Γ2 andΓ3, Fig.
22 and Fig. 23). The respective pipe motion plots show that the
plug-in is difficult in the bilateral case (see Fig. 21). In contrast,
only one plug-in attempt is necessary with the multilateral setup
(see Fig. 23). The computed forces resulting from one spatial
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spring in the unimanual setup (depicted in Fig. 20) clearly present
three contacts with the wall (compareFy). Due to the three
coupling springs in the bimanual setup, the force feedback consists
not only from the spring deflections resulting from the slave’s
contact but also from the coupling via the virtual grasping points.
Still, the contact forces in y-direction can be recognized in both
master devices.

A time delay is considered in the last experiment (Exp4, see
Fig. 24 and 25). The system had been tuned at the verge of stability
at 10ms roundtrip delay. The slave is assumed to be located distant
from the master devices such that the tracksΓ2 andΓ3 contain
a roundtrip delay of 40ms. Fig. 24 depicts the plug-out motion
of the pipe (Fig. 25 8.7s-9.5s). Fig. 25 shows that the position
tracking quality of the three devices during the plug-in and plug-
out motion is satisfactory despite time delay. Besides the inevitable
latency effects, the delay and the application of the TDPA do not
reduce performance in terms of position error of desired and actual
position drastically.

7 USER STUDY

In the following study we tried to answer two hypotheses:

• H1: The proposed bimanual control approach allows a
higher level of accuracy while performing a rotational
position matching task compared to unimanual control.
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Fig. 25. Exp4: Position Tracking with 40ms Roundtrip Delay in a
Multilateral Setup with Task Allocation (Devices M1, M2, S and
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• H2: In case of bimanual control, the task allocation ap-
proach should lead to higher accuracy compared to an
approach without task allocation.

Besides the mental and physical workload in the bimanual
setup, the performance in terms of accuracy is evaluated in the
user study. Since the proposed concepts promise an increase in
rotational accuracy and since the perception of slave contacts with
the environment is not decreased (compare experiment set 3), this
user study focuses on rotational positioning tasks.

7.1 Method

The user study was conducted with N=10 participants (9 male,
1 female) in the age group between 23 and 35 years (M=28.9;
SD=4.1). A within subject design has been chosen such that each
participant had to perform the task set with each condition. For
the sake of experimental control and to reduce undesired effects
(e.g. workspace limitations, singularities) of the robot hardware
as far as possible, the study was performed with the HUG and a
virtual reality instead of a slave robot such that only trackΓ1 was
activated. This coupling of master M1 and master M2 reflects
the whole functionality of the virtual grasping point concept.
Furthermore, the design in the virtual reality allowed clearer
instructions and thus, a more detailed evaluation of separate tasks
was possible.

7.1.1 Technical Setup
The controller of the DLR HUG was implemented in Matlab
Simulink and executed on a RTLinux system. A pedal served as
a deadman switch to activate the robot power. The Instant Player
[32] was applied to present the virtual reality to the user. The
participants saw the virtual scene on the head mounted display
(HMD) nVisorSX60.

7.1.2 Task
A set of ten tasks had to be performed with each condition. The
virtual reality showed two pipes (see Fig. 26). The gray pipe
was controlled by the operator. The second red transparent pipe
presented the desired pose of the pipe. When the desired pose was
reached, the color of the transparent pipe turned from red to green.

Fig. 26. Virtual Reality Scene of User
Study

After half a second in the desired pose, a new desired pipe pose
appeared in red color. The pipe poses have been chosen such that
the pipe had to be rotated around the pipe end. The study focuses
on the positioning accuracy of different control setups. No contacts
with the environment are considered since the main performance
increase through the proposed haptic augmentation concept is
expected in the accurate orientating of the object also without
contact. Furthermore, in the experimental section it was shown
that the performance with contact is not decreased compared to
standard telemanipulation.

7.1.3 Experimental Design
Three conditions have been chosen for the user study:

• Condition 1: unimanual control without haptic augmenta-
tion

• Condition 2: bimanual control with virtual grasping point
coupling and without task allocation

• Condition 3: bimanual control with virtual grasping point
and with task allocation

The participants started with a training procedure with a condition
sequence 1,2,3 to understand the differences of the approaches
properly. The order of conditions was randomized for the test
subjects to control time effects as fatigue and training.

