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A well-known approach for the pricing of o, 10ons under regime-switching models is to
use the regime-switching Esscher transforn (. 'so called regime-switching mean-correcting
martingale measure) to obtain risk-nertrality One way to handle regime unobservability
consists in using regime probabilities th.* are filtered under this risk-neutral measure to
compute risk-neutral expected payoffs. The current paper shows that this natural approach
creates path-dependence issues wit.un « ~tion price dynamics. Indeed, since the underlying
asset price can be embedded in . Marko - process under the physical measure even when
regimes are unobservable, such “,ath-a. > ndence behavior of vanilla option prices is puzzling
and may entail non-trivial the reti al fratures (e.g., time non-separable preferences) in a way
that is difficult to characterie. I ~is vork develops novel and intuitive risk-neutral measures
that can incorporate regin risk-aversion in a simple fashion and which do not lead to such
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1 Introduction

Since their introduction in the economics literature by Hamilton (1989), re me-switching models
have received extensive attention in the context of derivatives pricing. '1.°< can be explained by
the ability of regime-switching models to reproduce stylized facts ~” finai. ial log-returns such
as fat tails, volatility clusters and momentum, see for instance A. ~ and Timmermann (2012).
In particular, regime-switching models are used to price anc hedge long-dated options; such
models are sensible choices in such circumstances since the ur derlyviug asset of a long-dated option
might go through multiple business cycles or varying financ.al co ditions throughout the life of
the option. Moreover, regime-switching dynamics allov recove "ing volatility smiles exhibited by

empirical option prices, see Ishijima and Kihara (2005, ~nd Yao et al (2006).

The pricing of long-dated equity options is extremely 1. 'evant in insurance; numerous long-term
insurance contracts such as variable annuities a. <. equity-linked insurance include embedded
implicit options guaranteeing a minimum amou.'t .. benefits to be paid contingent on either the
survival or the mortality of the policyholder. -nsider for example a variable annuity including a
Guaranteed Minimum Maturity Ben  at ((MMB) rider. Under such a policy, the policyholder
deposits an initial amount of savi'.gs 1.~ Jhe policy account, which is then typically invested
in a mutual fund. The insurer pc ¥ ,dic JAly collects fees from the policy account. In return, it
guarantees that the account va. e will be worth at least a minimum guaranteed value at the
maturity of the policy pre 1de 1 that the policyholder is alive at that date; in other words, the
insurer promises to ma'.e up ‘~r any possible shortfall between the terminal account value at
maturity and the guara. * ed ~mount. For the insurer, such a promise consists in a short position

on a put option ov r the , olicy account value with the strike being the guaranteed amount.

Implicit optior s em! edded in long-term insurance contracts are illiquid, which entails that
quantitative mod = are needed to value and hedge such options. Hardy (2003) pioneered the
use of regime < vitching models to value long-term options embedded in variable annuities. A
non-exhaustive list of other papers which use this family of models to either price or hedge equity

options attached to equity-linked insurance contracts or variable annuities is hereby provided:



Lin et al (2009), Jin et al (2011), Ng and Li (2011), Ngai and Sherris (2011), Wang and Yin
(2012) Azimzadeh et al (2014), Fan et al (2015), Siu et al (2015), Ignatievs -t al (2016), Wang

et al (2017), Trottier et al (2018a), Trottier et al (2018b) and Ignatieva «. ! (2018).

The usual route to obtain a risk-neutral measure in the context of reg. ~e-sw “ching models is to
first assume the observability of regimes and then use the extended “xirs = ~v principle (coinciding
in this case with the regime-switching Esscher transform or the m~~n-cc "recting transform) which
preserves the model specification and shifts the drift to the ris ~-free 1 ate in all regimes. See for
instance Elliott and Madan (1998) for the extended Girsar ov ~ .. ciple, Bithlmann et al (1996),
Gerber and Shiu (1996) and Goovaerts and Laeven (2008, “r .. Esscher transform, and Hardy
(2001) and Buffington and Elliott (2002b) for their app. ~atic 1 to the regime switching context.
Elliott et al (2005) provide a justification for using the 1=+ sr transform by showing that it leads
to the minimal entropy martingale measure. ™» hana.: regime latency, the typical approach
found for instance in Liew and Siu (2010) is *o co. pute the filtered risk-neutral distribution of
the hidden regimes to obtain weights for derive*ives prices associated with each regime which
lead to a price in the context of regime unobser . ability. Note that failing to recognize that latent

variables are unobserved can lead tc systeihatic bias in option prices, see Bégin and Gauthier

(2017).

The current paper shows that comv»"ng the usual Girsanov transform with the risk-neutral
filter in the context of regime-swit ing models provides derivatives price dynamics exhibiting
path-dependence even the 1gh the underlying asset price can be embedded in a Markov process

under the physical mes surr.

The non-Markoviar option price dynamics obtained through the usual pricing approach in the
context of Markov-a. ‘ven cate variables is the main motivation for the current study. A legitimate
perspective co. sists i1 accepting the presence of path-dependent derivatives prices even if the
underlying © .. ~* nrice dynamics can be embedded within a Markov process, as the former are not
incompatible w.h arbitrage pricing theory. However, we argue that the construction of martingale

measures producing path-independent vanilla option prices in this context, which is the main



objective of this paper, is relevant for multiple reasons.

A first motivation for the design of such risk-neutral measures is compu av. mal convenience.
Indeed, modeling option prices from a dynamic perspective rather tbin  static one is very
important since such dynamic models can be embedded into dyna. ic n.7ging performance
assessment models, see for instance Trottier et al (2018a). Consicerir 7, non-Markovian option
prices can significantly hinder the computational tractability ~f suc™ hedging schemes as it
requires keeping track of additional state variables which inc -eases ‘he dimensionality of the
underlying optimization problems. A second aspect mciva’...~ the construction of pricing
measures generating path-independent derivatives prices .. tha. cthe path-dependence feature is
incompatible with equilibrium models using time-addiv. = ut’ ity functions; this points towards
non-trivial theoretical implications such as time non-<or rable preferences as in Garcia et al
(2003). Although the construction of equilibriv™ moadls justifying the pricing measures from
the current paper is not attempted, it is reveri -eless relevant to identify pricing measures
possessing properties that are not inconsistent wi h simple traditional equilibrium models. Finally,
providing an interpretation for the relation betw.=n risk-neutral regime probabilities and observed
market asset prices stemming from t} e regu ar pricing approach yielding path-dependence is not

straightforward.

In the current paper, conven’ent "< native risk-neutral measures which remove the path-
dependence feature are developed. Similarly to Christoffersen et al (2009), we do not attempt
designing an equilibrium r nde’ recovering derivatives prices dynamics provided by the risk-neutral
measures developed heeir. Although very interesting, the latter work is scoped out from the
current paper; we for5 du - ly on the risk-neutral valuation relationship linking option prices to
exogenously given . ~gime- switching underlying asset price dynamics without characterizing the
entire economi : envi, nment. A first approach considered is a modified version of the regime-
switching Esscher v..nsform that leads to the construction of a wide class of risk-neutral measures
by engineering a dynamic transition matrix so as to yield option prices exhibiting the Markov
property. Such risk-neutral measures are obtained by the successive alteration of transition

probabilities and of the underlying asset drift. A second approach explores two different families
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of martingale measures whose Radon-Nikodym derivatives are measurable given the partially
observable information. For the latter measures, option prices exhibit the M. ~kov property, and
furthermore the conditional distribution of the past (unobservable) regir.c ‘rajectory given the
asset full trajectory set is left unaltered. Under all of our introduced marti.. -ale measures, option

prices can be calculated simply either through a dynamic program .1 . Moute-Carlo simulation.

