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Abstract—In this study, a time series of 33 TerraSAR-

X co—polarized Synthetic Aperture Radar (SAR) imagery
collected in Stripmap mode over the Gulf of Mexico in a
wide range of incidence angles and sea state conditions,
is exploited, together with a theoretical framework based
on the X-Bragg scattering model, to analyze the effects of
noise, angle of incidence (AOI) and wind speed on the
standard deviation of the co-polarized phase difference
(04.) evaluated over sea surface with and without oil slicks.
This large dataset represents an unprecedented opportunity
to analyze, for the first time, the influence of both SAR
acquisition and surface parameters on the broadening
of the co—polarized phase difference probability density
function (pdf), ps.(Pc).
Experimental results show that the X-Bragg scattering
model, here adopted to predict the sea surface pg,_(¢c),
gives an understanding of the increasing trend of o4, with
respect to AOIL It is shown that the noise significantly
contributes to broaden py, (¢.) over both slick—free and
slick—covered sea surface, while the effects of low-to—
moderate wind regimes are negligible. In addition, o,
exhibits a larger sensitivity to the scene variability, if
compared to single—polarization intensity channels, over
both slick—free and oil-covered sea surface. This sensitivity
is more pronounced at lower AOIs due to the higher noise
equivalent sigma zero (NESZ) that affects larger AOIs.

I. INTRODUCTION

A systematic mapping of sea oil slicks is a chal-
lenging task which is of paramount importance to both
preserve the environment and support oil exploration
and extraction activities. Nonetheless, high-resolution
spaceborne remote sensing instruments represent a tech-
nological and cost—effective solution to accomplish this
task [1]. Within this context, Synthetic Aperture Radar
(SAR) is a key tool for sea oil slick observation due to
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its almost all-weather and fine spatial resolution imaging
capabilities [1]-[4]. SAR-based sea oil slick observation
is grounded on the fact that the presence of an oil layer
over the sea surface reduces the short Bragg resonant
waves and, therefore, generates a low backscatter area
which appears, in conventional gray—tones SAR imagery,
as a homogeneous patch darker than the background sea
(51, [6].

Nowadays, there is wide consensus on the extra—benefits
provided by polarimetric SAR data for a wide range
of marine and maritime applications, including coastline
extraction [7], [8], metallic target detection [9], [10] and
sea oil slick monitoring [11]-[18]. In the framework of
SAR-based sea oil slick observation it was shown that,
once an electromagnetic model is available, polarimetric
measurements can be successfully used to distinguish
actual oil slicks from weak—damping look—alikes and to
perform a rough zooning of the damping properties of
the observed surfactant [11]-[13].

Sea oil slick observation using SAR imagery is actually
a quite mature application whose performance is signif-
icantly affected by the amount of scattering information
available that, in turn, depends on both sensor’s and
environmental parameters, e.g.; polarization, angle of
incidence (AOI), noise equivalent sigma zero (NESZ),
sea state conditions and oil’s damping properties [3],
[11]. However, even though operational sea oil slick
observation is mainly based on single—polarization in-
tensity measurements due to large data availability and
the wide area coverage they offer, the key role played
by polarimetric information is well-established [1], [2].
The idea that underpins polarimetric SAR-based ap-
proaches is to exploit the different scattering properties
that characterize slick-free sea surface or weak—damping
surfactants and oil slicks [3], [11], [12]. Several polari-
metric features have been proposed that allow measuring
the departure from the almost deterministic sea surface
Bragg scattering which applies over slick—covered sea
surface [11], [17]. The performance of those features
depend on: i) SAR acquisition parameters, i. e., AOI,
incident wavelength and NESZ; ii) sea state conditions,
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i. e., the level of surface roughness and iii) damping
properties of the surfactant.

Among the different polarimetric features, the standard
deviation of the co—polarized phase difference (og,),
that is linked to the complex correlation between co—
polarized channels, has been shown to be a reliable
and robust, i. e., effective at variance of frequency (L—,
C- and X-band), almost independent of the estimation
window size and unbiased when low correlation of co—
polarized channels applies, estimator of the oil slick
departure from Bragg scattering [18]-[20].

In [21]-[23] it was shown that ¢. probability density
function (pdf), ps, (¢.), resembles a Gaussian bell whose
mean, gzgc, is close to 0° and whose standard deviation,
04., depends on the degree of correlation between the
co—polarized channels, p, and on the number of looks.
Given the number of looks, ¢. pdf is uniformly dis-
tributed when p tends to 0, while it behaves as a Dirac
delta function when p tends to 1 [23], [24]. It was also
demonstrated that, according to the Bragg scattering the-
ory, (ch increases with AOI and incident wavelength, e.
g., qgc does not exceed 4° at X-band for AOI = 60° [25].
According to Bragg scattering, co—polarized channels are
highly correlated and cross—polarized backscattering is
almost negligible. This implies that og4_ is close to 0°.
Significant depolarization occurs when dealing with oil—
covered sea surface that implies larger o4 values [18]-
[20].

