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ABSTRACT. Damage assessment is a crucial aspect in different scientific but also publicly 

relevant fields. Especially in the humanitarian context the estimation is often time critical as 

conflict events, but also natural disasters urge a quick response. The presented approach 

analyzes the potential of cross-stereo satellite imagery, i.e. images from different dates of the 

same or even different satellite sensors, to allow the generation of pre- and post-event 3D 

information. The study area is located in the city of Mosul, Iraq. The concept of object-based 

analysis was applied for the 3D damage assessment. The classification outcomes are 

categorized in four different height classes. 73 % of the point reference data matches with the 

classification results of the damage assessment. 

 

KEYWORDS: cross-stereo models, digital surface models, damage assessment, mixed data 

stereo models, 3D change detection 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/211556508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sebastian.doleire-oltmanns@sbg.ac.at


2     GEOBIA'2018 

GEOBIA'2018 – Montpellier, 18-22 June 2018 

1. Introduction 

The usage of 2D image information and 3D terrain information for investigating 

numerous environments has been conducted within various applications: Structural 

biodiversity monitoring in savanna ecosystems (Levick & Rogers, 2008), the 

integrated analysis of 2D and 3D data sets such as airborne laser scanning data for 

building detection (Rutzinger et al., 2008), data fusion of objects for cultural 

heritage applications (Serna et al., 2015), and measuring soil erosion in different 

extents (d’Oleire-Oltmanns et al., 2012; Stöcker et al., 2015). The assessments or 

change detections were carried out on different spatial extents, from small-scale 

surface reconstruction (Kaiser et al., 2014) to mapping grassland habitat distribution 

at local and regional scales (Buck et al., 2014) to landform mapping at multiple 

scales (d’Oleire-Oltmanns et al., 2012). One main advantage of digital information 

in 2D and 3D is the possibility to cover areas that are either very large or hardly 

accessible, maybe even both (Strasser & Lang, 2015; Symeonakis & Drake, 2004; 

Vrieling et al., 2007). 

Damage assessment is a crucial aspect in different scientific but also publicly 

relevant fields. For urban contexts, different approaches have been carried out using 

VHR optical and SAR imagery (Brunner et al., 2010). It is of particular interest after 

earthquakes (Kosugi et al., 2004). An overview to rapid assessment of earthquake 

damage has been published by Erdik et al., (2011). The availability of 3D elevation 

information is able to improve the assessments based on 2D image data only, 

especially in estimating the magnitude of damaged buildings.  

Especially in the humanitarian context the estimation is often time critical as 

conflict events, but also natural disasters urge a quick response from e.g. 

international non-governmental organizations (NGO). Hence, the assessment is 

supposed to be quick, reliable as well as covering best possibly the whole area of 

investigation, whereas the accuracy is set second priority. This may be carried out 

based on damage indication for rapid geospatial reporting (Tiede et al., 2011). 

Another aspect is the availability and pricing of the 3D data required for the 

analysis. The approach presented here is part of the ongoing research project 

X3D4Pop, which analyzes the potential of cross-stereo satellite imagery, i.e. images 

from different dates of the same or even different satellite sensors, to allow the 

generation of pre and post-event 3D information also in data-scarce situations. This 

3D information may be used for change detection, damage assessment, and even 

population estimation based on building height derivation. 
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2. Study area and data used 

2.1 Study area and context 

The study area is located in the city of Mosul in the Ninawa Governate of Iraq, 

approximately 400 km north of Bagdad (see FIGURE 1). The city was attacked and 

conquered by the “Islamic State” militia (IS) in June 2014 together with extensive 

areas of surrounding territory. In October 2016 a coalition led by the Iraqi army 

launched a counter offensive, during which the IS militia pulled back into the old 

town of Mosul. After bombardment and heavy shelling, the entire city could be 

recaptured in July 2017. The old town, as the last refuge of the IS militants, was 

heavily damaged in the process (BBC 2017, online). 

 

FIGURE 1. Study area as defined for this work is the city of Mossul. Illustrations 

based on ESRI Basemaps, OpenStreetMap and Pléiades satellite imagery. 

2.2 Satellite data used for DSM generation 

The investigation is based on Pléiades data from 2015-05-06, 2017-08-21 and 

2017-09-04. The first dataset is a stereo-triple dataset containing three pan-

chromatic and three multispectral images acquired 2015-05-06 from PHR-1B at 

08:00:18.4 UTC (pan-chromatic image referred as d), 07:59:39.1 UTC (e) and 
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08:00:04.5 UTC (f). The second dataset are single satellite images consisting of a 

pan-chromatic and multispectral image each acquired by PHR-1A at 2017-08-21, 

08:04:17.8 UTC (h) and 2017-09-04, 07:56:37.8 (j) respectively. The illumination 

change is only 0.5 degree during the 2015-triple acquisition and 5.4 degree between 

the two individual images from 2017. The satellite imagery provides a per-pixel 

spatial resolution of 0.5 m x 0.5 m and the derived DSM datasets also provide a per-

pixel spatial resolution of 0.5 m x 0.5 m. 

