
A Framework for Parallelizing OWL Classification in Description

Logic Reasoners

Zixi Quan

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montreal, Quebec, Canada

March 2019

c© Zixi Quan, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211521256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Zixi Quan

Entitled: A Framework for Parallelizing OWL Classification in Description Logic

Reasoners

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. S. Samuel Li

External Examiner

Dr. Weichang Du

External to Program

Dr. Chun Wang

Examiner

Dr. Dhrubajyoti Goswami

Examiner

Dr. Yuhong Yan

Thesis Supervisor

Dr. Volker Haarslev

Approved by
Dr. Volker Haarslev, Graduate Program Director

April 23, 2019
Dr. Amir Asif, Dean

Gina Cody School of Engineering & Computer Science

iii

ABSTRACT

A Framework for Parallelizing OWL Classification in Description Logic Reasoners

Zixi Quan, Ph.D.

Concordia University, 2019

The Web Ontology Language (OWL) is a widely used knowledge representation lan-

guage for describing knowledge in application domains by using classes, properties,

and individuals. Ontology classification is an important and widely used service that

computes a taxonomy of all classes occurring in an ontology. It can require significant

amounts of runtime, but most OWL reasoners do not support any kind of parallel

processing.

This thesis reports on a black-box approach to parallelize existing description logic

(DL) reasoners for the Web Ontology Language. We focus on OWL ontology classifica-

tion, which is an important inference service and supported by every major OWL/DL

reasoner. To the best of our knowledge, we are the first to propose a flexible paral-

lel framework which can be applied to existing OWL reasoners in order to speed up

their classification process. There are two versions of our methods discussed: (i) the

first version implements a novel thread-level parallel architecture with two parallel

strategies to achieve a good speedup factor with an increasing number of threads,

but does not rely on locking techniques and thus avoids possible race conditions. (ii)

The improved version implements an improved data structure and various parallel

computing techniques for precomputing and classification to reduce the overhead of

processing ontologies and compete with other DL reasoners based on the wall clock

time for classification.

In order to test the performance of both versions of our approaches, we use a

real-world repository for choosing the tested ontologies. For the first version of our

iv

approach, we evaluated our prototype implementation with a set of selected real-

world ontologies. Our experiments demonstrate a very good scalability resulting in a

speedup that is linear to the number of available cores. For the second version, its per-

formance is evaluated by parallelizing major OWL reasoners for concept classification.

Currently, we mainly focus on comparison with two popular DL reasoners: Hermit

and JFact. In comparison to the selected black-box reasoners, our results demonstrate

that the wall clock time of ontology classification can be improved by one order of

magnitude for most real-world ontologies in the repository.

v

Acknowledgements

When writing this thesis, it feels like that just I finished an extraordinary adventure.

I started this adventure for my curiosity of knowledge exploration. There are always

many options in front of you and you have to decide when and where you should

arrive this place and leave for your next destinations. Until one day, you look back

and find how grateful and lucky you are during this journey.

First and foremost, I would like to express my heartfelt appreciations to my super-

visor Dr. Volker Haarslev. He gave me this precious opportunity to start this explo-

ration four and half years ago and guided me into the right directions whenever I got

lost. I cannot remember how many times he said to me "Congratulations! You sur-

vived". His encouragement, constant support and constructive feedback can always

help me conquer the difficulties and lead me to the next destination. This research

cannot be done without his extensive expertise in this domain and insightful visions.

Secondly, I would like to thank my committee members, who gave me their posi-

tive support and feedback for each step during my PhD. I started my Ph.D. by attend-

ing Dr. Dhrubajyoti Goswami’s course, which became the foundation of this research.

Dr. Chun Wang and Dr. Yuhong Yan used their plentiful knowledge to provide me

useful suggestions.

Thirdly, I am very appreciative to work with Dr. Nancy Acemian for more than 4

years. She used her expertise in teaching to give me valuable opinions and I gained

plentiful teaching experience. The gratitude of her constant moral support during my

Ph.D. is beyond my words.

Furthermore, to my friends and colleagues, they dedicate their time and energy

to discuss the problems I met and we share all the memorable times together. I feel

vi

exceptionally lucky and thankful to have them during my Ph.D. and it becomes a

precious memory in my life.

Last but not the least, I would like to delicate this thesis to my parents and extended

family. Thanks for their encouragement to make me have the courage and confidence

to start this journey. Their unconditional love and support gives me the best backup

and comfort for every step. I am heartfelt thankful to have them in my life.

And thank you to start reading this thesis.

vii

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Thesis Objectives . 3

1.2 Thesis Contributions . 4

1.3 Thesis Outline . 6

2 Preliminaries 8

2.1 Introduction . 8

2.2 Description Logics . 8

2.2.1 Description Language ALC . 8

2.2.2 Tableau Algorithm . 13

2.2.3 Transitive Closure . 14

2.3 Reasoning . 14

2.3.1 RDF Reasoning . 15

2.3.2 Resolution-based Reasoning . 15

2.3.3 Tableau-based Reasoning . 16

viii

2.4 Reasoning Systems . 16

2.4.1 Sequential Systems . 16

2.4.2 Concurrent Systems . 17

2.4.3 Distributed Systems . 17

2.5 Parallel Computing . 18

2.5.1 High-performance Computing . 18

2.5.2 Atomic Data . 19

2.5.3 Work-Stealing . 19

2.5.4 Hyper-Threading . 20

3 Background and Related Work 22

3.1 Introduction . 22

3.2 Sequential Classification Methods . 22

3.2.1 Brute Force . 23

3.2.2 Simple Traversal Method . 24

3.2.3 Enhanced Traversal Method . 27

3.2.4 Optimized Classification Method 30

3.3 Parallel Classification and Reasoning Methods 32

3.3.1 Parallel TBox Classification Algorithm 33

3.3.2 Merge Classification . 37

3.3.3 Scalable and Parallel Reasoning Approach 40

3.3.4 Distributed Reasoning Architecture 41

3.4 Parallel Reasoning Techniques . 42

3.4.1 MapReduce . 42

3.4.2 ELK . 44

3.4.3 Snorocket . 47

3.4.4 Konclude . 48

ix

3.5 Summary . 50

4 Parallel Reasoning 52

4.1 Introduction . 52

4.2 Architecture . 53

4.3 Ontology Classification . 55

4.3.1 Random Division Strategy . 56

4.3.2 Group Division Strategy . 58

4.3.3 Ontology Taxonomy . 60

4.4 Optimization . 64

4.4.1 Half-Matrix Structure . 64

4.4.2 Improved Division Strategy . 65

4.4.3 Optimized Parallel Phase . 67

4.5 Summary . 74

5 Improved Parallel Classification 75

5.1 Introduction . 75

5.2 Improved Data Structure . 76

5.2.1 Atomic Half-Matrix Structure F 76

5.2.2 Maintaining Sets . 80

5.3 Improved Ontology Classification . 87

5.3.1 Precomputing Phase . 87

5.3.2 Classification Phase . 89

5.4 Summary . 91

6 Evaluation 92

6.1 First Evaluation . 92

x

6.1.1 Benchmarks . 92

6.1.2 Ontology Scale . 93

6.1.3 Ontology Complexity . 95

6.1.4 Load Balancing . 99

6.1.5 Summary . 101

6.2 Improved Parallel Classification . 101

6.2.1 Benchmarks . 102

6.2.2 Precomputing Phase . 103

6.2.3 Improved Classification . 105

6.2.4 Load Banlancing . 107

6.2.5 Comparison with DL Reasoners 109

6.2.6 Summary . 109

7 Conclusion 112

7.1 Thesis Contributions . 112

7.2 Future Work . 114

Bibliography 116

Appendix 124

xi

List of Figures

3.1 Insert concept c through top search of simple traversal method 25

3.2 Inserted concept c is a direct successor of Y 29

3.3 Concept c is not a direct successor in the hierarchy 29

3.4 Possible Relationships: nodes represent classes, solid edges represent

pairs in K, and the light dashed line represents a pair that can be in P

only if the pair represented by the dashed line is in P or K. (Adapted

from [21]) . 30

3.5 Final complete subsumption hierarchy (adapted from [3]) 35

3.6 The given TBox and the classified terminology hierarchy 38

3.7 The subsumption hierarchy divisions of different groups (left two) and

the subsumption hierarchy after merging both (right) 39

3.8 Main modules of ELK and information flow during classification (adapted

from [30]) . 45

4.1 The Architecture of Parallel TBox Classification Approach 55

4.2 Scheduling results for Example 3.2 . 60

4.3 Partial Hierarchy for the concepts in different threads 63

4.4 The whole concept hierarchy of O . 63

4.5 Improved scheduling results for Example 4.2 66

4.6 An Example for Situation 2.3.1 and 2.3.2 68

xii

4.7 Counter examples for ‘delete all concepts X ∈ KA from PB’ 69

4.8 Counter Examples for Situation 2.4 . 70

4.9 More Counter Examples for Situation 2.4 70

5.1 Initialization of half-matrix . 77

5.2 Complete changes of F after applying rules 86

5.3 Using atomic operations to solve conflicts in A1 87

5.4 Parallel precomputing phase . 88

5.5 Work-Stealing strategy applied between T1 and T3 89

6.1 Speedup factors for ontologies from Table 6.1 with an increasing num-

ber of concepts (n = number of concepts) 94

6.2 Speedup factors for ontologies with QCRs from Table 6.4 (q = number

of QCRs) . 98

6.3 Division cycle result of ncitations_functional.owl (concepts = 2332, threads

= 10, random division cycle = 10, group division cycle = 1) 100

xiii

List of Tables

2.1 Syntax and semantics of descriptions in ALC 9

2.2 The completion rules for ALCH . 10

3.1 The completion rules for EL+ and keys for applying MapReduce 43

6.1 Metrics of tested OWL ontologies . 93

6.2 Metrics of the used OWL ontologies with QCRs 96

6.3 Time metrics using 10 workers (in milliseconds) (Ave = Average, Med =

Median, Dev = Deviation) . 97

6.4 Metrics of tested ontologies for precomputing (Equi = Equivalence Ax-

ioms, Disjoint = Disjointness Axioms) . 103

6.5 Precomputing Results using Hermit (timeout (TO) = 1,000 seconds, WCT

= wall clock time in seconds, T = number of threads, >1,000 = more than

1000 times) . 104

6.6 Time Metrics of tested OWL ontologies (timeout (TO) = 1,000 seconds,

Dev = Deviation, Med = Median, Ave = Average) 105

6.7 Improved classification results using Hermit (timeout (TO) = 1,000 sec-

onds, WCT = wall clock time in seconds) 106

6.8 Improved classification results using Hermit (timeout (TO) = 1,000 sec-

onds, WCT = wall clock time in seconds, P(ara) = Parallel, W = without

work stealing) . 108

xiv

6.9 Time Metrics of tested OWL ontologies using parallel framework with

Hermit (timeout (TO) = 1000 seconds) (Sequ = Sequential, Para = Parallel)110

6.10 Time Metrics of tested OWL ontologies using parallel framework with

Hermit (timeout (TO) = 1000 seconds) (Sequ = Sequential, Para = Parallel)111

xv

List of Abbreviations

KR Knowledge Representation

OWL Web Ontology Language

DL Description Logic

AI Artificial Intelligence

ALC Attributive Concept Language

GCI General Concept Inclusion Axioms

TBox Terminological Axioms

ABox Assertional Axioms

KB Knowledge Base

QCR Qualified Cardinality Restriction

RDF Resource Description Framework

RDFS Resource Description Framework Schema

URI Uniform Resource Identifier

FOL First Order Logic

HPC High-Performance Computing

HT Hyper-Threading

D & G Divide-and-Conquer Algorithm

WCT Wall Clock Time

PW Parallel Without work-stealing

SMP Symmetric Multi-Processing

1

1 Introduction

The Web Ontology Language (OWL) as part of the semantic web [8] is a widely used

knowledge representation language for describing knowledge in application domains.

A major topic of knowledge representation focuses on representing information in

a form that computer systems can utilize to solve complex problems. The selected

knowledge representation formalism is descriptions logics (DLs) [4], which is a fam-

ily of formal knowledge representation languages. It is used to describe and reason

about relevant concepts (terminological knowledge - TBox) and individuals (asser-

tional knowledge - ABox) of a particular application domain. The widely used Web

Ontology Language (OWL) is based on DLs. One of the reasoning components in

DL systems is an engine known as classifier which infers entailed subsumption rela-

tions from knowledge bases. Research for most DL reasoners is focused on optimizing

classification using one single processing core [7, 24, 16]. Considering the ubiquitous

availability of multi-processor and multi-core processing units not many OWL reason-

ers can perform inference services concurrently or in parallel.

In the past various parallel reasoning methods have been proposed: A distributed

reasoning architecture to accomplish reasoning through a combination of multiple on-

tologies interconnected by semantic mappings [52]; A research methodology for scal-

able reasoning using multiple computational resources [57]; A parallel TBox classifica-

tion approach to build subsumption hierarchies [3]; An optimized consequence-based

procedure using multiple cores/processors for classification of ontologies expressed in

2

the tractable EL fragment of OWL [29]; Meissner [36] applied some computation rules

in a simple parallel reasoning system; A parallel DL reasoner forALC [60, 61]; Merge-

based parallel OWL classification [62]; A rule-based distributed reasoning framework

that can support any given rule set [42]; a framework to formalize the decision prob-

lems on parallel correctness and transfer of parallel correctness, providing semantical

characterizations, and obtaining tight complexity bounds [2].

High performance computing (HPC) methods can offer a scalable solution to speed

up OWL reasoning. Compared with sequential OWL reasoners, such as Racer [25],

FaCT++ [55], and HermiT [22], parallel OWL reasoners work concurrently and dis-

tribute the whole task into smaller subparts to speed up the process. A few OWL

reasoners integrated parallelization techniques; Konclude [53] is highly efficient but

its TBox classification is sequential; ELK [29] supports parallel TBox classification but

is restricted to the very small EL fragment of OWL. Moreover, some other parallel DL

reasoning methods have shown promising results in the past few years such as the first

parallel approach for TBox classification [3] using a shared-tree data structure, merge

classification [60, 61, 62] implementing parallel divide-and-conquer approaches, and

[19] proposing a parallel framework for handling non-determinism caused by quali-

fied cardinality restrictions.

This work is motivated by previous parallel approaches and also expands ideas

about applying parallel computing techniques to DL reasoning. First, considering the

variety and differences of parallelism, thread-level parallelism is suitable for the sys-

tem which requires constant exchange of information and parallel execution in the

meanwhile. Second, in order to reduce the runtime during processing, we need to

design a data structure which can avoid the use of locks as much as possible for multi-

processor and multi-thread systems. Third, when it comes to the problem of scalabil-

ity, it is also important for us to speed up the whole process of ontology classification

3

and balance the load of all available processors. Finally, although many parallel ap-

proaches and sequential DL reasoners have been developed, there are no consistent

and widely accepted solutions to solve the problem of parallel classification for vari-

ous kinds of ontologies.

Taking all the above questions into account, we propose a general parallel rea-

soning framework which can be used to parallelize the classification process of OWL

reasoners. This approach is implemented with a shared-memory architecture to ex-

change information among different threads, atomic global data structures to avoid

locks during classification, and various new strategies, such as work-stealing and

hyper-threading designed for parallel subsumption testing to speedup the whole pro-

cess of ontology classification. In order to keep the architecture universal we choose

existing OWL/DL reasoners as black-box reasoners for deciding satisfiability and sub-

sumption.