In the framework of sea oil slick observation, o4, has
been recognized to be very effective in both observing oil
slicks and discriminating them from weak—damping sur-
factants [9], [18], [20]. The key result is that og_ is able
to emphasize the oil slick with respect to the background
sea while de—emphasizing the weak—damping surfactant.
However, the behavior of o4_ is found to be significantly
affected by AOI, NESZ and meteo—marine conditions
[18]-[20].

In this study, a polarimetric analysis is undertaken to
investigate the behavior of o4, with respect to AOI,
NESZ and sea state conditions. The proposed analysis
is performed from both theoretical and experimental
viewpoint. In particular, a theoretical framework based
on the well-known X-Bragg scattering model is ex-
ploited to predict the oy, behavior with respect to AOL
This theoretical analysis is exploited to give a better
understanding on the role played by sensor’s and scene
parameters on the broadening of py, (¢.). Then, an
experimental analysis based on a time series of dual-
polarimetric HH-VV TerraSAR-X (TSX) SAR scenes,
collected in a wide range of AOI and under low—to—
moderate wind conditions, is performed. This analysis
points out the effects of SAR acquisition parameters,
i. e, AOI and NESZ, and environmental parameters,
i. e., meteo—marine conditions, on the o4, behavior
over sea surface and oil slicks. With respect to oil
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slicks, reference is made to the well-known oil seep
related to the Taylor Energy platform accident occurred
in the Gulf of Mexico in 2004 [26]. This SAR dataset
represents an unprecedented opportunity to undertake,
for the first time, a sensitivity analysis of the afore—
mentioned factors on o4, evaluated over sea surface with
and without oil slicks.

In addition, the sensitivity of the so-called Pauli phase
[27] to the presence of oil slicks over the sea surface is
also experimentally analyzed, showing that it does not
exhibit any sensitivity to sea oil slicks.

The remainder of this paper is organized as follows:
the theoretical background is described in section II,
while simulation setup and numerical results are detailed
in section III; the study area and the SAR dataset
are presented in section IV, while experimental results
obtained on actual SAR measurements are presented and
discussed in section V; conclusions are drawn in section
VL

II. THEORETICAL BACKGROUND

In this section, the polarimetric characterization

of sea surface backscattering is presented and the
relationship between co—polarized phase difference and
sensor/surface parameters is discussed.
In order to completely describe the polarimetric
scattering from a distributed depolarizing natural scene,
second—order field descriptors are needed, i. e., the
covariance or coherency matrix (C/T) must be used
[28]. In this study, the covariance matrix formalism is
adopted that, in the monostatic backscattering case and
under reciprocity assumption, can be expressed as [28],
[29]:

(ISnnl?) V2(ShnShe™)  (ShrSve™)
C= \/§<Shvshh*> 2<‘Shv‘2> ﬁ(shusvv*> 5
<vashh*> ﬁ(svvsh’u*> <|Sv'u|2>

where S, is the complex scattering amplitude with
{p,q} = {h,v}, while (-), | -| and * stand for ensemble
average, modulus and complex conjugate operators,
respectively. In this study, the X—Bragg scattering model
is adopted to describe polarimetric scattering from sea
surface under low—to—moderate wind conditions and
at intermediate AOI. The X-Bragg surface scattering
model was first proposed and validated using L-band
SAR data in [27] to predict the backscattering from
slightly rough land surfaces for soil moisture estimation
purposes. Then, it was specialized to model sea surface
backscattering in [16], [30], [31]. In [16], the X-Bragg
scattering model was successfully adopted for sea oil
slick observation purposes against L— and C-band
polarimetric SAR measurements while, in [30], it was
employed to detect ships and oil spills from C- and
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X-band polarimetric SAR imagery.

