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Abstract

A well-known approach for the pricing of options under regime-switching models is to
use the regime-switching Esscher transform (also called regime-switching mean-correcting
martingale measure) to obtain risk-neutrality. One way to handle regime unobservability
consists in using regime probabilities that are filtered under this risk-neutral measure to
compute risk-neutral expected payoffs. The current paper shows that this natural approach
creates path-dependence issues within option price dynamics. Indeed, since the underlying
asset price can be embedded in a Markov process under the physical measure even when
regimes are unobservable, such path-dependence behavior of vanilla option prices is puzzling
and may entail non-trivial theoretical features (e.g., time non-separable preferences) in a way
that is difficult to characterize. This work develops novel and intuitive risk-neutral measures
that can incorporate regime risk-aversion in a simple fashion and which do not lead to such
path-dependence side effects. Numerical schemes either based on dynamic programming or
Monte-Carlo simulations to compute option prices under the novel risk-neutral dynamics
are presented.
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1 Introduction

Since their introduction in the economics literature by Hamilton (1989), regime-switching models

have received extensive attention in the context of derivatives pricing. This can be explained by

the ability of regime-switching models to reproduce stylized facts of financial log-returns such

as fat tails, volatility clusters and momentum, see for instance Ang and Timmermann (2012).

In particular, regime-switching models are used to price and hedge long-dated options; such

models are sensible choices in such circumstances since the underlying asset of a long-dated option

might go through multiple business cycles or varying financial conditions throughout the life of

the option. Moreover, regime-switching dynamics allow recovering volatility smiles exhibited by

empirical option prices, see Ishijima and Kihara (2005) and Yao et al (2006).

The pricing of long-dated equity options is extremely relevant in insurance; numerous long-term

insurance contracts such as variable annuities and equity-linked insurance include embedded

implicit options guaranteeing a minimum amount of benefits to be paid contingent on either the

survival or the mortality of the policyholder. Consider for example a variable annuity including a

Guaranteed Minimum Maturity Benefit (GMMB) rider. Under such a policy, the policyholder

deposits an initial amount of savings into the policy account, which is then typically invested

in a mutual fund. The insurer periodically collects fees from the policy account. In return, it

guarantees that the account value will be worth at least a minimum guaranteed value at the

maturity of the policy provided that the policyholder is alive at that date; in other words, the

insurer promises to make up for any possible shortfall between the terminal account value at

maturity and the guaranteed amount. For the insurer, such a promise consists in a short position

on a put option over the policy account value with the strike being the guaranteed amount.

Implicit options embedded in long-term insurance contracts are illiquid, which entails that

quantitative models are needed to value and hedge such options. Hardy (2003) pioneered the

use of regime-switching models to value long-term options embedded in variable annuities. A

non-exhaustive list of other papers which use this family of models to either price or hedge equity

options attached to equity-linked insurance contracts or variable annuities is hereby provided:
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Lin et al (2009), Jin et al (2011), Ng and Li (2011), Ngai and Sherris (2011), Wang and Yin

(2012) Azimzadeh et al (2014), Fan et al (2015), Siu et al (2015), Ignatieva et al (2016), Wang

et al (2017), Trottier et al (2018a), Trottier et al (2018b) and Ignatieva et al (2018).

The usual route to obtain a risk-neutral measure in the context of regime-switching models is to

first assume the observability of regimes and then use the extended Girsanov principle (coinciding

in this case with the regime-switching Esscher transform or the mean-correcting transform) which

preserves the model specification and shifts the drift to the risk-free rate in all regimes. See for

instance Elliott and Madan (1998) for the extended Girsanov principle, Bühlmann et al (1996),

Gerber and Shiu (1996) and Goovaerts and Laeven (2008) for the Esscher transform, and Hardy

(2001) and Buffington and Elliott (2002b) for their application to the regime switching context.

Elliott et al (2005) provide a justification for using the latter transform by showing that it leads

to the minimal entropy martingale measure. To handle regime latency, the typical approach

found for instance in Liew and Siu (2010) is to compute the filtered risk-neutral distribution of

the hidden regimes to obtain weights for derivatives prices associated with each regime which

lead to a price in the context of regime unobservability. Note that failing to recognize that latent

variables are unobserved can lead to systematic bias in option prices, see Bégin and Gauthier

(2017).

The current paper shows that combining the usual Girsanov transform with the risk-neutral

filter in the context of regime-switching models provides derivatives price dynamics exhibiting

path-dependence even though the underlying asset price can be embedded in a Markov process

under the physical measure.

The non-Markovian option price dynamics obtained through the usual pricing approach in the

context of Markov-driven state variables is the main motivation for the current study. A legitimate

perspective consists in accepting the presence of path-dependent derivatives prices even if the

underlying asset price dynamics can be embedded within a Markov process, as the former are not

incompatible with arbitrage pricing theory. However, we argue that the construction of martingale

measures producing path-independent vanilla option prices in this context, which is the main
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objective of this paper, is relevant for multiple reasons.

A first motivation for the design of such risk-neutral measures is computational convenience.

Indeed, modeling option prices from a dynamic perspective rather than a static one is very

important since such dynamic models can be embedded into dynamic hedging performance

assessment models, see for instance Trottier et al (2018a). Considering non-Markovian option

prices can significantly hinder the computational tractability of such hedging schemes as it

requires keeping track of additional state variables which increases the dimensionality of the

underlying optimization problems. A second aspect motivating the construction of pricing

measures generating path-independent derivatives prices is that the path-dependence feature is

incompatible with equilibrium models using time-additive utility functions; this points towards

non-trivial theoretical implications such as time non-separable preferences as in Garcia et al

(2003). Although the construction of equilibrium models justifying the pricing measures from

the current paper is not attempted, it is nevertheless relevant to identify pricing measures

possessing properties that are not inconsistent with simple traditional equilibrium models. Finally,

providing an interpretation for the relation between risk-neutral regime probabilities and observed

market asset prices stemming from the regular pricing approach yielding path-dependence is not

straightforward.

In the current paper, convenient alternative risk-neutral measures which remove the path-

dependence feature are developed. Similarly to Christoffersen et al (2009), we do not attempt

designing an equilibrium model recovering derivatives prices dynamics provided by the risk-neutral

measures developed herein. Although very interesting, the latter work is scoped out from the

current paper; we focus directly on the risk-neutral valuation relationship linking option prices to

exogenously given regime-switching underlying asset price dynamics without characterizing the

entire economic environment. A first approach considered is a modified version of the regime-

switching Esscher transform that leads to the construction of a wide class of risk-neutral measures

by engineering a dynamic transition matrix so as to yield option prices exhibiting the Markov

property. Such risk-neutral measures are obtained by the successive alteration of transition

probabilities and of the underlying asset drift. A second approach explores two different families
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of martingale measures whose Radon-Nikodym derivatives are measurable given the partially

observable information. For the latter measures, option prices exhibit the Markov property, and

furthermore the conditional distribution of the past (unobservable) regime trajectory given the

asset full trajectory set is left unaltered. Under all of our introduced martingale measures, option

prices can be calculated simply either through a dynamic program or a Monte-Carlo simulation.

Several other interesting papers from the regime-switching option pricing literature should be

mentioned. Classical regime-switching dynamics were expanded by incorporating jumps, see

Naik (1993), Elliott et al (2007) and Elliott and Siu (2013), feedback effects of asset prices on

regime transition probabilities (Elliott et al, 2011), or GARCH feedback effects (Duan et al, 2002).

Multiple types of derivatives were priced such as American options (Buffington and Elliott, 2002a),

perpetual American options (Zhang and Guo, 2004), barrier options (Jobert and Rogers, 2006;

Ranjbar and Seifi, 2015), and other exotic options such as Asian and lookback options (Boyle

and Draviam, 2007). The incorporation to the market of an additional asset providing payoffs at

regime switches which allows completing the market is investigated in Guo (2001) and Fuh et al

(2012). The partial differential equations approach to price derivatives in regime-switching markets

is presented in Mamon and Rodrigo (2005). Di Masi et al (1995) investigate mean-variance

hedging in the presence of regimes. Various numerical schemes were developed to price options in

the regime-switching context, such as trees (Bollen, 1998; Yuen and Yang, 2009), and the fast

Fourier transform (Liu et al, 2006). Finally, alternative approaches to pricing such as equilibrium

and stochastic games are considered in Garcia et al (2003) and Shen and Siu (2013).

