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Abstract Tetragonal tungstate CsLa(WO4)2:Nd
3+

 was found to be an attractive multifunctional 

simultaneously Nd
3+

-laser and SRS-active crystal. A multitude of Stokes and anti-Stokes 

components is generated in the visible and near-infrared spectral region producing frequency 

combs with widths of 8600 cm
-1

 and 9560 cm
-1

 under pumping at 0.53207 µm and 1.06415 µm 

wavelength, respectively. All registered nonlinear emission lines are identified and attributed to a 

single SRS-promoting vibration s(WO4) mode with energy of SRS  956 cm
-1

. Moreover, a 

passively Q-switched LD-pumped nanosecond self-Raman CsLa(WO4)2:Nd
3+

 laser is reported. 

An overview of Ln
3+

-doped tungstate self-Raman lasers is given as well. 
 

Keywords: stimulated Raman scattering (SRS), tungstate crystals, Stokes and anti-Stokes frequency comb, 

Raman frequency converter, self-Raman laser 
 

1. Introduction 

 

Tungstate crystals play an important role in laser physics and have a long history in 

nonlinear optics. In particular, one of them, CaWO4:Nd
3+ 

became the first laser crystal 

with trivalent lanthanide (Ln
3+

) [1]. Currently, there are about 25 tungstate host-crystals 

with ordered and disordered structure on the basis of which already more than 50 laser 

crystals doped with Ln
3+

-ions have been created [2,3], thus enabling the generation of 

stimulated emission (SE) in the visible and near-IR spectral regions [4]. Many of them 

are widely used in modern physical experiments, among which the most applicable are 

monoclinic -KRE(WO4)2 tungstates (where RE = Y and Ln) whose laser properties 

were discovered more than 45 years ago by one of us (A.A.K.) [5,6] (see also references 

for Table 1 in [7]). In addition to their laser potential these monoclinic crystals also have 

extremely high χ
(3)

-nonlinearity (thanks to strong symmetric W-O vibration of their 

[WO4]
2-

 anion groups) which is attractive for exciting high-order stimulated Raman 

scattering (SRS) as well as for self-SRS lasers as evidenced by Table 1. 
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Table 1. Known multifunctional simultaneously Ln
3+

-doped laser and SRS-active tungstates
a 

 

Tungstate
 b

 Year of 

discovery
 c
 

Space 

group  

Ln
3+

-

lasants
d
 

SRS-promo-

ting modes, 

cm
-1

 

Observed 

manifestations  

of χ
(3)

-nonlinear  

optical processes 

CaWO4 *1961 [1]  Pr
3+

, Nd
3+ 

[1], Ho
3+

, 

Er
3+

, Tu
3+  

 

908, 329 SRS [8] 

SrWO4 *1963 [9]  Nd
3+ 

[9] 922 SRS, self-SRS 

(Nd
3+

)
e
, χ(3)

-comb
f
 

[10-12] 

NaLa(WO4)2 *1969 [13]  Nd
3+ 

[13], 

Tm
3+

, Yb
3+ 

 
(923/912)

 g
,  

326.5
  

SRS [14,27] 

-KY(WO4)2 *1971 [5,6]  Pr
3+

, Nd
3+

 

[5,6], Dy
3+

, 

Ho
3+

, Er
3+

, 

Tu
3+

, Yb
3+

 

905, 765,  

87 

SRS, self-SRS 

(Nd
3+

,Tm
3+

,Yb
3+

),  

χ
(3)

-comb
 
 [15-19] 

-KGd(WO4)2 *1977 [20]  Pr
3+

, Nd
3+ 

[20], Dy
3+

, 

Ho
3+

, Er
3+

, 

Tu
3+

, Yb
3+

 

901, 768,  

84 

SRS, self-SRS 

(Pr
3+

,Nd
3+

,Yb
3+

),  

χ
(3)

-comb 

[15,16,21-25] 

-KEr(WO4)2 *1979 [26]  Er
3+

 [26] 905, 760 SRS, χ
(3)

-comb [27] 

-KLu(WO4)2 *1979 [28]  Pr
3+

, Nd
3+ 

[28], Ho
3+

, 

Er
3+

, Tu
3+

, 

Yb
3+

 

907, 757 SRS, self-SRS 

(Nd
3+

,Yb
3+

),  

χ
(3)

-comb [3,29-31] 