The X-Bragg scattering model represents an improved
version of the Bragg scattering theory that takes into
account non negligible cross—polarized backscattering
and depolarization effects. The sea is modeled as a
reflection symmetric depolarizing surface whose random
roughness is introduced by a rotation of the covariance
matrix in a plane orthogonal to the scattering one.
Accordingly, the sea surface covariance matrix can
be predicted, under intermediate AOIs and low—to—
moderate sea state conditions, as follows [28], [29]:

CXn CX12 CX13
Cx = CXH* Cx,, OX23 = [JT)(U—_1 ,
OXIS* CX23* CXss

2

where the subscript “X” stands for X-Bragg model,
and the special unitary matrix, U, and the matrix Tx
are given in eq. (3) [30], [31]. In eq. (3), B¢, and
B.,, are combinations of the complex Bragg scattering
coefficients, while s,z and s43 are functions of the
width of the local surface tilting angle, (3, pdf [27].
The parameters so5 and sq4g are related to the amount of
surface roughness, with 8 that controls both the cross—
polarized backscattered power and the co—polarized
coherence; while the Bragg scattering coefficients
depend on AOI and sea relative permittivity, € [27]. The
polarization—dependent Bragg scattering coefficients are
defined as follows:

cos(AOI)—+/ e—sin? (AOI)
By =

T cos(AOD++/e—sin2(AOI)

(e=1) sin2(AOI)e(1+sin2(AOI))> @

Bm; = P
<e cos(AOD)++/e—sin? (AOI)>

Note that, according to the Bragg scattering theory,
sea surface backscattering is well-predicted by the X—
Bragg model when AOI ranges in the interval 20°-
60°, while the surface tilting angle is assumed to be
uniformly distributed in the range -90° — +90° [27].
This means that the probability of obtaining a smooth
sea surface characterized by almost unitary co—polarized
coherence and negligible cross-polarized backscattering,
i. e, B = 0°, is the same of obtaining a rougher sea
surface that calls for almost zero co—polarized coherence
and significant cross-polarized backscattering, i. e.,
~ 90° [27]. Nevertheless, it must be noted that, when
dealing with actual sea surface SAR measurements, the
estimated /3 values typically do not exceed & 30°. This
results in a co—polarized coherence larger than 0.95 and
a cross—polarized backscattering which is less than 20%
of the total backscattered power when AOI = 40° [27],
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[31].

According to the X—Bragg scattering model,the phase
difference between the co—polarized channels, ¢., is
predicted using eq. (5) where / and < stand for phase
and imaginary part, respectively. It can be noted that ¢,
depends explicitly on sea surface dielectric and geomet-
ric properties, i. e., € and local tilting, through Bragg
scattering coefficients and 3, and on SAR acquisition
parameters, i. €., AOI and incident wavelength, through
Bragg scattering coefficients. Eq. (5) explicitly points out
that both real and imaginary parts of ¢, are related to
Bragg scattering coefficients and j.

It must be underlined that the X-Bragg scattering model
is not able to predict polarimetric scattering from natural
surfaces characterized by large depolarizing properties as
oil slick—covered sea surface [11], [16], [27].

III. NUMERICAL SIMULATIONS

In this section, experiments are undertaken to predict
the behavior of o4_ over slick—free sea surface according
to the polarimetric model presented in section II.

First, the X-Bragg covariance matrix Cx is simulated
according to eqs. (2) — (3) in the AOI range 20° — 50°.
Reference is made to the X—band and different 3 values
are considered. Although the latter is a global roughness
parameter that depends on both local wind and non—local
wind induced roughness, in this study we assume that 8
depends on wind only since, at this observing scale, it
is the main roughness driver.

To analyze the depolarization associated with the pre-
dicted Cx matrix, the Cloude—Pottier entropy proposed
in [29] is evaluated versus AOI for S = 5°, 10° and 20°,
see Fig. 1(a), where they are depicted in blue, dashed red
and dotted black curves, respectively. Those (3 values
describe flat, slightly rough and moderately rough sea
surface, respectively. It can noted that the model allows
describing a slightly depolarizing sea surface scattering,
i. e., entropy values do not exceed 0.25 for any (
value. The plots in Fig. 1 (a) show that, even though an
increasing in surface roughness results in larger entropy
values, the depolarization effects predicted by X—Bragg
model, as expected, are rather limited. This further
witnesses, as pointed out in section II, that the X—Bragg
model does not allow predicting polarimetric scattering
from surfaces characterized by significant departure from
Bragg-like scattering mechanism, i. e., oil slicks.

Once the depolarization properties of the model have
been described using the Cloude—Pottier entropy, the
behavior of the co—polarized phase difference can be an-
alyzed. First, ¢, is predicted using (5), then its standard
deviation is estimated over sea surface using a Monte-
carlo approach where N = 1000 independent simulations
are considered for each AOI. For each simulation, (3 is
randomly selected in the range -30° — +30° according
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A | Bepl? BemBep™sap 0
U=— (1 0 —-1| , Tx=|BpBem"s2s 5|Beml*(1+545) 0 )
\/i 0 \/§ 0 0 0 %|ch|2(1 - 545)
* 1 2 1 2 e *
Ge = Z(Shh*svv'u ) =/Cx,, = Z(§|Bcp| - 1|ch| (1 - 34[3) _.]\f(Bchcm )52,8) . (5

to a uniform pdf.

