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Abstract— Future planetary rovers will gain the ability to
manipulate their environment in addition to the maneuver-
ability of current systems. For dedicated contact interaction,
Cartesian impedance control is a well-established approach
from numerous terrestrial applications. In this paper we will
present a whole-body Cartesian impedance controller for a
planetary rover equipped with a robotic arm. In contrast to
classical terrestrial whole-body controllers, the issue of proper
wheel force distribution will be addressed within the control
framework. A global optimization solves this redundancy in the
over-actuation of the mobile base while additionally handling
the kinematic redundancy in the serial kinematic sub-chain of
the robot. The approach is experimentally validated on the
DLR Lightweight Rover Unit. It can be used for versatile
manipulation in rough terrain such as encountered in planetary
exploration or terrestrial search-and-rescue scenarios.

I. INTRODUCTION

Mobile manipulators can be employed in numerous fields
of application including service robotics, planetary explo-
ration, search-and-rescue scenarios, industrial applications,
or logistics. Especially wheeled systems already play an im-
portant role in all of these areas. They are widely used, e. g.
as robotic vacuum cleaners, lawn mowers, or autonomous
transport vehicles. In planetary exploration, wheeled systems
are predominant. While most rovers in the last decades have
been designed with focus on maneuverability for exploration
[1], [2], more and more new systems are equipped with
versatile manipulation devices (robotic arms, hands, grippers)
[31,[4], such as the DLR Lightweight Rover Unit (LRU) [5],
see Fig. 1. Therefore, new control approaches are required
which extend the previous objective of pure maneuverability
to a combination of platform motion and dexterous ma-
nipulation, that is, whole-body control. Moreover, since the
manipulation subtasks usually involve compliant interaction
with the environment (e. g. sampling of soil, installation of a
seismometer, etc.), established techniques such as impedance
control [6] can be applied. In [7], a Cartesian impedance
controller is proposed for the whole-body coordination of
a robotic arm and a two-wheeled nonholonomic, mobile
platform. While the authors lay the focus on the redundancy
resolution via decoupled null space control, no dedicated
multi-task optimization is performed.

Another way to make a wheeled mobile manipulator
compliant is to control the manipulator in impedance-mode
and connect the kinematically controlled mobile platform via
an admittance interface [8]. Then the undercarriage follows
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Fig. 1. The LRU manipulating a seismometer box during the ROBEX
Demo Mission Space at Mt. Etna. Foto: Esther Horvath

virtual, user-defined dynamics and pretends to be force-
torque-controlled as well, reacting to external forces on the
manipulator. Guaranteed stability and the parameterization
of the platform inertia are strong points, but one requires
an ideal kinematic controller of the base. Algorithms such
as [9], [10] theoretically ensure that criterion, yet there are
strong limitations in practice. But the main disadvantage is
the missing compliance during physical interaction with the
platform subsystem itself.

The alternative to a kinematically controlled platform is to
use torque control in the wheels, if available. In case of om-
nidirectional wheels, one can implement mobile impedance
techniques to the complete system [11], [12], [13]. In [14], a
compliant whole-body controller for a wheeled humanoid
robot in sloped terrains is proposed and experimentally
validated. While performing well and robust in such urban-
like environments, the used omni wheels are unsuitable
for planetary rovers. Unidirectional wheels, as usually used
in rovers, however have to be treated differently due to
the nonholonomic constraints [15]. The controller requires
access to the torque in propulsion direction, and the wheels
have to be aligned consistently w. r. t. the instantaneous center
of rotation.

The question of how to distribute the forces and torques
in wheeled undercarriages is a classical topic in platform
motion control. While being a special case of the general
research field of control allocation, it has not yet been
investigated in the context of integrated whole-body com-
pliance control. In [16], the authors proposed a wheel torque
controller to limit slip and improve the climbing capabilities
for the six-wheeled Shrimp rover. The control of a similar
system, the six-wheeled CRAB rover, has been addressed in



[17] involving the comparison with a standard velocity con-
troller. In [18] two torque distributions have been developed
and simulated on a caster-wheel-based platform. The authors
were able to avoid slip and the violation of actuator limits.
In [19], the wheel torques have been distributed to improve
traction and reduce the power consumption, depending on
the local terrain profile.