CsLa(WO4)2 *1988 [32]  Nd
3+ 

[32] 956 SRS
 h

, self-SRS 

(Nd
3+

), χ
(3)

-comb 

NaBi(WO4)2 *1989 [34]  Nd
3+ 

[33] 910 SRS, χ
(3)

-comb [34] 

La2(WO4)3 *1989 [35]  Nd
3+ 

[35] 940 SRS [36] 

NaY(WO4)2 *1998 [37]  Nd
3+ 

[37], 

Yb
3+

 
914, 328 SRS, χ

(3)
-comb 

[8,37]
 
  

PbWO4 1999 [8]  Nd
3+ 

[8,40] 901, 328 SRS, self-SRS 

(Nd
3+

), χ
(3)

-comb  

[8,38,39] 

ZnWO4 1999 [8]  Dy
3+

,Tm
3+

, 

Yb
3+ 

[41] 
907

i
 SRS [8,40-42] 

BaWO4 2000 [43]  Nd
3+ 

[44] 925, 332 SRS, self-SRS 

(Nd
3+

), χ
(3)

-comb 

[43,44] 

-KYbW [45]  Tm
3+

, Yb
3+ 

[3,45,46]




SRSχ
(3)

-comb

[3]
a
 Here and in the text only articles published in refereed scientific journals are cited. 

b
 At room temperature all listed SRS-active tungstates are centrosymmetric crystals and characterized by 

χ
(3)

-nonlinearity. 
c 

The year of the discovery of Ln
3+

-laser (indicated by an asterisk) or SRS-effect. To realize the historical 

stages of these discoveries they are given there in chronological order. 
d
 The first Ln

3+
-lasing ion in this crystal is marked by the corresponding citation. 
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e
 Self-SRS(Nd

3+
,Yb

3+
): self-stimulated Raman scattering, i.e., cascaded laser Raman Stokes or(and) anti-

Stokes  χ
(3)

-nonlinear generation initiated by SE in Ln
3+

-doped crystals under external laser pump 

radiation. 
f 

χ
(3)

-comb: the representation of the spectrum of Stokes and anti-Stokes laser frequency components with 

a width of at least one octave (i.e., the highest frequency (energy) component must be at least twice of the 

lowest frequency component). 
g 

The energy of SRS-phonons given in [14] requires clarification. 
h
 Preliminary information on χ

(3)
-nonlinear laser activity in a title crystal is reported in [62]. 

i
 According to [31,40,42] the energy of SRS-phonon was measured as 906 cm

-1
. 

 

It presents the known laser multifunctional tungstates and accumulates all observed 

manifestations of χ
(3)

-nonlinear processes. This overview table also convincingly reflects 

the continued interest of researchers in this class of laser crystals crystal throughout the 

history which is characterized by a remarkably successful advance in physics and 

nonlinear optics. In this paper, we report the discovery and study of the SRS-effect in 

tetragonal tungstate CsLa(WO4)2 single crystals and the first demonstration of a self-SRS 

laser based on doping this crystal with Nd
3+

-ions. 

 

2. Crystals for investigations 

 

In our studies, we used crystals of CsLa(WO4)2 doped with Nd
3+

-ions (СNd  0.5 and 2 

at. %) for the SRS-experiments, as well as undoped polycrystalline samples of this 

tungstate for spontaneous Raman scattering spectroscopy. Single crystals were grown by 

a modified Czochralski method from solution in melts of the polytungstates [32]. 

Polycrystalline CsLa(WO4)2 was synthesized from Cs2CO3, La2O3 and WO3 of 99.99 % 

grade. Their mixture with stoichiometric amount was grinded, placed in a crucible and 

held at 800
º
C for 24 h. This process was repeated one again for 24 h at 850


C. The 

polycrystalline sample was checked by powder diffraction. Its XRD pattern was the same 

as presented before [32]. Studies have shown that the CsLa(WO4)2 crystal belongs to the 

-tetragonal system with unit cell parameters given in Table 2. Its structure contains 

[CsO8] and [LaO8] polyhedra joining each other and forming layers in the ab-plane. 

These layers are bonded through the [WO4] tetrahedra (see Fig. 1). 