Simulation results are shown in Fig. 1 (b), where o4 is
depicted with respect to AOIL It can be noted that oy,
increases non-linearly when increasing AOI, with the
largest increase at AOIs larger than 35°. o4, values are
always below 1.4°. This result is physically justified by
the fact that a low—depolarizing model is implemented
in a noise—free condition, e. g.; the sensor’s noise floor is
not accounted for. Hence, from a theoretical viewpoint,
Ps.(¢c) should resemble a Dirac delta function, i. e.,
04. = 0°. Note, however, that Fig. 1 (b) points out that
04, increases with AOL In fact, the relative broadening
of py.(¢c)s i. €., 04,/de, is around 50%.

o

Polarimetric entropy

20 25 30 40 45 50

35
AOI ()

Fig. 1. Simulations based on the X-Bragg model: (a) polarimetric
entropy versus AOI for 8 = 5°, 10° and 20°, see blue, dashed red and
dotted black curves, respectively; (b) o, versus AOL

IV. STUDY AREA AND SAR DATASET

The study area is located in the northern part of the
Gulf of Mexico, about 20 km off the Louisiana coast
(see Fig. 2). The area is very rich in oil and gas fields
and it also hosted one of the largest oil spill in the US
history, i. e., the British Petroleum Deepwater Horizon
platform blowout. Hence, this area has been continuosly
monitored by different remote sensing platforms includ-
ing the German Aerospace Center one that collected
satellite TSX SAR imagery in dual—polarimetric HH-VV
StripMap mode. The oil slicks, almost permanently ob-
served in this area, are due to the 22 underwater oil wells
of the Taylor Energy platform (28.938°N, 88.971°W)
that have been leaking an estimated amount of 100 —
400 oil gallons per day since 16 September 2004, when
the Hurricane Ivan has toppled several platforms in the
Gulf of Mexico [26]. It was also estimated an average
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Fig. 2. Map of the study area, which is augmented by the footprints
and the corresponding Pauli RGB images related to three TSX scenes.
The Pauli images clearly show features, darker than the background
sea, that are associated with the oil slicks.

slick thickness of 1 um and a half-life on the sea surface
of 3—4 days [26]. Hence, those persistent oil slicks
observed by the TSX mission for a long time represent
an unprecedented opportunity to have a consistent and
reliable dataset that can be exploited to better understand
SAR-based sea oil slick monitoring.

In this study, a time series of TSX SAR imagery is
considered that consists of 33 coherent HH-VV Level
1B Single Look Complex (SLC) SAR data acquired
between July 2011 and April 2016 (see Table I). They
are collected at different AOIs (in the range 25° — 45°)
under low—to-moderate wind conditions (wind speed
in the range 1.5 — 8 m/s). Wind speed information
is retrieved from “42040” (29.208°N, 88.226°W) and
“Pilll” (29.179°N, 89.259°W) buoy measurements and
scatterometer—based wind field data freely available in
[32] and [33], respectively. A general overview of the
SAR dataset is provided in Table I. Note that the
available SAR dataset limits our analysis on the influence
of wind speed on oy, to moderate wind conditions
(maximum wind speed observed in the SAR dataset is
about 8.0 m/s, see Table I). However, a first attempt
to analyze the oil slick detectability by means of po-
larimetric SAR features under higher wind conditions,
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TABLE I
OVERVIEW OF THE TSX SAR DATASET.

SAR sensor, frequency (GHz)

TerraSAR-X, 9.6

Imaging mode

StripMap coherent HH-VV

Number of SAR scenes

33

Resolution (m)

1.2 x 6.6 (slant range x azimuth)

AOI range (°)

25 — 45

Wind speed range (m/s)

2-8

Study area

Gulf of Mexico, off Mississippi river delta

Observation period

1/7/2011 - 30/4/2016

AOI-based dataset partitioning Subset 1 Subset 2 Subset 3
Average AOI (°) 26 34 43
Number of SAR scenes 10 13 10
Average NESZ — HH (dB) -23.0 -22.1 -20.9
Average NESZ — VV (dB) -23.2 -22.1 -20.6
Wind speed range (m/s) 23-178 30-76 3-69
Data Collection period 1/7/2011 - 30/6/2014 | 1/9/2011 — 30/5/2014 | 1/4/2013 — 30/4/2016
Wind-based dataset partitioning Subset 4 Subset 5
Wind regime Low (wind speed < 3.5 m/s) Moderate (wind speed > 5 m/s)
Number of SAR scenes 12 21
Average NESZ — HH (dB) -21.9 -21.9
Average NESZ — VV (dB) -21.9 -21.9
AOI range (°) 25 - 45 25 - 45
Data collection period 1/4/2012 — 30/4/2016 1/7/2011 — 30/3/2016

i. e., wind speed about 11.0 m/s, was undertaken in
[34], where the performance was found to worsen with
increasing wind speed.