Several other interesting papers from the regime-switching opti~m p..-ing literature should be
mentioned. Classical regime-switching dynamics were expan.'ed by incorporating jumps, see
Naik (1993), Elliott et al (2007) and Elliott and Siu (2017), fr .Chack effects of asset prices on
regime transition probabilities (Elliott et al, 2011), or GAR™H {codback effects (Duan et al, 2002).
Multiple types of derivatives were priced such as America. opti ns (Buffington and Elliott, 2002a),
perpetual American options (Zhang and Guo, 2004) her-"ar options (Jobert and Rogers, 2006;
Ranjbar and Seifi, 2015), and other exotic options suc.. as Asian and lookback options (Boyle
and Draviam, 2007). The incorporation to th~ mai” et of an additional asset providing payoffs at
regime switches which allows completing the ma ke is investigated in Guo (2001) and Fuh et al
(2012). The partial differential equations approa.: to price derivatives in regime-switching markets
is presented in Mamon and Rodrige (200.). Di Masi et al (1995) investigate mean-variance
hedging in the presence of regimes Variou. numerical schemes were developed to price options in
the regime-switching context, sucw. s t ees (Bollen, 1998; Yuen and Yang, 2009), and the fast
Fourier transform (Liu et al, “00u, Finally, alternative approaches to pricing such as equilibrium

and stochastic games are «ons lered in Garcia et al (2003) and Shen and Siu (2013).

The paper continues 2, fo'lows. Section 2 introduces the regime-switching market. Section 3
illustrates the use of the .~ an-correcting martingale measure to price options under regime
uncertainty. The . on-M: rkov behavior of option prices under such a transform is discussed.
Section 4 intrc duces 1 wide class of risk-neutral measures based on the successive alteration
of transition prou.wuilities and of the underlying asset drift. Section 5 explores two different

families of ma.' mgale measures whose Radon-Nikodym derivatives are measurable given the asset

trajectory. Section 6 concludes.



2 Regime-switching market

This section introduces the regime-switching market model. We adopt t* - shortiand notation

T1m = (Z1,...,%y), and denote the conditional PDF of random variables ¥ given Y by fxy.

2.1 Regime-switching model

Consider a discrete time space 7 = {0,...,T} and a probability space .2, Fr,P). Define a regime

process h = {h;}._;' and an innovation process z* = {2F}Z_, wnich are independent under P. The

P P

process z' is a strong standardized Gaussian white nois~ 1.e.. 2" is a sequence of i.i.d. normal
random variables with mean zero and unit variance. The prc cess h is a hidden Markov chain.
Possible values for regimes (the states of the Markov chai~) are hy(w) € {1,..., H} for all w € Q,

where H is a positive integer. A risk-free asset is inv.~duced and its price is given by B, = e

with r being the constant risk-free rate. A risky «s<et price process is defined by

[/t
S, = Syexp| Tﬂ) teT, (2.1)

=

where the asset log-returns are given ~v
€re1 7 e w2,  t€{0,..., T —1}, (2.2)

for some constants p; and o;, . € {1,..., H}. Although a Gaussian distribution is used for log-
returns in each regime ‘or s‘mpucity, all the concepts from this paper could easily be generalized
to non-Gaussian distribu. ~r, without additional technical difficulty. Non-Gaussian innovations

were considered in 1 regin e-switching option pricing context for instance by Siu et al (2011).

The filtrations J = {¢ }_,, H = {H;}, and F = {F;}]_, are respectively defined as
gt:U(So,...,St), Ht:()'(ho,...,ht), ./T"t:gt\/?‘[t. (23)

G; and H,; are sub-o-algebras of F;. The filtration G is referred to as the partial information



whereas F is called the full information. In practice, investors only have access to information G,

at time ¢ as regimes are hidden variables. We assume that for all j € {1,.. | H},

Plhiy1 = §|Gis1 V He] = P, (2.4)

where P, ; represents the probability of a transition k — j of the " Tar.ov chain h. This implies

Plhiy1 = j|Fi] = P, j-

This framework is known as a regime-switching (RS) model. 1™e joint mixed PDF of (61:T7 h0:T,1)

under such model is (proof in Appendix A.1)

- T
E:T,hO:Tﬂ(Gl:T, hor-1) = f;IEO o) 'I_I Fhy_ahe_s H ¢Hfjt,1(€t)7 (2.5)
t=2 t=1
where we have introduced the functions ¢* i € {1,..., H}, which are defined as
F@) = —ol T2 geRr 26)
7 = o \ o ) ) :

.2
with ¢(z) = e\/; denoting the s. » dar « normal PDF. Hence, ¢! is the Gaussian density with

mean j; and variance oZ.

2.2 Regime mass funciw. n

Following Francois et ai (201 .), we introduce n* = {n{}_, where 0} = (n;y,...,n{y) is defined
as the regime mas ' funct on process, or regime predictive density, with respect to the partial

information:

e, = Plhe = j1Gi), je{l,...,H}. (2.7)

The random ve “tor n; = (nf: B ,nff: H) determines what are the probabilities at time ¢ that the

regime process is currently in each respective possible regime given the observable information.



Using Bayes’ rule, the process 7 can be computed through the following recursion, see for

instance, Elliott et al (1995) or Francois et al (2014):

H H
Zj:l Pj; ¢§E(6t+1)77§j . Z]’:1 Pji ¢I§(€t+l)77£j
H H = H
Zé:l Zj:l Pjy ¢§)(€t+1)77£)j Zj:l gb?(‘gt—l—l)nf:j

U;QPH,Z': ) ie "o HY (2.8)

A direct consequence of this relation is the following proposition.
Proposition 2.1 (Francois et al 2014). The joint process {(St nf) }tT , has the Markov property

with respect to the filtration G under the physical measure P

The conditional density of the stock price process under P 1s

i A Mog =/ %) — ]
sz+1\So;t(8|SO5t) = Znt,k—exp B m— s> 07 (29)
k=1

1
s\/2mo} 207,

which is a mixture of log-normal distributions w th wising weights ;.

3 The RS mean-correcting m. vuv...;ale measure

This section illustrates the tradition<.( app.»ach to option pricing based on a regime-switching
version of the mean-correcting mart ' ngale .. _asure as in Hardy (2001) and Elliott et al (2005). This
procedure is shown to entail non-.." rke sian option price dynamics even though the underlying

asset price process can be e oeul~d in a Markov process under the physical measure.

3.1 Constructing th= h. mean-correcting martingale measure

Consider a European-ty, ~ ¢ mtingent claim whose payoff at time T is ¥(S7), for some Borel
real function V. Fur insta e, a call option has a payoff ¥(Sr) = max(Sr — K,0) where K > 0
is the strike pr'ce. The problem considered in the current paper is to identify a suitable price
process IT = {I1,)T for the contingent claim, where II; represents the contingent claim price
at time t. Si.~¢ regimes are unobservable, only prices II; that are G;-measurable are considered
as prices cannot depend on information that is unavailable to investors. In other words, option

prices cannot directly be a function of regimes as this would entail regimes are observable by



agents pricing the options. This approach is different from the one of Hardy (2001) where the
option price depends on the currently prevailing regime. Considering oy . ~n prices that are
G;-measurable is consistent with the weak form of efficient markets as e .pvined in Elliott and

Madan (1998).