In this paper we present an impedance-based whole-body
controller for a planetary rover which is equipped with a
torque-controlled robotic arm. Since the control goal is to re-
alize a Cartesian impedance behavior at the end-effector, the
kinematic redundancy of the serial kinematic subchain has
to be dealt with by imposing a task hierarchy. Moreover, a
second kind of redundancy is inevitably introduced due to the
force distribution problem in the four-wheeled mobile base.
Lastly, unilateral constraints such as joint torque limits have
to be incorporated. We address all these aspects simultane-
ously within one single optimization problem. The proposed
approach is experimentally validated on the LRU (Fig. 1)
in the two major aspects: the wheel force distribution and
the Cartesian whole-body impedance control performance.
To the best of our knowledge, this is the first controller for a
rover which is capable of dealing with these aspects simul-
taneously within one single framework (compliant Cartesian
behavior at the end-effector, proper wheel force distribution,
task prioritization, unilateral constraints).

The paper is organized as follows: In Sec. II, the mathemati-
cal model of the rover is described and the control approach
is introduced. Experimental results are presented in Sec. III,
and the discussion follows in Sec. IV.

II. SYSTEM MODEL AND CONTROL APPROACH

Fig. 2 shows the sketch of a mobile manipulator consisting
of a robotic arm mounted on a platform with steering wheels.
The system model and the compliant control approach will
be described in the following.

A. Modeling of the mobile manipulator

The system coordinates z7 = (gT nT) € Rnetmm are
composed of the unconstrained degrees of freedom of
the mobile platform, here chosen on a planar surface as
E=(% Y G)T, nge = 3, and the joint coordinates of the
manipulator 7 € R™™. Additionally, the platform features n.,
independent, centered steering wheels, and ¢ € R™ is the
vector of steering angles. Neglecting the steering dynamics,
the equations of motion of the system are

M(2)2+C(2,2)2+g(2) =T + Texs + A2, 0)TA
)]
A(z,¢)2=0 2

where M (z) € R™ ", i = ng + nyy, is the symmetric, posi-
tive definite inertia matrix, C(z, )2 € R™ contains centrifu-
gal/Coriolis terms, and g € R™ accounts for gravitational
effects. The generalized forces acting on the system due to
actuation are denoted by 7 € R™. In general, they can be
written as
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Fig. 2. Schematic drawing of the LRU. The platform has n, = 4 steering
wheels and the manipulator has n,, = 6 rotational joints.

where v € R™ are the m actuator forces and
B(z,¢) € R"™ maps the actuator forces to generalized
forces acting in z. Additionally, generalized external forces
Text € R™ may be present.

The linear velocity constraints (2) with constraint Jaco-
bian matrix A(z,¢) € R**" are induced by the rolling-
without-slipping conditions of the wheels. Thus, & equals
the number of wheels in general. The rank of the constraint
Jacobian matrix r = rank(A) < k indicates the number of
linear independent constraints. For modeling, it is beneficial
to reduce A to a subset of linear independent constraints
such that k = r. The constraints are non-integrable and thus
nonholonomic. The corresponding constraint forces in (1)
can be written as A(z, @)’ X, which can be easily verified
by the principle of virtual work. The Lagrangian multipliers
X € RF can be interpreted as reaction forces orthogonal to
feasible motion directions.