The footprint of three SAR scenes is overlaid on the
study area map together with the corresponding false—
color RGB images (see Fig. 2). Note that the area
affected by the oil seep is clearly visible in the three
images and results in patches darker than the surrounding
sea. Excerpts of the multi—polarization feature images
evaluated over the same area affected by oil slicks in
different dates, AOIs and sea state conditions are shown
in Fig. 3, where six different SAR scenes randomly
selected from the whole TSX time-series are considered
(see Table I).

Examples of the SAR dataset are shown in Fig. 3 where
six different SAR scenes, randomly selected from the
whole TSX time-series (see Table I), are considered
to cover the different AOIs, i. e., 26°, 34° and 43°,
and both low and moderate wind conditions. They
were collected on 23/07/2012, 25/04/2012, 22/04/2016,
29/05/2012, 02/08/2012 and 08/05/2014, see Fig. 3 (a)
— (f). Geocoded images related to a 2.5 km x 13.5 km
area excerpted from six SAR scenes where the oil slick
is imaged under different AOIs and wind conditions. The
image is organized in matrix format. Columns refer to
AOI (26°, 34° and 43°, respectively), while the first two
rows refer to Ug/v images collected in low ((a) — (c))
and moderate ((d) — (f)) wind regime. The last two rows
refer to oy, images evaluated over the corresponding
SAR scenes shown in Fig. 3 (a) — ().
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V. EXPERIMENTS ON ACTUAL SAR DATA

In this section, experiments undertaken on actual SAR
data to analyze the sensitivity of oy, to wind speed and
SAR acquisition parameters (e. g., noise and AOI) are
presented. The first experiment aims at evaluating the
influence of noise and AOI, while the second one aims
at investigating the effects of wind speed.

To perform this sensitivity analysis, the whole dataset
is partitioned with respect to the parameters under in-
vestigation. The effects of noise and AOI are analyzed
grouping SAR imagery into three subsets, which are
classified as low, medium and large AOI (26°, 34° and
43°, see subsets 1 — 3 in Table I, respectively); while the
effects of wind speed are investigated partitioning the
SAR dataset into two subsets, where low and moderate
wind regimes are identified, i. e., wind speed lower than
3.5 m/s and larger than 5 m/s (see subsets 4 and 5
in Table I, respectively). Further details are listed in
Table I. For each SLC SAR scene, the oy is estimated
using a 9 x 9 sliding window. Note that, since oy, is
an unbiased estimator with respect to the window size,
this window size is selected to guarantee that spatial
resolution is almost preserved and a sufficient amount of
samples are available to compute reliable statistics [18],
[35]. Then the mean and standard deviation values of
o4, are evaluated over 1000 samples randomly selected
within two regions of interest (ROIs) belonging to slick—
free and oil-covered sea surface. Note that, for reference
purposes, 0¥y, is also analyzed using the same slick—free
and oil-covered ROIs defined for o, .

The first experiment consists of analyzing the broadening
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Fig. 3. Geocoded images related to a 2.5 km X 13.5 km area excerpted from six SAR scenes where the oil slick is imaged under different
AQIs and wind conditions. The image is organized in matrix format. Columns refer to AOI (26°, 34° and 43°, respectively), while the first two

rows refer to o¥

images collected in low ((a) — (c)) and moderate ((d) — (f)) wind regime. They were collected on 23/07/2012, 25/04/2012,

v
22/04/2016, 29/05/2012, 02/08/2012 and 08/05/2014, respectively. (g) — (1) refer to o4, images evaluated over the corresponding SAR scenes

shown in (a) — (f).

of the py, (¢.) induced by noise, i. e., the sensor’s NESZ
[36], and by scene—induced depolarization (see Fig. 4 (a),
where o4, data—points evaluated within the slick—free
and oil-covered ROIs are shown). The depolarization
induced by the scene carries on information on the
scattering properties of the observed scene; while NESZ
affects the polarimetric properties of the scattered wave
introducing depolarization in the backscattered signal
when it is close to (or below) NESZ. Hence, the effect
of both NESZ and scene depolarization depend on the
presence of surfactants.