Define Q as the set of all probability measures Q that are equiv-ien “~ P and such that the
discounted price process {e7"'S;}I_, is a G-martingale under th~ me.re Q. Such probability
measures are referred to as martingale measures. A well known result rom option pricing theory
(see, e.g., Harrison and Kreps, 1979, for a proof) is that th = set L. all pricing processes which do

not generate arbitrage opportunities is characterized by
{HQ = {eir(T*t)EQ[\IwST”gH f.T S Qe Q}

up to some integrability conditions to ensure pric>s are finite. Because the market is incomplete
under the regime-switching framework, an in9u.“e number of martingale measures exist and

solutions to the option pricing problem are .1s not unique.

A common approach is to select a p aticu’ar martingale measure under which the asset price
dynamics remains in the same clas, of 1. <els. This approach is followed for instance by Hardy
(2001) who considers a martinga.. aea ure under which the risky asset price returns are still
a Gaussian regime-switching pi. ~ess with transition probabilities F;;, but where the drift in
each regime p; is replaced py - — %Uf. Such a martingale measure can be constructed using a
regime-switching mean-c orrecu.. 5 change of measure following the lines of Elliott et al (2005) who

perform a similar exercis. n a continuous-time framework. Note that the pricing method in Elliott

et al (2005) is base 1 on a rersion of the Esscher transform, which was called a regime-switching

Esscher transfor .. Repiacing p; by r — %Uf in (2.6), the joint mixed PDF of returns and regimes
under such a ris'-nev ral measure Q is
T T
£2 s (e hor—1) = fi (ho) H P, oni s H o (€), (3.1)
t=2 t=1



where the functions cb;@, i€{l,...,H}, are defined as

o (x) = GLQS(LJF%UZ) z €R. (3.2)

g;

An assumption implicit to (3.1) is that the distribution of the initial regi. = hg is left untouched

by the change of measure i.e. f; = f%.

The following result (proven in the Online Appendix D.1) show s how .o create a new probability
measure under which the underlying asset price and regime ., dynaiwuics matches the desired one.
Proposition 3.1. Consider any joint mixed PDF for (e¢-.,ug.r- ) denoted by eZLTJzo;T_l' Then

the measure defined by Z|A] = EF []IAZ—%] , for all A € Tr, whe e

dZ — 6Zl:Tyho;T_l (\’--L 7 '1"u;1 —1)
dP ~ ff PENT (3.3)
d]P) 61:T7h0:T (el:T’ . \/ZT—l)
is a probability measure. 7 is equivalent to « if «d only if ezl:T,hoiT,l(elvahO:Tfl) is strictly
positive almost surely. Furthermore, the j. . . ed PDF of (€1, ho.r—1) under Z is EZkTJLO:T71,

Note that Proposition 3.1 is analogous .. Theorem 1.1 from Elliott and Madan (1998), but with
regimes that are introduced in the ma.'et. 3y Proposition 3.1, we thus consider the measure Q

generated by the Radon-Nikodyr « de.iva’ive

o fS:T,holT_l(GLT,ho:Tq) (3.4)

ap Jng,;LO;T_l(<51;T,ho:T—1)7 '
where I~ and f(-rlu:T-YO:Tf are defined as before; see (2.5) and (3.1). Simplifying yields (see
Online Appendix D 7,

T

dQ ZiAe— N7

W:E&’ & = M2, (3.5)
where

o~ T+ 50,
A=t 27k (3.6)

10



From (2.2), defining 22 = zF — ), yields

L
€Lkl =T = 50h, + Oh 2y

By Proposition 3.1, the joint PDF of (1.7, ho.r—1) under Q is fQ - - rthermore,

er.mh |
T . . :
) {z?} ., are independent standard Gaussian random variable. » nder Q,
T _ .
° {z;@ } ., and {h}]=}' are independent processes under Q

o Qlhiy1 = j|Gi1 V Hi| = Qlheyr = j|Fi] = Ph, j-

3.2 Contingent claim pricing

The joint process {(St,ht)}tho possesses the Markov jroperty under Q with respect to the

1

filtration F. The contingent claim price is thus given v

n2 = E° [e " T (Sy) 1G],

. |
— [EQ {EQ [e_T(T_t)\I/(ST“.TJ Ut

— [Q [9:(Se, ht)‘Qﬂ, v.” the Markov property of { (S, h;) }tT:07
H

= S 08 S ), &7
k=1

where 77,% =Qlh = |G, an 1 wih g4, t € {0,..., T}, being real functions characterized by the
following dynamic prograr.mir g scheme starting with gr(s, k) = ¥(s):

H 0
1 2
s, k)= by / (Ser_”’%/ﬂ"kz,E) —— e F/2z, ted{0,..., T —1}
9:(s, k) Z K, . Jt+1 m { }

For European ¢ stions i.e., for U(s) = max(s— K, 0), Hardy (2001) provides an explicit expression

for g; in the two ~oi-.es case.

The formula (. 7) illustrates the path-dependence feature generated by the RS mean-correcting
transform. At time ¢, for an investor, (S;,n;]) completely characterizes the likelihood of every

possible future scenarios under the physical measure P due to the Markov property of (S,7")

11



with respect to the partial information G. Indeed, fEHI.T‘gt A purely forward-

= Soronrison
looking price setting mechanism would produce an option price at time ¢ the. s measurable with
respect to o (S, 7). This is however not the case with the RS mean-corr . g transform as the
o(S;, n2)-measurable derivative price IIY is a function of 72 which is not ¢ [ Si, 5} )-measurable in
general since it depends on the whole path Sy, ..., S;. The optior p.'ce 11? therefore exhibits
path-dependence (non-Markovian behavior) although the underlying «. <et payoff can be expressed

as a function of the last observation of the G-Markov process (S,: ") under P. The Online

Appendix B further illustrates the path-dependence featurr 1n a simplified setting.

3.3 Stochastic discount factor representation

The path-dependence feature can be visualized throus’ a stochastic discount factor (SDF)

representation. As shown in the Online Appendix D.z, »rices obey the following relationship:

_,,Zfi 77Qi @@(Gtﬂ)
7 = EP[I2 md|G],  ml.=e L2 : (3.8)

Zz’lil 77}52‘ ¢12P(5t+1)

Therefore, the SDF m¥ is not o(e,nF |, measurable. Pricing under Q in fact entails weighing
prices at time ¢ + 1 based on the ri.'--ne tral regime predictive probabilities 77;@, thus in a
path-dependent fashion. This cc 11d poir ¢ toward complicated theoretical implications such as
time non-separable preferenc .- as in Garcia et al (2003). Note also that the SDF m¥ is not

o (e, n2 | )-measurable in ge .. al due to its dependence on 7} .

4 A new famil;' o° R3 mean-correcting martingale measures

This section shows how tl > concept of regime-switching mean-correcting change of measure can
be adapted to yield ~ o (S, n; )-measurable time-t option price. The key takeaway is that the
statistical propei.’~= of the regime process must be altered in suitable ways, i.e., so as to remove

non-Markovia v effects.

