Radiation-induced NF- κ B activation and expression of its down-stream target genes as biomarker of radiation quality

Authors:

PD Dr. Christine E. Hellweg¹*, Dr. Arif Ali Chishti^{1, 2}, Dr. Kristina Koch¹, Sebastian Feles¹, Bikash Konda¹, Dr. Luis F. Spitta¹, Bernd Henschenmacher¹, Sebastian Diegeler¹, Claudia Schmitz¹, Prof. Dr. Christa Baumstark-Khan¹

Affiliation:

- ¹ German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
- ² Present address: The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan

Abstract:

Introduction

Activation of Nuclear Factor κB (NF- κB) and the resulting gene expression profile after exposure to different radiation qualities have been evaluated to a very limited extent. Therefore, the activation of NF- κB after exposure to low and high linear energy transfer (LET) radiation and the expression of its target genes was analyzed in human embryonic kidney (HEK) cells.

Methods

Activation of NF- κ B was visualized by the cell line HEK-pNF- κ B-d2EGFP/Neo L2 carrying the destabilized Enhanced Green Fluorescent Protein (d2EGFP) as reporter. The NF- κ B dependent d2EGFP expression was evaluated by flow cytometry. The biological effectiveness (RBE) of NF- κ B activation and reduction of cellular survival as determined by the colony forming ability test was compared for heavy ions having a broad range of LET (~ 0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF- κ B target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR).

Results

The maximal RBE for NF- κ B activation and cell killing occurred at an LET value of 80 and 175 keV/µm, respectively. There was a dose-dependent increase in expression of NF- κ B target genes NFKB1A and CXCL8. A qPCR array of 84 NF- κ B target genes revealed that TNF and a set of CXCL genes (CXCL1, CXCL2, CXCL8, CXCL10), CCL2, VCAM1, CD83, NFkB1, NFkB2 and NFKBIA were strongly up-regulated after exposure to X-rays and neon ions (LET 92 keV/µm). After heavy ion exposures, it was noted that the expression of NF- κ B target genes such as chemokines and CD83 was highest at an LET value that coincided with the LET resulting in maximal NF- κ B activation, whereas expression of the NF- κ B inhibitory gene NFKBIA was induced transiently by all radiation qualities investigated.

Conclusion

Taken together, this study clearly demonstrates that NF- κ B activation and NF- κ B-dependent gene expression by heavy ions are highest in the LET range of ~50-200 keV/ μ m. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, CXCL8/IL-8 and TNF) could be understood to be important for cell-cell communication among hit as well as unhit

cells (bystander effect). The gene expression profile will be further evaluated as possible biomarker for exposure to different radiation qualities.

References: Hellweg CE (2015) Cancer Letters, 368, 275-289 Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, Berger T, Reitz G (2011) Int J Radiat Biol 87, 954-963. Hellweg CE, Baumstark-Khan C, and Horneck G (2003) J Biomol Screen. 8: 511-521.

Acknowledgement: AAC, KK, BH, SD, BK were supported by the Helmholtz Space Life Sciences Research School (SpaceLife).

Poster, referiert, nicht eingeladen

https://www.eprbiodose2018.org/