When dealing with slick—free sea surface, see Fig. 4
(a), one can note that oy, values increase with AOIL
This trend agrees with model’s predictions discussed in
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section III (see Fig. 1 (b)). Nonetheless, predicted oy,
values, as expected, underestimate actual measurements
mainly due to the presence of noise that affects ac-
tual SAR data. To distinguish effects related to NESZ
from scene—induced depolarization, reference is made to
single—polarization backscattering, see Fig. 4 (b), where
data—points related to 0¥, evaluated over slick—free and
oil-covered ROIs are shown together with NESZ. One
can see that slick—free data—points are well-above NESZ
at low and intermediate AOIs; while they approach
NESZ at larger AOIs. This implies that NESZ and scene—
induced depolarization start playing a role at AOI larger
than 34°. NESZ is the key broadening factor at AOI ~
43°. In fact, the estimated NESZ ranges from about -24
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Fig. 4. Mean and standard deviation values of: (a) o4, and (b) O?/V
evaluated within slick-free (black) and oiled (red) ROIs excerpted from
the SAR data subsets 1-3, see Table I. In sub—figure (b) the NESZ
profile estimated from actual SAR measurements is also annotated as
a dashed blue line.

dB (at AOI = 26°) up to approximately -21 dB (at AOI
= 43°), see Fig.4 (b).

When dealing with oil-covered sea surface, see Fig. 4
(a), 04, values still exhibit an increasing trend with AOL.
According to Fig. 4 (b), one can see that the effect of
NESZ is non—negligible for almost all the data—points
related to the oil-covered sea surface, with the smallest
effect at AOI ~ 26°. As a result, the large o4, values
related to oil-covered sea surface at AOI ~ 26° are
mostly due to the depolarizing behavior of the scattering
from the oil slick; while at larger AOIs, both NESZ and
scene—induced depolarization play a role. Hence, in the
case of slick—covered sea surface, experimental results
suggest that the noise significantly contributes to smooth
the increasing trend of o  with respect of AOL In fact,
04, tends to saturate at AOI larger than 34°.

It can be noted that oy, values are always well-

separated from the slick—free ones (Fig. 4 (a)). This
implies that oil can be always distinguished from the
background sea over the whole AOI range. Nevertheless,
the oil/sea separation decreases with AOIL. Hence, the
broadening of oil pg, (¢.) is due to two concurring
factors: the large depolarization resulting from oil’s
backscattering and the NESZ. In particular, at AOI
larger than 26°, NESZ affects also slick—free sea surface
scattering resulting in o values larger than the ones at
26°. This justifies the reduction of oil/sea separation at
larger AOIs .
To quantitatively discuss the broadening of py_(¢.) with
respect to AOI, the errorbars of Fig. 4 are analyzed in
Table II where mean and standard deviation values of
04, errorbars are listed together with errorbar values
related to oV, and 0% . In addition, a new figure of
merit is also proposed, A, to measure the sensitivity
of o4, to the scene variability. A, defined as the ratio
between standard deviation and the mean value, is listed
in Table II. Hence, it can be considered as a relative
measure of the standard deviation that is mostly related
to the variability of the scene observed processing the
time series.
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When dealing with slick—free sea surface, o4, mean
value approximately triples from 26° to 34°, while it
doubles from 34° to 43°. This is mostly due to the effects
of NESZ that starts to play a non—negligible role at AOI
>34°. In terms of sensitivity to the scene variability, o,
exhibits a remarkable sensitivity to sea state conditions at
AOI < 34° 1. e., A =~ 22%. This sensitivity significantly
decreases at AOI > 34° likely due to the fact that,
as suggested by the results of the noise analysis, noise
sources dominate and, therefore, very limited sensitivity
to actual sea state conditions is observed (A = 15%). In
addition, results listed in Table II witness that the oy,
sensitivity to the scene variability is significantly larger
than the one exhibited by o\, and 0%, 1. e., A =~ 22%
and = 7% (at AOI < 34°), respectively.

When dealing with oil-covered sea surface, o,, mean
value increases slightly with AOI, i. e., from 59° at
AOI = 26° up to 96° at AOI = 43°. This confirms the
saturation of o4  at AOI > 34° due to the concurring
effects of NESZ and scene depolarization in the broad-
ening of pg, (¢.). However, o4, mean values are well-
above the corresponding values assumed over slick—free
sea surface for all the AOIs. In terms of sensitivity to the
scene variability, o4, exhibits a pronounced sensitivity to
the surfactant at AOI < 34°,i. e., A = 24%. Even though
04, evaluated over oil-covered sea surface at AOI = 26°
calls for almost the same A value of the slick—free case,
its sensitivity starts to significantly decrease at AOI >
26°. This is mostly due to NESZ that contaminates the
signal scattered—off the scene and, thus, reducing the
sensitivity of o4 _ to the surfactant properties. Neverthe-
less, even in this case, results listed in Table II show
that the sensitivity of oy, to the scene variability is
more pronounced than the one that characterizes o3,
and 0%, 1. e, A = 22% and ~ 9% (at AOI < 34°),
respectively.