Another training phase was performed before the accounted
task in the respective condition. The task set started from a unique
initial position. The test subjects were instructed to maintain the
pipe end position during the motion of the pipe to the desired
position. In addition, the examiner informed that the retention of
the pipe end position during the task had higher priority than the
time needed for task completion.

Furthermore, the test subjects completed a demographic and
an immersive tendency questionnaire [33] to identify correlations
with the related performance. Additionally, after the user study a
simulator sickness questionnaire [34] had to be filled.

7.2 Results

The simulator sickness questionnaire indicated that no test subject
had to be excluded from the analysis. The following measures
have been evaluated:

• The timet in [s] needed for one task
• The translational pathpathPE in [m] of the pipe end
• The root mean square of the pipe end’s translational

velocity RMS(VPE) in [m/s]
• The root mean square of the translational difference of

desired and actual pipe end positionRMS(Pdi f f
PE ) in [m]

• The absolute maximum of the translational difference of
desired and actual pipe end positionMAX(|Pdi f f

PE |) in [m]
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• user workload

The RMS(VPE) and thepathPE should be close to zero, since the
translational position of the desired pipe end is steady throughout
the experiment. Also the measuresRMS(Pdi f f

PE ) andMAX(|Pdi f f
PE |)

should be low in the best approach. Note that orientation errors
are not explicitly analyzed since the path of the pipe to the desired
position could be chosen without restrictions.

The resulting mean value and standard deviation in brackets
are presented in Table 6. The dimensions x,y and z can be analyzed
in Fig. 26.

TABLE 6
Results

Condition

1 2 3

Mental Workload 12.5 (2.80) 10.6 (2.59) 9.6 (2.76)

Physical Workload 11.0 (3.06) 10.5 (3.41) 8.9 (2.13)

t 7.29 (2.11) 6.60 (2.30) 6.18 (1.36)

pathPE 0.541 (0.078) 0.219 (0.069) 0.233 (0.061)

x-dimension

RMS(VPE) 0.064 (0.006) 0.0277 (0.005) 0.0314 (0.006)

RMS(Pdi f f
PE ) 0.0288 (0.006) 0.0192 (0.003) 0.0182 (0.004)

MAX(|Pdi f f
PE |) 0.0635 (0.011) 0.0347 (0.008) 0.0342 (0.007)

y-dimension

RMS(VPE) 0.017 (0.002) 0.0106 (0.001) 0.0113 (0.001)

RMS(Pdi f f
PE ) 0.0109 (0.002) 0.0115 (0.002) 0.0122 (0.003)

MAX(|Pdi f f
PE |) 0.0208 (0.003) 0.0188 (0.004) 0.0205 (0.004)

z-dimension

RMS(VPE) 0.0763 (0.012) 0.028 (0.004) 0.030 (0.006)

RMS(Pdi f f
PE ) 0.0351 (0.005) 0.0260 (0.001) 0.0241 (0.002)

MAX(|Pdi f f
PE |) 0.0721 (0.012) 0.0423 (0.005) 0.043 (0.005)

The main assumptions for repeated measures ANOVA
(rmANOVA), i.e. normality of residuals and sphericity were tested
by Shapiro-Wilk’s test and Mauchly’s test. Only violations of these
assumptions are reported in the following analyses. In the case
of non-normality, the non-parametric Friedman test was chosen.
In a first step, the effect of experimental conditions on average
completion timest were analyzed in rmANOVA with condition as
within factor. Results indicate no significant effect of condition (F
(2, 18) = 1.4, n.s.). Next, the average path lengths (pathPE) were
explored. Since data were not distributed normally for this variable
in condition 1 (Shapiro-Wilk’sW = .84; p < .05), a Friedman
test was performed. The results show a highly significant effect
of condition,p = .001. In subsequent Wilcoxon tests, we found
significant differences between condition 1-2 as well as 1-3 (both
ps< .01), but no significant difference between condition 2-3.