The paper continues as follows. Section 2 introduces the regime-switching market. Section 3

illustrates the use of the mean-correcting martingale measure to price options under regime

uncertainty. The non-Markov behavior of option prices under such a transform is discussed.

Section 4 introduces a wide class of risk-neutral measures based on the successive alteration

of transition probabilities and of the underlying asset drift. Section 5 explores two different

families of martingale measures whose Radon-Nikodym derivatives are measurable given the asset

trajectory. Section 6 concludes.
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2 Regime-switching market

This section introduces the regime-switching market model. We adopt the shorthand notation

x1:n ≡ (x1, . . . , xn), and denote the conditional PDF of random variables X given Y by fX|Y .

2.1 Regime-switching model

Consider a discrete time space T = {0, . . . , T} and a probability space (Ω,FT ,P). Define a regime

process h = {ht}T−1
t=0 and an innovation process zP = {zPt }Tt=1 which are independent under P. The

process zP is a strong standardized Gaussian white noise, i.e., zP is a sequence of i.i.d. normal

random variables with mean zero and unit variance. The process h is a hidden Markov chain.

Possible values for regimes (the states of the Markov chain) are ht(ω) ∈ {1, . . . , H} for all ω ∈ Ω,

where H is a positive integer. A risk-free asset is introduced and its price is given by Bt = ert

with r being the constant risk-free rate. A risky asset price process is defined by

St = S0 exp

(
t∑

j=1

εj

)
, t ∈ T , (2.1)

where the asset log-returns are given by

εt+1 = µht + σhtz
P
t+1, t ∈ {0, . . . , T − 1}, (2.2)

for some constants µi and σi, i ∈ {1, . . . , H}. Although a Gaussian distribution is used for log-

returns in each regime for simplicity, all the concepts from this paper could easily be generalized

to non-Gaussian distributions without additional technical difficulty. Non-Gaussian innovations

were considered in a regime-switching option pricing context for instance by Siu et al (2011).

The filtrations G = {Gt}Tt=0, H = {Ht}Tt=0 and F = {Ft}Tt=0 are respectively defined as

Gt = σ(S0, . . . , St), Ht = σ(h0, . . . , ht), Ft = Gt ∨Ht. (2.3)

Gt and Ht are sub-σ-algebras of Ft. The filtration G is referred to as the partial information
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whereas F is called the full information. In practice, investors only have access to information Gt
at time t as regimes are hidden variables. We assume that for all j ∈ {1, . . . , H},

P[ht+1 = j|Gt+1 ∨Ht] = Pht,j, (2.4)

where Pk,j represents the probability of a transition k → j of the Markov chain h. This implies

P[ht+1 = j|Ft] = Pht,j.

This framework is known as a regime-switching (RS) model. The joint mixed PDF of
(
ε1:T , h0:T−1

)

under such model is (proof in Appendix A.1)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fP
h0

(h0)
T∏

t=2

Pht−2,ht−1

T∏

t=1

φP
ht−1

(εt), (2.5)

where we have introduced the functions φP
i , i ∈ {1, . . . , H}, which are defined as

φP
i (x) ≡ 1

σi
φ

(
x− µi
σi

)
, x ∈ R, (2.6)

with φ(z) ≡ e−z2/2√
2π

denoting the standard normal PDF. Hence, φP
i is the Gaussian density with

mean µi and variance σ2
i .

2.2 Regime mass function

Following François et al (2014), we introduce ηP = {ηPt }Tt=0 where ηPt =
(
ηPt,1, . . . , η

P
t,H

)
is defined

as the regime mass function process, or regime predictive density, with respect to the partial

information:

ηPt,j ≡ P[ht = j|Gt], j ∈ {1, . . . , H}. (2.7)

The random vector ηPt =
(
ηPt,1, . . . , η

P
t,H

)
determines what are the probabilities at time t that the

regime process is currently in each respective possible regime given the observable information.
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Using Bayes’ rule, the process ηP can be computed through the following recursion, see for

instance, Elliott et al (1995) or François et al (2014):

ηPt+1,i =

∑H
j=1 Pj,i φ

P
j (εt+1)ηPt,j∑H

`=1

∑H
j=1 Pj,` φ

P
j (εt+1)ηPt,j

=

∑H
j=1 Pj,i φ

P
j (εt+1)ηPt,j∑H

j=1 φ
P
j (εt+1)ηPt,j

, i ∈ {1, . . . , H}. (2.8)

A direct consequence of this relation is the following proposition.

Proposition 2.1 (François et al 2014). The joint process
{(
St, η

P
t

)}T
t=0

has the Markov property

with respect to the filtration G under the physical measure P.

The conditional density of the stock price process under P is

fP
St+1|S0:t

(s|S0:t) =
H∑

k=1

ηPt,k
1

s
√

2πσ2
k

exp

(
−
[

log(s/St)− µk
]2

2σ2
k

)
, s ≥ 0, (2.9)

which is a mixture of log-normal distributions with mixing weights ηPt .

3 The RS mean-correcting martingale measure

This section illustrates the traditional approach to option pricing based on a regime-switching

version of the mean-correcting martingale measure as in Hardy (2001) and Elliott et al (2005). This

procedure is shown to entail non-Markovian option price dynamics even though the underlying

asset price process can be embedded in a Markov process under the physical measure.

3.1 Constructing the RS mean-correcting martingale measure

Consider a European-type contingent claim whose payoff at time T is Ψ(ST ), for some Borel

real function Ψ. For instance, a call option has a payoff Ψ(ST ) = max(ST −K, 0) where K ≥ 0

is the strike price. The problem considered in the current paper is to identify a suitable price

process Π = {Πt}Tt=0 for the contingent claim, where Πt represents the contingent claim price

at time t. Since regimes are unobservable, only prices Πt that are Gt-measurable are considered

as prices cannot depend on information that is unavailable to investors. In other words, option

prices cannot directly be a function of regimes as this would entail regimes are observable by

8



agents pricing the options. This approach is different from the one of Hardy (2001) where the

option price depends on the currently prevailing regime. Considering option prices that are

Gt-measurable is consistent with the weak form of efficient markets as explained in Elliott and

Madan (1998).

Define Q as the set of all probability measures Q that are equivalent to P and such that the

discounted price process {e−rtSt}Tt=0 is a G-martingale under the measure Q. Such probability

measures are referred to as martingale measures. A well known result from option pricing theory

(see, e.g., Harrison and Kreps, 1979, for a proof) is that the set of all pricing processes which do

not generate arbitrage opportunities is characterized by

{
ΠQ =

{
e−r(T−t)EQ[Ψ(ST )|Gt]

}T
t=0

: Q ∈ Q
}

up to some integrability conditions to ensure prices are finite. Because the market is incomplete

under the regime-switching framework, an infinite number of martingale measures exist and

solutions to the option pricing problem are thus not unique.

A common approach is to select a particular martingale measure under which the asset price

dynamics remains in the same class of models. This approach is followed for instance by Hardy

(2001) who considers a martingale measure under which the risky asset price returns are still

a Gaussian regime-switching process with transition probabilities Pi,j, but where the drift in

each regime µi is replaced by r − 1
2
σ2
i . Such a martingale measure can be constructed using a

regime-switching mean-correcting change of measure following the lines of Elliott et al (2005) who

perform a similar exercise in a continuous-time framework. Note that the pricing method in Elliott

et al (2005) is based on a version of the Esscher transform, which was called a regime-switching

Esscher transform. Replacing µi by r − 1
2
σ2
i in (2.6), the joint mixed PDF of returns and regimes

under such a risk-neutral measure Q is

fQ
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fP
h0

(h0)
T∏

t=2

Pht−2,ht−1

T∏

t=1

φQ
ht−1

(εt), (3.1)
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where the functions φQ
i , i ∈ {1, . . . , H}, are defined as

φQ
i (x) ≡ 1

σi
φ

(
x− r + 1

2
σ2
i

σi

)
, x ∈ R. (3.2)

An assumption implicit to (3.1) is that the distribution of the initial regime h0 is left untouched

by the change of measure i.e. fP
h0

= fQ
h0

.

The following result (proven in the Online Appendix D.1) shows how to create a new probability

measure under which the underlying asset price and regimes dynamics matches the desired one.