The second experiment consists of analyzing the effect
of wind speed on the broadening of p,, (0g.), see Fig.
5, where o4, data—points evaluated within slick—free
(Fig. 5 (a)) and oil-covered (Fig. 5 (b)) ROIs are shown.
Mean and standard deviation values of oy4_ for different
AOIs are depicted, see black dots (26°), blue dots (34°)
and red crosses (43°). This analysis is undertaken on the
SAR subsets 4 and 5, see Table 1.

When dealing with slick—free sea surface, no clear trend
can be observed for o data—points belonging to low (<
3.5 m/s) and moderate (> 5 m/s) wind regimes sampled
at the three AOIs, see Fig. 5 (a). To quantitatively con-
firm this behavior, the mean values of oy, errorbars and
A values are listed in Table III together with reference
oV and % values. One can note that o, = 43° for
both wind regimes. This witnesses that, under low—to—
moderate regimes, wind speed variability has a negligible
impact on the broadening of p,, (cg4.). No clear trend
with respect to wind speed and no remarkable difference
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TABLE II
MEAN, STANDARD DEVIATION (STD) AND AVERAGE RELATIVE VARIABILITY (A) RELATED TO THE ERRORBARS OF FIG. 4. NOTE THAT
RESULTS ARE ALSO LISTED FOR O'?_IH THAT IS NOT SHOWN IN FIG. 4 TO SAVE SPACE.

ROI Feature op. °) 00+ (dB) 0% (dB)

AOT(°) | 26 [ 34 [ 43 26 | 334 [ 43 26 | 34 | 43

mean 13 41 75 [ -106 [ -16.7 | -185 | -108 [ -18.0 | -20.1

Sea surface std E3 [ F9 [F [ £I11 [ F09 [F08 [ £1.1 [ £09 [ £08
A (%) 23 22 15 9 5 4 10 5 4

mean 59 86 96 | -188 [ -22.0 [ -21.0 [ -192 [ -222 [ 215

Oil slick std T F0[F0 [ £17 [F10 [ £07 | £19 [ £09 [ £07
AN (%) 24 14 11 9 5 3 10 4 3

between low and moderate wind regimes are observed
even when o0, and 0%, are considered, see Fig. 5 (c)
and Table III. In terms of scene variability, o4  calls
for a significant sensitivity to sea state conditions, i. e.,
A = 19%, for both wind regimes, witnessing that the
sensitivity of o4, to actual sea state does not depend
on wind speed. Results listed in Table III also show
that, again, o, 1is more sensitive to scene variability
if compared to o, and 0%, (A = 19% and ~ 6%,
respectively).

When dealing with slick—covered sea surface, the be-
havior of o4, evaluated under low and moderate wind
regimes, does not exhibit a particular trend, see Fig.
5 (b). This is quantitatively confirmed by the mean
values of oy, errorbars and A values listed in Table III
together with reference 0¥, and 0%, values. It can be
noted that oy, ~ 81° for both wind regimes, i. e., they
are almost doubled with respect to the ones measured
over the sea surface ROI but they do not significantly
depend on wind speed. o0, and ¢, behave similar
to the slick—free case, see Fig. 5 (d) and Table III.
In terms of scene variability, o, is characterized by
A 16% for both wind regimes that results in a
more pronounced sensitivity on actual oil conditions with
respect to J?/V/U%  (Whose A values are approximately
6%). Nonetheless, it can be noted that the o4, sensitivity
to scene variability slightly reduces with respect to the
slick—free case. This is likely due to the fact that the
presence of a strong—damping oil layer over the sea
surface attenuates the roughness induced by local wind.