1.1 Thesis Objectives

This research is mainly focused on design and implementation of a black-box ap-

proach of OWL ontology classification to parallelize existing DL reasoners. The main

objectives of a parallel framework which can be applied to existing DL reasoners are

as follows:

• Flexible architecture: The existing DL reasoners are selected as a black-box rea-

soner to test the satisfiability and subsumption relations of concepts. A flexible

architecture is necessary to make sure that this framework can be applied to dif-

ferent reasoners.

• Lock-free data structure: Considering the problems of locks, which can affect the

experimental results by increasing the waiting time of exchanging and updating

4

information, we decide to design a lock-free data structure which can not only

ensure data consistency but also avoid conflicts among multiple processes.

• Parallel computing techniques: Given that various parallel techniques could be

applied to improve the performance of classification, it is important to choose

and design the strategies that can be adapted to the flexible framework and

speedup the whole classification process.

• Soundness and completeness: Since this algorithm is implemented with a black-

box reasoner, the soundness can be guaranteed if the algorithms and the selected

black-box reasoner are sound. In addition, every subsumption test between each

pair of satisfiable concepts is derived properly and correctly to ensure complete-

ness.

• Scalability: The parallel classification methods can outperform sequential rea-

soners on various different ontologies categorized by complexity and particu-

larly scalability. A speedup factor can be achieved by increasing the number of

available threads and a shorter runtime to compete with sequential reasoners.

• Load Balancing: In order to balance variations in partitions and subsumption

tests of different OWL reasoners, different parallel strategies are considered and

designed to schedule each processor in an organized way to speed up the wall

clock time of ontology classification.

1.2 Thesis Contributions

Our research has received the attention from the DL community as well as the parallel

computing community for its contribution to utilizing parallel computing techniques

for ontology classification. This work is considered as a novel application domain

5

to achieve better performance competing with sequential DL reasoners. The main

contributions are described as follows:

• The first contribution is the design of a flexible parallel framework which can be

used for existing sequential reasoners to speedup the classification process. The

first version of this approach (see Chapter 4) has been published in [46] and [47]

which presented a thread-level parallel architecture for ontology classification

and ideally suited for shared-memory SMP servers, but does not rely on locking

techniques and thus avoids possible race conditions. The improved version of

the new approach [48] (see Chapter 5) can be applied to existing OWL reasoners

and speed up their classification process.

• The second contribution belongs to three different parallel strategies. In the first

version, random division and group division strategies (see Section 4.3) are de-

signed and used to reduce the total number of concepts to be classified. For the

construction of ontology taxonomy, a divide-and-conquer algorithm is imple-

mented to compute partial hierarchies and update the whole hierarchy in par-

allel. In the improved version, an enhanced work-stealing strategy (see Section

5.3.2) is designed and applied. This strategy not only reduces the overhead but

also reschedules all the available resources during processing, which results in a

shorter runtime when compared with black-box reasoners.

• The third contribution relies on a novel atomic half-matrix data structure, which

is lock-free and can ensure the completeness of the approach. The first version

structure (see Section 4.4.1) consists of a possible list and remaining list for all the

satisfiable concepts of an ontology to record all the subsumption relations. In the

second version, the data structure is extended to record subsumee, equivalent

6

and disjoint sets (see Section 5.2), which results in more relations that can be

inferred without subsumption testing.

• The fourth contribution is on optimization techniques implemented by applying

transitive closure and parallel precomputing. In the first version, according to

the transitive closure (see Section 2.2.3), plenty of subsumption relations among

concepts are inferred without testing (see Section 4.4.3). In the second version,

because of applying parallelism to precomputing, more relations are found by

using OWL API [26] to retrieve all declared axioms of an ontology without sub-

sumption tests (see Section 5.3.1).

• The last contribution focuses on the performance of both versions of the methods

(see Chapter 6). The first prototype is evaluated with a set of real-world ontolo-

gies (see Section 6.1). The results demonstrate a very good scalability resulting

in a speedup that is linear to the number of available cores. For the improved

version (see Section 6.2), in comparison to the selected black-box reasoner, the

results demonstrate that the wall clock time of ontology classification can be im-

proved by one order of magnitude for most real-world ontologies.

1.3 Thesis Outline

The following chapters of this thesis is outlined as follows:

• Chapter 2 (Preliminaries) introduces the basic knowledge of description logic

and its inference services, reasoning systems, and the current popular computing

techniques.

7

• Chapter 3 (Background and Related Work) gives a brief review of previous re-

lated research using different parallel techniques on classification and reasoning

and their performance.

• Chapter 4 (Parallel Reasoning) presents the first version of this framework, which

includes two different parallel strategies and a flexible framework for TBox clas-

sification.

• Chapter 5 (Improved Parallel Classification) states the improved version of this

research, including improved half-matrix data structure, precomputing and clas-

sification phases and improved work-stealing strategy to achieve a better perfor-

mance.

• Chapter 6 (Evaluation) illustrates the results of the two different versions and

also explains the impact factors, such as scalability, complexity of ontologies and

the improvements of speedup factors and load balancing.

• Chapter 7 (Conclusion) concludes both the theoretical and practical contribu-

tions of this work and proposes some potential future work which could be stud-

ied for further research.

8

2 Preliminaries

2.1 Introduction

In this chapter, relevant background is introduced. It is divided into four parts. The

first part is about the basics of description logic as well as tableau algorithms. The

reasoning methods and systems are introduced in the second and third part. In the

last part, there are some relevant parallel computing techniques are presented.

2.2 Description Logics

A major topic of knowledge representation (KR) focuses on representing information

in a form that computer systems can utilize to solve complex problems. The selected

knowledge representation formalism is descriptions logics (DLs) [4], which is a fam-

ily of formal knowledge representation languages. It is used to describe and reason

about relevant concepts (terminological knowledge - TBox) and individuals (asser-

tional knowledge) of a particular application domain. The widely used Web Ontology

Language (OWL) is based on DLs.

2.2.1 Description Language ALC

9

Syntax and Semantics

The Description Logic Attributive Concept Description Language (ALC) proposed by

Schmidt-Schauß and Smolka [50] was the first DL where a complete reasoning algo-

rithm was provided. To formally define an ALC knowledge base, we denote with

NC a set of concept names of domain elements with common characteristics, NR a set

of role names with a binary relationship between domain elements, and NO a set of

individual names within the represented domain.

TABLE 2.1: Syntax and semantics of descriptions in ALC

Syntax Semantics

> ∆I

⊥ ∅

C t D CI ∪ DI

C u D CI ∩ DI

¬C ∆I \ CI

∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}

∀R.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI ⇒ y ∈ CI}

The formal definition of the semantics of ALC is given by an interpretation I =

(∆I , ·I), consisting of a non-empty set ∆I called domain and an interpretation function

·I . The interpretation function ·I maps every individual a to an element aI ∈ ∆I ,

every concept A to AI ⊆ ∆I and every role R to RI ⊆ ∆I × ∆I . The description

of syntax and semantics of ALC concept expressions is shown in Table 2.1, where

C, D ∈ NC are arbitrary concepts and R ∈ NR is a role.

Satisfiability

A concept C is satisfiable if there exists an interpretation I such that CI 6= ∅, i.e., there

10

exists an individual x ∈ ∆I which is an instance of C, x ∈ CI . Otherwise, the concept

C is unsatisfiable.

TBox

Terminological axioms include role inclusion axioms, which have the form R v S

where R, S ∈ NR, and general concept inclusion axioms (GCI), which have the form

C v D where C, D are concept expressions. A TBox consists of a finite set of termino-

logical axioms. A TBox T is satisfiable if there exists an interpretation I that satisfies

all the axioms in T , i.e., for every axiom C v D (R v S) CI ⊆ DI (RI ⊆ SI) must

hold. Such an interpretation I is called a model of T and T is called consistent. A

concept equivalence axiom of the form C ≡ D is an abbreviation for the axioms C v D

and D v C.

TABLE 2.2: The completion rules for ALCH

u-Rule If C u D ∈ L(v) and {C, D} 6⊆ L(v)
then add C and D to L(v)

t-Rule If C t D ∈ L(v) and {C, D} ∩ L(v) = ∅
then add X to L(v) with X chosen from {C, D}

∀-Rule If R ∈ L(〈v, v′〉), ∀R.C ∈ L(v) and C /∈ L(v′)
then add C to L(v′)

∃-Rule If ∃R.C ∈ L(v), no v′ exists with R ∈ L(〈v, v′〉), C ∈ L(v′)
then create v′, add R to L(〈v, v′〉) and C to L(v′)

H-Rule If R ∈ L(〈v, v′〉), R v∗ S, and S /∈ L(〈v, v′〉),

then add S to L(〈v, v′〉)

v∗ denotes the reflexive, transitive closure of v

Subsumption

A concept D subsumes a concept C (denoted as C v D) iff CI ⊆ DI for all models I

11

of T , i.e., every instance of C must be an instance of D. Subsumption can be reduced

to satisfiability, i.e., subsumes(D, C)⇔ ¬sat(¬D u C) and C v ⊥ ⇔ ¬sat(C).

ABox

Assertional axioms include concept assertions and role assertions. A concept assertion

has the form a : C where a ∈ NO and C ∈ NC. A role assertion has the form (a, b) : R

where a, b ∈ NO and R ∈ NR. An ABox consists of a finite set of assertional axioms. An

ABox A is satisfiable if an interpretation I satisfies all the axioms in T and assertions

in A, i.e., I � a : C iff aI ∈ CI , I � (a, b) : R iff (aI , bI) ∈ RI and I � A iff I � φ

for every φ ∈ A. The interpretation I is called a model of A. The ABox A is called

consistent. The individual a is called an instance of the concept C with respect to the

TBox T and the ABox A iff aI ∈ CI holds for all models I of both T and A.

The satisfiability and instance problem can be reduced to the consistency problem,

i.e., concept C is satisfiable w.r.t. T if the ABox a : C is consistent w.r.t. T , and a is an

instance of C w.r.t. T and A if the ABox A∪ {a : ¬C} is inconsistent w.r.t. T .

Knowledge Base

A main purpose of DL is to reason about a Knowledge Base (KB). A TBox (T) and

an ABox (A) are used for describing two different kinds of statements: concepts and

individuals in ontologies, both of which make up an ordered tuple K = (T ,A). There

exists I � K iff I � T and I � A.

Here is an example of anALC knowledge base, which defines both a TBox (T) and

an ABox (A).

Example 2.1

T = {Man ≡ ¬Woman u Person, Woman v Person,

12

Mother ≡Woman u ∃hasChild.T }

A = {Man(John), ¬Man(Monica), Women(Jessica),

hasChild(Monica, Jessica)}

Classification

The classification of a TBox results in a subsumption hierarchy (or taxonomy) of all

named concepts, with > as the root. If two named concepts A, B have a subsumption

relationship, e.g., A v B, then B is called an ancestor of A and A is a descendant of

B. In case there exist no concepts A′, B′ such that A v B′ and B′ < B or A < A′ and

A′ v B, then B (A) is called a predecessor (successor) of A (B).

Additional Description Logic Constructors

ALC can be extended by various constructors that are denoted in the logic’s name: H

for role hierarchies, + for transitive roles (S stands for ALC+), I for inverse roles, R

for role chain axioms (R includes H+), O for nominals, Q for qualified number re-

strictions, N for number restrictions, and (D) for using datatypes. For instance, OWL

is a syntactic variant of the DL SROIQ(D) and EL is a subset of ALC supporting

only u and ∃.

Qualified Cardinality Restriction

A Qualified Cardinality Restriction (QCR) is used to specify the upper (≤ nR.C) or

lower (≥ nR.C) bound on the number of R-successors of concept C, where R ∈ NR

and C ∈ NC. If there are two individuals x, y having xI , yI ∈ ∆I , which are related

to the role R, i.e. x is a R-successor of y, iff (xI , yI) ∈ RI . The definition of all the

R-successors of C for a given role R is defined as Subs(C) = {yI ∈ CI |(xI , yI) ∈

RI}. We use ≤ nR.C (≥ nR.C) to indicate the maximum (minimum) number of R-

successors of concept C for the given role R.

13

2.2.2 Tableau Algorithm

A tableau algorithm decides the satisfiability of a given concept C by constructing a

completion graph for C. It attempts to construct an interpretation I that satisfies C,

i.e., there exists an instance x such that x ∈ CI . A complete and clash-free completion

graph for C is interpreted as C being satisfiable. According to Example 2.1 mentioned

above, let I be an interpretation with:

ManI = {John}

WomanI = {Jessica, Monica}

MotherI = {Monica}

PersonI = {Jessica, Monica, John}

hasChildI = {(John, Monica), (Monica, Jessica)}

then it holds that I � T and I � A.

A model is represented by a tableau completion graph, where concept descriptions

are built using boolean operators (t, u, ¬), universal restriction (∀), and existential

(∃) value restriction on concepts [6]. The tableau completion graph for ALCH is a

labeled graph G = 〈V, E, L〉, where each node x ∈ V is labeled with a set L(x) of

concepts, and each edge (x, y) ∈ E is labeled with a set L(x, y) of roles. A completion

graph G contains a clash, if {A,¬A} ⊆ L(x) for some atomic concept A, or ⊥ ∈ L(x).

The completion rules for ALCH are shown in Table 2.2. If no completion rule can be

applied to the graph G, then it is complete. Example 2.1 illustrates how the tableau

algorithm determines the satisfiability of concept C defined as C v ∃R.A u ∀S.¬A

where R and S are roles with R v S and A is a concept name.

Example 2.2

First we create a, add C and its definition to L(a), and apply the u-Rule:

L(a) = {C, ∃R.A, ∀S.¬A}

14

The only applicable rule is ∃-Rule and we obtain

L(〈a, b〉) = {R}, L(b) = {A}

Then we can apply theH-Rule and obtain

L(〈a, b〉) = L(〈a, b〉) ∪ {S}

The ∀-Rule is applied because S ∈ L(〈a, b〉),¬A /∈ L(b) and we obtain

L(b) = L(b) ∪ {¬A}

Finally, there is a clash because {A,¬A} ⊆ L(b). Therefore C is unsatisfiable because

no model I for C can be found.

2.2.3 Transitive Closure

The transitive closure of a set X is the smallest transitive set that contains X and the

transitive closure of a binary relation R on a set X is the smallest relation on X that

contains R and is transitive. A relation R on a set X = {a, b, c} is transitive, if (aI , bI) ∈

RI and (bI , cI) ∈ RI , then (aI , cI) ∈ RI .

2.3 Reasoning

Reasoning is the computation of inferences. An efficient reasoning algorithm plays an

important role in inferring implicit knowledge from explicitly expressed knowledge in

a knowledge base or an ontology. We mainly focus on tableau-based reasoning, which

is usually used in DLs. As a comparison with tableau-based reasoning, two other

types of reasoning are introduced: RDF reasoning and resolution-based reasoning.

15

2.3.1 RDF Reasoning

The Resource Description Framework (RDF) with its vocabulary description language

RDF-Schema (RDFS) constitutes the basic language for semantic web. RDF is a graph-

based data model, which is used for metadata of web resources and generated struc-

tured information. We usually use Uniform Resource Identifier (URI) to create glob-

ally unique concept names for resources. RDFS is RDF with a special vocabulary for

terminological knowledge, which can be used to express terminological knowledge of

classes and properties in hierarchies. However, it is not possible to define negation

of expressions, cardinalities, a set of classes, metadata of the schema with RDF rea-

soning. Therefore, sometimes we need to provide a specialized inference engine to

support reasoning in RDFS, such as Jena, a semantic web framework for Java [11].