Proposition 3.1. Consider any joint mixed PDF for (ε1:T , h0:T−1) denoted by fZ
ε1:T ,h0:T−1

. Then

the measure defined by Z[A] ≡ EP
[
1A

dZ
dP

]
, for all A ∈ FT , where

dZ
dP
≡
fZ
ε1:T ,h0:T−1

(ε1:T , h0:T−1)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1)
, (3.3)

is a probability measure. Z is equivalent to P if and only if fZ
ε1:T ,h0:T−1

(ε1:T , h0:T−1) is strictly

positive almost surely. Furthermore, the joint mixed PDF of (ε1:T , h0:T−1) under Z is fZ
ε1:T ,h0:T−1

.

Note that Proposition 3.1 is analogous to Theorem 1.1 from Elliott and Madan (1998), but with

regimes that are introduced in the market. By Proposition 3.1, we thus consider the measure Q

generated by the Radon-Nikodym derivative

dQ
dP

=
fQ
ε1:T ,h0:T−1

(ε1:T , h0:T−1)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1)
, (3.4)

where fP
ε1:T ,h0:T−1

and fQ
ε1:T ,h0:T−1

are defined as before; see (2.5) and (3.1). Simplifying yields (see

Online Appendix D.3)

dQ
dP

=
T∏

t=1

ξt, ξt = ez
P
t λt− 1

2
λ2t , (3.5)

where

λt ≡ −
µht−1 − r + 1

2
σ2
ht−1

σht−1

. (3.6)
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From (2.2), defining zQt ≡ zPt − λt yields

εt+1 = r − 1

2
σ2
ht + σhtz

Q
t+1.

By Proposition 3.1, the joint PDF of (ε1:T , h0:T−1) under Q is fQ
ε1:T ,h0:T−1

. Furthermore,

•
{
zQt
}T
t=1

are independent standard Gaussian random variables under Q,

•
{
zQt
}T
t=1

and {ht}T−1
t=0 are independent processes under Q,

• Q[ht+1 = j|Gt+1 ∨Ht] = Q[ht+1 = j|Ft] = Pht,j.

3.2 Contingent claim pricing

The joint process
{(
St, ht

)}T
t=0

possesses the Markov property under Q with respect to the

filtration F . The contingent claim price is thus given by

ΠQ
t = EQ[e−r(T−t)Ψ(ST )

∣∣Gt
]
,

= EQ
[
EQ[e−r(T−t)Ψ(ST )

∣∣Ft
]∣∣∣∣Gt

]
,

= EQ[gt(St, ht)
∣∣Gt
]
, by the Markov property of

{(
St, ht

)}T
t=0
,

=
H∑

k=1

ηQt,k gt(St, k), (3.7)

where ηQt,j ≡ Q [ht = j|Gt], and with gt, t ∈ {0, . . . , T}, being real functions characterized by the

following dynamic programming scheme starting with gT (s, k) = Ψ(s):

gt(s, k) =
H∑

`=1

Pk,`

∞∫

−∞

gt+1

(
ser−σ

2
k/2+σkz, `

) 1√
2π
e−z

2/2dz, t ∈ {0, . . . , T − 1}.

For European options, i.e., for Ψ(s) = max(s−K, 0), Hardy (2001) provides an explicit expression

for gt in the two regimes case.

The formula (3.7) illustrates the path-dependence feature generated by the RS mean-correcting

transform. At time t, for an investor, (St, η
P
t ) completely characterizes the likelihood of every

possible future scenarios under the physical measure P due to the Markov property of (S, ηP)
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with respect to the partial information G. Indeed, fP
St+1:T |Gt = fP

St+1:T |St,ηPt
. A purely forward-

looking price setting mechanism would produce an option price at time t that is measurable with

respect to σ(St, η
P
t ). This is however not the case with the RS mean-correcting transform as the

σ(St, η
Q
t )-measurable derivative price ΠQ

t is a function of ηQt which is not σ(St, η
P
t )-measurable in

general since it depends on the whole path S0, . . . , St. The option price ΠQ
t therefore exhibits

path-dependence (non-Markovian behavior) although the underlying asset payoff can be expressed

as a function of the last observation of the G-Markov process (S, ηP) under P. The Online

Appendix B further illustrates the path-dependence feature in a simplified setting.

3.3 Stochastic discount factor representation

The path-dependence feature can be visualized through a stochastic discount factor (SDF)

representation. As shown in the Online Appendix D.2, prices obey the following relationship:

ΠQ
t = EP[ΠQ

t+1m
Q
t+1

∣∣Gt
]
, mQ

t+1 = e−r
∑H

i=1 η
Q
t,i φ

Q
i (εt+1)

∑H
i=1 η

P
t,i φ

P
i (εt+1)

. (3.8)

Therefore, the SDF mQ
t is not σ(εt, η

P
t−1)-measurable. Pricing under Q in fact entails weighing

prices at time t + 1 based on the risk-neutral regime predictive probabilities ηQt , thus in a

path-dependent fashion. This could point toward complicated theoretical implications such as

time non-separable preferences as in Garcia et al (2003). Note also that the SDF mQ
t is not

σ(εt, η
Q
t−1)-measurable in general due to its dependence on ηPt .

4 A new family of RS mean-correcting martingale measures

This section shows how the concept of regime-switching mean-correcting change of measure can

be adapted to yield a σ(St, η
P
t )-measurable time-t option price. The key takeaway is that the

statistical properties of the regime process must be altered in suitable ways, i.e., so as to remove

non-Markovian effects.
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4.1 General construction of an alternative martingale measure

The joint mixed PDF of (ε1:T , h0:T−1) under any probability measure M can be expressed as

fM
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fM
h0

(h0)fM
ε1|h0(ε1|h0)× (4.1)

T∏

t=2

fM
ht−1|h0:t−2,ε1:t−1

(ht−1|h0:t−2, ε1:t−1) fM
εt|h0:t−1,ε1:t−1

(εt|h0:t−1, ε1:t−1).

To obtain the martingale property, we apply a RS mean correction, i.e., we impose that condi-

tionally on the current regime ht−1, the distribution of the log-return εt is still Gaussian with

a conditional variance σ2
ht−1

equal to the physical one and a conditional mean of r − 1
2
σ2
ht−1

.

Therefore,

fM
εt|h0:t−1,ε1:t−1

= φQ
ht−1

, t ≥ 1, (4.2)

where φQ
i , i ∈ {1, . . . , H}, is defined as before; see (3.2).

Alterations on transition probabilities of the regime process are applied to remove non-Markovian

effects on option prices. Consider a multivariate process ψ = {ψt}T−1
t=1 where ψt =

[
ψ

(i,j)
t

]H
i,j=1

is a

Gt-measurable H ×H random matrix for all t ∈ {0, . . . , T − 1}. Transition probabilities of the

following form are assumed under M:

fM
ht−1|h0:t−2,ε1:t−1

(ht−1|h0:t−2, ε1:t−1) = Pht−2,ht−1ψ
(ht−2,ht−1)
t−1 , t ≥ 2. (4.3)

This imposes that for all t ∈ {1, . . . , T − 1} and all i, j ∈ {1, . . . , H},

ψ
(i,j)
t > 0 almost surely, and

H∑

j=1

Pi,jψ
(i,j)
t = 1 almost surely, (4.4)

to ensure positiveness and normalization. Note also that the initial mass function of the first

regime can be modified from fP
h0

(h0) to fM
h0

(h0) during the passage from P to M. Coefficients

ψ
(i,j)
t−1 alter transition probabilities and could therefore be used to represent aversion to regime

transitions leading to adverse outcomes for trading agents in the market. However, the current
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work does not use coefficients ψ
(i,j)
t−1 for such purposes; they are used in a mechanical fashion to

generate martingale measures which possess the desired property of yielding path-independent

option prices.

By Proposition 3.1, such a measure M is constructed by the Radon-Nikodym derivative

dM
dP

=
fM
ε1:T ,h0:T−1

(ε1:T , h0:T−1)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1)
=
fM
h0

(h0)

fP
h0

(h0)

T∏

t=2

ψ
(ht−2,ht−1)
t−1

T∏

t=1

ξt, (4.5)

where ξt is defined as in (3.5).

As shown in Appendix A.2, the risk-neutral mass function of regimes is given by

ηMt+1,i ≡M[ht+1 = i|Gt+1] =

∑H
j=1 Pj,iψ

(j,i)
t+1 φ

Q
j (εt+1)ηMt,j∑H

j=1 φ
Q
j (εt+1)ηMt,j

, t ∈ {0, . . . T − 1}, (4.6)

with ηM0,i = fM
h0

(i).