~
~

The availability of DP co-polarized SAR measure-
ments make possible extracting the above-discussed co-
polarized phase difference and the so-called Pauli phase,
i. e., the argument of HH + VV/HH - VV, whose statistic
is given in [27]. The latter consists of information on
the dielectric properties of the observed scene; hence,
for sake of completeness, we accomplished a further
study that aimed at analyzing the sensitivity of the
Pauli phase to sea oil seeps. Both the Pauli phase and
its variabiloty, measured by the standard deviation, are
evaluated. Results related to a meaningful test case are
shown in Fig. 6, where the U?,V of the SAR scene (a)
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Fig. 5. Sensitivity analysis with respect to wind speed. (a) — (b):

mean and standard devation values of o4 evaluated over slick—free
and oil-covered sea surface ROIs, respectively; (c) — (d) mean and
standard devation values of U?,V, evaluated over slick—free and oil—
covered sea surface ROIs, respectively. Data—points belonging to the
different AOIs are depicted in black dots (26°), blue circles (34°) and
red crosses (43°), respectively.

is shown together with the Pauli phase and its standard
deviation (b)-(c) and the co-polarized phase difference
with its standard deviation (d)-(e). It can be noted that
o4, success in highlighting the oil-affected area while
neither the Pauli phase, nor its standard deviation show
any significant hint related to the oil seep. This is likely
due to the fact that the Pauli phase is related to the
dielectric properties of the scattering scene that, as it
was demonstrated in [37], play a marginal role when
dealing with sea oil seep backscattering.

VI. CONCLUSIONS

In this study, a time series of 33 TSX HH-VV
StripMap mode SAR images collected over the well—
known Taylor Energy oil seep in the Gulf of Mexico in
a broad range of AOIs and wind speeds, is exploited to
investigate the sensitivity of o4, to both SAR acquisition
parameters (e. g., AOI and NESZ) and meteo—marine
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TABLE III
MEAN, STANDARD DEVIATION (STD) AND AVERAGE RELATIVE VARIABILITY (A) VALUES WITH RESPECT TO WIND REGIME RELATED TO
O 0%y AND 09 1 EVALUATED OVER SLICK-FREE AND OIL SLICK-COVERED ROIS.

ROI Feature s, (°) 0¥, (dB) 0% (dB)
Wind Regime | Low | Moderate | Low | Moderate | Low | Moderate

mean 43 43 -15.8 -15.2 -16.8 -16.3

Sea surface std + 8 + 8 + 0.9 + 1.0 + 0.9 + 1.0
A (%) 19 19 6 7 5 6

mean 80 82 -20.9 -20.6 -21.3 -21.0

Oil slick std + 12 + 13 + 1.0 + 12 + 1.0 + 12
A (%) 15 16 5 6 5 6

—89 02 -89 -88.98 -88.96 -88.94
28.95 () 2895 9, ()
289 i i
28.85 28.85
-89.02 -89 -88.98 -88.96 -88.94 -89.02 -89 -88.98 -88.96 -88.94

¢ ()

28.95
28.9 i
28.85

-89.02 -89 -88.98 -88.96 -88.94

ap, (°)

150
100
50
0

Fig. 6. Co-polarized phase difference, ¢, versus Pauli phase, ¢p. (a):
geocoded VV-polarized SAR images(in dB scale), where the sea oil
slick is clearly visible. (b)-(c): Pauli phase and its standard deviation
images, respectively, where no slick is observed; (d)-(e): co-polarized
phase difference and its standard deviation images, respectively, where
the presence of the oil slick is emphasized with respect to the
surrounding sea.

28.95
28.85

-89.02 -89 -88.98 -88.96 -88.94
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conditions (e. g., wind speed, polarimetric properties of
the observed scene). This SAR dataset offers, for the
first time, the opportunity to analyze the behavior of
04, over both slick—free and slick—covered sea surface
under a large variety of imaging parameters and scene
conditions. The behavior of single—polarization intensity
channels is also considered as a reference.

The main outcomes of this study are summarized as
follows:

o The noise—free behavior of o4 with respect to AOI
can be well-predicted by the X-Bragg scattering
model;

e 0y, increases when increasing AOI over both slick-
free and oil-covered sea surface. The increasing
trend is more pronounced in the slick—free case;

o The noise plays a dominant role in the broadening
of pg.(¢c) over both slick—free and slick—covered
sea surface. The broadening of py, (¢.) at lower
(larger) AOIs is mostly due to scene—induced de-
polarization (NESZ);

e Under low—to—moderate wind conditions, the effect
of wind speed on the broadening of pg, (¢.) is
negligible. This is of relevant importance when
dealing with sea oil slick detection;

o The oy, sensitivity to scene variability within the
time series is more significant at lower AOIs since,
at larger AOIs, data—points are contaminated by
noise. This sensitivity is more pronounced than the
0V /0% 1 one;

o Oil/sea 04  data—points are well separated at all the
AOIs, with this separation that reduces with AOI
mostly due to both oil-induced depolarization and
NESZ;

o The so-called Pauli phase does not show any sen-
sitivity with respect to sea oil slicks.

It is important to underline that those results may be
useful to support the design of robust and effective
polarimetric SAR-based algorithms for sea oil slick
monitoring.
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