2.3.2 Resolution-based Reasoning

Resolution-based methods with DL ontologies, which is applied to general first-order

theorem proving always have the worst-case optimal complexity. By using resolution

theorem provers and redundancy elimination rules, the resolution-based methods can

be implemented efficiently and reduce the search space of reasoners. It has been imple-

mented in many practical systems such as Vampire [56], which is a resolution-based

theorem prover for first-order classical logic. However, compared with tableau-based

reasoning, which needs blocking techniques to ensure termination of the system, there

is no guarantee for termination since first-order logic is semi-decidable, which may

lead to non-termination [40].

16

2.3.3 Tableau-based Reasoning

Tableau-based methods for satisfiability checking are widely used as one of the ma-

jor techniques for ontology reasoning systems. Through constructing a model of in-

put formulas and checking whether it contains a contradiction, the satisfiability of the

model can be concluded. Tableau-based reasoning can be efficiently implemented by

using appropriate optimization techniques. In practical systems, tableau-based meth-

ods have been successfully implemented in some ontology reasoning systems such

as FaCT++ [55], which is a DL reasoner platform designed for experimenting with

tableau-based methods [55]. Moreover, tableau-based reasoning can be used to solve

many other problems such as the consistency problem for ABoxes and TBoxes, sub-

sumption and instance problems [39].

2.4 Reasoning Systems

One of the reasoning components in DL systems is an engine known as classifier

which infers entailed subsumption relations from knowledge bases. Research for

most DL reasoners is focused on optimizing classification using one single process-

ing core [7, 24, 16]. Considering the ubiquitous availability of multi-processor and

multi-core processing units not many OWL reasoners can perform inference services

concurrently or in parallel.

2.4.1 Sequential Systems

There are some existing description logic reasoners which apply sequential computa-

tion methods. For example, the OWL reasoner HermiT [22] is based on a novel hyper-

tableau calculus to classify a number of ontologies in a sequential way; Racer [25] is a

17

knowledge representation system that implements a highly optimized tableau calcu-

lus for the description logic SRIQ(D); FaCT++ [55] implements a tableau decision

procedure for the well known SHOIQ description logic, with additional support for

datatypes, including strings and integers in its sequential computation system. Be-

cause of different optimization techniques applied on the DL reasoners, the subsump-

tion hierarchy of an ontology can be computed and constructed efficiently by using

various methods.

2.4.2 Concurrent Systems

Concurrency is a popular property of current systems. It allows one to execute several

computations simultaneously and potentially interact with one another. During the

execution, the computations may share the same processor with time-shared threads,

which can practically reduce the time complexity such as in the ELK reasoner [30],

which has successfully implemented a concurrent classification algorithm for DL EL+

ontologies. Concurrent execution of shared resources and interactions may lead to

deadlocks or starvation especially when the system is extremely large and complex.

Therefore, the design of concurrent systems needs to use extra processing techniques

for coordinating execution and data exchange to achieve a better performance.

2.4.3 Distributed Systems

A distributed system is a group of networked and possibly heterogenous computers

with independent processors and memory used to distribute the whole task to sev-

eral processors to be executed simultaneously. During the execution, all processors

can update and exchange information. For example, the novel reasoning system Kon-

clude [53] implements different reasoning procedures and optimizations techniques.

18

The common approach of semantic mapping is used to define the semantic relations

between concepts belonging to different ontologies. However, it cannot guarantee the

capability of reasoning within a system containing multiple interconnected ontologies.

Therefore, a reasoning approach, which encodes both ontologies and mappings into a

unique architecture has been proposed, i.e., Distributed Reasoning Architecture for a

Galaxy of Ontologies (DRAGO), which implements such distributed decision proce-

dure [52].

2.5 Parallel Computing

2.5.1 High-performance Computing

High-performance Computing (HPC) is used for solving complex computing prob-

lems by applying parallel techniques on super large-scale computers. Due to the better

performance of HPC systems, they mainly focuses on solving the problems of super-

computing, simulation and analysis to maintain and balance the constant resources

among different processors concurrently.

HPC systems employ various different parallel processing applications and tech-

niques to achieve better performance, such as hardware virtualization [37] to enhance

the productivity of HPC applications; hyper-threading [33] to support operating sys-

tems with scheduling tasks and affect the overall performance; virtual machine [28] to

secure, manage and migrate the HPC applications, and power-aware run-time system

[27] to achieve better impacts of power reduction and energy savings.

19

2.5.2 Atomic Data

Different approaches have been proposed to create non-blocking algorithms and en-

sure data integrity in concurrent environments. However, most algorithms solve the

problems of memory location, concurrent access and information exchange among

multiple threads using locks, which can result in lost updates or a deadlocks. [13]

Atomic from the Java Concurrent package can support generating more than one

thread to maximize CPU utilization and manage concurrency without locking. In a

concurrent system, processes can access a shared data structure at the same time. In

order to ensure data consistency and avoid conflicts among multiple processes, atomic

operations is introduced as an algorithm, which is not only lock-free requiring partial

threads for constant progress but also wait-free for updating information [23]. There-

fore, using an atomic shared-memory structure makes sure that the concurrent ap-

proach is a non-blocking algorithm, which can process and schedule threads simulta-

neously.

2.5.3 Work-Stealing

In parallel computing, work-stealing is a scheduling strategy to solve the problems of

dynamic multiprocessing computation. Each processor has a queue containing a list

of tasks to be performed. During the processing, all the tasks in different queues will

execute in parallel according to the given order. In addition, a task can also spawn

new subtasks which execute in parallel with other tasks on the list. When a processor

has finished all the tasks in its queue, the current available processor can steal tasks

assigned to other processors. Therefore, the scheduling strategy can make sufficient

use of the available processors and improve the execution time and load balancing of

parallel computing.

20

In recent years, many different scheduling techniques were proposed and applied

to achieve a better performance of multithreaded computations on parallel comput-

ers. For example, a scalable work stealing approach [18] focuses on the scalability

of work stealing on distributed memory systems with high efficiency and low over-

head performance; data locality of work stealing [1] presents the scheduling strategies

applied on hardware-controlled shared-memory machine and the improvements of

locality-guided performance; Dynamic circular work-stealing deque [14] is a lock-free

algorithm, that stores the elements in a cyclic array when it overflow and requires

memory which is linear to the number of deque elements.

2.5.4 Hyper-Threading

Hyper-threading is used for parallelization of computation by simultaneous multi-

threading. In most circumstances, there are two virtual cores which share the work-

load among all the processors when possible. Using hyper-threading can increase the

number of independent instructions and execute separate data and instruction streams

in parallel, which not only increases the flexibility of scheduling and also lowers the

influence of data latency by using internal resources to achieve a better performance.

Hyper-threading has various functions, which allows concurrent scheduling of two

or more processes per core and shares the same resources with other processors. In

addition, if the resource is not available for the current process, it still can be available

during the procedure of other processes to share the resources dynamically [34].

Hyper-threading mainly has three different ways to manage resources. Firstly, us-

ing partitioning to allocate half of the resources to each logical processor, which can

avoid latency and improve the utilization of different structures. Secondly, there is

a threshold when hyper-threading is applied. The threshold has the advantages of

sharing flexible resources with limited resource usage. Therefore, for some structures

21

with less available resources, using hyper-threading can lower the occupancy time

and balance occasional high utilization of different processes. However, due to ap-

plying round robin techniques, there could be a threshold which prevents one logical

processor from all the other available resources. Thirdly, full sharing is ideal for flex-

ible resources sharing without limitations, especially for large structures. [35, 32]. In

recent years, new methods have been proposed to improve the performance of hyper-

threading, such as process scheduling heuristics [12] and multi-level threading [15].

Therefore, hyper-threading technology can improve the performance of paralleliza-

tion even with limited resources and available processors in various circumstances.

22

3 Background and Related Work

3.1 Introduction

In this chapter, different classification methods and current popular DL reasoners are

presented. First, we focus on the development of sequential methods and the improve-

ments of them. Second, some parallel classification methods from relevant research

are introduced with their evaluation. Finally, we review three complete DL reasoners

implemented with different parallel techniques.

3.2 Sequential Classification Methods

The construction of concept subsumption hierarchies is important to find an efficient

method to reduce the cost of classification and time of computation. In this part, we

focus on different classification methods for the sequential computation of concept

subsumption hierarchies [5, 51, 21]. First we introduce the Brute Force method, top

search and bottom search. Based on the basic search methods, improved methods

are described. The simple traversal method and enhanced traversal method will be

introduced as improvements in the search process.

23

3.2.1 Brute Force

Brute Force always comes first as the basic classification method. In this method, we

use the original way to compare each concept with the one to be inserted. After hav-

ing performed all the possible comparisons, each concept has its immediate succes-

sors and predecessors, the subsumption hierarchy is constructed according to the sub-

sumption relationships among the concepts.

In the top search, a given concept c is compared with all other concepts. If a sub-

sumption test succeeds, the predecessor concept is added to the set Pre(c), which con-

tains all the predecessors of c. The bottom search works in a dual way. Through

subsumption tests with all other concepts, all the successors of concept c are added to

the set Succ(c).

According to the sets of successors and predecessors for each concepts, the method

checks all the concepts to find immediate predecessors and successors for the con-

cepts. Finally we can construct the subsumption hierarchy and put c in the exact posi-

tion. The time complexity of this method is Θ(n2) for both the worst and the best case.

Moreover, one needs to perform subsumption tests twice for each concept to find its

immediate predecessor and successor concepts in the hierarchy. Therefore, it is advis-

able to compare each concept along the hierarchy to avoid unnecessary comparisons

and reduce the number of subsumption tests.

Based on the Brute Force method, search methods were adopted to check all the

concepts in the hierarchy and find the exact position for the given concept. During

the search process, if the current concept is not a successor (predecessor) of concept c,

then we can conclude that all the successors (predecessors) of the current concept are

not related to concept c. Following this method, we discuss about about the basic top

search and bottom search method in the following.

For a given concept c with concept x ∈ X, where X is the set of all concepts in

24

the subsumption hierarchy, we use top search and bottom search to construct the sub-

sumption hierarchies. [5]

Top Search Top search begins from the top concept (>). Following all the successors,

the given concept c is compared with each concept along the current hierarchy until

all the predecessors x of c have been found and added to the set Pre(c).

Bottom Search In the bottom search, the given concept c moves up from the bottom

concept (⊥) by following all the predecessors and is compared with each concept along

the current hierarchy until all the successors x of c have been found. Then all the

successors are added to the set Succ(c).

As a result, both top search and bottom search methods can reduce the number of

comparisons and subsumption tests. However the time complexity is still O(n2) for

the worst case. If we could record that a concept has been visited and has a relation-

ship with c, then we can reuse the information of concepts which have been executed

before. The efficiency of the search method can be improved.

3.2.2 Simple Traversal Method

In order to reduce the number of subsumption tests and the average time complexity,

the simple traversal method creates three labels ‘Visited’, ‘Negative’ and ‘Positive’

which can been used to denote the information of each concept. The label ‘Visited’

is used to record that a concept has been visited. ‘Positive’ and ‘Negative’ are used

to indicate the subsumption relationship between c and the concept which has been

tested. Using these labels, the improved top search and bottom search methods are

introduced as follows. [5]

25

Top Search Before a comparison, the top search method first marks the current com-

pared concept with the label ‘visited’. Then it begins with the traversal method from

the top. The procedure assumes that c is subsumed by x. For each successor y ∈

Succ(x), the simple-top-subs method is called to find the relationship between c and

a successor y of x. If it has done the subsumption test before then the simple-top-subs

method had marked y with the label ‘negative’ or ‘positive’. If it is marked ‘positive’,

y is added to the set Pos-Succ. If y has not been marked, then the subs?() method is

called to test the relationship between y and c and return the result. The procedures

are shown in Algorithm 1, 2 which are adapted from [5].

An example is shown in Figure 3.1. The top-search method begins with x = >. For

the direct successors X1 and X2 of>, call the simple-top-subs method to check whether

they subsumes c. Since each concept has its label, if X1 has been visited before, then

we need to check its label. Otherwise, call the subs? method to test the relationship

between X1 and c. If we find X1 and X2 are ‘positive’, then test all its successors. After

the tests, if both Y1 and Y2 are marked ‘negative’, but X1 is ‘positive’, X1 will be added

to the Pos-Succ. For the direct successors Y3, Y4 of X2, the test results show that Y3 and

X2 are ‘positive’ in contrast to Y4. In conclusion, c is inserted as the successor of X1

and Y3 shown in Figure 3.1.

T

X1

Y1 Y2

X2

Y3 Y4

T

X1

Y1 Y2 C

X2

Y3 Y4

FIGURE 3.1: Insert concept c through top search of simple traversal
method

26

Algorithm 1: top-search(c,x)

1 Input: c - concept to be inserted; x - current compared concept

2 Output: Pos-Succ - list of all the positive concepts compare with c.

3 mark(x, ‘visited′);

4 for all y ∈ Succ(x) do

5 if simple-top-subs?(y, c) then

6 Pos-Succ← Pos-Succ ∪ {y};

7 if Pos-Succ is empty then

8 Result← {x};

9 else

10 for all y ∈ Pos-Succ do

11 if not marked?(y, ‘visited’)

12 Result← Result ∪ top-search(c,y);

Bottom Search Bottom search performs in a dual way. The search begins from the

bottom of the hierarchy with x = ⊥. For each concept x of X, it checks whether the

current element c is subsumed by its predecessor y ∈ Pre(x). It works symmetrically

to the top search method.

Due to the use of labels in subsumption hierarchies, this method can usually re-

duce the number of subsumption tests by marking each concept with labels to avoid

visiting the same concept again. Compared to the brute force method, it reduces the

comparison time for the same concept in the hierarchy. But it still has the time com-

plexity O(n2) for the worst case. If each step can reuse the information on tests that

been performed before and the bottom search also uses the results from the top search,

then it will be more efficient.

27

Algorithm 2: simple-top-subs(y, c)

1 Input: c - concept to be inserted; y - current compared successor of x.

2 if marked?(y, ‘positive’) then

3 Result← true

4 else if marked?(y, ‘negative’) then

5 Result← f alse

6 else if test if y subsumes c then

7 mark(y, ‘positive’)

8 Result← true

9 else

10 mark(y, ‘negative’)

11 Result← f alse

3.2.3 Enhanced Traversal Method

Top Search To use negative information during the top search, we need to check all

predecessors z of y if a test sub?(z, c) has failed. Then it is not necessary to perform the

expensive subsumption test to conclude y /∈ Pre(c). The enhanced-top-subs method

makes sure that the subsumption tests for all predecessors of y have been performed

before y.

To use positive information during the top search, we need to find out whether

there is a successor z of y and z ∈ Pre(c) before the test of checking y ∈ Pre(c). If z ex-

ists, we can conclude that y ∈ Pre(c) without a subsumption test. If the call sub?(y, c)

returns true, then y and all its predecessors are marked ‘positive’. The enhanced-top-

subs method tests all the predecessors before making a subsumption test. It is more

efficient to propagate positive information up through the subsumption hierarchy re-

sulting in a smaller number of subsumption tests. The enhanced-top-subs phase is

shown in Algorithm 3 which is adapted from [5].