Using (4.2) and (4.6), it is straightforward to show that

fM
εt+1|ε1:t(εt+1|ε1:t) =

H∑

i=1

ηMt,iφ
Q
i (εt+1). (4.7)

Hence, provided that ηMt is σ
(
ηPt
)
-measurable for all t ≥ 0, we have that the Gt-conditional

distribution of the log-return εt+1 under M depends exclusively on ηPt . Furthermore, ηPt+1 is a

function of (εt+1, η
P
t ), as shown by (2.8). Applying this reasoning recursively, it follows that the

Gt-conditional distribution of εt+1:T under M depends only on ηPt . This leads to the following

result:

Proposition 4.1. The joint process
{

(St, η
P
t )
}T
t=0

has the Markov property with respect to the

filtration G under the probability measure M if ηMt is σ
(
ηPt
)
-measurable for all t ≥ 0.

Under the conditions stated in the above proposition, it follows that the option price

ΠM
t = EM[e−r(T−t)Ψ(ST )

∣∣Gt
]

14



is σ
(
St, η

P
t

)
-measurable by the Markov property. A simple way of designing a probability measure

M satisfying such conditions is provided next.

4.2 A simple construction of an alternative martingale measure

In both Section 4.2 and Section 4.3 we assume that Pj,i > 0 for all i, j ∈ {1, . . . , H}. Under this

assumption, a special case is obtained by specifying the measure M through the conditions

fM
h0

= fP
h0
, and ψ

(j,i)
t =

ηPt,i
Pj,i

almost surely, i, j ∈ {1, . . . , H}. (4.8)

Substituting (4.8) in (4.6) yields

ηMt = ηPt almost surely. (4.9)

The condition from Proposition 4.1 requiring ηMt to be σ
(
ηPt
)
-measurable for all t ≥ 0 is thus

trivially satisfied. As stated in Remark 4.1, it turns out that the martingale measure M obtained

in this fashion has an interesting interpretation.

Remark 4.1. The martingale measure M obtained with (4.8) can be understood as a sequence

of two consecutive changes of measure: one from the physical measure P to an equivalent measure

P̃ under which the statistical properties of returns are preserved, and another from P̃ to M which

induces the martingale property through a RS mean correction.

Indeed, assume P̃ is a probability measure such that for all t ∈ {1, . . . , T} and all j ∈ {1, . . . , H},

P̃[h0 = j] = fP
h0

(j), (4.10)

P̃[ht = j|Gt ∨Ht−1] = ηPt,j, (4.11)

f P̃
εt|h0:t−1,ε1:t−1

= fP
εt|h0:t−1,ε1:t−1

= φP
ht−1

. (4.12)

In other words, when passing from P to P̃, only the transition probabilities are shifted, from

15



Pht−1,ht to ηPt,ht . For such a measure P̃, it can be shown (see Appendix A.3 for a proof) that

f P̃
εt+1|Gt = fP

εt+1|Gt . (4.13)

This implies the joint distribution of log-returns is identical under both P and P̃, and thus the

change of measure from P to P̃ preserves the statistical properties of the underlying asset S.

Because regime-switching model adequacy and goodness-of-fit statistical tests are characterized

by the distribution of the underlying process, there is no reason why P might be preferred to P̃

when a regime-switching model is deemed appropriate for the price dynamics of some asset; both

lead to the same joint distribution for the observed prices. Therefore, it cannot be distinguished

whether a given price path is generated under P or under P̃. Thus, P̃ could even be viewed as the

physical measure.

Next, let’s see how the change of measure can be decomposed. As shown in Appendix A.4, the

joint mixed PDF of (ε1:T , h0:T−1) under P̃ is

f P̃
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fP
h0

(h0)
T∏

t=2

ηPt−1,ht−1

T∏

t=1

φP
ht−1

(εt). (4.14)

This implies the following representation of M:

dM
dP
≡ dM

dP̃
dP̃
dP
, (4.15)

where

dM
dP̃

=
fM
ε1:T ,h0:T−1

(ε1:T , h0:T−1)

f P̃
ε1:T ,h0:T−1

(ε1:T , h0:T−1)
=

T∏

t=1

ξt, (4.16)

with ξt defined as in (3.5), and

dP̃
dP

=
f P̃
ε1:T ,h0:T−1

(ε1:T , h0:T−1)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1)
=

T∏

t=2

ηPt−1,ht−1

Pht−2,ht−1

. (4.17)

Therefore, M can be constructed by applying a regular Girsanov-type change of drift through
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(4.16) to a measure P̃ under which the risky asset has the same statistical properties as under the

physical measure P. This confirms the statement in Remark 4.1. In summary, the regime-switching

mean-correcting change of measure can be used to yield Markovian option prices, but it must be

applied on P̃, rather than P.

It is relevant to note that the pricing approach outlined in this section works because there are

multiple joint distributions for (ε1:T , h0:T−1) which allow recovering the same P-distribution for

S1:T characterized by (2.9). To use the terminology of Siu (2014), multiple original markets (i.e.

specifications for the joint P-dynamics of ε1:T and h0:T−1) can lead to the same filtered market

dynamics, i.e. the P-distribution of ε1:T . The approach followed in the current section consists

in changing the measure to select a suitable original market dynamics without changing the

filtered market dynamics to enable us to perform a change of drift which does not induce path

dependence in option prices.

4.3 Incorporating regime uncertainty aversion

The condition (4.9) implies that regime unobservability risk is unpriced as the conditional

distribution of the hidden regime ht is left untouched by the passage from P to M. The

current section illustrates a generalization of the previous method which can incorporate regime

unobservability risk aversion through a so-called conversion function. Such a function relates ηM

to ηP by applying a distortion to the regime mass function process.

Definition 4.1. Consider functions ζk : [0, 1]H → [0, 1], k ∈ {1, . . . , H}, having the property

H∑

k=1

ζk(η1, . . . , ηH) = 1, for all (η1, . . . , ηH) ∈ [0, 1]H such that
H∑

i=1

ηi = 1.

The function ζ = (ζ1, . . . , ζH) is referred to as a conversion function.

The ψ
(j,i)
t from (4.3) characterizing the martingale measure M are determined to enforce the

chosen conversion:

ηMt,k = ζk
(
ηPt
)

almost surely for all t and all k. (4.18)
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By Proposition 4.1, path-dependence problems are purged when such a measure M is used as a

martingale measure for pricing. From (4.4) and (4.6), the above condition involves using ψ
(i,j)
t

that are solutions of the following linear system of equations, for all t ≥ 1:

∑H
j=1 Pj,iψ

(j,i)
t φQ

j (εt)ζj
(
ηPt−1

)
∑H

j=1 φ
Q
j (εt)ζj

(
ηPt−1

) = ζi
(
ηPt
)
, i ∈ {1, . . . , H},

H∑

j=1

Pi,jψ
(i,j)
t = 1, i ∈ {1, . . . , H}.

(4.19)

The solutions are characterized in the proposition below whose proof is in Appendix A.5.

Proposition 4.2. The system of equations (4.19) admits an infinite number of solutions. The

trivial solution is

ψ
(j,i)
t =

ζi
(
ηPt
)

Pj,i
, i, j ∈ {1, . . . , H}. (4.20)

A non-trivial solution to the system (4.19) is presented in the Online Appendix C.

Examples of conversion functions could include for instance:

• The identity conversion function:

ζk(η1, . . . , ηH) = ηk, (4.21)

• The softmax function: for some real constants ai, bi, with i ∈ {1, . . . , H},

ζk(η1, . . . , ηH) =
exp(ak + bkηk)∑H
i=1 exp(ai + biηi)

. (4.22)

The identity conversion function case described in Section 4.2 would reflect risk-neutrality with

respect to the risk associated with the unobservable current regime, whereas the softmax function

could reflect risk-aversion to the current regime risk. Values for parameters (ak, bk) of the softmax

function could be obtained through calibration using market option prices.

4.4 Price computation algorithms

Using martingale measures M described in the current section, options can be priced by means

either of Monte-Carlo simulations or a dynamic programming approach. Both methods are
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outlined below.