Regarding the empirical distributions for RMS of velocity
(RMS(VPE)) for the three dimensions and conditions also indicated
non-normality in four different factor combinations. Thus, three
independent Friedman tests with condition as within variable
were computed for each dimension. For the x-dimension the
Friedman test revealed a significant effect of conditions (p<.001).
Contrasting the conditions in Wilcoxon tests showed significant
differences between 1-2 as well as 1-3 (bothps< .01) and a non-

significant difference between 2-3 (p = .058). The very same result
was found for the y-dimension. Significance was also reached in a
Friedman test analyzing data of the z-dimension (p = .001). Here,
only the contrasts between 1-2 as well as 1-3 reached significance
in Wilcoxon’s test (bothps< .01).

The data for RMS of the position error (RMS(Pdi f f
PE )) also

violated the assumption of normality. Again the above result
pattern was evident for the x- and the z-dimension with significant
Friedman tests (bothps< .01) and significant differences between
1-2 and 1-3 (allps≤ .01). Yet, no significant result was found for
the y-dimension.

Finally, we performed a rmANOVA on the maximum abso-
lute position error (MAX(|Pdi f f

PE |)) with dimension and condition
as within factors. Testing sphericity with Mauchly’s procedure
indicated a violation of the assumption in the condition factor
(Mauchly’s W = .40; p < .05) and the Dimension * Condition
interaction (Mauchly’sW = .04; p < .01). Thus the Greenhouse-
Geisser correction was applied in these cases. dimension and
condition main effects were highly significant (F (2, 18) = 165.1,
p <.001 andF (1.25,11.23) = 63.2,p <.001) as well as the
interaction of both factors (F (2.28,20.48) = 35.4,p <.001).
Pairwise comparisons with Bonferroni correction show that results
for all three dimensions differ significantly (allps< .01) and that
conditions 1-2 and 1-3 differ significantly (bothps< .001). The
Dimension * Condition Interaction is mainly due to the results
for the y-dimension; here no substantial differences between the
conditions are evident in contrast to the x and z-dimension.
Next, the mental workload ratings were analyzed. Data were
not distributed normally in condition 2 (Shapiro-WilksW = .83;
p <.05) and hence Friedmans test was performed. Yet, results
yielded no significant differences between the conditions. Finally,
we performed a rmANOVA on the physical load ratings with
condition as within factor. Results showed no significant effect
(F (2, 18) = 1.96, n.s.).

7.3 Discussion

Overall, the results indicate that the test subjects showed the weak-
est performance with unimanual control. Thus, hypothesis H1 is
clearly substantiated. This result was found for the path length
pathPE, the RMS of the position error of the pipe endRMS(Pdi f f

PE )

and the maximum absolute position errorMAX(|Pdi f f
PE |). The time

t needed for task completion showed no significant effect. I.e.
the test subjects used, in average, the same time for all three
conditions. This suits to the instruction to focus on the steadiness
of the pipe end rather than on the time of completion.

No significant effects have been found in dimension y for the
position errorRMS(Pdi f f

PE ). This can be explained since, in contrast
to x- and z-dimension, the motions in y-dimension are less affected
by unintended rotations in the left pipe end (grasping point).

The test subjects achieved similar results for both bimanual
approaches. Based on statistical analyzes we did not find evidence
supporting hypothesis H2. This might be due to the small sample
size (N= 10) and hence low statistical power. Additional descrip-
tive tests (Cohen’s d as the difference between the two group
means divided by the pooled standard deviation for the data [35])
at least indicate small effect sizes, for RMS of the position error
RMS(Pdi f f

PE ), as the most meaningful criterion, when comparing
both bimanual approaches. Comparing the bimanual approaches
revealed a small effect size for the x-dimension (d = 0.28) and
even a large effect size for the z-dimension (d= 1.20) providing
initial evidence in favor of the task allocation approach.
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Mental and physical workload ratings indicate that despite
the short training time, the test subjects got used to the novel
interaction concept quickly with a moderate level of workload.
The increased task performance in the bimanual approaches was
not achieved at the cost of mental workload. Effect sizes (Cohen’s
d) showed large effects sizes for the mental (d= 1.04) and physical
workload (d= .80) when comparing condition 1-3. Furthermore, a
small effect size was evident for mental (d= 0.37) and a moderate
effect size for physical workload (d= 0.56) when comparing con-
dition 2-3. Obviously, the task allocation reduces users’ subjective
mental and physical workload.