The constraint forces can be eliminated by a coordinate
transformation

z2=S(z,¢)v “)

such that A(z,¢)S(z,¢) =0 with a full-rank matrix
S(z,¢) € R"™ ™, n =n —r. This transformation describes
the n velocities v € R"™ that are instantaneously feasible
w.r.t. the nonholonomic constraints. The dynamics (1) can
then be transformed to'

Mb+Cv+g=Bu+ STy (5)

with
M=8TMS, (6)
c=8"MS+STCs, (7)
g=5"g, (8)
B=S"B. )

From the above equations, it becomes clear that the config-
uration of the steering angles influences the feasible motion
directions of the platform. At the LRU, a kinematic platform

'Dependencies on state variables will be omitted in the following nota-
tions for the sake of brevity.



controller makes sure that the wheels are oriented and aligned
according to a desired motion direction. Thereby, desired
steering angles are generated by underlying position con-
trollers, which are not described in detail here. When oper-
ating in rough terrain (e. g. sandy underground), steering can
lead to problems concerning the wheel-ground interaction,
such as twisting or side-slipping of the whole rover. Thus,
an arbitrary but static configuration of the steering angles is
assumed for impedance-based manipulation tasks assigned
to the rover. Particularly, this implies that (5) becomes
a holonomic equation, with the instantaneously appointed
platform motion direction as holonomic coordinate.

B. Cartesian impedance control

The transformation between joint-space velocities and
Cartesian end-effector velocities can be written as

z=Jv, (10)

with the Jacobian matrix J € R6*™. Conversely, a Cartesian
force F' is mapped onto the space of feasible joint torques
via

STr=8T7"F=J"F, (11)

where J € RS> is the Jacobian matrix of the unconstrained
system. To achieve physical compliance at the end-effector,
Cartesian impedance control can be implemented w.r.t. the
coordinates € RS of the end-effector [20]. The desired
wrench Fi,,, € RS can be straightforwardly derived as the
gradient of a virtual spring with additional damping. Further-
more, trajectory-tracking terms can be added:

WVimp \ "
Fimp:_< a::p) _D:b‘i'Mcides‘i‘Ccfjgdes- (12)

The spring potential may be defined as Vi, = %:iTKdz
with the deviation & =  — x4es from the desired values
Taes € RS, and the stiffness matrix K € R®*®. Damping
can be injected via the positive definite damping matrix
D c R%%6, The terms M & ges and C.ages With the task-
space inertia- and Coriolis/centrifugal matrices

Mc _ (JM+)TMJM+ ,
C.= (JMHTegM* + (TMHTMJ

13)
(14)

are feed-forward terms to improve trajectory tracking, which
can be omitted without affecting the contact compliance
properties of the controlled system. Thereby, J™* describes
the dynamically consistent pseudoinverse of J, see [21].
Gravity is assumed to be compensated on joint level. Passiv-
ity and stability of (5) with (12) can be shown?.

For kinematically redundant manipulators w.r.t. the Carte-
sian coordinates of the end-effector, i.e. n > 6, there remains
a null space in which the robot can reconfigure without
affecting x. In this case, additional tasks can be implemented
in the null space of the main task, as shown in [22], for
example. One possibility is to resolve this redundancy via
numerical optimization.

2under the assumption of a static configuration of the steering angles,
that is, (5) equals a holonomic system.

C. Formulation of the
impedance controller

optimization-based whole-body

The wrench created by the impedance controller (12)
can be implemented by suitable actuator torques. Thereby,
different kinds of redundancies can be observed at the
system described in Sec. II-A, namely kinematic redundancy
and over-actuation of the wheeled subsystem in its feasible
motion directions. Thus, the choice of actuator torques is
not unambiguous. An elegant solution to this problem is to
apply numerical optimization strategies. One benefit is the
possibility to include additional constraints such as unilateral
torque limits or permissible joint angle ranges. Thus, the
input variables might be chosen by minimizing the following
quadratic cost function:

J=Jy+Jr+Jy, (15)
1

Jy = 5uTQuu, (16)
1

Tr = 5 (Fimp = F)'Qr(Fimp — F), (17)
1

JN = i(NTN,dcs7TN)TQN(NTN,dcszN) (18)

The input-force-related component (16) is responsible for
the distribution of the inputs w w.r.t. the weighting matrix
Q, €R™*™. It is used to solve the control allocation
problem of the wheeled subsystem. The wrench-related com-
ponent (17) ensures that the desired end-effector impedance
is realized w.r.t. the weighting matrix Qp € R6%¢. A
secondary task can be added, e.g. on joint level, via the
torque-related component (18) w.r.t. the weighting matrix
Q) € R™™™. The associated torque 7, is chosen in the
null space of the task Jacobian matrix>, i.e.