28

Algorithm 3: enhanced-top-subs(y, c)

1 Input: c - concept to be inserted; y - current compared successor of x.

2 Output: If return true, then y is marked ‘positive’; otherwise return false.

3 if marked?(y, ‘positive’) then

4 Result← true

5 else if marked?(y, ‘negative’) then

6 Result← f alse

7 else if for all z ∈ Pre(y)

8 enhanced-top-subs?(z, c) &

9 subs?(y, c)

10 then

11 mark(y, ‘positive’)

12 Result← true

13 else

14 mark(y, ‘negative’)

15 Result← f alse

The first example is shown in Figure 3.2. The top search using negative information

tests X1, but before testing Y, its direct predecessors X1, X2, X3...Xm...Xn are tested. As

a result, if there exists a predecessor of Y that is negative, then Y is negative. The top

search using positive information, first tests X1 and then Y. The positive result of Y can

be propagated to X1, X2, X3...Xm...Xn. The second example shown in Figure 3.3 uses

negative information, it first tests X1 and before testing Y1 its direct predecessor X2 is

tested. If both X1 and X2 are negative, then we can conclude that all their successors

are negative. On the contrary, when using the positive information, first test X1 then

all its successors Y1, Y2, Y3 and Y4, and finally X2. If all the successors are positive, the

positive information can be propagated up to X2 which is also positive.

29

T

X1 X2 X3

Y

Xm Xn

FIGURE 3.2: Inserted concept c is a direct successor of Y

T

X1

Y1 Y2

X2

Y3 Y4

FIGURE 3.3: Concept c is not a direct successor in the hierarchy

Bottom Search Bottom search can use the information from tests which not only

have been performed previously, but also resulted from the top search as well. From

the top search, if we use the positive information and find the successor z of y and

z ∈ Pre(c), then we can prove that z is a predecessor of c without a subsumption test.

Due to reusing all the accumulated information, this method is more efficient than

the simple traversal method. When compared with the simple traversal method, the

number of necessary comparison operations can be reduced. This method does not

require to test all the predecessors before testing a concept by propagating positive in-

formation up and negative information down the hierarchy. If one concept is marked

‘negative’, then all the successors can be marked at the same time. In this case, if we

could figure out the possible subsumption relationships from the existing information,

then the number of subsumption test can be reduced by transitive closure. [5, 51]

30

3.2.4 Optimized Classification Method

Based on the enhanced traversal method, the optimised classification method applies

the transitive closure reduction and constructs the subsumption hierarchy in an indi-

rect way by creating two sets: the known (K) and remaining possible (P) subsumer

pairs. It performs subsumption tests to increase the set K and reduce the number of

pairs in the set P until P becomes empty and K includes all relations in the subsump-

tion hierarchy. The method reuses the information from previous subsumption tests

according to the enhanced traversal (ET) method and exploits the transitivity of sub-

sumer from P to K without actual reasoning. [21]

For example: if we know that {〈C, D〉, 〈E, F〉} ⊆ K and try to add < D, E > to K,

then we can add < C, F > to K according to the transitivity relationship. On the con-

trary, if {〈C, D〉, 〈E, F〉} ⊆ K and {〈D, E〉, 〈C, F〉} ⊆ P, and 〈C, F〉 needs to be removed

from P, then 〈D, E〉 should be removed from P at the same time which is shown in

Figure 3.4. Adding and removing sets from P, which contains possible subsumption

pairs, can exploit the subsumption relationships with a reduced number of subsump-

tion tests to improve efficiency.

FIGURE 3.4: Possible Relationships: nodes represent classes, solid edges
represent pairs in K, and the light dashed line represents a pair that can be
in P only if the pair represented by the dashed line is in P or K. (Adapted

from [21])

The classification phase using the modified version of ET method decides all the

possible pairs in P which actually hold. For each class C, it constructs a pre-model

which satisfies C. P|c denotes the possible subsumer set of C. If there is no class

31

Di ∈ P|c, then remove 〈C, Di〉 from P. For all the existing classes Di ∈ P|c, we build a

subsumption hierarchy of C (Hc) and a queue Q which contains all the successors in

Hc after traversal. When we remove the head of Q, the method applies the transitivity

relationship we mentioned in Figure 3.4. If there exists a pre-model which satisfies C

but not D, then all the subsumers in D but not C can be removed from Hc and P|c.

Otherwise, if the subsumption between C and D holds, this is recorded in K and each

successor E of D in Hc can be added to Q. In this case, if we find 〈E, F〉 and 〈C, F〉 exist

in K and 〈D, E〉 in Hc, then the conclusion should be 〈D, E〉 can be added to the set

K. It performs iteratively until P becomes empty and K includes all the potential pairs

according to this optimised classification method.

This method includes only the top-down and not the bottom-up phase. Therefore,

during the classification it only needs to find the successors for each class. It can be

more efficient when compared with ET method. But the process of deciding which

possible pair in P belongs to K is time consuming. It is necessary to check each pair

with all the compared classes, which takes time to find the possible subsumers. It is

more efficient when there are more tests for possible subsumptions with less compared

concepts.

In this chapter, we have introduced the sequential classification methods in seman-

tic web. Each method focuses on the reduction of subsumption tests and time com-

plexity. In the next chapter, based on the sequential methods parallel classification

methods will be presented.

32

3.3 Parallel Classification and Reasoning Methods

Parallelization is a useful technique to speed up the performance of classification by

working simultaneously. Due to the increasing scale of ontologies and their number

of classes, it is promising to use some parallel methods to speed up reasoners. For par-

allel classification, there are two important parameters: partition size and number of

threads for parallelization. Based on the sequential classification method, in the past

various parallel reasoning methods have been proposed: A distributed reasoning ar-

chitecture to accomplish reasoning through a combination of multiple ontologies inter-

connected by semantic mappings [52]; A research methodology for scalable reasoning

using multiple computational resources [57]; A parallel TBox classification approach

to build subsumption hierarchies [3]; An optimized consequence-based procedure us-

ing multiple cores/processors for classification of ontologies expressed in a tractable

fragment of OWL [29]; [36] applied some computation rules in a simple parallel rea-

soning system; A parallel DL reasoner for ALC [60, 61]; Merge-based parallel OWL

classification [62]; A rule-based distributed reasoning framework that can support any

given rule set [42]; a framework to formalize the decision problems on parallel correct-

ness and transfer of parallel correctness, providing semantical characterizations, and

obtaining tight complexity bounds [2].

In this part we first review some parallel methods: parallel classification [3], merge

classification [61], a scalable and parallel reasoning approach [57] and a distributed

reasoning architecture [42], then we evaluate their efficiency.

33

3.3.1 Parallel TBox Classification Algorithm

The parallel TBox classification method [3] can be divided into three generations. The

first generation is a set of sound and incomplete algorithms. To improve the complete-

ness, two scenarios that cause incompleteness will be discussed in the second gener-

ation which achieves the sound and complete parallel classifier algorithm. The third

generation implements concurrent TBox Classifier to classify the TBox concurrently

and achieve the sound and complete algorithm that can efficiently process much big-

ger ontologies.

First Generation In the first generation, the parallel classification method uses a

shared-memory approach and one global tree to manage the concurrency. The initial

taxonomy is created from a list containing already known predecessors and successors

that is sorted in topological order. From the list the classifier assigns random partitions

of concepts for each thread to execute the partition of the whole task. The threads take

turns and work concurrently until the whole task has been finished. When inserting

or updating information among the threads and constructing one global subsumption

tree, it uses the lock mechanism to ensure data integrity for the changes of hierarchy

information during the construction. In order to avoid unnecessary traversals and

tableau subsumption tests, the classification adopted ET method when computing the

subsumption hierarchy.

In this generation, the incompleteness is caused by classifying random partitions of

concepts for each thread. Due to the variety of ontologies, it is possible that some sub-

sumptions are missing during the procedure. Therefore, it is a sound but incomplete

algorithm in the first generation.

34

Second Generation In order to demonstrate the soundness and completeness of this

method, there is a small example with 16 concepts. For each thread, it includes a

partition of concepts according to the topological-order list. The division for each

thread is shown as follows and the concepts in brackets stand for synonyms.

thread#1 (female not-male), girl, parent

thread#2 woman, mother, (male not-female)

thread#3 man, boy, father

thread#4 not-boy, not-father, not-girl

thread#1 not-man, not mother, not-parent, not-woman

The parallel classification procedure performs in a round-robin manner. The threads

are activated with their assigned partition and work in parallel. This method focuses

on the subsumption tests for each thread and merges all of them into one global hier-

archy. It is necessary to consider the missing subsumptions among the threads. Like

the example above, there is a concept (female not-male) in thread#1 which has a sub-

sumption relationship with concept (woman) in thread#2. Therefore, we need to notify

thread#2 when the concept (female, not-male) has been inserted by thread#1. More-

over, for each newly inserted concept, we should also consider subsumption relation-

ships with the existing concepts in other threads.

In this generation, there is a global array for every newly inserted concept, which

is indexed by thread identifications. Therefore, the concepts in the global tree as well

as newly added concept (parent) in the array are locked for modification. For each

newly inserted concept, the classifier first performs the top-search phase, which sets

the parents (not-girl), (not-boy) and adds them to the list of children for each parent.

Then it calls the bottom-search phase, which sets the children (woman), (man) and

updates the parents’ children correspondingly. After searching, it needs to check again

whether other threads updated their index and repeat the search methods to get the

35

final global array. As a result, other threads are notified of the newly added concept

(parent). It works iteratively for each newly inserted concept. The final complete

subsumption hierarchy of the example is shown in Figure 3.5.

FIGURE 3.5: Final complete subsumption hierarchy (adapted from [3])

The second generation is a sound and complete algorithm for the parallel TBox

classifier when concepts are inserted in parallel by different threads. It uses a lock

mechanism for updating the information of a concept in the global subsumption hier-

archy.

Third Generation The third generation of the algorithm uses concurrent TBox Clas-

sifier, which is more effective compared with previous generations. To improve the

partitioning phase of this method, it implements the informed partitioning algorithm,

which can reduce the number of repeated executions of the search methods. In or-

der to avoid inserting a concept redundantly into different informed partitions, all the

concepts which have known interactions will be placed in the same partition. There

is a ignore-list, which contains all the concepts in the same partition to avoid adding

a concept redundantly into different partitions. Each time before the search method is

called for a new concept from the list, it will be checked if it has already been placed

in the ignore-list.

The classifier works in a round-robin manner to assign partitions for each idle

thread. It also shares a global array, which is used for notifying other threads when a

36

new concept has been inserted. During the construction of the global taxonomy, it uses

lock-free data structures among all the partitions. If a new concept (female, not-male)

has not been inserted but has interactions with a concept (not-boy) in the array, it will

be added to the partition of thread#4 and deleted from other partitions, i.e., thread#1,

at the same time. Otherwise if it exists in the array, the concept can be inserted into

the taxonomy directly. In addition, if the inserted concept (not-girl) has many interac-

tions with concepts in the hierarchy such as (parent), (woman) and (not-female, male)

and might need more reruns before finding its exact place in the hierarchy, we post-

pone it and add it to the waiting list, which contains the concepts to be inserted later.

Therefore it is a sound and complete algorithm for the concurrent TBox classifier.

This method uses three generations to achieve a sound and complete algorithm

for both parallel and concurrent TBox Classifiers. It improves the efficiency of the

classification procedure when compared with the sequential cases. However other

factors such as different partition sizes, number of threads and overheads can impact

the efficiency of the parallel methods. Moreover, it is necessary for us to consider some

specific optimization techniques for parallel classification to avoid subsumption tests

and reduce the repeated number of search methods.

Evaluation

The parallel TBox Classifier has been used to speed up the classification process espe-

cially for some large ontologies. Using the parallel threads with a shared memory, the

evaluation results are focused on the number of performed subsumption tests with

a collection of 8 available large ontologies. Given the performance result from [3], it

shows that using two threads the maximum of number of subsumption tests for all

ontologies can be reduced to almost one half when compared to the sequential case

with a small overhead. Furthermore, if partitions have interactions with other threads

37

as little as possible, then the overhead and the number of subsumption tests can be re-

duced significantly. As a result, the parallel TBox Classifier is a promising techniques

for parallelization and can be improved with different configurations of threads and

partition sizes on large ontologies.

3.3.2 Merge Classification

The merge classification method [61] got the ideas from the known merge sorting al-

gorithm. It implements a heuristic partitioning scheme and divide-and-conquer (D &

C) algorithm, which is based on multi-thread recursion, works recursively by dividing

an original problem into two or more sub-problems and solving each sub-problem in-

dependently. The solution of the original problem needs to combine all of the results

of sub-problems together. Based on D & C algorithm, this method divides an ontology

into sub-domains and constructs the subsumption hierarchy using different threads.

After all partial hierarchies have been constructed, the final hierarchy is computed

by one processor by merging all the partial hierarchies together. The process can be

divided into two phases: divide and conquer phase and combining phase.

Divide and Conquer Phase In the divide and conquer phase, the domain ∆ first is

divided into smaller partitions of sub-domains ∆i for each thread. Using classifica-

tion computations, each sub-domain is executed in parallel. In this method, the divide

operation implemented heuristic partitioning techniques for partitioning over ∆. The

conquering operation uses the classification methods, top search and bottom search

to determine the immediate predecessor and successor of each concept in ∆i and con-

struct the classified concept hierarchy for each thread.

38

Combining Phase In the combining phase, the classified sub-taxonomies will be

merged together. Using a modified top merge method to merge two sub-domains: ∆α

and ∆β, the method calculates each concept in ∆β to find the immediate predecessor

in α. Then using the improved bottom merge method it finds the immediate successor

of the concept in ∆β into ∆α. After combining each sub-domain into one domain, all

the sub-domains can be merged into the final subsumption hierarchy in the end. Here

is an example to illustrate the algorithm further.

Example 3.1: We use the TBox shown in Figure 3.6. It contains simple concept sub-

sumption axioms and entails the subsumption hierarchy shown in Figure 3.6 on the

right. In the divide phase of the algorithm, the concepts are divided into two sub-

groups: G1 = {A2, A3, A5, A7} and G2 ={A1, A4, A6, A8} as shown in Figure 3.7.

FIGURE 3.6: The given TBox and the classified terminology hierarchy

After each division group has constructed its own subsumption hierarchy (see Fig-

ure 3.7), the merge phase will merge the two groups into one hierarchy. For instance, in

order to insert the concept A4 into the α subsumption hierarchy, the top merge method

is called to compute the immediate predecessors of A4 and finds no such predecessor

in ∆α. Then the bottom merge method is called and determines that A5 in ∆α is the

39

immediate predecessor of A4. Finally a possible computation path from A5 to A4 is

determined. In the example, we find that A4 is subsumed by A5 and add A4 to the

subsumption hierarchy. After merging all concepts into one hierarchy, the result is

shown in Figure 3.7.

FIGURE 3.7: The subsumption hierarchy divisions of different groups (left
two) and the subsumption hierarchy after merging both (right)

This method implements the algorithm by dividing all the concepts into different

groups and merging the independent subsumption hierarchies together. The divide

and conquer phase divides all the concepts into different groups and executes the sub-

sumption tests to construct the subsumption hierarchy for each thread. The merge

phase merges all the hierarchies into one processor and checks the relationships be-

tween concepts in the different groups to build a complete subsumption hierarchy. In

both phases it is necessary to test the relationships between each concept, which affect

the efficiency of this method. Therefore, it is important to find the appropriate parti-

tions of concepts for each group which can reduce the overhead and the number of

subsumption tests in the process.