TABLE 1. Convergence angles between selected pan-chromatic images. 

Acquisition Date(s) Image pair Angle 

06 May 2015 

d-e 1.38° 

d-f 7.05° 

e-f 8.41° 

21 Aug 2017/ 04 Sep 2017 h-j 11.86° 

2.3 Reference data 

An independent visual damage assessment of the Old Town of Mosul conducted  

by UNOSAT (UNOSAT, 2017), based on a WorldView-3 very-high resolution 

satellite image of 18. July 2017, was available as reference data set. Damages were 

categorized into three categories: “Destroyed”, “Severe damage” and “Moderate 

damage”, and marked with a point marker. Undamaged or only slightly damaged 

buildings were not marked. In total, 6,981 affected structures were mapped in this 

part of the city. Due to the dense building structure in the old town, these numbers 

are reported to be potentially underestimated. Damages were not validated in the 

field (UNOSAT, 2017). Damage assessment maps and vector data are available for 

download. The area covered with reference data is illustrated in FIGURE 2.  
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FIGURE 2. Overview about the area covered by the manually mapped reference 

data from UNOSAT (2017; green point symbols). 

3. Methodology 

3.1 DSM generation  

Digital surface models (DSM) were calculated from the Pléiades images using 

the fully automatic processing chain CATENA at DLR (Krauß, 2014). CATENA is 

a multi-purpose, multi-sensor processing environment developed at the Remote 

Sensing Technology Institute of the German Aerospace Center (DLR). The 

matching of individual satellite images is based on Semi-Global Matching, SGM 

(Hirschmuller, 2008). As shown in FIGURE 3, a task is ingested to the task-database 

telling the system which satellite scene(s) should be processed together with which 

chain. The distributed processing nodes of the cloud system check regularly the task 

database for new jobs, fetch them and process these locally on the processing node. 

The original data will come from a central storage where also the results are stored 

after successful processing. 
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FIGURE 3. Distributed processing environment of CATENA. 

CATENA supports many types of original satellite imagery ranging from low 

resolution like AATSR or MERIS over high resolution like Landsat, Sentinel, IRS, 

SPOT up to very high resolution (VHR) data like WorldView, GeoEye or Pléiades. 

All these proprietary input formats are converted during import to a standardized 

format containing all relevant metadata and can be processed by a permanently 

growing selection of processing chains containing general tasks like coregistration, 

orthorectification, cloud-/watermasking or atmospheric correction and various 

project-specific purposes ranging from forest- and landcover-classification to 

susceptibility for flooding in strong rain events. One of the most prominent general 

purpose chains is the multistereo processing chain supporting all VHR stereo 

satellite scenes. In the project X3D4Pop this chain was extended to also allow the 

processing of data from different sensors, dates and orbits instead of only the 

standard in-orbit-(multi)-stereo scenario. 

3.2 Object-based 3D damage assessment 

An object-based image analysis approach was applied on the 3D elevation data 

and the 2D images for the damage assessment between the two time steps. Overall, 

the approach aims at remaining independent from data-specific attributes to allow 

transferability to other scenes with only very few adaptations. A low error of 

commission was favored over a lower error of omission, to reach a high reliability 

for detected damages. This also takes into account, that in both data sets gaps were 

present, resulting in uncertainties for these areas. Processing has been carried out in 

the software environment of eCognition Developer (Trimble). In the following, the 

applied approach will be elaborated in detail. 

A vegetation mask was derived for both time steps separately (on different 

"maps") based on the NDVI, vegetation objects were merged and the 2015 and 2017 

vegetation masks were combined in one analysis environment for further analysis. 
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Both the tri-stereo DSM from 2015 and the cross-stereo DSM from 2017 contain 

data gaps, in particular in shadowed or occluded areas at the foot of buildings (see 

FIGURE 4).The data w used without interpolation to ensure conducting the damage 

assessments on locations with valid data only, gaps were treated as no data areas. 

 

FIGURE 4. Comparison of valid data coverage. Panchromatic satellite image (A), 

tristereo DSM (B) and cross-stereo DSM (C). Data gaps in the DSMs are depicted 

in black color. 

The classification focused on areas containing height values only. No data values 

were masked out. To further narrow down the overall number of objects, all 

potential built-up areas in 2017 were identified. Such objects are contained in 2015 

as built up and further have a positive evaluation in 2017 as well. 

To identify potentially damaged areas, all objects with a lower elevation in 2017 

than in 2015 were classified. Such identified potentially damaged areas were further 

categorized in three different height classes: changes in height values between of 

2015 and 2017 of (i) at least 8 m, (ii) at least 4 m, and (iii) at least 2 m. The 

minimum value of 2 m was defined to compensate smaller matching errors due to 

errors contained in the DSM data and 2 m are an approximate height per story. 

In a final step, all smaller enclosed objects per class have been assigned to the 

respective enclosing class. This reduces the noise in the data set and derives a 

clearer final dataset. Afterwards the classification results were merged, exported and 

evaluated as described in the subsequent chapter. 