7~ = NBu, (19)

The null space projector can be computed via
N=I-J"J"H)w+, (20)
JVr =—wlgTagw-tgh)-t, (1)

wherein JW7 describes the weighted pseudoinverse w.r.t.
the weighting matrix W € R™"*". If W = M, the pro-
jection is dynamically consistent [21]. That is, 7, does
not induce accelerations in the Cartesian space of the end-
effector. To make sure that the vertex of the cost function J zr
can be reached during the optimization, the desired torque
T N, des N€eds to be projected into the null space as well (cf.
(18)).

The global optimization problem can then be established as:

u* = argmin J (22)
s.t. I-N)Bu=J"F (23)
NBu =Ty 24)

Umin < U < Umax (25)

3The indices R and A indicate range space and null space of the task
Jacobian matrix, respectively.



with the permissible lower and upper bounds i, and
Umax, respectively. The constraints (23) and (24) are used
to implement (17) and (18) w.r.t. the inputs u.

Note that this specific formulation of the control law
as a quadratic optimization problem with linear constraints
facilitates fast online computation of the solution. The side
conditions can be extended arbitrarily according to the spec-
ifications of the system. Futhermore, if unilateral constraints
are active, the sum of null space and range space torques is
optimized according to the weight of the task, which leads
to a different behavior of the controlled system compared to
strict null space projection approaches. This will be discussed
w. . t. experimental results in Sec. I1I-B.

III. EXPERIMENTS

The experiments on the mobile base are performed on
the LRU introduced in Sec. I. The rover was designed as
a research platform for planetary exploration and terrestrial
search-and-rescue scenarios. To guarantee mobility in rough
terrain, the rover is equipped with four individually steerable
wheels that provide both a velocity and a torque control
input in spinning direction. A 6-degree-of-freedom robotic
arm (JACO, built by Kinova) is mounted on the rover
for manipulation purposes. The optimization problems were
solved using qpOASES, an open-source implementation of
an active-set method for quadratic programming [23].

In the first part of the experiments, the focus lies on
examining the distribution of the wheel forces. Therefore,
an impedance control law is applied only onto the mobile
platform. In the second part of this section, experiments with
the complete mobile manipulator were performed, including
end-effector positioning tasks, but also contact situations.
This part of the experiments is also shown in the video
that accompanies this paper. Note that in the following
experiments, the tracking terms were omitted in the Cartesian
impedance control law (12).

A. Distribution of wheel forces

In the following, the impedance control law is exclu-
sively applied to the platform. A trajectory in z-direction
is commanded for the center of the rover and the resulting
impedance force is generated by the wheels. The correspond-
ing optimization problem was implemented as a reduced
version of (22)-(25):

f* =argmin %fTQuf + %STQRS (26)
s.t. Bf — Fipp = s. (27)
-fmin < f < -fmax (28)

where f € R* are the actuator forces commanded to the
wheels, Fimp € R3 is the impedance wrench acting in the
plane, s € R is the error between impedance force and the
force generated by the optimization, and Q, € R*** and
Qr € R3*3 are the corresponding weighting matrices.