4

2dD
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Table 2. Some crystallographic and physical properties of tetragonal CsLa(WO4)2 and 

CsLa(WO4)2:Nd
3+

 single crystals
 a 

Characteristics  

Space group (see, e.g. [47])  (No. 114) 

Unit-cell parameters, Å [47]  a = b = 6.552; c = 9.640 

Site symmetry (SS) and coordination 

number (CN) of cations 

(Cs
+
/La

3+
): SS – 4e, CN = 8; 

W
6+

: SS –8f, CN = 4 

Formula units per primitive cell Zpr = 2 

Density, g cm
-3

 6.16 

Melting temperature, C  1040 

Thermal expansion coefficient, 10
-6

 K
- 1 

[48]  ‖a,b = 26.3;‖c = 8.4 

Nonlinearity χ
(3)

 

Transmission region
 b

, µm 0.35-5.5 

Energy of SRS promoting vibration mode, cm
-1 

 SRS  956 
c
 

Phonon spectrum extension, cm
-1

  970
 d


Spectroscopic-quality parameter, X = 4/ 6 
e
  0.48

 
[32] 

Effective peak cross-section of inter-Stark luminescence 

transition of Nd
3+

-laser channel 
4
F3/2  

4
I11/2, 10

-19
 cm

2 f
 

  1.7

a 
Most of the data taken from [32]. 

b Averaged statistical data by results of the study double rare-earth multifunctional tungstates (see, e.g. 

[33,37]). 
c
 For CsLa(WO4)2 crystals doped with Nd

3+
-ions (СNd  2 at. %). 

d
 From spontaneous Raman scattering spectra. 

e
 Definition of the spectroscopic-quality parameter is given in [49] (see also Chapter 3 in [2]). 

f
 For comparison, the effective pear cross-section for widely used laser crystal Y3Al5O12:Nd

3+
 is

 
 

3.310
-19

 cm
2
 (see Table 6.6 in [49]).

 



 

Figure 1. Arrangement of crystal structure of tetragonal CsLa(WO4)2 [32]. 
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The Nd
3+

 lasant-ions substituting for La
3+

 in the CsLa(WO4)2 lattice form one kind of 

activator (lasing) centers. In this case all spectra of Nd
3+

-ions are characterized by 

inhomogeneous broadening of the lines due to a partially disordered crystal structure 

(Cs
+
/La

3+
 in 4e crystallographic positions, see Table 2). This explain the luminescence 

spectra shown in Fig. 2 (left part) and the related Stark-level system Fig. 2 (right part), 

which determines the lasing properties of its Nd
3+

-ions. 

 

 

Figure 2. (Left) Luminescence spectra of Nd
3+

-ions in CsLa(WO4)2 single crystals at 300 K (a) 

and 77 K (b). (Right) crystal-field slitting scheme of 
4
F3/2 and 

4
I11/2 manifolds (at 77 K) of Nd

3+
-

ions in CsLa(WO4)2 single crystal. The Stark level positions are given in cm
-1

, while the 

wavelengths of the respective transitions are given in m [32]. 

 

 

Figure 3. Schematic diagram of the experimental setup used for the spectroscopic analysis of 

SRS in a CsLa(WO4)2:Nd
3+

 single crystal (P: polarizer; L1-L3: lenses; see also text). 
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3. χ
(3)

-nonlinear effects in CsLa(WO4)2 :Nd
3+

 single crystals 

 

The spectroscopic investigation of χ
(3)

-nonlinear lasing processes in 

CsLa(WO4)2:Nd
3+

(CNd  0.5 at.%) was performed using a mode-locked Y3Al5O12: Nd
3+

 

master oscillator power amplifier system in combination with a spectrometric setup as 

described in previous our publications (see, e.g. [50]). The pump laser system operated at 

1 Hz repetition rate, generating single pulses at λf1 = 1.06415 µm wavelength with pulse 

energy of up to 40 mJ and pulse duration of about τf1 ~ 80 ps. The pump beam was 

guided to the registration part of the experimental setup which is shown in Fig. 3. 