12



4.1 General construction of an alternative martingale measure

The joint mixed PDF of (e1.7, ho.7—1) under any probability measure M can be ¢. »ressed as

GRfI:Tﬁo:T—l(El:T’hOiT*l) = f%(ho)ﬁ\ﬁho(el‘ho) X (4.1)
T
H f/ljf,l\hm,g,el:t,l (ht—l ’ho:t—m 61:t—1) J"M{r b 14€15t—1 <€t|h0:t—17 61:t—1)-
t=2

To obtain the martingale property, we apply a RS mean co 2ct.c_, 1.e., we impose that condi-
tionally on the current regime h;_1, the distribution of the log-r turn ¢; is still Gaussian with
a conditional variance o} equal to the physical one and . conditional mean of r — 107 .

Therefore,

M = o5 t>1, (4.2)

et|ho:t—1,€1:4—1

where (,b;@, i€ {l,...,H}, is defined as before: see '3.2).

Alterations on transition probabilities of tF - »eeoin e process are applied to remove non-Markovian

1 H

effects on option prices. Consider a multivariate process ¥ = {¢;}1! where v, = { §” )] is a
,5=1

Gi-measurable H x H random matr'x for a.' t € {0,...,7 — 1}. Transition probabilities of the

following form are assumed under M:

M he—o,h—
fht71|h01t72761:t71 \ht*l!h’nit*% 61;t,1) - Pht—27ht—1¢§—tl > l)a t>2. (43)

This imposes that for al” t € " ..., T — 1} and all i,5 € {1,..., H},
N ) > 0 ai most surely, and Z P, ; ,S” ) =1 almost surely, (4.4)
j=1

to ensure posit'veness and normalization. Note also that the initial mass function of the first
regime can e . “ified from f, (ho) to fil(ho) during the passage from P to M. Coefficients
tﬁ) alter tran: ‘tion probabilities and could therefore be used to represent aversion to regime

transitions leading to adverse outcomes for trading agents in the market. However, the current

13



work does not use coefficients wt(l_]l) for such purposes; they are used in a mechanical fashion to
generate martingale measures which possess the desired property of yieldir . nath-independent

option prices.

By Proposition 3.1, such a measure M is constructed by the Radon-N"-ody. derivative

dMl fﬁT,ho:T_l(GLT,ho:TA) B f%(ho) r (hees, 1) = A
Fa e il | G | 2 (45
GLT)ho:T_l(El:Ty O:T—l) fho( 0) i—9 =1

where & is defined as in (3.5).

As shown in Appendix A.2; the risk-neutral mass functio.. of 1. imes is given by

H (4,8) ™0 A
Zj:l Pj,i t+1 ¢j L)

Wil _ .
M1, = Mhy1 = i|Gra] = q ;
' Zj:l de\ 1)1l

. te{0,..T—1}, (46

with ng’ﬂ = f}}’g(z)

Using (4.2) and (4.6), it is straightforward to st.ow that

H
F e o) = Zﬁ%¢9(€t+1)- (4.7)
i=1

Hence, provided that nM is o( m“) -aeacarable for all ¢ > 0, we have that the G;-conditional
distribution of the log-returr ¢, - under M depends exclusively on 7;. Furthermore, 1/, is a
function of (e;41,7F), as sbowi by (2.8). Applying this reasoning recursively, it follows that the
G;-conditional distribut’on o1 ~;1.7 under M depends only on ntp . This leads to the following
result:

Proposition 4.1. The j.int process {(St,nf)}tTZO has the Markov property with respect to the

filtration G und-. the piobability measure M if g is U(nf) -measurable for all t > 0.

Under the condi.’ ~»- stated in the above proposition, it follows that the option price

I = E"[e """ W(S7)|Gy]
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is O'(St, n ) -measurable by the Markov property. A simple way of designing a probability measure

M satisfying such conditions is provided next.

4.2 A simple construction of an alternative martingale measu e

In both Section 4.2 and Section 4.3 we assume that P;; > 0 for all ,y ={1,..., H}. Under this

assumption, a special case is obtained by specifying the measure Ml . rough the conditions

P
f,ll\f)l = f,IfO, and wt(“) = ]Z“ almost surely 1,7€{1,...,H}. (4.8)
Substituting (4.8) in (4.6) yields
' =] alme -+ surely. (4.9)

The condition from Proposition 4.1 requirir . mM (» be a(nf’ )-measurable for all t > 0 is thus

trivially satisfied. As stated in Remark 4.1 ** tin ~s out that the martingale measure M obtained
in this fashion has an interesting interpretation.

Remark 4.1. The martingale meas' re M ¢ btained with (4.8) can be understood as a sequence
of two consecutive changes of meas are: one from the physical measure P to an equivalent measure
P under which the statistical properv.~s Of returns are preserved, and another from P to M which

induces the martingale property ti. ~ugh a RS mean correction.

Indeed, assume P is a proi,. hi'ity measure such that for all t € {1,..., 7} and all j € {1,..., H},

Plho = j] = f(j), (4.10)
P[ht = |GV Hia] = 775)]‘7 (4.11)
5|h0;t—1,61;z—1 = SIhO:t—hGl:t—l = ¢§t—1' (412)

In other wora. when passing from P to JP), only the transition probabilities are shifted, from

15



Py, .\ n, to nfj n,- For such a measure P, it can be shown (see Appendix A.3 for a proof) that

P P (4.13)

et+11G — Jery1|Ge

This implies the joint distribution of log-returns is identical under hoth ™ and P, and thus the
change of measure from P to P preserves the statistical propert s - the underlying asset S.
Because regime-switching model adequacy and goodness-of-fit tatistical tests are characterized
by the distribution of the underlying process, there is no reason - P might be preferred to P
when a regime-switching model is deemed appropriate for t. ~ price dynamics of some asset; both
lead to the same joint distribution for the observed prices. L. ~refore, it cannot be distinguished
whether a given price path is generated under P or uni~r [F. “t hus, P could even be viewed as the

physical measure.

Next, let’s see how the change of measure can be d :composed. As shown in Appendix A.4, the

joint mixed PDF of (ey.7, ho.r—1) under P is

T T
E:T?hO:T—l (61:T7 hO’T '1> N on <h0) H nipfl,ht_l H ¢E1_1 <€t)‘ <414>
t=2 t=1

This implies the following represe atat.on of M:

dM  dM dP
_— == 4.1
dP ~ gp dP’ (4.15)
where
S/ ffﬁT,hO:Tﬂ(ELT, ho.r—1) B ﬁf (4.16)
= o - ty .
dP E:TyhO:T—l <61:T’ hO:T*I) t=1

with & defined as in ‘? 5| and

@ — él]1):T7hO:T71(61:,T7 hO:T_l) — ﬁ T]f—l,ht,1 (4 17)
AP f8 o hor s (€6 hor—1) 33 Prione

Therefore, M can be constructed by applying a regular Girsanov-type change of drift through
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(4.16) to a measure P under which the risky asset has the same statistical properties as under the
physical measure P. This confirms the statement in Remark 4.1. In summary. ."e regime-switching
mean-correcting change of measure can be used to yield Markovian optio’. . ices, but it must be

applied on I@, rather than P.