In the first experiment, the wheel torque distribution
minimizing the wheel forces is compared to a wheel torque
distribution minimizing the wheel powers. For this purpose,
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Fig. 3. Top plot: Reference trajectory and system response. Diagrams 2-

5: Wheel velocity measurements and corresponding optimized wheel force
commands. Bottom plot: comparison of the power-based norm for the two
optimization approaches.

the weighting matrix Q,, in (26) is chosen as Q% = Iiy4

(the 4 x4 unit matrix) or QY = diag(vZ |, v% 5, v 3, Ve 4)s
respectively. Thereby, the measurements of the wheel ve-
locities are denoted as vy ; for ¢ = 1...4. Throughout the
experiment, the rear wheels are located on a surface with dif-
ferent friction properties than the front wheels. This setup is
inspired by planetary exploration scenarios, where the rover
must be able to cope with locally different soil properties.
In Fig. 3 (top plot), the reference trajectory and the resultant
platform motion in z-direction are shown for the two cases of
force and power optimization. The second and the third plot
depict the wheel velocity measurements, the two plots below
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. L. . . 2
for different parameterizations of the weighting factor Qg 5] for the
force error s. Bottom plots: commanded force F .mq and force error
Fy cmd — Fa,res. The resulting force F res is the sum of all wheel forces.

show the corresponding wheel force commands generated
in the two different force optimization approaches. During
the first part of the trajectory (0s < t < 5s), the trapezoid
reference signal has a small slope and thus produces mod-
erate commanded forces that do not lead to wheel slippage.
Therefore, the two optimization procedures generate almost
identical wheel force commands. The second part of the
reference trajectory (5s < ¢ < 10s) is characterized by a
large slope and yields a high amplitude in the commanded
force. In the velocity measurements it can be seen that
wheels 3 and 4 lose traction and thus start to spin during
the fast backward motion at 8s < ¢t < 10s. In the case of
force optimization, the velocity measurements are not used
in the computation of the wheel forces. Therefore the wheel
velocities get large, especially at ¢ = 9s. Only the decrease
in the commanded force leads to a reduction of the spinning
velocities. In the case of power optimization, it can be
seen that the forces of wheel 3 and 4 are reduced after an
initial increase of the corresponding velocities. The force
is redistributed to wheels 1 and 2 such that the resulting
force in z-direction is retained. The effect on the overall
power consumption of the rover can be inspected in the
bottom plot of Fig. 3, where the (squared) power-based norm
IIFI12 =3 FTQu £ is plotted. The value of the power norm
is reduced significantly in the case of slippage of two out of
four wheels.

In the second experiment, a trajectory with steep ascent of
the desired position is commanded in order to induce a high
force that causes slip in all wheels. The reference position
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Fig. 5. Power-based norm, power and energy for different values of the

force error variable weighting factor Qr [y ]

and the resulting platform motion are depicted in the top
plot of Fig. 4. The next plot shows the resulting commanded
forces produced by the high-level controller. In the bottom
plot of Fig. 4, the force error Fiyp, , — I, is depicted for
different values of Qi (the weighting factor of the force
error in z-direction). Here, the resulting force F), ,cs is the
sum of all wheel forces obtained by a power optimization
according to (26). In Fig. 5, the squared power-based norm
I£112 = 557 Quf + 35" Qrs. the power P =371, Fuy,
and the energy F = fg Pdt are plotted. For Qr = 1000 r;‘—;,
the resulting force is very close to the commanded force.
For Qr = 1‘?—;, the values of the weighting factors for
the power and for the deviation of the resultant force are in
the same range (cf. Fig. 3). The error between commanded
and resultant force in Fig. 4 (bottom plot, green dashed
line) is small compared to the total value of the commanded
force. Also the resultingzplatform motion is similar to the
case when (Qz = 1000 T—Z Nevertheless, the force deviation
leads to reduced wheel slippage and thus to a significant
difference in the power consumption, which becomes visible
in Fig. 5. Comparing the energies in the bottom plot it
becomes clear that approximately 1J is saved each time a
rapid movement occurs. Thinking of limited resources (e. g.
in planetary exploration missions where battery-based power
supply is limited), the importance of such savings related
to marginal losses in performance becomes evident. In the
case of Qr = 0.1 r;‘—;, the generated force deviates from the
desired one with up to 20N, which leads to a noticeably
slower system response, but also to energy savings up to
4J per acceleration process compared to the case when
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Qr = 1000 %z, see Fig. 5 (bottom diagram). Note that the
goal position is still reached despite the force deviation, as
the superimposed controller compensates for errors in the
underlying torque controller.