8 CONCLUSION

In this paper, a multi-DoF implementation of the haptic aug-
mentation concepts of virtual grasping point and task allocation
has been introduced. These concepts have been designed as new
modules of the MPMT. The virtual grasping point method was
successfully extended for online adaptation of the virtual grasping
point distance and improved concerning the pipe’s control using
opposing forces. The task allocation approach has been enhanced
for higher coupling rigidity. Furthermore, a method for the reduc-
tion of negative effects due to the robot workspace constraints has
been presented.

The experiments showed that the manipulation of a long object
by one slave robot arm could be eased significantly by the haptic
augmentation approaches. Regarding the mean deviation of de-
sired and real pipe end positions in the experiments, the Cartesian
task allocation improved the accuracy during the reorientation
of the long object additionally, though the user study showed
no significant improvements. The position following of the three
devices, the virtual and real grasping points was satisfactory even
for roundtrip delays of 40ms.

The user study revealed that the test subjects achieved sig-
nificantly better task performance with bimanual compared to
unimanual control. In addition, descriptive tests of the bimanual
approaches showed different effect sizes in favor of the task
allocation.

In future, further user studies should be performed in real
world considering contacts with an environment. In the teleop-
eration setup, a position-force measured architecture applying
force sensor information should be integrated in the master-slave
coupling.

APPENDIX A
COOPERATIVELY GRASPING SLAVE ROBOTS

The focus of this paper lies on the increase of rotational precision
in a Dual-Master-Single-Slave through the virtual grasping point
concept. To underline the generality and adaptability of this
concept and the MPMT, a Single-Master-Dual-Slave system [36]
based on the same modules is introduced here.

Often, two slave robots are applied to grasp and manipulate
one object cooperatively since the load capacity, rigidity and dex-
terity of the system can be increased [37]. Also, in a Dual-Master-
Dual-Slave setup with two separate bilateral sets of masters and
slaves, the robustness to single point failure is improved and
the level of safety is increased due to the distribution of kinetic
energy on two robotic systems [1]. Still, the grasp quality is
disturbed if the operator does not synchronously move two master
devices controlling one slave robot each [38]. In contrast, if one

master device controls a point on the cooperatively grasped object
(compare Fig. 27), a higher robustness in the cooperative grasp
can be achieved since the slave robots have a fixed kinematic
coupling. As depicted in Fig. 27, the master M can control the
virtual grasping point VG on the link between right slaveSR and
left slaveSL. The virtual grasping point VG can be located at a
distanced1 from the center of the connecting axis D. The desired
distance between the slaves is constant such that the grasping
positions on the manipulated object are more robust than in a Dual-
Master-Dual-Slave system in which one master controls slaveSL

and another,SR. The presented concept is similar to [39]. Here,
the passivity criterion assuresL2-stability whereas in [39], no
stability proof has been accomplished.

Fig. 27. Kinematically Coupled Slaves in a Single-Master-Dual-Slave
System

A.1 Implementation

The virtual grasping point position VG between the left slaveSL

and the right slaveSR can be calculated as follows:

W pt0
VG = W pt0

SL
− (W pt0

SL
−W pt0

SR
)(0.5+d1), (53)

with the distance from the centerd1 (see Fig. 27). The rotation
matrix WRt0

VG of the homogenous transformWHt0
VG

WHt0
VG =

[

WRt0
VG

W pt0
VG

0 1

]

, (54)

can be calculated with two arbitrary vectors and one vector parallel
to the connecting axis D throughW pt0

SL
andW pt0

SR
(compare Fig.