4.4.1 Monte-Carlo simulations

A fairly simple recipe to simulate log-returns εt within a Monte-Carlo simulation under the

measure M is given: at each t = 0, . . . , T − 1,

1. Calculate ηPt from (2.8),

2. Calculate ηMt,i = ζi
(
ηPt
)
, for i ∈ {1, . . . , H},

3. Draw εt+1 from the Gaussian mixture (4.7).

4.4.2 Dynamic program

Dynamic programming can be used to price simple contingent claims. By Proposition 4.1, the

option price is σ
(
St, η

P
t

)
-measurable since (4.18). Hence

ΠM
t = EM[e−r(T−t)Ψ(ST )

∣∣Gt
]

= πM
t

(
St, η

P
t

)
,

for some real functions πM
0 , . . . , π

M
T .

The functions πM
0 , . . . , π

M
T can be computed through a simple dynamic program provided by

Proposition 4.3 which is proven in Appendix A.6.

Proposition 4.3. For i ∈ {1, . . . , H} and t ∈ {0, . . . , T − 1}, define the functions

χt+1,i(η, ε) ≡
∑H

j=1 Pj,i φ
P
j (ε)ηj∑H

j=1 φ
P
j (ε)ηj

(4.23)

and

χt+1

(
ηPt , εt+1

)
=
(
χt+1,1

(
ηPt , εt+1

)
, . . . , χt+1,H

(
ηPt , εt+1

))
. (4.24)

Then, for any t ∈ {0, . . . , T − 1} and any possible value of St and ηPt :

πM
t

(
St, η

P
t

)
= e−r

H∑

k=1

ζk
(
ηPt
) ∞∫

−∞

πM
t+1

(
Ste

r−σ2
k/2+σkz, χt+1

(
ηPt , r − σ2

k/2 + σkz
)) e−z2/2√

2π
dz, (4.25)
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with πM
T

(
ST , η

P
T

)
= Ψ(ST ) where Ψ is the payoff function.

Moreover, the dimension of the pricing functional can be reduced by one as stated below.

Remark 4.2. Because
∑H

k=1 η
P
t,k = 1 almost surely (since they represent probabilities of a

sample space partition), the function χt+1,i(η, ε) only needs to be computed at points where

η1 + . . .+ ηH = 1. Because of this, we can drop ηPt,H from the state variables since it is a known

quantity when ηPt,1, . . . , η
P
t,H−1 are given. This reduces the dimension of the pricing functional by

one since it is possible to write πM
t

(
St, η

P
t

)
= ḡt

(
St, η

P
t,1, . . . , η

P
t,H−1

)
for some function ḡt, t ∈ T .

5 Martingale measures based on GT -measurable transforms

Martingale measures from the previous section possess the property that they alter the likelihood

of past regimes given the full asset trajectory. Indeed, because the Radon-Nikodym derivative dM
dP

is not GT -measurable, there exists events A ∈ FT such that

M[A|GT ] 6= P[A|GT ]. (5.1)

For instance, the most probable regime trajectory could differ significantly under M (compared to

under P). Since a risk-neutral measure reflects risk-aversion and other considerations that affect

equilibrium prices; as such it might be desirable not to alter the posterior regime distribution

when there is no asset risk left, i.e., given S0:T .

This section illustrates the construction of martingale measures which leave the GT -conditional

distribution of past regimes unaffected by the change of measure. A first approach relies on

the adaptation of the well-known Esscher transform to the latent regimes framework. A second

approach, based on a regime-mixture approach, combines features of the Esscher transform and

of martingale measures constructed in Section 4.

5.1 A conditional version of the Esscher transform

The Esscher transform is a popular concept in finance and insurance for the pricing of financial

products, see for instance Gerber and Shiu (1994), Bühlmann et al (1996) and Bühlmann et al
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(1998). As explained in Gerber and Shiu (1994), pricing derivatives through the Esscher transform

is consistent with the presence of a representative agent optimizing his investments under a

power utility function. It is therefore relevant to investigate whether it can be adapted to

regime-switching models so as to provide a natural solution to path-dependence issues. The

Esscher transform presented hereby is a particular case of the general pricing approach under

heteroskedasticity of Christoffersen et al (2009). It can also be seen as a discrete-time version of

the Esscher transform from Siu (2014) which is applied on the filtered market obtained through

the application separation principle from filtering and optimal stochastic control theory.

The conditional Esscher risk-neutral measure Q̂ is defined by the Radon-Nikodym derivative

dQ̂
dP

=
T∏

t=1

ξ̂t, ξ̂t ≡ e−θt−1

(
St
St−1

)αt−1

, (5.2)

where {θt}Tt=0 and {αt}Tt=0 are G-adapted processes to be defined. As shown in Appendix A.7, the

following condition, which is assumed to hold, ensures that Q̂ is a probability measure:

θt = log

(
H∑

k=1

ηPt,k exp

(
αtµk +

1

2
α2
tσ

2
k

))
. (5.3)

Moreover, assuming this condition holds, as shown in Appendix A.8, the following condition is

necessary and sufficient to ensure that Q̂ is a risk-neutral measure:

H∑

k=1

ηPt,k exp

(
αtµk +

1

2
α2
tσ

2
k

)[
1− exp

(
µk + αtσ

2
k +

1

2
σ2
k − r

)]
= 0. (5.4)

A solution to this equation always exists since the left hand side tends to minus infinity as αt →∞

and to infinity as αt → −∞, on top of being a continuous function of αt. Equation (5.4) can be

solved numerically to determine αt; the solution is a function of ηPt , and therefore (θt, αt) is a

function of ηPt .
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Appendix A.9 shows that the distribution of returns under the measure Q̂ is characterized by

Q̂[εt+1 ≤ x|Gt] =
H∑

i=1

η̂Pt,iΦ

(
x− µi − αtσ2

i

σi

)
, x ∈ R, (5.5)

where Φ is the standard Gaussian cumulative distribution function, and

η̂Pt,i =
ηPt,i exp

(
αtµi + 1

2
α2
tσ

2
i

)
∑H

k=1 η
P
t,k exp

(
αtµk + 1

2
α2
tσ

2
k

) . (5.6)

The log-returns Gt-conditional distribution under Q̂ is therefore still a Gaussian mixture with

modified mixing weights η̂Pt and means shifted from µi to µi−αtσ2
i for each regime i ∈ {1, . . . , H}.

Note that the passage from ηPt to η̂Pt is an instance of a conversion function since αt is a function

of ηPt as shown by (5.4).

Equations (5.5)-(5.6) indicate the Q̂ distribution of the log-return εt+1 given Gt depends exclusively

on ηPt since αt and η̂Pt are functions of ηPt . Furthermore, ηPt+1 is a function of (εt+1, η
P
t ); see (2.8).

Applying this reasoning recursively, it follows that the Gt-conditional distribution of εt+1:T under

Q̂ depends only on ηPt . This leads to the following result:

Proposition 5.1. The joint process
{

(St, η
P
t )
}T
t=0

has the Markov property with respect to the

filtration G under the probability measure Q̂.

This result entails that the option price at time t is σ
(
St, η

P
t

)
-measurable. Other theoretical

properties satisfied by this measure are outlined in the remark below.

Remark 5.1. The risk-neutral measure Q̂ displays the following properties:

• The option price ΠQ̂
t = EQ̂

[
e−r(T−t)Ψ(ST )

∣∣Gt
]

is σ
(
St, η

P
t

)
-measurable.

• ξ̂t is Gt-measurable for all t ∈ T and therefore dQ̂
dP ∈ GT . Thus, the GT -conditional distribution

of past risks is unaffected by the change of measure: Q̂[A|GT ] = P[A|GT ], ∀A ∈ FT .

• If the martingale property is already satisfied under P, i.e., φQ
i = φP

i for all i ∈ {1, . . . , H},

then there is no change of measure, i.e., dQ̂
dP = 1 almost surely.1

• In the single-regime case (H = 1), Q̂ reduces to the usual Esscher martingale measure Q.

1This is because we then have αt = θt = 0 almost surely for all t.
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5.1.1 Option pricing schemes

A simple recipe is available to simulate log-returns under the measure Q̂ within a Monte-Carlo

simulation: at each t = 0, . . . , T − 1,

1. Calculate ηPt,i, i ∈ {1, . . . , H}, from (2.8),

2. Solve numerically for αt in (5.4),

3. Calculate η̂Pt,i, i ∈ {1, . . . , H}, from (5.6),

4. Draw εt+1 from the Gaussian mixture (5.5).

Note that the second and third steps can be pre-calculated.