After propagation through an attenuation stage consisting of a revolving half-wave-plate 

(λf1/2) in combination with a Glan-polarizer (P), the linearly polarized and collimated 

pump beam could optionally be frequency-doubled using a KTiOPO4 crystal. The second 

harmonic generation (SHG) process generated τf2 ~ 60 ps pulses at λf2 = 0.53207 μm 

wavelength. Suppression of the residual infrared radiation was accomplished by inserting 

a Schott BG39 filter glass behind the KTiOPO4 doubler which shows a transmission of 

0.015% at 1.06415 μm and 96% at 0.53207 µm. The nearly Gaussian beam was then 

focused into the tungstate crystal by using a plano-convex lens with a focal length of fL1 = 

250 mm. A lens system consisting of a spherical bi-convex lens (fL2 = 100 mm) and a 

plano-convex cylindrical lens (fL3 = 100 mm) collimated the divergent output radiation 

and imaged it onto the variable entrance slit of a Czerny-Turner monochromator 

(McPherson Model 270, 6.8 Å/pixel dispersion, 150 lines/mm grating). The spectral 

composition of the scattered emission was finally recorded by a Si-CCD sensor 

(Hamamatsu S3924-1024Q with 1024 pixels) for the UV and visible spectral region and 

an InGaAs sensor (Hamamatsu G9204-512D with 512 pixels) for the range between 0.9 

and 1.7 µm, respectively. Two selected recorded χ
(3)

-lasing spectra are shown in Figs. 4 

and 5 and results of an identification of their Stokes and anti-Stokes components are 

listed in Table 3. 
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Figure 4. Selected parts of SRS- and RFWM-spectra of a single crystal of CsLa(WO4)2:Nd
3+

(CNd 

 0.5 at.%), recorded at room temperature with picosecond pumping at the wavelength f1 

=1.06415 m in a(c,c)a excitation geometry. The wavelength of all lines (pump line is asterisked) 

are given in m, their intensities are shown without correction for the spectral sensitivity of the 

used multichannel analyzing system. Portion (a) was recorded with a Si-CCD line sensor and 

portion (b) with an InGaAs-CMOS (their spectral sensitivities are shown in [50]). The energy 

spacing, related to the SRS-promoting vibration mode SRS  956 cm
-1

 of the Stokes and anti-

Stokes sidebands spanning a comb of 1.5 octaves (9560 cm
-1

), is indicated by the horizontal 

scale brackets. The assignment of all recorded nonlinear-lasing lines is given in Table 3. 

 

 
Figure 5. SRS and RFWM spectrum of a single crystal of CsLa(WO4)2:Nd

3+
(CNd  0.5 at.%), 

recorded at room temperature with picosecond pumping at the wavelength f2 = 0.53207 m in 

a(c,c)a excitation geometry with a Si-CCD line sensor. The used notations are analogous to that 

in Fig. 4. 
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Table 3. Spectral composition of the χ
(3)

-nonlinear lasing in a tetragonal CsLa(WO4)2: Nd
3+

 (CNd 

 0.5 at.%), single crystal, related to its single SRS-promoting vibration mode SRS  956 cm
-1

. 

Data were collected at room temperature under pumping at the fundamental wavelengths f1 = 

1.06415 m or f2 = 0.53207 m (external SHG of f1) of a picosecond Y3Al5O12:Nd
3+ 

pump
 

laser. 

 

Pumping condition Stokes (St) and anti-Stokes (ASt) lasing 

f, m Excitation  

geometry
 a

 

Wavelength, 

m
 b

 

Line χ
(3)

-nonlinear process 
c
 

1.06415 a(c,c)a 

(Fig. 4) 

0.6215 ASt7{f1} f1+7SRS= 

=[f1+(f1+6SRS)–(f1–SRS)]= 

=[f1+ASt6–St1]=St7 

0.6608 ASt6{f1} f1+6SRS= 

=[f1+(f1+5SRS)–(f1–SRS)]= 

=[f1+ASt5–St1]=St6 

0.7054 ASt5{f1} f1+5SRS= 

=[f1+(f1+4SRS)–(f1–SRS)]= 

=[f1+ASt4–St1]=St5 

0.7564 ASt4{f1} f1+4SRS= 

=[f1+(f1+3SRS)–(f1–SRS)]= 

=[f1+ASt3–St1]=St4 

0.8153 ASt3{f1} f1+3SRS= 

=[f1+(f1+2SRS)–(f1–SRS)]= 

=[f1+ASt2–St1]=St3 

0.8842 ASt2{f1} f1+2SRS= 

=[f1+(f1+SRS)–(f1–SRS)]= 

=[f1+ASt1–St1]=St2  

0.9659 ASt1{f1} f1+SRS= 

=[f1+f1–(f1–SRS)]= 

=[f1+f1–St1]=St1 

1.06415 f1 f1 

1.1847 St1{f1} f1–SRS=St1 

1.3360 St2{f1} f1–2SRS= 

=(f1–SRS–SRS=St2 

1.5316 St3{f1} f1–3SRS= 

=(f1–2SRS–SRS=St3 
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0.53207 a(c,c)a 