4 Results and validation 

Results from the classification approach as well as results from the validation are 

illustrated in FIGURE 5. The classification outcomes are categorized in four 

different classes: (1) undamaged (built-up) areas in grey, (2) damaged areas with a 

height difference of 2 m or more in orange, (3) damaged areas with a height 

difference of 4 m or more in blue, and (4) damaged areas with a height difference of 

8 m or more in red. Validation points are indicated as cross symbols in FIGURE 5. 

From the reference data only points labeled as “destroyed” were selected. 
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Therefrom, a randomly distributed selection of 120 validation points, i.e. about 10% 

of the total amount of available reference points were used for the validation. Every 

single reference point was visually checked to evaluate the classification accuracy. 

Each cross represents one validation point with indicated damage from the 

UNOSAT data. Green colored crosses indicate a positive detection of damage in the 

classification results. Black colored crosses indicate a non-classification, i.e. a 

manually identified damage was not detected by the classification approach. 

Overall, the validation results in a point match of 73 % (87 out of 120 points). 

The points indicating a non-match are overlaying mostly areas without information 

(nodata areas). Overlays with built-up areas occur only for four out of 33 points, 

which equals 12 % (3% of total number of validation points). This suggests that the 

damage assessment by subtraction of Pléiades-derived DSMs is valid for relatively 

severely damaged buildings, if the coverage with valid elevation data is sufficient. 

TABLE 2. Classification accuracy values and detailed assessment of misclassified 

points. 

 Number Percentage 

Overall Classification Accuracy 

Total number of points 120 100 % 

Points located in damaged 

areas 
87 73 % 

    

Detailed assessment of 

misclassified points 

Total number of misclassified 

points 

33 100% 

Built-up areas 4 12% 

Points located in Nodata areas 29 88% 
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FIGURE 5. Overall classification results and validation outcomes for the damage 

assessment. 

In order to evaluate the used input data, namely the DSM data from 2015 and the 

DSM data from 2017, the share of nodata areas was calculated. Nodata values 

represent pixel without height information. This has been carried out for the spatial 

extent of the available reference data (see FIGURE 2). This area corresponds to a 

total number of 20,671,200 pixels. The DSM from 2015 contains 7,493,166 pixels 

with nodata values which equals 36 %. The DSM from 2017 contains 4,907,548 

pixels with nodata values which equals 24 %. Combined from 2015 and 2017 all 

pixels with nodata values amount to 9,229,654 which equals 45 %. The outcomes 

are illustrated in TABLE 3. 

TABLE 3. Evaluation of DSM data sets from 2015 and 2017 for the spatial extent of 

the reference data. 

 
Total number of 

pixels 

Pixels with nodata 

values 
Percentage 

DSM of 2015 20671200 7493166 36 % 

DSM of 2017 20671200 4907548 24 % 

2015 & 2017 

combined 
20671200 9229654 45 % 
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5 Discussion and outlook 

The proposed approach is a contribution to assess the degree of damage in 

conflict areas in addition to typical visual assessments on optical image data only. 

The quality of the derived DSM and the damage assessment depends on the 

available imagery (time between acquisitions, viewing geometry, sensor mix), but is 

in any case an additional valuable information source. The usage of mixed-date 

stereo models increases the likeliness to find suited data shortly after such an event 

and therefore it strongly supports time-critical damage assessments based on satellite 

data. 

The presented approach is solely based on height information from two different 

DSM except the vegetation masking based on NDVI values. It therefore illustrates a 

valid and applicable approach for an initial indication shortly after crisis events.  

If absolute building heights are needed, the approach can be extended to derive 

digital terrain models from the data as presented by Luethje et al., (2017). Especially 

in urban areas, the generation of a DSM is often limited due to a lack of data 

coverage induced by shading, too large incident angles, which hinders full coverage 

with height information. In the presented study, also larger data gaps exist within the 

two data sets. These gaps occur predominantly in street canyons and shaded areas. 

Also, the masking of vegetated areas may cause increase these areas in their extent. 

However, the overall assessment of damage areas is still possible for deriving an 

indication based on height differences. 

As a high quality of the DSM is a crucial requirement for the analysis within the 

presented approach, a subsequent step will be to evaluate the DSM more profound in 

the beginning. Such an initial assessment should also indicate if a further damage 

assessment provides added value with the available datasets. Another point of 

investigation will be to analyze the amount of data gaps in potentially built up areas 

compared to nodata pixels in areas that contain vegetation and/or water. Therefore 

additional, publicly available datasets may be used. Finally, the potential of region 

growing approaches for the classification results will be investigated to derive 

objects that correspond better to the footprint of houses. This may also compensate 

the influence of positional deviations in manually mapped (point) reference datasets. 

Overall, the approach aims at a quick, cost-efficient and transferable solution for 

the support of recovery measures in crisis situations. In the given application domain 

this is prioritized over very sophisticated but costly (time and money) solutions. 
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