B. Whole-body impedance control

In the second part of the experiments, the proposed
Cartesian impedance controller is implemented according to
(22)-(25) on the complete system, i.e. the wheeled plat-
form and the 6-degree-of-freedom robotic arm. The desired
Cartesian stiffness was set to 450% for translations and
12.5%&‘ for rotations, all damping ratios were chosen as
0.5. The wheels were oriented such that only platform
motions in x-direction were possible. The null space task
was a joint impedance with stiffness 201:%‘ in all arm
joints, the desired values were set close to the initial arm
configuration. No damping was added in the null space,
since the JACO arm features large intrinsic joint damping.
For the optimization, the following gains were chosen*:

4The units in the weighting matrices are chosen consistently such that .J
is unit-free.
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Fig. 7. Physical interaction with the platform. Top plot: commanded and

measured z-coordinate of the TCP. Second plot: position of the platform in
z-direction. Third plot: measured joint velocities in the robotic arm

Qu = diag(v\%\/,h U3v727 v\?v,Sa 'Ugv,4a 0,0,0,0,0, 0)7 Q'R =
diag(1,1,1,1,1,1), Q, = diag(0,1,1,1,1,1,1).

At first the regulation of a desired end-effector position
and orientation was evaluated. The uppermost plot in Fig. 6
shows the transient of the TCP in x-direction. The soft spring
yields a steady-state error, which is natural for impedance
control and, in this case, mainly due to unmodeled friction
between wheels and underground. That can be seen in the
second plot, where the range space torques 7 = Bupgr are
plotted. From approx. 11s to 16 s, the commanded forces are
constant as the robot does not move. The blue line shows the
relatively high force in platform z-direction, which does not
induce a movement of the platform, which leads to a static
error at the end-effector. The third plot shows the null space
torques, which keep the joints close to their initial configu-
ration without affecting the end-effector wrench. Note that
without a dedicated null space reference torque, the steady-
state error in the end-effector position could be compensated
by the arm and thus be significantly smaller. As no actuator
torque limits are met, both range space force and null space
torque could be accomplished without limitations. This can
be verified in the bottom plot, where the error norm of the
end-effector wrench, v/Jr (blue), and the null space error
norm +/Jus (green) are depicted.

Now we investigate and highlight the differences between
the presented whole-body controller and approaches such as
[8], in which the platform controller is kinematic and the
overall impedance behavior is generated via an admittance
interface. Within the whole-body control framework at hand,
the platform is controlled on torque level and thus shows
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actively compliant behavior. In Fig. 7, it is shown how a
user actively moves the wheeled subsystem in the null space
of the end-effector. This is only possible when the wheels
are back-drivable. Note that no explicit platform positioning
subtask is implemented in the null space. The second plot
shows the z-coordinate of the platform, which is pushed and
pulled such that the overall position changes about 0.5m.
Thereby, the end-effector position is approximately constant,
as can be verified in the first plot. During the physical
interaction with the platform, the joints of the arm move
in order to keep the TCP position at its desired value. The
velocities measured in the arm joints indicate that in the
bottom plot. In general, active compliance of the locomotion
subsystem of a wheeled manipulator can be beneficial both in
autonomous manipulation (e. g. in the presence of obstacles)
and in human-robot interaction scenarios, where compliant
behavior can be safety-critical. That is a major advantage of
the presented approach compared to [8].