Simple contingent claims can also be priced by dynamic programming. Since the time-t option

price is σ
(
St, η

P
t

)
-measurable, it follows that for all t ∈ T there exists a function πQ̂

t such that

ΠQ̂
t ≡ EQ̂[e−r(T−t)Ψ(ST )

∣∣Gt
]

= πQ̂
t

(
St, η

P
t

)
.

The dynamic program that enables the recursive computation of the functions πQ̂
t can be derived

following the steps outlined in Section 4.4.2:

πQ̂
t

(
St, η

P
t

)
= e−r

H∑

k=1

η̂Pt,k

∞∫

−∞

πQ̂
t+1

(
Ste

µk−αtσ2
k+σkz, χt+1

(
ηPt , µk − αtσ2

k + σkz
)) e−z2/2√

2π
dz, (5.7)

with πQ̂
T

(
ST , η

P
T

)
= Ψ(ST ) where Ψ is the payoff function, η̂Pt is defined as a function of ηPt through

(5.6), and χt+1 is defined by (4.24).

5.2 A regime-mixture Esscher transform

We present now a new family of martingale measures based on a regime-mixture approach. A

measure from this new family is denoted by Q̄. Similarly to the conditional Esscher transform Q̂

from Section 5.1, the Radon-Nikodym derivative characterizing the new regime-mixture Esscher

martingale measure Q̄ is GT -measurable. This implies the GT -conditional distribution of regimes

h0:T−1 is left untouched by the change of measure. Moreover, as for RS mean-correcting measures
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M, the risk-neutral one-period conditional distribution of asset log-returns is a mixture of Gaussian

distribution whose mean is the risk-free rate minus the usual convexity correction. The regime-

mixture approach therefore combines features of the two families of martingale measures previously

considered, namely the new version of the RS mean-correcting measure M and the conditional

Esscher transform Q̂. We first explain how this measure can be derived.

The PDF of a trajectory under a probability measure Q̄ can be expressed as (see Appendix A.10)

f Q̄
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = f Q̄
h0:T−1|GT (h0:T−1|GT )

T∏

t=1

f Q̄
εt|Gt−1

(εt|Gt−1). (5.8)

In comparison, the PDF under P is given by (see Appendix A.11)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fP
h0:T−1|GT (h0:T−1|GT )

T∏

t=1

H∑

i=1

ηPt−1,i φ
P
i (εt). (5.9)

The regime-mixture Esscher martingale measure Q̄ is constructed by enforcing

f Q̄
h0:T−1|GT (h0:T−1|GT ) = fP

h0:T−1|GT (h0:T−1|GT ), (5.10)

f Q̄
εt|Gt−1

(εt|Gt−1) =
H∑

i=1

ζi(η
P
t−1)φQ

i (εt), ∀t ∈ {1, . . . , T}, (5.11)

where ζ is the conversion function, and φQ
i , i ∈ {1, . . . , H}, is defined as before; see (3.2). The

property (5.10) states that the GT -conditional distribution of the regime trajectory is unaltered

under Q̄. The property (5.11) states the Gt−1-conditional distribution of the log-return εt under

Q̄ is a Gaussian mixture with mixing weights given by the vector ζ(ηPt−1), and means shifted from

µi to r− 1
2
σ2
i for each regime i ∈ {1, . . . , H}. The purpose of the latter condition is to ensure the

martingale property is satisfied, and that regime risk is priced according to the chosen conversion

function.

As shown in Appendix A.12 the Radon-Nikodym derivative is

dQ̄
dP

=
T∏

t=1

ξ̄t, ξ̄t ≡
∑H

i=1 ζi(η
P
t−1)φQ

i (εt)∑H
i=1 η

P
t−1,i φ

P
i (εt)

. (5.12)
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Appendix A.13 shows that the distribution of returns under this measure is characterized by

Q̄[εt+1 ≤ x|Gt] =
H∑

i=1

ζi(η
P
t )Φ

(
x− r + 1

2
σ2
i

σi

)
, x ∈ R. (5.13)

Hence, for any s = 0, . . . , T − t− 1, the Gt+s-conditional distribution of εt+1+s under Q̄ depends

only on ηPt+s. Furthermore, by (2.8), ηPt+s is a function of
(
εt+s, η

P
t+s−1

)
. The above reasoning,

applied recursively, implies that the Gt-conditional distribution of εt+1:T under Q̄ depends only on

ηPt . The next proposition then follows.

Proposition 5.2. The joint process
{

(St, η
P
t )
}T
t=0

has the Markov property with respect to the

filtration G under the probability measure Q̄.

This property entails that the option price ΠQ̄
t = EQ̄

[
e−r(T−t)Ψ(ST )

∣∣Gt
]

is σ
(
St, η

P
t

)
-measurable.

Furthermore, the other properties stated in Remark 5.1 also hold for Q̄. Finally, since the

underlying asset price joint distribution are identical under M and Q̄, the pricing algorithms are

identical to those given in Section 4.4.

6 Conclusion

The current work shows that the usual approach to construct martingale measures in a regime-

switching framework based on the correction of the drift for each respective regime (i.e., regime-

switching mean correction) leads to path-dependence even for vanilla options. More precisely,

even if the joint process (S, ηP) comprising the underlying asset price and the regime mass

function given observable information has the Markov property, vanilla derivatives prices at time

t would not be a function strictly of the current value of the latter process, i.e., of (St, η
P
t ). The

construction of multiple convenient martingale measures removing the path-dependence feature is

illustrated in the current paper.

Our first approach is a modified version of the above concept of RS mean-correcting martingale

measure; it also relies on RS mean correction to obtain the martingale property, but with the

inclusion of transition probability transforms so as to recuperate the Markov property of option
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prices. This yields a very wide class of new martingale measures removing the path-dependence.

This class includes an interesting special case which can be represented as the successive application

of two changes of measures: a first one which allows retaining the exact same underlying asset

statistical properties from the physical measure, and then a change of drift on each regime.

Obtained generalizations allow for the pricing of regime uncertainty through conversion functions

which distort the hidden regime distribution given the currently observed information.

A second approach developed is based on changes of measures whose Radon-Nikodym derivatives

are σ(S0, . . . , ST )-measurable, implying that they do not impact the conditional distribution of

the regime hidden trajectory given the full asset trajectory. This approach embeds as a particular

case the well-known Esscher transform.

Simple pricing procedures for contingent claims under the developed martingale measures based

either on dynamic programming or Monte-Carlo simulations are also provided.

Potential further work includes determining if prices provided within the current study can

be recovered through equilibrium schemes. The current paper relies on mathematical risk-

neutralization arguments for the obtainment of derivatives prices without attempting to construct

an underlying equilibrium model leading to the martingales measures that were designed herein

(except for the conditional Esscher transform of Section 5.1 which we know is consistent with the

presence of a representative agent maximizing his expected power utility function). Equilibrium

schemes involving time separable preferences could be investigated to obtain path-independent

option prices in the context of regime-switching models with latent regimes.
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A Proofs

A.1 Proof of Eq. (2.5)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fP
ε1,h0

(ε1, h0)
T∏

t=2

fP
εt,ht−1|ε1:t−1,h0:t−2

(εt, ht−1|ε1:t−1, h0:t−2),

= fP
h0

(h0)fP
ε1|h0(ε1|h0)×

T∏

t=2

fP
εt|ε1:t−1,h0:t−1

(εt|ε1:t−1, h0:t−1)fP
ht−1|ε1:t−1,h0:t−2

(ht−1|ε1:t−1, h0:t−2),

= fP
h0

(h0)
T∏

t=2

Pht−2,ht−1

T∏

t=1

1

σht−1

φ

(
εt − µht−1

σht−1

)
,

where the last equality follows from (2.2) and (2.4). Using definition (2.6) concludes the proof.

A.2 Proof of Eq. (4.6)

ηMt+1,i = M [ht+1 = i|Gt+1] ,

=
H∑

j=1

M [ht+1 = i|Gt+1, ht = j]M [ht = j|Gt+1] ,

=
H∑

j=1

Pj,iψ
(j,i)
t+1

fM
ht,εt+1|ε1:t(j, εt+1|ε1:t)

fM
εt+1|ε1:t(εt+1|ε1:t)

, from (4.3),

=
H∑

j=1

Pj,iψ
(j,i)
t+1

fM
ht|ε1:t(j|ε1:t)f

M
εt+1|ht,ε1:t(εt+1|j, ε1:t)

∑H
k=1 f

M
ht|ε1:t(k|ε1:t)fM

εt+1|ht,ε1:t(εt+1|k, ε1:t)
,

=
H∑

j=1

Pj,iψ
(j,i)
t+1

ηMt,jφ
Q
j (εt+1)

∑H
k=1 η

M
t,kφ

Q
k (εt+1)

, from (4.2).