(Fig. 5) 

0.4421 ASt4{f2} f2+4SRS= 

=[f2+(f2+3SRS)–(f2–SRS)]= 

=[f2+ASt3–St1]=St4 

0.4616 ASt3{f2} f2+3SRS= 

=[f2+(f2+2SRS)–(f2–SRS)]= 

=[f2+ASt2–St1]=St3 

0.4830 ASt2{f2} f2+2SRS= 

=[f2+(f2+SRS)–(f2–SRS)]= 

=[f2+ASt1–St1]=St2 

0.5063 ASt1{f2} f2+SRS= 

=[f2+f2–(f2–SRS)]= 

=[f2+f2–St1]=St1 

0.53207 f2 f2 

0.5606 St1{f2} f2–SRS=St1 

0.5923 St2{f2} f2–2SRS= 

=(f2–SRS–SRS=St2 

0.6279 St3{f2} f2–3SRS= 

=(f2–2SRS–SRS=St3 

0.6680 St4{f2} f2–4SRS= 

=(f2–3SRS–SRS=St4 

0.7136 St5{f2} f2–5SRS= 

=(f2–4SRS–SRS=St5 
a
 Notation is used in analogy to that in [54]. The characters to the left and to the right of the brackets give 

the direction of the wave normal of the pumping and the nonlinear generation wave, respectively, while 

the characters between the brackets indicate (from left to right) the polarization direction of the pumping 

and nonlinear generated wave, respectively. 
b
 Measurement accuracy 0.0003 m. 

c
 Lines related to the cascaded χ

(3)
-nonlinear processes are asterisked. In square brackets three different 

possible Raman four-wave mixing (RFWM) processes for the generation of the respective nonlinear 

component are given. 

 

4. Spontaneous Raman spectra of polycrystalline CsLa(WO4)2 

 

FT Raman spectra of polycrystalline CsLa(WO4)2 in the 1000-70 cm
-1

 range were 

measured using a Bruker FT-Raman RFS 100/S spectrometer and under CW excitation 

emission of Y3Al5O12:Nd
3+

 laser at 1.06415 m wavelength. The measurements were 

performed in the backscattering configuration. The spectral resolution was 2 cm
-1

. 

These spectra were compared to those recorded on a Renishaw InVia Raman 

spectrometer equipped with a confocal DM 2500 Leica optical microscope, a 
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thermoelectrically cooled Ren Cam CCD as a detector and Ar
+
-ion laser operating at 

0.488 m wavelength. To our knowledge, Raman spectra of this compound were not 

measured and analysed in terms of its possible structure. In few papers, it was proposed 

alternatively as tetragonal  [52-55] or  [47]. It was also 

postulated that it is isostructural with -RbLa(MoO4)2 described in  space 

group [56,59]. As noted above, it was postulated that CsLa(WO4)2 consists of joined 

[CsO8] and [LaO8] polyhedra forming layers in the ab-plane (see Fig. 1). These layers are 

bonded through the [WO4] tetrahedra. These data could be verified in the present paper 

when the Raman spectra of this compound became available. The first order spontaneous 

Raman scattering spectrum of polycrystalline CsLa(WO4)2 is shown in Fig. 6. The 

wavenumbers of the observed bands are used in the present work in the analysis of the 

SRS spectra of this material. CsLa(WO4)2 crystallizing in the above described structures 

contains two molecules in the primitive unit cell (Zpr = 2), i.e. two Cs
+
, two La

3+
, four 

W
6+

 and sixteen O
2-

-ions. 24 atoms of the primitive cell give rise to 3NZpr = 72 zone-

center degrees (at  = 0) of freedom described by the irreducible representations related 

to particular ions. They are listed in Table 4. 

 

 

Figure 6. Spontaneous Raman scattering spectra of CsLa(WO4)2 in polycrystalline state. 

nmcPD h /42

15

4  cPD d 1

4

2 42

nncPD h /44

4 
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Table 4. Contribution of respective ions of particular unit cells to the irreducible representations 

of the vibrational degrees of freedom. 