Finally, the behavior in the presence of constraints was
examined. Therefore, the diagonal entries of @, were set
to 0.1, such that the main task was weighted ten times
higher than the null space task. The joint torque of joint
2 (elbow joint of the arm) was limited to 5Nm (18 Nm

peak torque in data sheet). The constrained behavior was
tested during physical interaction at the end-effector. The
interaction period is highlighted in the upper plot in Fig. 8,
which shows the induced deflection of the z-coordinate of
the end-effector. The interaction can be roughly divided
into two phases: In phase 1 from about 1s to 4s, a user
pushes the TCP (positive error). Afterwards, the user pulls
the robot, which leads to a negative error. The second plot
shows the resulting torques in the constrained second joint,
the range of admissible torques is marked. The projected
impedance torque (blue, dot-dashed line) would be generated
by a classical impedance controller without optimization by
projection via the transposed Jacobian matrix. The green,
dot-dashed line shows the null space reference torque. The
full blue and green lines depict the range space and null
space torques resulting from the optimization, the pink
line is the superposition of both that creates the actuator
command torque. In the first phase of the interaction, the
impedance controller induces torques that are higher than
the allowed 5 Nm. In order to keep the sum of the torques
below 5Nm, the optimization yields a deviation of the null
space torque, such that the range space torque is close to its
reference. Interestingly, this can be also observed in other
(non-constrained) joints, which can be exemplarily examined
in the third plot. There, the joint torques in joint 3 are
depicted, which also show a deviation of the null space
torque at the first interaction phase, even if joint 3 itself
does not meet a constraint. The error norm shown in the
bottom plot reveals that the controller is able to produce a
large extent of the desired end-effector wrench at the cost
of errors in the null space. This is a difference to strict
hierarchical approaches, where constraints would not alter
the null space behavior in order to achieve the desired end-
effector forces. In the second phase of the interaction, the
constraint w.r.t. joint 2 is active two times between 4 s and
65s. In this configuration, errors in the range space wrench
cannot be fully inhibited by deviations of the null space
torques, even if effects similar to the aforementioned (in
the first interaction phase) can be observed at about 5s.
Therefore, the error norm in the range space rises in this
time interval. Nevertheless, the controlled system maintains
stable and converges to zero after the end of the physical
interaction.

IV. DISCUSSION

The controller presented in this paper is based on the
classical Cartesian impedance approach. The system charac-
teristics of the considered rover give point to the implementa-
tion as a numerical optimization problem, but an analytical
approach could also be considered in principle. A lack of
analytical proofs of stability can be mentioned as one of the
main disadvantages of the optimization-based approach. On
the other hand, the main advantage is the consideration of
unilateral constraints, which have to be taken into account
in space exploration scenarios, where the systems have to
operate fully autonomous. For these unilateral constraints,
the classical proofs of stability for impedance-based con-



trollers do not hold anymore. Computational load could be
assumed another issue of numerical optimizations, but for
the case of quadratic problems, there exist dedicated solvers
that can handle the arising computations sufficiently fast, as
the experiments clearly showed. Summarizing, the numerical
approach features performant behavior in the presence of
system limitations (as discussed in Sec. III).

As the focus of this paper was primarily the investigation
of force distribution, the problem how to steer the wheels
was not addressed. Due to the nature of wheeled locomotion,
the rover is subject to nonholonomic constraints that restrict
the feasible directions of motion of the platform subsystem.
An interesting question in the context of compliance control
is how to define the directions in which the compliance of
the wheeled subsystem should be implemented. Possible ap-
proaches would be strongly application-dependent and range
from reactive admittance-based steering parameterizations
to workspace-dependent steering, to name but a few. This
question will be topic of future work.

Finally, the described optimization-based whole-body
impedance controller was introduced and discussed in the
context of a planetary rover, but can be easily applied in
other scenarios as well. Due to its generalizable formulation,
it could be of use to a broad field of robotic systems, i.e.
kinematically redundant mobile manipulators with torque
controllable wheels. Especially the active compliance of
the wheeled subsystem makes the approach suitable for
manipulation scenarios involving unknown environments as
well as physical human-robot interaction.

V. CONCLUSION

In this work, we presented an optimization-based variant
of a whole-body impedance controller for a rover equipped
with a torque-controlled manipulator. The system modeling
and the control approach were described. Experiments with
the LRU were performed, which focused on two aspects
of the proposed controller: the wheel force distribution
and the behavior of the whole-body controller. Finally, the
approach was discussed both from a theoretical and practical
viewpoint.
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