A.3 Proof of Eq. (4.13)

f P̃
εt+1|Gt(x|Gt) =

H∑

k=1

f P̃
εt+1,ht|Gt(x, k|Gt) =

H∑

k=1

P̃[ht = k|Gt]f P̃
εt+1|ht,Gt(x|k,Gt). (A.1)
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Moreover,

P̃[ht = k|Gt] = EP̃[1{ht=k}|Gt] = EP̃
[
EP̃[1{ht=k}|Gt,Ht−1]

∣∣∣Gt
]

= EP̃
[
P̃[ht = k|Gt,Ht−1]︸ ︷︷ ︸

= ηPt,k, by (4.11)

∣∣∣Gt
]

= ηPt,k.

Similarly, it can be shown using (4.12) that

f P̃
εt+1|ht,Gt(x|k,Gt) = φP

k(x).

Using the above relations in (A.1) yields

f P̃
εt+1|Gt(x|Gt) =

H∑

k=1

ηPt,kφ
P
k(x) = fP

εt+1|Gt(x|Gt),

where the last equality is straightforward to prove. Hence, f P̃
εt+1|Gt = fP

εt+1|Gt .

A.4 Proof of Eq. (4.14)

f P̃
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = f P̃
ε1,h0

(ε1, h0)
T∏

t=2

f P̃
εt,ht−1|ε1:t−1,h0:t−2

(εt, ht−1|ε1:t−1, h0:t−2),

= fP
h0

(h0)f P̃
ε1|h0(ε1|h0)×

T∏

t=2

f P̃
εt|ε1:t−1,h0:t−1

(εt|ε1:t−1, h0:t−1)f P̃
ht−1|ε1:t−1,h0:t−2

(ht−1|ε1:t−1, h0:t−2),

= fP
h0

(h0)
T∏

t=2

ηPt−1,ht−1

T∏

t=1

φP
ht−1

(εt), from (4.11) and (4.12).

A.5 Proof of Proposition 4.2

The system (4.19) is equivalent to

H∑

j=1

ψ̃
(j,i)
t κt,j = 0 and

H∑

j=1

ψ̃
(i,j)
t = 0, i ∈ {1, . . . , H},
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where we have defined

ψ̃
(j,i)
t ≡ Pj,iψ

(j,i)
t − ζi

(
ηPt
)
, κt,j ≡ φQ

j (εt)ζj
(
ηPt−1

)
.

Indeed, the trivial solution is, for all i, j ∈ {1, . . . , H},

ψ̃
(j,i)
t = 0 ⇒ ψ

(j,i)
t =

ζi
(
ηPt
)

Pj,i
. (A.2)

The system has H2 unknown values and 2H equations. If H > 2, the existence of a solution

implies that an infinite number of solutions exist. Even if H = 2, we can show there exists an

infinite number of solutions.

Indeed, the system can be written as follows for H = 2,




κt,1 0 κt,2 0

0 κt,1 0 κt,2

1 1 0 0

0 0 1 1




︸ ︷︷ ︸
≡M




ψ̃
(1,1)
t

ψ̃
(1,2)
t

ψ̃
(2,1)
t

ψ̃
(2,2)
t




=




0

0

0

0



.

Since det M = κt,1κt,2−κt,1κt,2 = 0, an infinity of solutions exist by the properties of homogeneous

linear systems.
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A.6 Proof of Proposition 4.3

First,

πM
t

(
St, η

P
t

)
= EM[e−r(T−t)Ψ(ST )

∣∣Gt
]
,

= EM
[
e−rEM[e−r(T−(t+1))Ψ(ST )

∣∣Gt+1

]∣∣∣Gt
]
,

= e−rEM
[
πM
t+1

(
St+1, η

P
t+1

)∣∣∣Gt
]
,

= e−r
H∑

k=1

M[ht = k|Gt]EM
[
πM
t+1

(
St+1, η

P
t+1

)∣∣∣Gt, ht = k
]
,

= e−r
H∑

k=1

ζk
(
ηPt
)
EM
[
πM
t+1

(
St+1, η

P
t+1

)∣∣∣St, ηPt , ht = k
]
, by (4.18). (A.3)

Moreover, from (2.8), the definition (4.23) implies that

ηPt+1,i = χt+1,i

(
ηPt , εt+1

)
.

and thus

ηPt+1 = χt+1

(
ηPt , εt+1

)
. (A.4)

This means

EM
[
πM
t+1

(
St+1, η

P
t+1

)∣∣∣St, ηPt , ht = k
]

= EM
[
πM
t+1

(
Ste

εt+1 , χt+1

(
ηPt , εt+1

))∣∣∣St, ηPt , ht = k
]
,

= EM
[
πM
t+1

(
Ste

r−σ2
k/2+σkz

M
t+1, χt+1

(
ηPt , r − σ2

k/2 + σkz
M
t+1

)) ∣∣∣∣St, ηPt , ht = k

]
,

=

∫ ∞

−∞
πM
t+1

(
Ste

r−σ2
k/2+σkz, χt+1

(
ηPt , r − σ2

k/2 + σkz
)) e−z2/2√

2π
dz. (A.5)

Combining (A.3) and (A.5) yields the recursive formula (4.25) to obtain the option price ΠM
t =

πM
t (St, η

P
t ) from πM

t+1.
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A.7 Proof of Eq. (5.3)

To ensure Q̂ represents a change of probability measure, the following condition which guarantees

that EP
[
dQ̂
dP

]
= 1 is assumed to hold for all t ≥ 0:

1 = EP
[
ξ̂t+1

∣∣∣Gt
]
, (A.6)

= e−θtEP
[(

St+1

St

)αt
∣∣∣∣Gt
]
,

= e−θtEP
[
exp

(
αtµht + αtσhtz

P
t+1

) ∣∣∣∣Gt
]
,

= e−θt
H∑

k=1

ηPt,k exp

(
αtµk +

1

2
α2
tσ

2
k

)
,

⇒ θt = log

(
H∑

k=1

ηPt,k exp

(
αtµk +

1

2
α2
tσ

2
k

))
. (A.7)

Next, let’s prove that EP
[
dQ̂
dP

]
= 1. The following property will be useful:

ξ̂s is Gt-measurable, ∀s ≤ t. (A.8)

It thus follows that for all t ≥ 1,

EP

[
T∏

s=t

ξ̂s

∣∣∣∣∣Gt−1

]
= EP

[
T−1∏

s=t

ξ̂s EP
[
ξ̂T

∣∣∣GT−1

]

︸ ︷︷ ︸
= 1, by (A.6)

∣∣∣∣∣Gt−1

]
, by (A.8),

... (applying recursively)

= 1. (A.9)

In particular, for t = 1 the above statement is equivalent to EP
[
dQ̂
dP

]
= 1.
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A.8 Proof of Eq. (5.4)

To ensure Q̂ is a martingale measure, the following risk-neutral condition must hold:

er = EQ̂
[
St+1

St

∣∣∣∣Gt
]
,

=
EP
[
St+1

St

dQ̂
dP

∣∣∣Gt
]

EP
[
dQ̂
dP

∣∣∣Gt
] ,

=

∏t
n=1 ξ̂n EP

[
St+1

St

∏T
n=t+1 ξ̂n

∣∣∣Gt
]

∏t
n=1 ξ̂n EP

[
T∏

n=t+1

ξ̂n

∣∣∣∣∣Gt
]

︸ ︷︷ ︸
= 1, by (A.9)

, by (A.8),

= EP

[
EP

[
St+1

St

T∏

n=t+1

ξ̂n

∣∣∣∣∣Gt+1

]∣∣∣∣∣Gt
]
,

= EP

[
St+1

St
ξ̂t+1 EP

[
T∏

n=t+2

ξ̂n

∣∣∣∣∣Gt+1

]

︸ ︷︷ ︸
= 1, by (A.9)