Evaluation

The merge classification method uses a multi-threading model which is supported by

multi-processor computing facilities. Given the experimental results from [62], it was

40

conducted on a 16-core computer running Solaries OS and Sun Java. Although the big

complex ontologies need longer single thread computing time, the observed scalability

is linear and the overhead can be reduced significantly. The results show that it has

a better scalability especially on more difficult and bigger ontologies. Moreover, with

an increasing number of the threads the reasoning performance can also remain stable.

We could expect a further scalability improvement could be achieved by using more

processors with advanced multi-processor computing facilities.

3.3.3 Scalable and Parallel Reasoning Approach

In this approach, a distributed method is proposed where a very large amount of tasks

are distributed and executed simultaneously on independent machines. For the rea-

soning part, it is mainly based on monotonic rule-based reasoning. Since distributed

approaches require more exchange of updated data and increase the overhead com-

pared to using a single machine, this method was implemented with the Ibis [43]

framework to deal with the problems of communication between the nodes and the

heterogeneity of the systems.

This method includes three phases. In the first two phases, according to the study

of existing parallel programming models, a reasoning algorithm which matches the

chosen programming model is selected and uses different logics. In the last phase, a

series of experimental results are performed on the cluster. The performance is eval-

uated by extending the complexity of logics to find out the most suitable program-

ming model for each parallel reasoning. The results shows that using the MapReduce

[41] programming model achieved linear scalability, however, the method cannot be

extended to complex logics for reasoning due to the optimizations applied in this ap-

proach require some specific characteristics of RDFS [59, 57].

41

3.3.4 Distributed Reasoning Architecture

This architecture is mainly to solve the problems of reasoning with multiple ontolo-

gies interconnected by semantic mappings. In comparison to the global reasoning ap-

proaches, this method applied distributed reasoning techniques, which execute each

ontology using a independent processor to speedup the whole process. According to

the definition of distributed description logics in [10], which provides a syntactical and

semantical framework for ontologies using DL theories linked by semantic mappings

using collections of rules, this approach defined a distributed tableau-based reasoning

procedure extended to standard DL tableau reasoning.

Architecture

This reasoning system uses a peer-to-peer network to distribute ontologies to different

reasoning peers, which can register a stand alone ontology as well as an ontology

with a set of semantic mappings. Each reasoning peer has two different services :

registration and reasoning services.

• Registration Service is used to record and update the registered ontologies and

their assigned mappings. It is controlled by the registration manager.

• Reasoning Service includes checking concept satisfiability, ontology consistency

and entailment, construction of taxonomy.

These two services are connected by a registration manager, which can check the avail-

ability of memory, assign a different mapping to each ontology, and analyze parsing

data by using an available distributed reasoner [52].

Compared to other DL reasoners, such as Racer [25], Fact++ [55], this approach can

accommodate more reasoning capability with multiple ontologies linked with seman-

tic mappings by using distributed reasoning techniques.

42

3.4 Parallel Reasoning Techniques

3.4.1 MapReduce

MapReduce is a programming model and software framework for distributed pro-

cessing and generating large data sets on clusters of machines. Using MapReduce

the system can automatically parallelize computations across large-scale clusters of

machines and schedule message exchanges to make efficient use of the network and

disks. The MapReduce framework has been successfully applied for computing RDF

Schema closure and for reasoning with OWL Horst [58].

Programming Model

MapReduce is a programming model for distributed processing of data on a cluster of

machines (each machine called a node) [17]. The data is divided into several partitions,

and each partition is assigned to an idle node. There are three types of nodes with their

own function.

Master: The master node assigns partitions to map nodes and passes the interme-

diate output locations to reduce nodes.

Map: The map nodes receive the partition from the Master and generate interme-

diate output according to the map fuction, which is used to generate and return a set

of intermediate key/value pairs by processing a key/value pair. The output pairs are

stored on local disks and the location of the data is returned to the Master.

Map: (k1, v1)→ list(k2, v2)

Reduce: The reduce nodes are notified of the locations of intermediate output.

They group the values by key and process the values according to the reduce function,

which is used to merge the output associated with the same intermediate key into a

smaller set of values.

43

Reduce: (k2, list(v2))→ list(v3)

MapReduce for EL+

In this part, we will give an example of converting the completion rules into MapRe-

duce algorithms to compute the closure of an ontologyO. S, R, and P are sets (or maps

for MapReduce), where S(X) maps a class name X to a set of class names, R(r) maps

each role name r to a set of class name pairs and P is an extension of the function R. A,

B, C and D are concepts. Initial settings are S(A) = {A,>} and P(A) = ∅, for each

class name A including > and R(r) = ∅ for each role name r. All the expressions of

the form A ∈ S(X), (A, B) ∈ P(X) and (X, Y) ∈ R(r) are considered as axioms. The

completion rules R1-1 and R1-2 and the keys are defined in Table 3.1 [41].

Name Normal Form Completion Rule Key

R1− 1 A1 u A2 v B if A1 ∈ S(X) and A1 u A2 v B ∈ O,
then P(X) := P(X) ∪ {(A2, B)} A1

R1− 2 (A, B) ∈ P(X)
if A ∈ S(X) and ((A, B) ∈ P(X)
or A v B ∈ O),
then S(X) := S(X) ∪ {B}

A

TABLE 3.1: The completion rules for EL+ and keys for applying MapRe-
duce

The behaviour of R1-1 and R1-2 can be illustrated using the axioms: A u B v C,

A v B and A v D. We can infer that A is a subclass of both C and D, which can

be obtained by using R1-1 and R1-2 alone. When the algorithm is initialized, S(X) =

{X,>} and P(X) = ∅ for each class X. After R1-1 has been applied, the map function

generates the key-value pair 〈A,A u B v C〉. Other pairs such as 〈X, S(X)〉 and 〈>,

S(X)〉 for each X are produced too. The intermediate output is used in the reduce

function. The results is that for key A, A ∈ S(A) and A u B v C, (B, C) is added

to P(A). After adding the new axiom to the set of existing axioms, all the axioms

44

are executed in the next step. The output of the map phase for applying R1-2 are the

following key-value pairs:

{〈A, A ∈ S(A)〉, 〈B, (B, C) ∈ P(A)〉, 〈A, A v B〉, 〈A, A v D〉}

In the reduce phase, since both A ∈ S(A) and A v B are associated with key A, B can

be added to S(A). Applying the R1-2 rule, C and D are added to S(A). When the map

function is executed, since B is in S(A), the pair 〈B, B ∈ S(A)〉 and 〈B, (B, C) ∈ P(A)〉

will be generated. In the reduce phase, both tuples have the same key B. Using the

conjunction rule, C is added to S(A).

3.4.2 ELK

ELK is a Java-based specialized reasoner for OWL EL ontologies by using multiple

cores/processors to speed up the reasoning process. Since the first release version

of ELK, it has been widely used in a variety of application areas, such as biology

and medicine, which requires efficient reasoners to handle large biomedical ontolo-

gies [30].

System Module

The main software modules of ELK are shown in Figure 3.8. The direction of arrows

indicates the information flow during classification. There are two independent entry

points: the Command-line Client and the Protégé Plugin to the left. The Command-

line Client extracts OWL ontologies from files in OWL Functional Style Syntax (FSS).

The Protégé Plugin is applied the ELK’s bindings to OWL API1 to get data from Pro-

tégé2. The ELK reasoner is divided into three packages. The standalone client includes

the command-line client and the FSS parser for reading OWL ontologies. The Protégé

plugin allows ELK to be used as a reasoner in Protégé and compatible tools. The OWL
1OWL API is available at http://owlapi.sourceforge.net/
2Protégé is available at http://protege.stanford.edu/

45

API bindings package allows ELK to be used as a software library which is controlled

via the OWL API interfaces. The next step is based on ELK’s representation of OWL

objects (axioms and expressions) instead of the OWL API.

FIGURE 3.8: Main modules of ELK and information flow during classifi-
cation (adapted from [30])

Reasoning Algorithm

The ELK reasoning component works by deriving consequences of ontology axioms

under inference rules. The main components of the core reasoning algorithms imple-

mented in ELK can be divided into three phases: indexing, saturation and taxonomy

construction [29].

Indexing The indexing phase builds data structures which can be used to effectively

check the conditions of the inference rules and the index assigned to concepts and

roles occurring in the given ontology. In ELK, indexing is executed in a second thread

in parallel to loading the ontologies. In addition, ELK keeps record of the exact counts

of negative and positive occurrences of concepts to incrementally update the index

structure without reloading the whole ontology.

Saturation The saturation phase computes the deductive closure of the input axioms

following the inference rules. The optimization of this phase can affect the overall

efficiency. The algorithm (see Algorithms 4+5) maintains two collections of axioms:

the set of processed axioms for which the rules have been applied and the scheduled

46

queue of the remaining axioms. The algorithm works repeatedly to pop up an axiom

from the scheduled queue. If an axiom is not in the processed set, it is moved to this set

and all inferences resulting from this axiom and the processed axiom are added to the

end of the queue. During processing, if all the processors execute concurrently, there

may exist conflicts among the threads. In order to solve this problem, ELK uses a lock-

free technique to distribute the axioms according to a ‘context’ in which the axioms

can be used as premises of inference rules and processed independently. It is an active

context if the scheduled queue of this context is not empty. For every input axiom, the

algorithm adds every context assigned to this axiom and this axiom to the queue of the

scheduled axioms for this context. If the queue of scheduled axioms is non-empty, the

context is activated and added to the active contexts. Each active context is repeatedly

processed in a loop.

Algorithm 4: activeContexts.activate (context) [30]

1 if not context.isActive then

2 context.isActive← true;

3 activeContexts.put (context);

Algorithm 5: activeContexts.deactivate (context) [30]

1 context.isActive← false;

2 if context.scheduled 6= ∅ then

3 activeContexts.activate (context);

Taxonomy Construction Taxonomy construction is the output of the classification

which only contains direct subsumptions representing equivalence classes of concepts,

such that if a taxonomy contains A v B and B v C then A v C should not exist,

47

unless some of them are equivalent. Therefore, the computation of subsumption re-

lationships between concepts must be transitively reduced. Due to the fact that the

number of all predecessors of a concept A is sizeable and the number of direct prede-

cessors is countable, it implements the Transitive Reduction method performing the

inner iteration only over the set of direct predecessors of A which have been found.

For the given concept A, the method computes two sets A.equivalentConcepts and

A.directPredecessors. The former set contains all the concepts which are equivalent to

A including itself. The latter set contains exactly one concept from each equivalence

class of direct predecessors of A. For multiple concepts, they execute independently

on parallel processors. According to the computation of two sets for each concept, one

taxonomy concept for each distinct class of equivalent concepts is constructed and

connects concepts based on their direct predecessors relationships. At last, top (>)

and bottom (⊥) are added in the proper positions of the ontology.

3.4.3 Snorocket

Snorocket implements a concurrent classification algorithm which allows using syn-

chronous processing in multi-processor machines and supports concrete domains.

Implementation

The implementation of the current version Snorocket is targeted at supporting the

OWL EL profile. In DLs, a concrete domain can be used to define new classes by

specifying restrictions on attributes that have literal values. For example, considering

the following axioms:

toddler ≡ person u ∃hasAge.(≤, 3)

child ≡ person u ∃hasAge.(≤, 17)

After the normalization, these axioms can be transferred into the following axioms:

48

∃hasAge.(≤, 17) v A person u A v child

child v person child v ∃hasAge.(≤, 17)

∃hasAge.(≤, 3) v B person u B v toddler

toddler v person toddler v ∃hasAge.(≤, 3)

From these axioms we can infer that a toddler is also a child, but a child may not

a toddler, when analyzing the expressions toddler v ∃hasAge.(≤, 3) and ∃hasAge.(≤

, 17) v A. After comparison with the arguments (≤, 3) and (≤, 7), the result returns

a positive match if all the possible values of the first operator-pair are covered by the

possible values of the second operator-value pair. Otherwise, the result returns false.

Moreover, the binary operators <, <=, >, >= can also be used in a concrete domain

expression and attributes can have other types of values.

The new version of Snorocket implements a multi-threaded saturation algorithm

which is inspired by the saturation method used in ELK (see Section 5.2.2). The core

part for this method is to split the computation into small partitions which can be pro-

cessed by each worker independently and concurrently to reduce the locking overhead

during the classification [29, 38].

3.4.4 Konclude

Konclude is a DL reasoner, which incorporates different reasoning procedures and

implements new as well as extensions of existing optimizations to support a multi-

core, shared memory system.

Architecture

The Konclude system provides two kinds of communication: one is an OWL link

server that exposes ontology management and reasoner functionality to other clients;

the other interacts with the reasoner via a command line interface, which can load an

49

ontology, execute a basic reasoning request with a system configuration. The overall

workflow for handling ontologies and reasoning requests can be divided into three

steps: parsing, loading and reasoning. For each processing step, there is a manager for

controlling the execution [53].

Konclude can concurrently handle several ontologies. It is necessary for the system

to answer a request for a certain ontology. Therefore, in the parsing step, axioms of

an ontology are first collected in containers to keep track of the different revisions of

an ontology. The reasoning manager plays an important role in handling the requests

that require reasoning. In order to generate an answer, the requests are characterized

by a list of conditions that have to be satisfied. Then the reasoning manager identifies

and manages the process to satisfy the conditions of these requests. For example, if

the user requests the class hierarchy of an ontology, it is necessary to build the internal

presentation and data structure, test the consistency and classify the ontology.

Optimization

Parallel ontology processing is one of the main feature for the Konclude system. It

can classify several ontologies concurrently and divide all the tasks into independent

threads. This is especially useful when Knoclude uses an OWL link sever to serve

multiple clients that operate on different servers. Furthermore, using peer-to-peer

messages for communication can avoid conflicts and starvation of the execution sys-

tem. However, the TBox classification of Konclude implemented with sequential not

parallel methods.

Evaluation

The experimental results from [29, 38, 53] provide an evaluation that compares the

50

reasoners Konclude, FaCT++, HermiT, and Pellet 3, Snorocket and ELK for EL ontolo-

gies.

First, in order to facilitate a comparison between the reasoners that is independent

of the number of CPU cores, the experiments compare the parallelized reasoners ELK

and Konclude with only one worker thread and separately evaluated the effect of par-

allelization.

Second, the experiments compare the average classification time for different rea-

soner in different ontologies especially some large ontologies including SNOMED

CT4, FMA-lite5 and OWL EL version of GALEN6.

The result shows that Konclude performs well on small ontologies using only one

thread when compared with ELK, which has a good performance on many larger EL

ontologies. Both ELK and Snorocket outperformed the other reasoners on largel tested

ontologies. The average classification time of ELK is 2-3 times faster than Snorocket.

When the ontology consists of n disjoint and equal components that can be classi-

fied independently, the average classification time of ELK can be significantly reduced

when computing the same results compared with other reasoners. Therefore, it is

promising to apply optimized concurrent techniques to reduce the classification time

of large complex ontologies.

3.5 Summary

In this chapter, we presented different classification methods and three popular DL

reasoners, which apply optimization techniques in various different ways. For the

sequential methods, all of them focus on reducing the number of subsumption tests

3Pellet is available at http://pellet.owldl.com/
4SNOMED CT is available at http://ihtsdo.org/
5FMA-lite is available at http://www.bioontology.org/wiki/index.php/FMAInOwl
6GALEN is available at http://condor-reasoner.googlecode.com

51

and improving time complexity to get a better performance. For the parallel methods,

considering two important factors: number of threads and partition size, both of them

play important roles during the whole procedure. The parallel reasoners we intro-

duced implement different parallel techniques to improve the efficiency of reasoners.