Ion P4/nnc  P42/nmc  

(La
3+

) A2g+A2u+Eu+Eg A2u+B1g+Eu+Eg B1+B2+2E 

(Cs
+
) A2g+A2u+Eu+Eg A2u+B1g+Eu+Eg B1+B2+2E 

(W
6+

) A1u+A2u+B1g+B2g+ 

+2Eu+2Eg 

A1g+A2u+B1g+2Eu+2Eg A1+A2+B1+B2+4E 

(O
2-

) 3A1g+3A1u+3A2g+ 

+3A2u+3B1g+3B1u+ 

+3B2g+3B2u+6Eu+6Eg 

3A1g+3A1u+3A2g+3A2u+ 

+3B1g+3B1u+3B2g+3B2u+ 

+6Eu+6Eg 

5A1+5A2+5B1+5B2+ 

+14E 

  3A1g+4A1u+5A2g+ 

+6A2u+4B1g+3B1u+ 

+4B2g+3B2u+10Eu+ 

+10Eg 

4A1g+3A1u+3A2g+6A2u+ 

+6B1g+3B1u+3B2g+4B2u+ 

+10Eu+10Eg 

6A1+6A2+8B1+8B2+ 

+22E 

optical 3A1g+4A1u+5A2g+ 

+5A2u+4B1g+3B1u+ 

+4B2g+3B2u+9Eu+ 

+10Eg 

4A1g+3A1u+3A2g+5A2u+ 

+6B1g+3B1u+3B2g+4B2u+ 

+9Eu+10Eg 

6A1+6A2+8B1+7B2+ 

+21E 

acoustic A2u+Eu A2u+Eu B2+E 

Raman  

activity 
A1g, B1g, B2g, Eg A1g, B1g, B2g, Eg A1, B1, B2, E 

Number 

of 

Raman 

bands 

21 23 44 

 

Analyzing the results of theoretical calculations performed for three possible unit cells 

postulated for CsLa(WO4)2, it is seen that the number of Raman bands expected for 

P4/nnc structure is 21, for P42/nmc structure it is 23 and for the  structure it is 44. 

On the other hand, the number of bands observed in the Raman spectrum (Fig. 6) is 45 

what means that most the structure of the studied material is most probably described by 

the   space group. This result should be confirmed by the measurements of the 

polarized IR and Raman spectra of the single crystal. Analyzing the intensity of the bands 

cP 142

cP 142

cP 142
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observed in the spontaneous Raman spectrum the strongest lines appear at 956, 362, 

and 230 cm
-1

. These bands correspond to the following phonons: symmetric stretching 

s(WO4), symmetric bending s(WO4) and translation T(WO4) of the A1 symmetry. Other 

strong bands observed at 956, 205, and 166 cm
-1

 should be assigned to phonons of B1 

symmetry. The latter two correspond to the translations T(La
3+

) and T(Cs
+
). The 

strongest line in the spontaneous Raman spectrum at 956 cm
-1

 is responsible for 

observed SRS-effect in studied crystal. 

 

5. Self-SRS lasing in a CsLa(WO4)2:Nd
3+

 crystal 

The study of χ
(3)

-nonlinear properties of tetragonal CsLa(WO4)2:Nd
3+

 crystal also 

revealed its ability for self-SRS lasing. The title crystal, as well as other known Ln
3+

-laser 

and SRS-active double rare-earth tungstates, is characterized by a relatively high first-

Stokes Raman gain coefficient (not less than 2 cm·GW
-1

 at 1.06415 µm, see, e.g. 

[8,18,43,57]). In addition, the effective peak cross-section of the inter-Stark luminescence 

transition of Nd
3+

-laser channel 
4
F3/2  

4
I11/2 also shows a fairly large value  

1.7·10
-19

 cm
2 (see, Table 1). These factors have stimulated the investigation of self-SRS 

generation in CsLa(WO4)2:Nd
3+

 (CNd  2 at.%) in order to demonstrate its laser 

multifunction capabilities. It was carried out by deploying the Q-switch laser setup shown 

in Fig. 7. Its scheme is characterized by its operational simplicity and is thus widely used 

in many research laboratories (see, e.g. [41,58-61]). Here, we only mention the main 

features of the setup which included a commercial CW fiber-coupled LD (LIMO GmbH) 