∣∣∣∣∣Gt
]
, by (A.8),

= EP

[
e−θt

(
St+1

St

)αt+1
∣∣∣∣∣Gt
]
,

= e−θtEP
[

exp
(
(αt + 1)µht + (αt + 1)σhtz

P
t+1

) ∣∣∣Gt
]
,

= e−θt
H∑

k=1

ηPt,k exp

(
(αt + 1)µk +

1

2
(αt + 1)2σ2

k

)
. (A.10)

Combining (5.3) and (A.10) yields

H∑

k=1

ηPt,k exp

(
αtµk +

1

2
α2
tσ

2
k

)
=

H∑

k=1

ηPt,k exp

(
(αt + 1)µk +

1

2
(αt + 1)2σ2

k − r
)
,

⇒
H∑

k=1

ηPt,k exp

(
αtµk +

1

2
α2
tσ

2
k

)[
1− exp

(
µk + αtσ

2
k +

1

2
σ2
k − r

)]
= 0.
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A.9 Proof of Eq. (5.5)

Q̂ [εt+1 ≤ x|Gt] =
EP
[
1{εt+1≤x}

dQ̂
dP

∣∣∣Gt
]

EP
[
dQ̂
dP

∣∣∣Gt
] ,

=

∏t
n=1 ξ̂n EP

[
1{εt+1≤x}

∏T
n=t+1 ξ̂n

∣∣∣Gt
]

∏t
n=1 ξ̂n EP

[
T∏

n=t+1

ξ̂n

∣∣∣∣∣Gt
]

︸ ︷︷ ︸
= 1, by (A.9)

, by (A.8),

= EP

[
1{εt+1≤x}ξ̂t+1 EP

[
T∏

n=t+2

ξ̂n

∣∣∣∣∣Gt+1

]

︸ ︷︷ ︸
= 1, by (A.9)

∣∣∣∣∣Gt
]
, by (A.8),

= EP
[
1{εt+1≤x}e

−θt+αtεt+1

∣∣∣Gt
]
,

= e−θt
H∑

i=1

ηPt,iEP
[
1{µi+σizPt+1≤x}e

αtµi+αtσiz
P
t+1

∣∣∣Gt, ht = i
]
. (A.11)

Furthermore,

EP
[
1{µi+σizPt+1≤x}e

αtµi+αtσiz
P
t+1

∣∣∣Gt, ht = i
]

=

∫ (x−µi)/σi

−∞
eαtµi+αtσizφ(z)dz,

=

∫ (x−µi)/σi

−∞
eαtµi+αtσiz

1√
2π
e−z

2/2dz,

=

∫ (x−µi)/σi

−∞
eαtµi+α

2
tσ

2
i /2

1√
2π
e−(z−αtσi)

2/2dz,

= eαtµi+α
2
tσ

2
i /2Φ

(
x− µi
σi

− αtσi
)
. (A.12)

Plugging (A.7) and (A.12) in (A.11), we obtain

Q̂ [εt+1 ≤ x|Gt] = e−θt
H∑

i=1

ηPt,ie
αtµi+α

2
tσ

2
i /2Φ

(
x− µi − αtσ2

i

σi

)
,

=
H∑

i=1

ηPt,ie
αtµi+α

2
tσ

2
i /2

∑H
k=1 η

P
t,ke

αtµk+α2
tσ

2
k/2

Φ

(
x− µi − αtσ2

i

σi

)
,

=
H∑

i=1

η̂Pt,iΦ

(
x− µi − αtσ2

i

σi

)
.
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A.10 Proof of Eq. (5.8)

The PDF of a trajectory (ε1:T , h0:T−1) under a generic probability measure Q̄ can be expressed as

f Q̄
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = f Q̄
ε1:T

(ε1:T )f Q̄
h0:T−1|GT (h0:T−1|GT ), (A.13)

since GT ≡ σ(ε1:T ). Moreover,

f Q̄
ε1:T

(ε1:T ) = f Q̄
ε1:T−1

(ε1:T−1)f Q̄
εT |GT−1

(εT |GT−1),

... (applying recursively)

=
T∏

t=1

f Q̄
εt|Gt−1

(εt|Gt−1). (A.14)

Combining (A.13) and (A.14) yields (5.8).

A.11 Proof of Eq. (5.9)

The expression (5.8) also holds for P, i.e.,

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1) = fP
h0:T−1|GT (h0:T−1|GT )

T∏

t=1

fP
εt|Gt−1

(εt|Gt−1). (A.15)

Plugging the following concludes the proof:

fP
εt|Gt−1

(εt|Gt−1) =
H∑

i=1

P[ht−1 = i|Gt−1]︸ ︷︷ ︸
≡ ηPt−1,i

fP
εt|Gt−1,ht−1

(εt|Gt−1, i)︸ ︷︷ ︸
=φPi (εt)

. (A.16)

A.12 Proof of Eq. (5.12)

The Radon-Nikodym derivative is (from Proposition 3.1)

dQ̄
dP
≡
f Q̄
ε1:T ,h0:T−1

(ε1:T , h0:T−1)

fP
ε1:T ,h0:T−1

(ε1:T , h0:T−1)
. (A.17)

Plugging Equation (5.8), (5.9), (5.10) and (5.11) yields (5.12).
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A.13 Proof of Eq. (5.13)

The following property will be useful:

ξ̄s is Gt-measurable, ∀s ≤ t. (A.18)

Also, note that for all t ≥ 1

EP[ξ̄t|Gt−1] =

∫ ∞

−∞

{∑H
i=1 ζi(η

P
t−1)φQ

i (x)
∑H

i=1 η
P
t−1,i φ

P
i (x)

fP
εt|Gt−1

(x|Gt−1)

}
dx,

=

∫ ∞

−∞

{∑H
i=1 ζi(η

P
t−1)φQ

i (x)
∑H

i=1 η
P
t−1,i φ

P
i (x)

H∑

i=1

ηPt−1,i φ
P
i (x)

}
dx,

=
H∑

i=1

ζi(η
P
t−1)

[∫ ∞

−∞
φQ
i (x)dx

]

︸ ︷︷ ︸
= 1

,

= 1. (A.19)

Furthermore, for all t ≥ 1

EP

[
T∏

s=t

ξ̄s

∣∣∣∣∣Gt−1

]
= EP

[
T−1∏

s=t

ξ̄s EP[ξ̄T
∣∣GT−1

]
︸ ︷︷ ︸

= 1, by (A.19)

∣∣∣∣∣Gt−1

]
, by (A.18),

... (applying recursively)

= 1. (A.20)
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We are now ready to carry out the main proof:

Q̄[εt+1 ≤ x|Gt] = EQ̄[1{εt+1≤x}
∣∣Gt
]
,

≡
EP
[
1{εt+1≤x}

dQ̄
dP

∣∣∣Gt
]

EP
[
dQ̄
dP

∣∣∣Gt
] ,

=
EP
[
1{εt+1≤x}

∏T
s=1 ξ̄s

∣∣∣Gt
]

EP
[∏T

s=1 ξ̄s

∣∣∣Gt
] ,

=

∏t
s=1 ξ̄s EP

[
1{εt+1≤x}

∏T
s=t+1 ξ̄s

∣∣∣Gt
]

∏t
s=1 ξ̄s E

P

[
T∏

s=t+1

ξ̄s

∣∣∣∣∣Gt
]

︸ ︷︷ ︸
= 1, by (A.20)

, by (A.18),

= EP

[
1{εt+1≤x}ξ̄t+1 EP

[
T∏

s=t+2

ξ̄s

∣∣∣∣∣Gt+1

]

︸ ︷︷ ︸
= 1, by (A.20)

∣∣∣∣∣Gt
]
, by (A.18),

= EP[1{εt+1≤x}ξ̄t+1

∣∣Gt
]
,

=

∫ x

−∞

{∑H
i=1 ζi(η

P
t )φQ

i (y)∑H
i=1 η

P
t,i φ

P
i (y)

fP
εt+1|Gt(y|Gt)

}
dy,

=

∫ x

−∞

{∑H
i=1 ζi(η

P
t )φQ

i (y)∑H
i=1 η

P
t,i φ

P
i (y)

H∑

i=1

ηPt,i φ
P
i (y)

}
dy,

=
H∑

i=1

ζi(η
P
t )

[∫ x

−∞
φQ
i (y)dy

]
,

=
H∑

i=1

ζi(η
P
t )Φ

(
x− r + 1

2
σ2
i

σi

)
.
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