However, most of them do not focus on TBox classification and their efficiency can be

affected by updating information and precomputing among different threads. There-

fore, when we design parallel TBox classification methods, it is necessary to consider

the impact factors and find efficient solutions to improve the performance of TBox

classification. In the next chapter, based on these existing methods, a new parallel

TBox classification approach is introduced, which is inspired by the existing methods

and improves speed up factors by applying novel parallel strategies.

52

4 Parallel Reasoning

4.1 Introduction

In this chapter, the first version parallel framework is motivated by previous paral-

lel approaches and also expands ideas presented in [21] to parallel processing. This

HPC approach is implemented with a shared-memory architecture, atomic global data

structures, and new strategies for parallel subsumption testing, which is ideally suited

for shared-memory SMP servers, but does not rely on locking techniques and thus

avoids possible race conditions. Specifically, it is mainly focused on the differences

and novelties to speed up the OWL classification process: using parallel processing

[31], with hundreds of threads, in combination with an atomic multi-dimensional data

structure is shared among a pool of processors performing pre-computation and classi-

fication in parallel. Compared to [3], where a small set of threads operated on a shared

taxonomy via locking, this architecture can update subsumption relations lock-free in

a globally shared taxonomy. In comparison to [62] this architecture avoids a multitude

of subsumption tests due to shared data.

53

4.2 Architecture

The goal of this approach is to parallelize the computation of subsumption taxonomies

consisting of a large number of concepts and speed up the process of TBox classifica-

tion. In order to reuse information from (non-)subsumption tests, this method imple-

ments a parallel framework and a shared-memory global data structure to record all

binary subsumption relationships occurring in an ontology O (or TBox). A set P con-

tains all possible subsumees that every concept could have and a set K represents all

subsumees found from known subsumption relationships or subsumption tests. For

example, if O entails B v A (denoted as O |= B v A), then B is inserted into KA and

delete B from PA. Since the classification of O tests all pairs of concept subsumptions,

the concepts remaining in possible subsumee sets is used to reflect the amount of work

that still needs to be done until P becomes empty. The predicate subs?() is used to test

subsumption relationships for each pair of concepts in P. The call of subs?(B, A) re-

turns true if B subsumes A and false otherwise. Before testing, it is necessary to know

the satisfiability of each concept, e.g., by testing subs?(⊥, A).

In an ontology O, a set NO contains all concepts occurring in O. For each concept

X ∈ NO, the method initializes PX, which contains all possible subsumees of X and

an initially empty KX to contain all the known subsumees derived from subsumption

tests. For instance, let us assume three concepts {A, B, C} ⊆ NO. After initialization,

PA = {B, C}, PB = {A, C}, PC = {A, B} and KA = KB = KC = ∅. Since NO contains

all concepts fromO, in the following phases NO is used as a global parameter for clas-

sifying O in parallel. For example, for the concepts A, B and C, subsumption (and in-

directly satisfiability) for the pairs below are computed using subs?(): {〈⊥, C〉, 〈A, C〉},

{〈⊥, B〉, 〈C, B〉}. The results are O |= C v A and O |= B 6v C. The changes to P and K

are : PA = {B, C}, PC = {A, B}, and KA = {C}. In order to guarantee the soundness and

completeness of this algorithm, a complete possible set for each concept is created in

54

NO before any possible subsumees could be removed from P. In addition, a set RO is

used for containing each concept X ∈ NO where PX 6= ∅.

Algorithm 6: parallelTBoxClassification(P, K)

1 Input: P, K - sets of possible and known subsumees

2 Output: H - the whole ontology taxonomy

3 NO ← generateNodeSet(O)
4 T ← createWorkerPool()

5 LO ← getRandomOrder(NO)

6 G ← randomDivision(LO)

7 for each group Gi ∈ G do

8 if getAvailableThread(T) then

9 randomDivisionSubsTest(Gi)

10 RO ← generateRemainingPossibleSet()

11 G ← groupDivision(RO)

12 while RO 6= ∅ do

13 for each group GX ∈ G do

14 if getAvailableThread(T) then

15 groupDivisionSubsTest(GX)

16 X ← computeTopConcept()

17 while KX 6= ∅ do

18 if getAvailableThread(T) then

19 HX ← buildPartialHierarchy(KX)

20 ifHX 6= ∅ then

21 H ← buildOntologyTaxonomy(HX)

22 X ← getKnownSubsumees(KX)

23 returnH

The TBox classification process is implemented in three parallel phases. In each phase

different parallelization strategies are applied. A global parameter w is used to spec-

ify the maximum number of parallel threads (or workers) available for classification.

The architecture of this approach is shown in Figure 4.1 and the complete algorithm

55

Shared-
Memory

Start Reasoner

Load
an Ontology T1

T2

Tw

T1

T2

Tw

RandomDivisionSubsTest
T1T2... ...Tw

GroupDivisionSubsTest

KX 6= ∅

BuildPartialHierarchy

HX 6= ∅

Output
Ontology Taxonomy

FIGURE 4.1: The Architecture of Parallel TBox Classification Approach

of parallelTBoxClassification(P, K) is shown in Algorithm 6. In the first phase, the

method randomly partition the set of all named concepts into disjoint sequences hav-

ing almost identical sizes obtained by dividing the total number of named concepts by

w (see line 7-9). In the second phase, all concepts X with PX 6= ∅ are found using a

group division strategy with round-robin scheduling for the worker thread pool in order

to finish the classification process (see line 10-15). In the final phase, a parallel divide-

and-conquer framework is applied. Partial hierarchies are generated in the divide part

for all concepts X with KX 6= ∅. In the conquer part the whole ontology is constructed

based on the existing partial hierarchies whereHX 6= ∅ (see line 16-22).

4.3 Ontology Classification

In the classification phase, two strategies are designed, the random and the group di-

vision strategy. In this algorithm, each concept has a global set which contains possible

(P) and known subsumees (K). In that way the changes are updated in the global sets

during classification. Each thread tests subsumption relationships and removes as

many concepts from P as possible. TBox classification terminates once P has become

empty for all concepts in NO.

56

Definition 4.1 With reference to NO, the set RO =
⋃

X∈NO PX contains all remaining

possible subsumees PX of each concept X.

4.3.1 Random Division Strategy

According to the number of threads and total number of concepts occurring in O,

all concepts are divided into different groups with almost the same size. In order to

make the best use of all idle threads, the number of threads is identical to the number

of groups for testing subsumption relationships for all concepts in NO. The method

first generates an unordered sequence LO which includes all concepts. Then LO is

divided into w different groups, where w is the number of available threads. Then

subsumption relationships are tested between all pairs 〈Y, X〉with Y, X ∈ NO for each

group Gi by calling randomDivisionSubsTest(Gi) (see Algorithm 7). The sat?() is used

to test concept satisfiability and tested() to check whether the subsumption between

two concepts has already been tested.

Example 4.1 Assume there are three threads available to perform subsumption tests.

The algorithm first shuffles all concepts in NO = {A, B, C, D, E, F} and returns the

first cycle sequence L1
O = (A, C, E, D, B, F). Then each group Gi contains two possible

subsumees, such as G1 = {A, C}, G2 = {E, D}, and G3 = {B, F} for subsumption

testing. For each thread Ti the results are: T1 : C v A; T2 : D 6v E; T3 : F 6v B.

57

Algorithm 7: randomDivisionSubsTest(Gi)

1 Input: Gi - random division group

2 Output: K - sets of known subsumees

3 P - sets of remaining possible subsumees

4 for each concept pair 〈X, Y〉 ∈ Gi do

5 if ¬tested(X, Y) then

6 satX← sat?(X)

7 satY← sat?(Y)

8 if ¬satX then

9 PX ← ∅

10 delete X from PY

11 else if ¬satY then

12 PY ← ∅

13 delete Y from PX

14 else

15 if subs?(X, Y) then

16 insert Y into KX

17 delete Y from PX

The second cycle sequence is L2
O = (C, D, A, F, B, E). The divisions of each group

are G1 = {C, D}, G2 = {A, F} and G3 = {B, E}. For each thread, the results are :

T1 : D v C; T2 : F v A; T3 : E v B.

Therefore, after applying the changes to P and K, the results are as follows:

PA = {B, ��C, D, E, ��F} KA = {C, F}

PB = {A, C, D, ��E, ��F} KB = {E}

PC = {A, B,��D, E, F} KC = {D}

PD = {A, B, C, E, F} KD = ∅

PE = {A, B, C, ��D, F} KE = ∅

PF = {A, B, C, D, E} KF = ∅

58

Since the process to generate random divisions currently ignores already discov-

ered subsumptions, there is a possibility that a pair of concepts occurs in a division

more than once in different cycles. Therefore, the tested() is used to avoid redundant

tests. The runtime for each thread are considered almost the same and the waiting

time can be neglected right now. Currently, the results also show that the runtime

differences for each thread can be neglected when compared with the total execution

time.

If RO is not empty after random division phase testing, possible subsumees are left

in P. A group division strategy is designed to divide all remaining possible subsumees

in RO into different groups to continue testing subsumption relationships until P be-

comes empty.

4.3.2 Group Division Strategy

For each concept X in NO a group GX = PX is generated according to the remaining set

RO which is defined in Definition 1. The groups GX define the input to groupDivision-

SubsTest(GX) (see Algorithm 8), which determines what elements of GX are subsumed

by X. Each group is assigned to a different idle thread until all groups have been clas-

sified. During the process, round-robin scheduling is applied to ensure a good use of all

threads.

59

Algorithm 8: groupDivisionSubsTest(GX)

1 Input: GX - group division of concept X

2 Output: K - sets of known subsumees

3 P - sets of remaining possible subsumees

4 for each concept Y ∈ GX do

5 if sat?(Y) and ¬tested(X, Y) then

6 if subs?(X, Y) then

7 insert Y into KX

8 delete Y from PX

Example 4.2 According to the results from the random division phase (see Example

4.1), let us assume the following six groups are generated:

GA ={B, D, E}

GB ={A, C, D}

GC ={A, B, E, F}

GD ={A, B, C, E, F}

GE ={A, B, C, F}

GF ={A, B, C, D, E}

60

Timeline

T1 GA GE

T2 GB GF

T3 GC GD

FIGURE 4.2: Scheduling results for Example 3.2

In the following we assume all concepts are satisfiable, the group scheduling is

shown in Figure 4.2 and the results of each thread are shown as follows.

T1(GA) : B v A, D v A, E v A;

T2(GB) : A 6v B, C 6v B, D 6v B;

T3(GC) : A 6v C, B 6v C, E 6v C, F v C;

T′3(GD) : A 6v D, B 6v D, C 6v D, E 6v D, F 6v D;

T′1(GE) : A 6v E, B 6v E, C 6v E, F 6v E;

T′2(GF) : A 6v F, B 6v F, C 6v F, D 6v F, E 6v F;

Since P becomes empty and RO = ∅, all subsumption relationships between all

concepts occurring in O have been tested. The classification of O terminates.

4.3.3 Ontology Taxonomy

In order to find the direct subsumees of each concept and build the whole subsumption

hierarchy, a concept hierarchy strategy is applied which is implemented by a divide-

and-conquer algorithm to construct the taxonomy of O. When RO becomes empty, all

known subsumees of a concept X are members of KX. First, find the top concept A

and traverse all the concepts X ∈ KA. Then the partial hierarchy HX is built for each

61

concept X by computing the transitive closure to reduce the known set KX. For each

concept in KX, we compute all the direct subsumees of X and insert them into HX .

Finally, the whole taxonomy of the ontology O is constructed based on the partial

hierarchy of each concept.

Concept Hierarchy Strategy

In the divide phase, the algorithm begins with KX where X is initially equal to >. For

each concept Yi ∈ KX and i = 1, 2...n, if KYi 6= ∅ and X ∈ KYi , then Yi ≡ X; if X 6∈ KYi ,

Zi ∈ KYi and Zi ∈ KX, then Zi is deleted from KX. The method continues with the next

concept Yi+1 ∈ KX until all the concepts in KX have been traversed. The remaining

concepts in KX are the direct subsumees of X which are inserted into HX . The algo-

rithm buildPartialHierarchy(KX) is shown in Algorithm 9. For each concept X with

KX 6= ∅ its partial hierarchy is built in parallel. The process terminates once all partial

hierarchies have been built.

62

Algorithm 9: buildPartialHierarchy(KX)

1 Input: KX – set of known subsumees of concept X

2 Output: HX – the partial hierarchy of concept X

3 if KX 6= ∅ then

4 for each concept Y ∈ KX do

5 if KY 6= ∅ then

6 if X ∈ KY then

7 delete X from KY

8 setEquivalentConcept(X, Y)

9 else

10 for each concept Z ∈ KY do

11 if Z ∈ KX then

12 delete Z from KX

13 HX ← KX

14 returnHX

Example 4.3 According to the results from Example 4.2, when P becomes empty, the

known sets for each concept are:

KA = {B, C, D, E, F}

KB = {E}

KC = {D, F}

KD = ∅

KE = ∅

KF = ∅

Since A ≡ >, the hierarchy construction starts with the first concept B ∈ KA and

E is the first concept in KB which is also in KA, then E is deleted from KA. The second

concept is C ∈ KA and there are two concepts D and F in KC, then D and F are deleted

63

A

B C

(a) HA

E

B

(b) HB

C

D F

(c) HC

FIGURE 4.3: Partial Hierarchy for the concepts in different threads

A

B

E

C

D F

FIGURE 4.4: The whole concept hierarchy of O

from KA. Therefore KA = {B, C} and the partial hierarchy of A is HA = {B, C}.

Since KB = {E} and KE = ∅, the partial hierarchy of B is HB = {E}. Because of

KC = {D, F}, KD = ∅ and KF = ∅, the partial hierarchy of C is HC = {D, F}. The

final partial hierarchyH of the concepts in each thread is as follows:

T1 : HA = {B, C} in Figure 4.3(a)

T2 : HB = {E} in Figure 4.3(b)

T3 : HC = {D, F} in Figure 4.3(c)

In the conquer phase, after the partial hierarchy of each concept has been built, all

the partial hierarchies are merged into the whole taxonomy from top to bottom. The

final concept hierarchy of O is shown in Figure 4.4.

64

4.4 Optimization

Due to the possibly large size of ontologies and the cost of subsumption tests, we

propose a modified half-matrix data structure that uses less memory and requires less

computation and also apply an improved group division strategy (see Section 4.4.2) to

get a better performance especially for some complex ontologies. More subsumption

relationships can be inferred by applying transitive closure without subsumption tests.

4.4.1 Half-Matrix Structure

In order to remove potential non-possible or known subsumees from the Possible list,

this algorithm uses a half-matrix to represent all possible relations for each concept.

If a concept C from O is satisfiable, mark it with a unique index IC. Each concept

A with a smaller index IA contains the possible relationships with concept B with a

bigger index in PA. Therefore the set P contains all possible relationships which could

be possible subsumers or subsumees. For each concept its known set contains all its

subsumees. Possible relations for each pair of concepts are only represented once. For

instance, suppose that C 6v A and A 6v C, if the index of the possible subsumee C is

bigger than the index of the current concept A, then delete C from PA; otherwise delete

A from the possible set PC.