as pump source providing up to 4 W of pump power at λp = 0.81 µm wavelength. A 

polished 0.8 mm-thick plate made from a “black garnet” (Y3Al5O12:Ca,Cr) crystal acted 

as a saturable absorber (SA) with an initial transmission of 90% at the (fundamental) 

wavelength λSE = l.0575 µm, generating single pulses with duration of 2 ns at 16 kHz 

repetition rate. First-order Stokes lasing at λSt1 = 1.1765 µm wavelength was realized by 

selective amplification of this Raman component in the 40 mm-long laser resonator while 

confining the fundamental field in the cavity (see mirror reflectivities in Table 5). Under 

these experimental conditions the self-SRS lasing spectrum of a CsLa(WO4)2:Nd
3+

 

crystal was recorded, which is shown in Fig. 8. 

peff

ije

,

,
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Figure 7. Experimental setup for pumped Q-switched CsLa(WO4)2:Nd
3+

 nanosecond self-SRS 

laser through the nonlinear cascade steps SE (SE  1.0575 µm, 
4
F3/2  

4
I11/2)  SRS 

(St1  1.1765 µm, SRS  956 cm
-1

): LD, CW fiber-coupled laser diode; FO, focusing optics; M: 

concave “pump” mirror; SA, (Y3Al5O12:Ca,Cr) saturable absorber; OC, flat output coupler having 

dichroic multilayer coatings; F, filter. 
 

Table 5. Reflection (R) and transmission (T) of the CsLa(WO4)2 self-Raman laser cavity mirrors 

at the fundamental wavelength SE, the first Stokes wavelength St1 and the pump wavelength p. 

Wavelength, µm RM, % TM, % ROC, % TOC, % 

SE  1.0575 µm ~99.2 a ~99.5 a 

St1  1.1765 µm ~99.5 a ~58 ~40 

p  0.81 µm ~15 ~85 ~10 b 

a
 Minor transmission (<1%). 

b
 The CsLa(WO4)2 crystal absorbs almost 100% of the pump radiation. 

 

Due to the high intra-cavity losses introduced by the uncoated crystal end-faces, crystal 

impurities and the saturable absorber, the overall conversion efficiency from the pump at 

λp = 0.81 µm wavelength to the first Stokes at λSt1 = 1.1765 µm wavelength was only a 

few percent. We expect that much higher conversion efficiency can be obtained by using 

anti-reflection-coated commercial crystals with higher optical quality and by optimizing 

the cavity specifications, i.e. mirror reflectivities and curvatures, of the self-Raman laser. 

This experiment was the first realization of a self-SRS laser based on a tetragonal 

CsLa(WO4)2:Nd
3+

 crystal. The laser hence became the seventh representative from the 

group of tungstate self-Raman lasers (see Table 1). Our further investigation will aim at 

obtaining cascaded χ
(3)

-nonlinear generation at 1.5234 µm wavelength involving the 

other strong intermanifold 
4
F3/2  

4
I13/2 transition of the Nd

3+
-lasant ion in 

CsLa(WO4)2:Nd
3+

 at  1.3297 µm. Laser emission in this so-called “eye-safe” spectral 

region is of particular interest for remote sensing and medical applications. In this 

context, it is appropriate to note that the crystal has the highest Raman frequency shift 

(956 cm
-1

) of all known SRS-active tungstates (see Table 1), thus facilitating the access 

to the eye-safe region via a single SRS conversion step. 
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Figure 8. Room-temperature χ
(3)

-nonlinear Q-switched of nanosecond CsLa(WO4)2:Nd
3+

 self-

SRS lasing spectrum recorded with a grating AQ-type spectra analyzer equipped with a fast 

InGaAs PIN-photodiode and a digital Tektronix oscilloscope. 

 

5. Conclusion 

 

In this study, the χ
(3)

-nonlinear optical potential of tetragonal CsLa(WO4)2:Nd
3+ 

single 

crystals was revealed by means of steady-state picosecond SRS-spectroscopy. The 

tungstate was demonstrated to be a promising crystalline material for both broadband 

Stokes and anti-Stokes generation from the blue to near-IR spectral range and self-Raman 

lasing at 1.1765 µm wavelength involving a single SRS-active vibration mode with SRS 

 956 cm
-1

. We hope that the results of this work will help to address some practical tasks 

of modern laser physics. 
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