

Operation under Varying Current

(Version 3.5, 02 June 2017)

Objective and Scope

This test module deals with solid oxide cell (SOC) operation either as a fuel cell (SOFC) or an electrolyser (SOEC) under varying current under galvanostatic conditions to determine performance at relevant (intermittent) load profiles. It is a general characterization method that can be used in SOC R&D and for quality assurance.

Main Test Input Parameters (TIPs)

Static TIPs	Variable TIPs
Temperature of the oven (Toven)	Flow rates of inlet gases (f _{in})
Rate of change of current $(\Delta I / \Delta t)$	Current (I)
Operating time at the plateau d	Composition of inlet gases
$(t_{op,d})$	$(x_{i,in})$
Number of cycles and plateaus (m	
and <i>d</i>)	

Test Procedure

- Increase current from zero (open circuit voltage) to 1st plateau value of the current at its specified rate of change.
- Wait for t_{op,1} to elapse and continuously record all TIPs & TOPs at their specified sampling rates, e.g. 1 Hz.
- Continue the current change/current holding until the dth plateau for *t_{op,d}* to finish one cycle. Repeat until the number *m* of cycles is exhausted upon which the current is lowered to zero at its specified rate of change.
- The test can be interrupted or terminated when operational abnormalities (such as unexpected temperature evolution, signal instabilities) are observed or certain predefined cut-off criteria are fulfilled (threshold values on voltage, temperature or degradation rate).

General evolution of TIPs during TM13 in combined SOFC/SOEC operation for instance

Critical Parameters and Parameter Controls

- Stability of *T_{stack}* and *f_{in}* at each load cycle plateau.
- Voltage measurement as a function of time has to be sufficiently clean to allow degradation rate determination during long-term

operation. In SOEC mode special attention has to be paid to a stable steam supply to minimize voltage fluctuations.

It is important to avoid pollution from inlet gases and the test bench itself, since it has a strong influence on the degradation.

Main Test Output Parameters (TOPs) and Derived Quantities

TOPs	Derived Quantities
Voltage of cell/RU/stack (V)	Current density (j)
Flow rates of outlet gases (fout)	Gas utilization (U _{gas})
Temperature of gas streams at	Degradation rate of
cell/stack inlet/outlet, temperature	cell/RU/stack voltage ($\Delta V / \Delta t$)
of cell/stack (T)	
Composition of outlet gases $(x_{i,out})$	Average temperature (T_{av})

Data Post Processing and Representation

Data representation examples under variable load in SOEC mode:

Evolution of SOEC stack voltage (V) and temperature of stack top plate (T_{TP}) for load cycling between 0 and -0.3 A cm²

Calculated voltage degradation rates of two stacks of different testing partners

SOCTESQA:

Solid Oxide Cell and Stack Testing, Safety and Quality Assurance Project website: <u>www.soctesqa.eu</u> The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621245.