It is relevant to note that the pricing approach outlined in this sec.ior -orks because there are
multiple joint distributions for (e.r, ho.r—1) which allow recovering ti.~ same P-distribution for
Si.r characterized by (2.9). To use the terminology of Siu (201 1), mu tiple original markets (i.e.
specifications for the joint P-dynamics of €;.7 and hg.r_1) 2an "cc 1 to the same filtered market
dynamics, i.e. the P-distribution of €;.7. The approach 1c'owcd in the current section consists
in changing the measure to select a suitable original .. arke’ dynamics without changing the
filtered market dynamics to enable us to perform a cha»  of drift which does not induce path

dependence in option prices.

4.3 Incorporating regime uncertainty a.ei.on

The condition (4.9) implies that regime unowvservability risk is unpriced as the conditional

7

distribution of the hidden regime ’; is let untouched by the passage from P to M. The
current section illustrates a geners.ization of the previous method which can incorporate regime
unobservability risk aversion th-oug.. a - o-called conversion function. Such a function relates n™
to n® by applying a distortio. to '~ regime mass function process.

Definition 4.1. Consider fun tions ¢, : [0, 1] — [0,1], k € {1,..., H}, having the property

H
Ce(miy ...y, ) =1, forall (ny,...,ng) € [0,1]7 such that Zm =1.

i=1

I

The function ¢ - (3. ...,(y) is referred to as a conversion function.

The @Zz,gj’i) from (! 2} characterizing the martingale measure M are determined to enforce the

chosen conver n:

ey = G (n)) almost surely for all ¢ and all k. (4.18)

)
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By Proposition 4.1, path-dependence problems are purged when such a measure M is used as a
martingale measure for pricing. From (4.4) and (4.6), the above condition .~volves using e

that are solutions of the following linear system of equations, for all ¢ > .

Zf:l Pj,iwzgj’i)qﬁ?(Et){j (77}21)
S o2 (e (nf )

H
Zpi,j%i’j) =1, ie{l,..., «}.
=1

:Cl(nf)% i€{11’ '7-h:7
(4.19)

The solutions are characterized in the proposition below w 10<_ p1of is in Appendix A.5.
Proposition 4.2. The system of equations (4.19) admits w. infinite number of solutions. The
trivial solution is
wyﬂzzégil, i <14,...,H). (4.20)
i

A non-trivial solution to the system (4.19) is ores. ¢ed in the Online Appendix C.
Examples of conversion functions could ir -'de \r instance:
e The identity conversion function:

e The softmax function: for s.*v: re'.l constants a;, b;, with i € {1,..., H},

exp(ax + bp1k)
Sy exp(a; + bi)

Sh{ﬂla oo anH) = (422)

The identity conversion func'-on case described in Section 4.2 would reflect risk-neutrality with
respect to the risk assc ~iat :d v ith the unobservable current regime, whereas the softmax function
could reflect risk-av rsion *to the current regime risk. Values for parameters (ay, by) of the softmax

function could be oL~ .d through calibration using market option prices.

4.4 Price ~omputation algorithms

Using martinga. > measures M described in the current section, options can be priced by means

either of Monte-Carlo simulations or a dynamic programming approach. Both methods are
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outlined below.

4.4.1 Monte-Carlo simulations

A fairly simple recipe to simulate log-returns ¢; within a Monte-Carlo = mulation under the

measure M is given: at each t =0,...,T — 1,
1. Calculate n; from (2.8),
2. Calculate n§ = ¢;(nf), fori € {1,..., H},

3. Draw €;41 from the Gaussian mixture (4.7).

4.4.2  Dynamaic program

Dynamic programming can be used to price simpic ~ontingent claims. By Proposition 4.1, the

option price is O(St, nf )—measurable since (4.18, Heuce

m* =M [e_’"(T—”‘T’/ﬁ ‘)|Qt} = WN(StWF)y

for some real functions 7Y, ... wh.
The functions 7, ..., 7 can br coaputed through a simple dynamic program provided by

Proposition 4.3 which is prove’ in Apondix A.G.

Proposition 4.3. Foriec {1....,1'} andt € {0,...,T — 1}, define the functions

s e) = > P 5 () (4.23)
t+1,3 3 - .
Sl dF (e
and
D1 ("77151]), €t+1) = <Xt+1,1 (77,?, €t+1)7 <o Xt+1,H (773:?7 €t+1)>- (4.24)
Then, for a , * <= 40,...,T — 1} and any possible value of S; and 1y :
1 T 2 6722/2
M (S, 172”) — e Z Co (n}f)/ ) (Ster—ak/zwkz’ Xt+1(7711tp’ r—or/2+ akz)) Wor dz, (4.25)
k=1 &

—00

19



with ) (Sy,n}) = W(S7) where ¥ is the payoff function.

Moreover, the dimension of the pricing functional can be reduced by one a, su. *ed below.

Remark 4.2. Because Zle 77,@11’> r = 1 almost surely (since they repr-sen probabilities of a
sample space partition), the function x;11,(n, €) only needs to be ccmpu.>1 at points where
m + ...+ ng = 1. Because of this, we can drop WEH from the state var _“les since it is a known
quantity when n,[f: 1y~ 7771[5 ;1 are given. This reduces the dimen<i~n o. *he pricing functional by

one since it is possible to write (St, nf) = gt(St, 77?1, e ,nfjh 1) for some function g;, t € T.

5 Martingale measures based on Gr-mea-urc“ie transforms

Martingale measures from the previous section possess “he p.operty that they alter the likelihood

of past regimes given the full asset trajectory. Indec * because the Radon-Nikodym derivative %
is not Gr-measurable, there exists events A € F - su .. “hat
M[/' 71 = P[A|Gr]. (5.1)

For instance, the most probable regir - traje tory could differ significantly under M (compared to
under P). Since a risk-neutral mes sure re.. :cts risk-aversion and other considerations that affect
equilibrium prices; as such it rign. be Jdesirable not to alter the posterior regime distribution

when there is no asset risk le t, 1.c  given Sp.r.

This section illustrates th - co istruction of martingale measures which leave the Gr-conditional
distribution of past re;im s unaffected by the change of measure. A first approach relies on
the adaptation of th- weli-> ~.own Esscher transform to the latent regimes framework. A second
approach, based on a regi ae-mixture approach, combines features of the Esscher transform and

of martingale 1 1easur. s constructed in Section 4.

5.1 A con./it.onal version of the Esscher transform

The Esscher transform is a popular concept in finance and insurance for the pricing of financial

products, see for instance Gerber and Shiu (1994), Bithlmann et al (1996) and Bithlmann et al
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(1998). As explained in Gerber and Shiu (1994), pricing derivatives through the Esscher transform
is consistent with the presence of a representative agent optimizing his i . estments under a
power utility function. It is therefore relevant to investigate whether 1. can be adapted to
regime-switching models so as to provide a natural solution to path-de¢, ndence issues. The
Esscher transform presented hereby is a particular case of the ger :1.' pricing approach under
heteroskedasticity of Christoffersen et al (2009). It can also be seen . = a discrete-time version of
the Esscher transform from Siu (2014) which is applied on the filterec market obtained through

the application separation principle from filtering and optir.iat stochastic control theory.
The conditional Esscher risk-neutral measure @ is definea “w ti.c Radon-Nikodym derivative

dQ 14~ ~ Coo \ M
Q - Hgta ft = 676&_1 | L) ) (52>

=1 \Mt—1

where {6;}]_, and {a;}]_, are G-adapted processe: t) be defined. As shown in Appendix A.7, the

following condition, which is assumed to hold, ~ns. ves that @ is a probability measure:

H
1
0, = log (; ~.‘Pl; exp (Oétﬂk + 50%2‘713)) . (5.3)

Moreover, assuming this conditica h .lds as shown in Appendix A.8, the following condition is

necessary and sufficient to ens re thay  is a risk-neutral measure:

H
1 1
Z”Ek exp \’Yf U+ 5063012) [1 — €xp (,uk + oo + 50,3 - r)] = 0. (5.4)
k=1

A solution to this equation ~I'vays exists since the left hand side tends to minus infinity as a; — oo
and to infinity as ¢. — — o, on top of being a continuous function of ;. Equation (5.4) can be
solved numerically t¢ determine ay; the solution is a function of nf, and therefore (0;, o) is a

function of nF.
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Appendix A.9 shows that the distribution of returns under the measure @ is characterized by

H 2
o~ N xr — T T (6% O-i
Olevr < 21G) = 3 i, (”—) rem (5.5)

i=1 i
where ® is the standard Gaussian cumulative distribution function, =nd

ﬁP. _ 775),- exp (a’t,u/z’ + %Oz?a?) . (5 6)
N ZkH:1 10} ) €XP (oup + 3aic?)

~

The log-returns G;-conditional distribution under @ is thref,re till a Gaussian mixture with
modified mixing weights 7f and means shifted from y; to y; — ~+0? for each regime i € {1,..., H}.
Note that the passage from 7} to 7} is an instance of ~ co.. sion function since ay is a function

of nf as shown by (5.4).

Equations (5.5)-(5.6) indicate the Q distribution ¢ ¢ t 2 g-return €, given G, depends exclusively
on 7; since oy and 7 are functions of ;. Fui"ucmore, 7, is a function of (e.41,7)); see (2.8).
Applying this reasoning recursively, it follov. ~ tna. the Gi-conditional distribution of €, 1.7 under
@ depends only on 7¢. This leads to th- fllowing result:

Proposition 5.1. The joint process [fSt,’r;)};‘F:O has the Markov property with respect to the

filtration G under the probability nec sure Q.

This result entails that the ¢ on price at time ¢t is U(St, n )-measurable. Other theoretical
properties satisfied by this .nc sure are outlined in the remark below.

Remark 5.1. The risk-1euu. °! measure @ displays the following properties:

e The option price 1Lf’ = x0 [e‘T(T_t)\II(ST)}Qt] is J(St, n; )-measurable.
° Et is G-meast able fc *all ¢ € T and therefore Z% € Gr. Thus, the Gpr-conditional distribution

of past rir«s is -maffected by the change of measure: @[A|QT] = P[A|Gr], VA € Fr.

e If the mar..~o~le property is already satisfied under P, i.e., gb;@ =¢" foralli e {1,... H},

then th.~ is no change of measure, i.e., % = 1 almost surely.!

~

e In the single-regime case (H = 1), Q reduces to the usual Esscher martingale measure Q.

IThis is because we then have oy = #; = 0 almost surely for all .
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5.1.1 Option pricing schemes

A simple recipe is available to simulate log-returns under the measure @ * ith. > a Monte-Carlo

simulation: at each t =0,...,T — 1,
1. Calculate n;;, i € {1,..., H}, from (2.8),
2. Solve numerically for a; in (5.4),
3. Calculate 7, i € {1,..., H}, from (5.6),
4. Draw €, from the Gaussian mixture (5.5).
Note that the second and third steps can be pre-calculated.

Simple contingent claims can also be priced by dynai.'~ programming. Since the time-f option

price is O'(St, ny )—measurable, it follows that for all . = T there exists a function 7 such that

H? = ]E@ [e_T(T—t) A,\’QTN\’?t] — @@(St, 77)13).

The dynamic program that enables the recursive computation of the functions 71';@ can be derived

following the steps outlined in Sectic a1 4.4.2

H
0 AL
W;@ (St, 77}5)) =e " Z ﬁt]P:k/ 7 81 K'\de/ c*OétO'I%‘FO'kZ, Xet1 (77?7 Wi — at(f]% + O'kZ)>

with wg (ST, 77%’;) = U(S7) he e W is the payoff function, 7/ is defined as a function of 7} through
(5.6), and xy41 is defin .d by (4 24).

5.2 A regime-n ixtur¢ Esscher transform

We present no v a ne - family of martingale measures based on a regime-mixture approach. A
measure from this new family is denoted by Q. Similarly to the conditional Esscher transform @
from Section ¢ (, the Radon-Nikodym derivative characterizing the new regime-mixture Esscher
martingale measure Q is Gp-measurable. This implies the Gr-conditional distribution of regimes

ho.r—1 is left untouched by the change of measure. Moreover, as for RS mean-correcting measures
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M, the risk-neutral one-period conditional distribution of asset log-returns is a mixture of Gaussian
distribution whose mean is the risk-free rate minus the usual convexity cor . ~tion. The regime-
mixture approach therefore combines features of the two families of marting u. measures previously
considered, namely the new version of the RS mean-correcting measvre .© and the conditional

Esscher transform @ We first explain how this measure can be derve 1.
The PDF of a trajectory under a probability measure Q can be evnress.? as (see Appendix A.10)
) T
f61 o (51:T7 hO:T71> = f;LQ;:T_l‘gT<hO:T71‘g,‘) J—I .,[l(%|gt71(€t|gt71)' (5-8)
=1
In comparison, the PDF under P is given by (see App ndix A 11)
T H
oo (€11, hor—1) = fro o in (Pos 11G7) H Z 1 9; (5.9)

t=1 i=1

The regime-mixture Esscher martingale meast."¢ ™ 15 constructed by enforcing

f,?;:T,ﬂgT(ho:T_lygT) = 1% . op(hor-11Gr), (5.10)
H

et‘gt 1(6t|gt 1 = Y_JQ(UE)AW;Q(Q% vt € {]—7"-7T}7 (511)
=1

where ( is the conversion fun ..*on, and (b;@, i€ {l,...,H}, is defined as before; see (3.2). The
property (5.10) states that . Gpr-conditional distribution of the regime trajectory is unaltered
under Q. The property /5.1 states the G,_;-conditional distribution of the log-return ¢, under
Q is a Gaussian mixtu.~ v ith -aixing weights given by the vector ¢(n'_,), and means shifted from
Wi tor — %af for ez ch regme i € {1,..., H}. The purpose of the latter condition is to ensure the
martingale property 1. ~~.sfied, and that regime risk is priced according to the chosen conversion

function.

As shown in Appendix A.12 the Radon-Nikodym derivative is

dQ B 1—[&7 - Zfil Ci(ntpq)@Q(et) (5.12)

— = )
t=1 Zi:l 77351371,1‘ fb]f)(ﬁt)



Appendix A.13 shows that the distribution of returns under this measure is characterized by

- d T —r+ io?
Qler < |Gy = ZCZ'(UQP)CI’(—QZ), re™ (5.13)
i=1

i

Hence, for any s =0,...,T —t — 1, the G, ,-conditional distributior ~f ¢, ., under Q depends
only on 7, ,. Furthermore, by (2.8), 1}, is a function of (€4, 1, ). The above reasoning,
applied recursively, implies that the G,-conditional distribution f €41, under Q depends only on
nf. The next proposition then follows.

Proposition 5.2. The joint process {(St,nf)}tho has the .arkc v property with respect to the

filtration G under the probability measure Q.