This algorithm computes subsumption tests symmetrically for every pair of con-

cepts. Assume the ontologyO computes the pairs 〈C, A〉 and 〈F, B〉, then subs?(A, C),

subs?(C, A) and subs?(B, F), subs?(F, B) are tested. The results are O |= C v A,

O |= A 6v C and O |= F 6v B, O |= B 6v F. Using the half-matrix, since IA < IB <

IC < ID < IE < IF, the changes to P and K result in the following sets:

65

IA = 1 PA = {B, ��C, D, E, F} KA = {C}

IB = 2 PB = {C, D, E, ��F} KB = ∅

IC = 3 PC = {D, E, F} KC = ∅

ID = 4 PD = {E, F} KD = ∅

IE = 5 PE = {F} KE = ∅

IF = 6 PF = ∅ KF = ∅

Therefore, there are two results from testing the relations between every pair of con-

cepts. This ensures that there will be changes in P and K for every two symmetrical

tests until all concepts in P have been tested.

4.4.2 Improved Division Strategy

In the Group Division Phase (see Section 4.3.2) round-robin scheduling is applied. How-

ever, in the tests we encountered some difficult ontologies where the runtime of sub-

sumption tests is not uniform, especially some ontologies with QCRs. The division

strategy from Section 4.3.2 does not have a specific solution for this kind of ontologies.

In Example 4.2, a queue Q = {GA, GB, GC, GD, GE, GF} of pending tasks is created. Sup-

pose only three threads are available and each thread receives a task from Q. When

a task is finished, an idle thread gets another task assigned based on the sequence of

tasks in Q. However, one can observe that when the second set of tasks (GD,GE) is

finished for T1 and T3, T2 is still working on GF and, thus, leaves threads T1 and T3 idle

until classification terminates (see Figure 4.2).

To improve the performance of this method and ensure a more efficient use of mul-

tiple threads for these difficult ontologies, the Fork/Join framework is applied for the

improved group division strategy. Currently, this strategy to divide a task into smaller

subtasks depends on the size of the ontology and the number of available threads. If

a task is small enough, which means based on previous results the expected runtime

66

Timeline

T1 GA GE GF1

T2 GB GF2

T3 GC GD GF3

FIGURE 4.5: Improved scheduling results for Example 4.2

for a particular group is much smaller than the idle time of threads, the improved

algorithm will execute the subsumption tests for this group directly without task divi-

sion. Otherwise, the task for the group which includes difficult subsumption tests will

be divided according to the number of available threads. In the case of Example 4.2,

since there are three threads available, the task GF will be divided into three subtasks

GF1, GF2, GF3 that are added to sub-queue QF.

During execution, if idle threads are waiting in the thread pool, the work stealing

strategy is applied to steal tasks from other threads that are still busy using the sub-

queues created for each concept. Accordingly, the subtasks GF1, GF2, GF3 are assigned

to idle threads (see Figure 4.5). Although we cannot guarantee that all the threads will

finish at the same time, the runtimes and speedup factors have been improved, espe-

cially for some difficult ontologies, and the overhead has been significantly reduced.

Therefore, both the total running time for the Group Division Phase and the waiting

time of idle threads can be improved by applying the improved group division strat-

egy. The algorithm improveScheduling(Q) is described in Algorithm 10.

67

Algorithm 10: improveScheduling(Q)

1 Input: Q - A queue of unclassified groups

2 Output: K - sets of known subsumees

3 while ¬isEmpty(Q) do

4 Gi ← deQueue(Q)

5 while Ti ← getAvailableThread(T) do

6 Ti → groupDivisionSubsTest(Gi)

7 for each thread Ti ∈ T do

8 if Ti is busy with Gj then

9 for each sub-group Gjk do

10 Gjk ← splitSubtask(Gj)

11 add Gjk to sub-queue Qs

12 improveScheduling(Qs)

4.4.3 Optimized Parallel Phase

In order to shrink the set P by using less subsumption tests, known results from sub-

sumption tests are used to prune untested possible concepts in P without subsumption

testing. Given the results from Example 4.2, assume concept B ∈ PA will be tested for

a subsumption relationship with A. The following steps perform changes to P and K

before new divisions are created for an idle thread.

Situation 1 If both concepts are unsatisfiable, their set P is empty; The changes to P

and K are PA = ∅, PB = ∅, KA = ∅ and KB = ∅.

Situation 2 If both concepts are satisfiable, test the subsumption relationships be-

tween them.

Definition 4.2 If the index of A is smaller than B, i.e., IA < IB, the position of concept

B in PA is defined as: B.position = PA.position[IB − IA − 1].

68

Situation 2.1 If concept B ∈ PA and tested(A, B) is true, which means B has been

tested, then we continue with the next concept C ∈ PA to test its subsumption rela-

tionships with A; otherwise continue with Situation 2.2.

Situation 2.2 The subsumption relationships are tested in a symmetrical way by

subs?(B, A) and subs?(A, B). If both results are true, then the two concepts are equiv-

alent to each other; otherwise continue with Situation 2.3.

Situation 2.3 If only one of the results is true, i.e., O |= B v A but O |= A 6v B, the

changes to both sets P and K are PA = {��B, ��C, D, E, ��F}, KA = {B, C, F} and we continue

with Situation 2.3.1; otherwise continue with Situation 2.4.

Situation 2.3.1 Delete all concepts Y ∈ KB from PA and KA. Due to O |= B v A and

KB = {E}, all the subsumees of B are subsumees of A but not the direct subsumee of

A as shown in Figure 4.6. Therefore, all concept Y ∈ KB are deleted from PA without

subsumption tests. In the example, concept E ∈ KB but E /∈ KA is deleted from PA.

The changes of P are PA = {��B, ��C, D, ��E, ��F} and we continue with Situation 2.3.2.

A

B

E

C F

FIGURE 4.6: An Example for Situation 2.3.1 and 2.3.2

Situation 2.3.2 For all concepts Y ∈ KB delete A from PY. Due to O |= B v A and

KB = {E}, all the subsumees of B are subsumees of A and concept A is not a subsumee

of all concepts Y ∈ KB as shown in Figure 4.6. Therefore, concept A is deleted from

69

PY with Y ∈ KB. Since only concept E ∈ Y and IE > IA in the example, there are no

changes to both P and K.

A

B

E C

F

(a)

A

B

E C F

(b)

FIGURE 4.7: Counter examples for ‘delete all concepts X ∈ KA from PB’

We also consider situations such as ‘delete all concepts X ∈ KA from PB’. Since

KA = {B, C, F}, we know that concepts C and F are in KA and the two concepts could

not have subsumption relationships with B. However, there are some counter exam-

ples which indicate possible relationships between B and C, F such that O |= C v B

in Figure 4.7(a) and O |= F v B in Figure 4.7(b). Therefore, we cannot assume sub-

sumption relationships between 〈B, C〉 and 〈F, B〉 without performing subsumption

tests.

Situation 2.4 If both concepts are not subsumed by each other such that O |= A 6v B

and O |= B 6v A, then both sets P and K remain unchanged.

According to this condition, we try to find some situations which allow us to shrink

P in an efficient way without performing subsumption tests. However, we identified

some counter examples as shown in Figure 4.9 where the dashed lines indicate possi-

ble relationships between pairs of concepts. Below we describe two scenarios.

• Delete all concepts X ∈ KA from PB and Y ∈ KB from PA. For example as shown

in Figure 4.8, there is a concept C ∈ KA, C ∈ PB, O |= A 6v B and O |= B 6v A ,

but A and B are both known subsumers of C. The possible relationship between

C and B could exist before C is deleted from PB; there is a concept E ∈ KB, E ∈ PA,

70

>

A

F

B

C E

FIGURE 4.8: Counter Examples for Situation 2.4

O |= A 6v B and O |= B 6v A, but concept E is a subsumee of both A and B.

Therefore, the relationships of the pairs 〈B, C〉 and 〈A, E〉 need to be tested before

deleting C from PB and E from PA.

• For all concepts X ∈ KA delete B from PX and all concepts Y ∈ KB delete A from

PY. In the example shown in Figure 4.9(a), there is a concept F ∈ KA, F ∈ PB

(IF > IB),O |= A 6v B andO |= B 6v A, but concept B is a known subsumee of F.

In Figure 4.9(b), there is concept E ∈ KB, E ∈ PB, O |= A 6v B and O |= B 6v A,

but concept A is a subsumee of E. Therefore, relationships between the pairs of

〈B, F〉 and 〈A, E〉 need to be tested before deleting F from PB (IB < IF) and E

from PA (IA < IE).

E

B

F

A

D

(a)

F

A

E

B

D

(b)

FIGURE 4.9: More Counter Examples for Situation 2.4

Algorithm 11 correctly deals with all the situations illustrated above.

71

Example 4.4 For random division tests, we apply the random division strategy and

use the same random division results from Example 4.1. The first random division

cycle results in:

T1 : C v A, A 6v C; T2 : E 6v D, D 6v E; T3 : F 6v B, B 6v F

The results of the second random division cycle are:

T1 : D v C, C 6v D; T2 : F v A, A 6v F; T3 : E v B, B 6v E

After finishing the random division tests, the changes to P and K result in:

IA = 1 PA = {B, ��C, D, E, ��F} KA = {C, F}

IB = 2 PB = {C, D, ��E, ��F} KB = {E}

IC = 3 PC = {��D, E, F} KC = {D}

ID = 4 PD = {��E, F} KD = ∅

IE = 5 PE = {F} KE = ∅

IA = 6 PF = ∅ KF = ∅

72

Algorithm 11: pruneNonPossible(A, B)

1 Input: A, B - two concepts from NO
2 Output: K - sets of known subsumees

3 P - sets of possible subsumees

4 if sat?(A) then

5 if sat?(B) then

6 if ¬tested(B, A) and ¬tested(A, B) then

7 result1 ← subs?(A, B)

8 result2 ← subs?(B, A)

9 if result1 and result2 then

10 return A ≡ B

11 else if result1 then

12 for each concept Y ∈ KB do

13 delete Y from PA and KA

14 delete A from PY

15 else if result2 then

16 for each concept X ∈ KA do

17 delete X from PB and KB

18 delete B from PX

19 else

20 PB ← ∅

21 else

22 PA ← ∅

For each random division cycle, the above-mentioned optimized techniques are ap-

plied. Since O |= C v A and concept D ∈ KC, concept D is deleted from PA and the

remaining sets P become : PA = {B, E}, PB = {C, D}, PC = {E, F}, PD = {F}, PE = {F}.

Now let us assume there are three threads available for subsumption testing and

all concepts in RO are divided into groups using the group division strategy. The

divisions for the groups GX are : GA = {B, E}, GB = {C, D}, GC = {E, F}, GD = {F}, GE =

{F}.

73

After applying the optimized techniques above for each thread Ti, all the pairs in

brackets have not been tested and the results are:

T1 : B v A, A 6v B (E v A, A 6v E);

T2 : B 6v C, C 6v B (B 6v D, D 6v B);

T3 : (E 6v C, C 6v E) F v C, C 6v F;

T′1 : D 6v F, F 6v D;

T′2 : (E 6v F, F 6v E);

For T1, the subsumption relationship between concepts A and B is thatO |= B v A,

then concept E ∈ KB can be deleted from PA without further testing by applying

Situation 2.3.1. For T2, the concepts B and C are not subsumed by each other and

D ∈ KC, then concept D can be deleted from PB without further tests. For T3, since

the concepts B and C are not subsumed by each other and E ∈ KB, concept E can

be deleted from PC without further tests. Since we use a global atomic data structure

when testing the relationships between B and C, there will be no conflict between T2

and T3. The subsumption tests between C and E can be executed only after concepts

B and C have been tested. For T′2, since concept E ∈ KB, F ∈ KC and concepts B and C

are not subsumed by each other, F can be deleted from PE without further tests.

Therefore, all the subsumptions listed in brackets can be inferred without testing.

The remaining possible set RO will be pruned significantly due to the many relation-

ships found among the concepts. The classification terminates when P has been emp-

tied.

74

4.5 Summary

In this part, a novel parallel OWL ontology classification architecture has been pre-

sented. Different parallel techniques are applied to create a thread pool for each sub-

task working on an independent processor. Compared to existing sequential classi-

fication methods and the limitations of recently proposed parallel classification ap-

proaches, this method is the first in using a random division strategy to achieve a

better scalability for ontologies of larger sizes and applying a group division strat-

egy to finish TBox classification. Furthermore, due to the design of the shared atomic

data structures possible race conditions are avoided for updates of shared data. The

evaluation of the first version parallel method is presented in Chapter 6.

75

5 Improved Parallel Classification

5.1 Introduction

In this chapter, an improved parallel reasoning framework is proposed, which can

be used to parallelize the classification process of OWL reasoners. Specifically, we

mainly focus on three differences and novelties to speed up the OWL classification

process: (i) An improved data structure is presented to adapt the information com-

munication in different threads and reduce more potential relations among concepts

applying transitivity closure. (ii) The adoption of work-stealing techniques [9, 18, 54] to

manage adaptive and automatic load balancing for ontologies with varying degrees of

reasoning complexity. Compared to the first version presented in Chapter 4 less mem-

ory and computation is required by avoiding overlaps among partitions, reducing the

number of subsumption tests, and applying different parallelization techniques such

as full-scale work stealing. (iii) The parallel reuse of major OWL reasoners as black-

box subsumption testers. Compared to ELK [30, 29], this approach is more performant

when many threads are used and is not restricted to a small subset of OWL. To the best

of our knowledge, we are the first to propose a flexible parallel framework which can

be applied to existing OWL reasoners in order to speed up their classification process.

76

5.2 Improved Data Structure

The goal of this method is to classify and construct the whole taxonomy and balance

the allocation of resources and memory simultaneously in an efficient way. When it

comes to parallelization, there are two important factors that affect the classification

performance: concurrency and locking (waiting time). In order to balance these two

problems with the potential occurrence of big-size ontologies and nonuniformity of

subsumption tests, an atomic half-matrix shared-memory structure is created to main-

tain all the updated information with different sets and the parallel classification ap-

proach is mainly separated into two phases: precomputing (line 3-7) and classification

phase (line 8-12) with black-box reasoners for each thread (line 22-25) in Algorithm 12.

5.2.1 Atomic Half-Matrix Structure F

A shared-memory half-matrix structure A contains quadruples ACi for each concept

Ci ∈ NO with NO = {C1, . . . , Cn} containing all satisfiable concepts of n ontology O

(or TBox), n is the total number of concepts and P is a finite set of potential possible

subsumees of all concepts in NO (see line 15-19 in Algorithm 12). For all concepts

Ci ∈ NO, we use m to indicate an arbitrary but fixed order between every pair of

concepts (line 20-21). For the pair 〈Ci, Cj〉 ∈ NO, if Ci m Cj, then all the operations

related to ACi and ACj operate on the three sets Si, Ei,Di in ACi with ACj indexing ACi

and its related sets.

For all the satisfiable concepts in NO, a half-matrix structure represents all pos-

sible relations with other concepts inferred or tested by a black-box reasoner, e.g.,

SUBS?(C2, C1) becomes true if C1 v C2.

77

FIGURE 5.1: Initialization of half-matrix

Definition 5.1 A 2-DiHM (2-Dimensional Half Matrix) is a tuple 〈P ,NO〉, where

NO = {C1, . . . , Cn} contains all satisfiable concepts of an ontology O (or TBox), P

is a finite set of potential possible subsumees of all concepts inNO, where n is the total

number of concepts.

Definition 5.2 A quadruple ACi = 〈Ci,Si, Ei,Di〉 contains known information for

every satisfiable Ci ∈ NO, where Si contains Ci’s direct subsumees, Ei Ci’s equivalent

concepts including itself, and Di Ci’s disjoint concepts.

For every pair {Ci, Cj} ∈ NO with i 6= j, all the concepts in both XEi (XDi) and XEj

(XDj) are disjoint.