27):

b1 =
W pt0

SL
−W pt0

SR
, (55)

b2 =





0
−b1(3)
b2(2)



 , (56)

b3 = b1×b2 and (57)
WRt0

VG = [b1/‖b1‖2,b2/‖b2‖2,b3/‖b3‖2] . (58)

The desired pose of the grasping pointWHdes
VG has to be calculated

with respect to the incremental motion of the masterM:

W pdes
VG = W pt0

VG+W pM −W pt0
M, (59)

WRdes
VG = WRM

MRt0
W

WRt0
VG, (60)

WHdes
VG =

[

WRdes
VG

W pdes
VG

0 1

]

. (61)
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The slave posesWHSL/R
have to be transformed into the right

coordinate frameWHS̃L/R
:

WHS̃L/R
=

[

WRS̃L/R

W pSL/R

0 1

]

, with (62)

WRS̃L/R
= SL/RRt0

VGL/R

WRSL/R
, (63)

whereSL/RRt0
VGL/R

is the rotation matrix from the respective slave
to the grasping frame

SL/RRt0
VGL/R

= WRt0
VG

SL/RRt0
W. (64)

The desired positions of the slavesWHdes
ŜL/R

can be calculated

with the initial distance of the respective slaveWHt0
S̃L/R

and desired

grasping pointWHdes,t0
VG in base frame:

WHdes
ŜL

= WHdes
VG

VGHdes,t0
W

WHt0
S̃L
, (65)

WHdes
ŜR

= WHdes
VG

VGHdes,t0
W

WHt0
S̃R
. (66)

With a separate inputs (e.g. a pair of buttons), the desired slave
positions can be moved on axis D to perform the grasping:

WHdes
SL

=

[

WRdes
ŜL

W pdes
ŜL

+WRdes
ŜL

se

0 1

]

, (67)

WHdes
SR

=

[

WRdes
ŜR

W pdes
ŜR

−WRdes
ŜR

se

0 1

]

, with (68)

e=





1
0
0



 . (69)

Two spatial springs are sufficient in the proposed multilateral
system. Spring A couples masterM with slaveSL and the second
spring B couples the masterM with slave SR. The respective
reference frames of the two coupling springs are listed in Table
7. As the wrench output is in the frame ofWH1, the wrench has

TABLE 7
Spring Inputs

Spring WH1
WH2

A WHS̃L
WHdes

SL

B WHS̃R
WHdes

SR

to be transformed into base frame in order to calculate the wrench
commanded to the hardware

SLWA =
SL T̄W

WT̄S̃L

S̃LWA, (70)

MWA =
MT̄W

WT̄S̃L
T̃ S̃LW̃A, (71)

SRWB =
SRT̄W

WT̄S̃R

S̃RWB, (72)

MWB =
MT̄W

WT̄S̃R
T̃ S̃RW̃B, (73)

with W̃i =−Wi and

T̃ =









I3 03

0 0 0
0 0 0.5± (d1+s)
0 0.5± (d1+s) 0

I3









. (74)

A.2 Passivity

As depicted in Fig. 28, the network representation of the mul-
tilateral system for cooperative slaves is based on the formerly
introduced passive modules. Analogous to the inputa in Section
3, the inputs does not violate the passivity condition.
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Fig. 28. Single-Master-Multi-Slave System for Cooperative Slave Grasp-
ing

Two additional PI controllers or tracks respectively can be
added to stiffen the control loop as depicted in Fig. 29. Then,
the master is coupled to each device by one spring in the master
position and a second spring in the position of the respective slave.
Through the passive design of the track modules, the passivity
criterion is fulfilled.
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Fig. 29. Single-Master-Multi-Slave System for Cooperative Slave Grasp-
ing with Additional Spatial Springs

A.3 Experiments

The following experiment was performed with an Omega.7 [40]
master input device and the DLR HUG. The coupling was imple-
mented with four spatial springs according to Fig. 29.

In Exp. 30, a rotation around the x-axis and a translational
motion on the x-axis were commanded by the master device. Plot
Exp. 30a depicts the position tracking of the right slave robot
WHSR and the desired slave robot poseWHdes

SR
. α, β andγ describe

the rotations aroundx, y andz axis respectively. The commanded
rotation around the x-axis is well tracked by the slave device. The
translational position accuracy is lower which might result from
workspace related disturbances. Fig. 30b presents the 3D motion
of the multilateral system. The kinematic coupling via four spatial
springs provides the desired performance.
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