This property entails that the option price H? = EQ e ‘(T_t)\II(ST)|Qt] is O’(St, n )—measurable.
Furthermore, the other properties stated in Remars 5.1 also hold for Q. Finally, since the
underlying asset price joint distribution are ident: . under M and Q, the pricing algorithms are

identical to those given in Section 4.4.

6 Conclusion

The current work shows that the usu‘.l approach to construct martingale measures in a regime-
switching framework based on “ne co. < ction of the drift for each respective regime (i.e., regime-
switching mean correction) leads v path-dependence even for vanilla options. More precisely,
even if the joint process ‘S, /) comprising the underlying asset price and the regime mass
function given observal e i formation has the Markov property, vanilla derivatives prices at time
t would not be a fur~*ion . * ictly of the current value of the latter process, i.e., of (S;,n/). The
construction of mui iple cc avenient martingale measures removing the path-dependence feature is

illustrated in t'.e cur. ‘nt paper.

Our first ap .. ~~~h is a modified version of the above concept of RS mean-correcting martingale
measure; it als. relies on RS mean correction to obtain the martingale property, but with the

inclusion of transition probability transforms so as to recuperate the Markov property of option
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prices. This yields a very wide class of new martingale measures removing the path-dependence.
This class includes an interesting special case which can be represented as the s . ~cessive application
of two changes of measures: a first one which allows retaining the exact -« ne underlying asset
statistical properties from the physical measure, and then a change o1 ‘rift on each regime.
Obtained generalizations allow for the pricing of regime uncertainty i »ugh conversion functions

which distort the hidden regime distribution given the currently obs. ved information.

A second approach developed is based on changes of measures v hose F adon-Nikodym derivatives
are o(Sy, ..., Sr)-measurable, implying that they do not i apa . "he conditional distribution of
the regime hidden trajectory given the full asset trajectory. Thi. approach embeds as a particular

case the well-known Esscher transform.

Simple pricing procedures for contingent claims ur “c: vue developed martingale measures based

either on dynamic programming or Monte-Carl ... lations are also provided.

Potential further work includes determining 1. »rices provided within the current study can
be recovered through equilibrium schemec.. T..: current paper relies on mathematical risk-
neutralization arguments for the obtain=-nt of derivatives prices without attempting to construct
an underlying equilibrium model leau.~g to 'he martingales measures that were designed herein
(except for the conditional Essche . trs asfcrm of Section 5.1 which we know is consistent with the
presence of a representative ag ‘nt max.mizing his expected power utility function). Equilibrium
schemes involving time seps~~ble preferences could be investigated to obtain path-independent

option prices in the contex. . regime-switching models with latent regimes.
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A Proofs

A.1 Proof of Eq. (2.5)

P P P
€1.7,h0.T7—1 (ELT? hOiT—l) = fel,ho (617 hO) H f€t7ht—1|€1:t—17h0:t—2 (6t7 ht—l |61:t~ ) hO:t—Q)a
t=2

= fio (h0) f2, 1o (€1 ho) X

T
P T
H fet\el:t,l,h&FI(€t|€1:t717 hO:tfl)fh 1lerie—s ho:t,Q(ht71|€1:t717 hO:t72)7
=2
T T
1 /F — 1
P : _
= fho(hO)HPht&,ht 1H ~ : 1)7
t=2 =1 The— \ -1

where the last equality follows from (2.2) and (2.4). Using ' dnition (2.6) concludes the proof.

A.2 Proof of Eq. (4.6)

77%[-1,1‘ = M [ht—H = i’gt-i-l] )

= ZM [hir1 = i[Gigy by = jIM [y = j|Giq]

j=1
H M .
. f € € j? €t+1|€1:
- Z P z/(/ 211\ ht:-]:- 4 l:t( s | t), from (43),
=1 Serirlens (1] €1:t)
- ZH‘ 1/1 fhtlel t(j| L: t) €tt1|ht,€1: (€t+1 |j7 €1: t)
o J i t+1 7
‘7: 1 Zk 1 fhflelt( | 1t) 6z+1‘ht Elt(6t+1|k7€1:t>
_ .. 6
= Y P L ]¢ (€e) from (4.2).

t+1 )
s 4 Zk:l 77t,k¢k (€t41)

A.3 Proofof E . (4.73)

H
EIF:JrlIs : Zf6t+1,ht\gt Ly k|gt = Z ht - k|gt €t+1|ht7gt(x|k’gt)' (Al)
k=1
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Moreover,

Gi| = EF | Blhy = 13 Hio]

—
=i b, (411)

1

Plh, = k|G, = E*[1,—131G] = EF |EX[L 3,13 /Ge, Hor]

gt} = 77tk

Similarly, it can be shown using (4.12) that

ff:mht,gt (zlk,Gi) = Qﬁ(@

Using the above relations in (A.1) yields

fet+1\gt x|gt Znt k¢k - je:+1\gt(x‘gt)a

where the last equality is straightforward to pro e. .c..ce, fimgt = ff:ﬂlgt.

A.4 Proof of Eq. (4.14)

T
E;T,hozT_l(elzTahO:T—l) = fg,ho(fLVbO}1—[fg,ht,”el:t,l,hoim(€t>ht—1|€1:t—1,ho:t—Q),
t=:

= Sao(P) 5o 1lho) X

T
]_[ fii\el:t, o1 (Et |€1:t717 ho:pl)ﬁl:t,l|El:t,1,h0:t,2 (htfl |€1:t717 hO:t72)>

=z

T T
> 4 ]Z)(ho) HnEl’ht_l H¢I}P;t—1(et)’ from (4.11) and (4.12).
=2 t=1

A.5 Proof of Pr._positicn 4.2

The system (4.1

;) 1s cywvalent to

T

H
S0y =0  and Y g =0,  ie{1,... H},

j=1 Jj=1
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where we have defined

WY =P G, ke = o) G ()

Indeed, the trivial solution is, for all 4,5 € {1,..., H},

g =0 o gpo =Sl (42)

The system has H? unknown values and 2H equations. 'f H > 2, the existence of a solution
implies that an infinite number of solutions exist. Even 1. 7 — 2, we can show there exists an

infinite number of solutions.

Indeed, the system can be written as follows for . = z,

| ke 0 R,2 ! ’ ! ~t(171) _ — 0 _
0 K1 0 Kio ! ~t(1’2) _ 0
110 o llaev ] o
0011 o?? o]
Y

Since det M = Ky K12 —Ke1k2 = 0, o2 “afinity of solutions exist by the properties of homogeneous

linear systems.
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A.6 Proof of Proposition 4.3

First,

ﬂ—iw (Stu 77}?) = EM [eir(Tit)\Ij(ST> ’gt] )
_ M [efrEM [efr(Tf(tJrl))\Il(ST) ‘ng}

= ¢ "EM |:7T,IXE1 (St+17 77tp+1)

G|,

g,

H
= Y Milh = k|G| E" [ng (Sesr: iy M6, = k]
k=1

H
= Y G Bl (Se )| S oF e = K[, by (418). (A3)
k=1

Moreover, from (2.8), the definition (4.23) implies ."at

775—1,1‘ = 0N ’i(",Pa €t+1)-

and thus

M1 = X1 (1] €41). (A.4)

This means

EM [Wﬁl (St—i-la ’I’Il.‘)._l) ‘bt, ]}F, ht = k'i|

= E" [7%1 (50 X1 () €1))

Stanfaht:k]a

tr

M| (,r-;22+azM P 2 M
=E {W Ite k/2ton L X1 (77t ;7 —0%/2+ Ukzt+1)

Stan}fpaht:k] 3

—22/2

N e
_ / w7 = 02+ 032) ) S (A5)

00 vV 2T

Combining (A..) and (A.5) yields the recursive formula (4.25) to obtain the option price I} =

M P "
7, (S, my ) from my.
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A.7 Proof of Eq. (5.3)

To ensure @ represents a change of probability measure, the following condivion w: ‘ch guarantees

that EP [%] =1 is assumed to hold for all ¢ > 0:

:>0t -

Next, let’s prove that EF [%ﬂ@} = 1. The follo* “ng L -operty will be useful:

-~

&s

It thus follows that for all ¢t > 1,

-
d

EP[HES

In particular, for ¢ = 1 th: above statement is equivalent to ]E]P[

ol

e O EP {exp (

P ,
Qefth, + 40 2 ) \ytJ :

H
e b E 771?, i €XD

H

P { 1
§ M e €XP L
is G;-measu. ~ble,

¢, EF [ET‘QT_J gt—1]7 by (A.8),
—_—

(applying recursively)

&

(A.6)

(A.8)

(A.9)



A.8 Proof of Eq. (5.4)

To ensure Q is a martingale measure, the following risk-neutral condition mnust .. ~1d:

S
er - |: ad gt:|7
St41
_ wlidd
arel
[T & B [52 T 6]
= , b, 'A),
M6 | [ EG]
n=t+1
=1,by (A.9)
[ Tg T 10
= E° EP[% IT &9 Gt
L ton=tr1 1
_ E]P’ St+1 EIP’ 12[ y |
= €t+1 N §n|qt+1 G|, by (A'8)7
L n=t-, 2

= EPle

= e‘e‘waxp (\(ub - D, + (o + 1)ahtzlp+1)

= €

Combining (5.3) and (A.7 1) v

zmkm .

d /
= Z‘ /:k eXp \Oét,uk

k=

—0; v

[ S/
N

=L,0, ‘x.f))

S at+1
*91: (_t"i'l\ gt] ,
It /

H

= It -

2 _ Mk~ -P
k=.

elds

<(at + D)y + %(at + 1)%,3) .

g,

(A.10)

H
1
.+ at0k> Zln,kexp<at+1),uk+2(at+l) ak—r>,

1 1
+ 504?0,3) [1 — exp <uk + oyop + 502 — 7’)] = 0.
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A.9 Proof of Eq. (5.5)

~ EP |:]l{5t+1§x}% gt:|
Qlery < 2|Gy] = s )
E [d_]P’ gt]
—~ T —~
Hi:l én ]EP |:]l{et+1§ x} Hn:t+1 gn gt] .
= - T , by (:1.8),
.. E ][] & gt]
n=t+1
:l,b;,(A 9)
= E]P 1{6t+1§$}€t+1 EP H & |g’r 1’ ‘7 by (A8)7
| n=t+2
-~
=1,by (A.9)
= EP 1{6t+1§w}€_0t+at€t+]lq+|
) H
— atpitoaroZt o
= € " Z nEiEP |:]l{“i+o'iz]ty+l—/ T}e e o gt’ ht - Z]' (A'll)
=1
Furthermore,
EF |1 apitenrizin |G, =i = ETHN oz g ()
{ui+aizf+1§r}e ty 10t ? ¢(Z) Z,

('75 Hi /O'z 1 5
/ atuiJrataiz e ? /2dZ,
v 2T

/(m wi)/oi 1

atui—l—afa?/Z_e—(z—aw'i)Z/Zdz
)
eatm+a?cr,~2/2q> (

V2T
T H — OétO'i) .
op)

(A.12)

Plugging (A.7) and (A.12) m (A.11), we obtain

@ [Et. < 7|gt]

—0; arpitalo? T — i — 07
GZT]P i+ /2(1)( p >,
H

> o
>

Oét0'i2
g; ’
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)
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A.10 Proof of Eq. (5.8)

The PDF of a trajectory (e1.7, ho.r—1) under a generic probability measure Q cawn be expressed as

fq 75hoT—1 (61:T7 hO:T—l) = fg:T (GI:T)f;%:T—l‘gT (hO:T—l:qT)a

since Gr = o(ey.r). Moreover,

12 (enr) = 12, (eur)f2, erllry),

(applying recursivel,

T —
- Hfglgt71<€t’gt_*,\‘
=1
Combining (A.13) and (A.14) yields (5.8).

A.11 Proof of Eq. (5.9)

The expression (5.8) also holds for P, i.e.,

!

EThOT (evr hor 1) - £ \1gr (hor-1|G7) H er[Go_1 (€2|Gi-1).

Plugging the following concluc »s the proof:

H
6IP;|gH (LL!G—l) Z [ht 1 *Z|gt 1] 6t|gt Lhe 1(€t|gt 1,° )
i=1

—”t 1 :4)]?(&)

A.12 Proofof 1'q. (5 12)

The Radon-Nil odym erivative is (from Proposition 3.1)

dQ qu hour, (€1:75 ho:r—1)
ap — ff (61:T7h0:T—1).

€1.17,ho:T-1

Plugging Equation (5.8), (5.9), (5.10) and (5.11) yields (5.12).
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A.13 Proof of Eq. (5.13)

The following property will be useful:
€, is Gi-measurable, Vs < t. (A.18)

Also, note that for all ¢t > 1

[ee] Q
Ep[gt|gt—1] _ / {Zz lcz 77t 1)¢ ( ) ét\gf 1{x|gt—1)}d$

Dim M 1z¢P( )
) Q
_ / {zz 1<.-1 T]t 1)(;5 (117) 77?_1,,- ¢£P(I)}d$,

00 z 177t 1z¢P\w i—d

H o 1
= ZC% nt 1 |:/ ("“\/“—"“J’
—————

8

i=1

= L (A.19)
Furthermore, for all t > 1
T —
EF | T] 4. Qt_ll = E s B [60|Gra] |Gi- 1], by (A.18),
s=t [ —,—/

=1, by (A.19)

(ap, .ying recursively)

= 1. (A.20)
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We are now ready to carry out the main proof:

@[€t+1 §$|gt] = EQ []l{qﬂgx}‘gt];
EF {]1{%9}%% gt]

BP[2g,]

E” []l{ﬁtﬂﬁw} Hstl gs
E?| [T, £.|6]

_ — 1
Hi: &s EF |:]1{6t 1<z} HZ: s yt]
_ ! * TN by (A1),

T
Hizl gs E]P [ H gs
s=t+1

—_———
=1, by (A..M

)

o

g]
1

r T
= EF l]l{emgx}gm EIP" H £, gt—i-l]
-+49

-~ —_—_—
-1, by (A.20)

gt] 9 by <A]‘8>7

= E [1{6t+1§ $}€t+1 | :;f,] )

CE e @) e
= / { ]; W 6t+1|gt(y|gt) dy7

—o0 e 772[£Pi o5 (y)
T v \H Q H
!- 1<z Y’t ¢ IP
= e &5 (y) ¢ dy,
/;OO ( Y_J’L 1 r]t’L ¢[FD ’Lz—: t

H
= N G L/— ¢(¢@(y)dy] ,

H 1.2
- r—r+350;
" gop (2

i=1 Ti
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