Definition 5.3 A setRO is defined asRO =
⋃
Ci∈NO{PCi}, which reflects all possible

sets PCi where PCi 6= ∅.

Example 5.1 In an ontology O, there are six satisfiable concepts in NO, that has F =

{P , C1, C2, C3, C4, C5, C6} and C2 mC3 mC1 mC4 mC5 mC6. For every concept Ci ∈ NO,

F and ACi are created as shown in Figure 5.1.

For all the satisfiable concepts in NO, using a half-matrix structure represents all

possible relations with other concepts inferred or tested by a black-box reasoner, e.g.,

78

SUBS?(C2, C1) becomes true if C1 v C2. Assume there are four satisfiable concepts

{C1, C2, C6, C3} ∈ NO and the tested relations among these concepts are O |= {C1 v

C2, C2 6v C1, C6 6v C3, C3 v C6}. Accordingly the changes to P and A result in the

following sets:

AC2 → S2 = 〈∅, {C1}〉 PC2 = {C3,��C1, C4, C5, C6}

AC3 → S3 = 〈{C6}, ∅〉 PC3 = {C1, C4, C5, ��C6}

AC1 → S1 = 〈{C2}, ∅〉 PC1 = {C4, C5, C6}

AC4 → S4 = 〈∅, ∅〉 PC4 = {C5, C6}

AC5 → S5 = 〈∅, ∅〉 PC5 = {C6}

AC6 → S6 = 〈∅, {C3}〉 PC6 = ∅

Therefore, we obtain two subsumption testing results for every pair of concepts,

which guarantee the completeness and less memory used when make the changes in

P and A for every pair of tests until all concepts Ci ∈ NO have been tested.

79

Algorithm 12: PARALLELCLASSIFICATION

input : Ontology O, Black-box Reasoner R

1 CREATEHALF-MATRIXSTRUCTURE

2 T ← CREATETHREADPOOL

3 while GETALLAXIOMS do

4 A← AXIOMDIVISION

5 for each axiom Ai ∈ A do

6 if SCHEDULEWORK(T) then

7 PRECOMPUTING(Ai)

8 while GETREMAININGPOSSIBLESET do

9 G ← GROUPDIVISION

10 for each group Gi ∈ G do

11 if SCHEDULEWORK(T) then

12 CLASSIFICATIONSUBTEST(Gi, T)

13 COMPUTEONTOLOGYTAXONOMY

14 return

15 procedure CREATEHALF-MATRIXSTRUCTURE

16 NO ← GETALLSATCONCEPTS

17 for each concept Ci ∈ NO do

18 CREATE ACi = 〈Ci,Si, Ei,Di〉 and PCi

19 DEFINEORDER(NO)

20 procedure DEFINEORDER(NO)

21 return Ca m Cb m ... m Cc m Cd... m Ci m Cj

22 procedure SCHEDULEWORK(T)

23 Ti ← GETAVAILABLETHREAD(T)

24 STARTBLACK-BOXREASONER(Ti)

25 return Ti

80

5.2.2 Maintaining Sets

Maintaining (Direct) Subsumers or Subsumees

Given Si,Sj with i 6= j Definition 5.4 states rules to maintain (direct) subsumers or

subsumees. Upon termination of processing, the sets Hi↑ (Hi↓) contain the direct sub-

sumers (subsumees) to construct the complete subsumption hierarchy.

Definition 5.4 GivenACi = 〈Ci,Si, Ei,Di〉 of Ci ∈ NO, Si is defined as Si = 〈Hi↑,Hi↓〉,

whereHi↑ contains current direct subsumers of Ci andHi↓ subsumees of Ci.

The related sets of concepts Ci and Cj (Ci m Cj) have Hi↑ = ∅,Hi↓ = ∅, Hj↑ =

∅,Hj↓ = ∅,Hk↑ = {Ci},Hk↓ = {Cj},Hl↑ = {Ci} andHl↓ = {Cj}, then

• if Hi↑ ∩Hj↓ = ∅, Ci v Cj and Cj 6v Ci, thenHj↓ = {Ci},Hi↑ = {Cj}.

• if Hi↑ ∩Hj↓ 6= ∅, Ci v Cj and Cj 6v Ci, then Hi↑ = ∅ and Hj↓ = ∅, since Cj (Ci) is

not a direct subsumer (subsumee) of Ci (Cj).

• if Hi↑ ∩ Hj↑ 6= ∅, Ci v Cj and Cj 6v Ci, then Hi↑ − (Hi↑ ∩ Hj↑) = Hi↑, since ∀C

(C ∈ Hi↑ ∩Hj↑) are indirect subsumers of Ci.

• if Hi↓ ∩ Hj↓ 6= ∅, Ci v Cj and Cj 6v Ci, then Hj↓ − (Hi↓ ∩ Hj↓) = Hj↓, since ∀C

(C ∈ Hi↓ ∩Hj↓) are indirect subsumees of Cj.

For every pair of concepts Ci and Cj, the subsumer (subsumee) set Hi↑ (Hi↓) is

linked to the subsumer (subsumee) setHj↑ (Hj↓) when the subsumption relation Ci v

Cj (Cj v Ci) is found. The related operations for equivalent sets are shown in UPDATE-

SUBCLASS(Ci, Cj) of Algorithm 13.

81

Algorithm 13: UPDATESUBCLASS(Ci, Cj)

1 procedure UPDATESUBCLASS(Ci, Cj)

2 Si = {∅, ∅} Sj = {∅, ∅}

3 if SUBS?(Ci, Cj) then

4 Hi↑ = {Cj},Hj↓ = {Ci}

5 ifHj↑ then

6 DELETE C ∈ Hj↑ in PCi

7 if SUBS?(Cj, Ci) then

8 Hj↑ = {Ci},Hi↓ = {Cj}

9 ifHi↑ then

10 DELETE C ∈ Hi↑ in PCj

11 UPDATEEQUIVALENT(Ci, Cj)

12 DELETE Cj in PCi

13 DELETE Ci in PCj

Assume C1 v C4, C1 v C2 and C4 v C6 are known, then S1 = 〈{C2, C4}, ∅〉, S2 =

〈∅, C1〉, S4 = 〈{C6}, {C1}〉 and S6 = 〈∅, {C4}〉, which is illustrated below by using

solid arrows to indicate the subsumer relations among these concepts and the two sets

Hi↑ andHi↓ separated by double solid lines.

Maintaining Equivalence and Disjointness

Definition 5.5 A B-type 〈E ,D〉 tuple is defined as B = 〈C,X 〉, where C is a set to

contain a concept Ci for mapping with other concepts in set X , which have equivalent

82

or disjoint relationship with C and the sequence is defined in DEFINEORDER (see line

20-21 in Algorithm 12).

• if Xi ∩Xj 6= ∅, CBi = Ci and CBj = Cj, then update CBj = Ci as index, Xj ∪Xi = Xi

and Xj = ∅.

• if Xi ∩ Xj = ∅, CBi = Ci and Xi 6= ∅ but Xj = ∅, CBj = Ck for Ck in ACk

(k 6= i, k 6= j), then use CBj as index to find Bk for CBk = Ck, update both CBj = Ci,

CBk = Ci, Xk ∪ Xi = Xi, and Xk = ∅.

• if Xi = ∅, CBi = Ck that Ck in ACk and Xj = ∅, CBj = Ck that Cl in ACl , then use

CBi , CBj as index to find Bk and Bl (l 6= i, l 6= j, l 6= k), i.e. CBk = Ck, CBk = Cl,

update CBi = Ck, CBl = Ck, Xl ∪ Xk = Xk and Xl = ∅.

It holds for every pair Bi,Bj in B with i 6= j and Bi = 〈CBi ,Xi〉 and Bj = 〈CBj ,Xj〉,

that Xi u Xj v ⊥.

Definition 5.6 Given ACi = 〈Ci,Si, Ei,Di〉 of Ci ∈ NO, Ei is defined as B-type Ei =

〈CEi ,XEi〉, where CEi is the current mapping concept with other equivalent concepts in

XEi and CEi = Ci, XEi = {Ci} initially.

There are concepts Ci, Cj, Cl, Ck, Cm, Cn and Cm ≡ Cn, then

• if CEm = Cm and CEn = Cn, then PCm = PCm − {∀Cx|Cx ∈ XEn}, XEm = XEm ∪ XEn ,

CEn = Cm, both XEn = ∅ and PCn = ∅.

• if CEm = Cm and CEn = Cl, then PCl = PCl − {∀Cx|Cx ∈ XEm}, XEl = XEl ∪ XEm ,

CEm = Cl, XEm = ∅, XEn = ∅, PCm = ∅ and PCn = ∅.

• if CEm = Ck and CEn = Cl, then PCk = PCk − {∀Cx|Cx ∈ XEl}, XEk = XEk ∪ XEl ,

CEl = Ck, CEn = Ck, XEl = ∅, XEm = ∅, XEn = ∅, PCl = ∅, PCm = ∅ and PCn = ∅.

83

• if Cm v Cj, CEn = Cm and XEm 6= ∅, thenHj↑ = Hj↑ − {∀Cx|Cx ∈ XEm}.

• if Ci v Cm, CEn = Cm and XEm 6= ∅, thenHi↓ = Hi↓ − {∀Cx|Cx ∈ XEm}.

Therefore, if the related sets of concepts Ci and Cj (Ci m Cj) have Ei = 〈Ci, {Ci}〉,

Ej = 〈Cj, {Cj}〉, Ci v Cj and Cj v Ci, i.e. Ci ≡ Cj, then Ei = 〈Ci, {Ci, Cj}〉 and

Ej = 〈Ci, ∅〉. The related operations for equivalent sets are shown in UPDATEEQUIVA-

LENT(Ci, Cj) of Algorithm 14.

Algorithm 14: UPDATEEQUIVALENT(Ci, Cj)

1 procedure UPDATEEQUIVALENT(Ci, Cj)

2 Ca ←MAPPINGEQUIVALENT(Ci)

3 Cb ←MAPPINGEQUIVALENT(Cj)

4 CHECKDEFINEDORDER(Ca, Cb)

5 if Eb\(Eb ∩ Ea) 6= ∅ then

6 DELETE Eb\(Eb ∩ Ea) in PCa

7 PCa = ∅, Ea = Ea ∪ Eb, Eb = ∅

Assuming C1 ≡ C3 and C3 ≡ C5, the changes of Ei become E1 = 〈C3, ∅〉, E3 =

〈C3, {C3, C1, C5}〉 and E5 = 〈C3, ∅〉 shown below (equivalent mapping directions linked

with solid arrows and the sets C and X separated by double solid lines).

Definition 5.7 Given ACi = 〈Ci,Si, Ei,Di〉 of Ci ∈ NO, Di defined as B-type Di =

〈CDi ,XDi〉, where CDi contains the current mapping with other disjoint concepts in

XDi and CDi = Ci, XDi = ∅ initially.

There are concepts Ci, Cj, Cl, Ck, Cm, Cn and Ck u Cl v ⊥, then

84

• if CDk = Ck, CDl = Cl, then PCl = PCl − {∀Cx|Cx ∈ XDk}, PCk = PCk − {∀Cx|Cx ∈

XDl}, XDk = XDk ∪ {Cl} and XDl = XDl ∪ {Ck}.

• if CDk = Ci, CDl = Cl, then PCl = PCl − {∀Cx|Cx ∈ XDi}, PCi = PCi − {∀Cx|Cx ∈

XDl}, XDl = XDl ∪ {Ci} and XDi = XDi ∪ {Cl}.

• if CDk = Ci, CDl = Cj, then PCj = PCj − {∀Cx|Cx ∈ XDi}, PCi = PCi − {∀Cx|Cx ∈

XDj}, XDj = XDj ∪ {Ci}, XDi = XDi ∪ Cj.

• if Cl v Cj, CDk = Ck and XDk 6= ∅, then Hj↑ = Hj↑ − {∀Cx|Cx ∈ XDk} and

Hj↓ = Hj↓ − {∀Cx|Cx ∈ XDk}.

• if Ci v Ck, CDl = Cl and XDl 6= ∅, then Hi↑ = Hi↑ − {∀Cx|Cx ∈ XDl} and

Hi↓ = Hi↓ − {∀Cx|Cx ∈ XDl}.

Therefore, if the related sets of concepts Ci and Cj (Ci m Cj) have Di = 〈Ci, ∅〉,

Dj = 〈Cj, ∅〉, Ci u Cj v ⊥, then Di = 〈Ci, {Cj}〉 and Dj = 〈Cj, {Ci}〉. The related

operations for equivalent sets are shown in UPDATEDISJOINT(Ci, Cj) of Algorithm 15.

Algorithm 15: UPDATEDISJOINT(Ci, Cj)

1 procedure UPDATEDISJOINT(Ci, Cj)

2 Cc ←MAPPINGDISJOINT(Ci)

3 Cd ←MAPPINGDISJOINT(Cj)

4 CHECKDEFINEDORDER(Cc, Cd)

5 if (Dc ∪Dd)\(Dc ∩Dd) 6= ∅ then

6 DELETE

7 Dd\(Dd ∩Dc) in PC for C ∈ Sc,

8 Dc\(Dd ∩Dc) in PC for C ∈ Sd

9 DELETE Cd in PCc , Cc in PCd

10 Dc = Dc ∪ {Cd}, Dd = Dd ∪ {Cc}

85

Assuming disjoint concepts C1 u C6 v ⊥, then C3 u C6 v ⊥ and C5 u C6 v ⊥ are

inferred by C1 ≡ C3 and C3 ≡ C5. The changes of Di become D1 = 〈C3, ∅〉, D3 =

〈C3, {C6}〉, D5 = 〈C3, ∅〉 and D6 = 〈C6, {C1, C3, C5}〉 shown below (disjoint mapping

directions linked with solid arrows and the sets C and X separated by double solid

lines).

Example 5.2 Following Example 5.1, the following relations among the concepts are

hold: O |= {C1 ≡ C5, C3 ≡ C4, C6 v C2, C3 v C6, C2 u C5 v ⊥}.

Since C3 v C6, C6 v C2 and C3 ≡ C4, we can infer that C3 v C2 and {C3, C4} ∈ S6.

With reference to UPDATESUBSUMEE (see Algorithm 13), the changes to the subsumee

sets are S2 = {C6}, S3 = ∅, S1 = ∅, S4 = ∅, S5 = ∅ and S6 = {C3, C4}. According to

UPDATEEQUIVALENT (see Algorithm 14), C1 ≡ C5, C3 ≡ C4 and C2 mC3 mC1 mC4 mC5

are known, so the changes to the equivalent sets are E2 = {C2}, E3 = {C3, C4}, E1 =

{C1, C5}, E4 = ∅, E5 = ∅ and E6 = {C6}. Because of C2 u C5 v ⊥ and C1 ≡ C5,

C2 u C1 v ⊥ is inferred. Since C3, C4 and C6 are subsumees of C2, therefore, both C1

and C5 are disjoint with C3, C4 and C6. Based on UPDATEDISJOINT (see Algorithm 15),

the changes to the disjoint sets are D2 = {C1, C5}, D3 = ∅, D1 = {C2, C6, C3, C4},

D4 = ∅, D5 = ∅ and D6 = ∅. The complete changes are shown in Figure 5.2, which

indicates that all the subsumption relations among the six concepts have been found

and there are no more subsumption tests required, which results inRO = ∅.

Let us reconsider the changes of set AC1 in Example 4.5 (see Figure 4.9 and 4.10).

First, since C1 ≡ C5 is known, C5 is added to E1. Second, we know that C2, C6, C3 and

86

FIGURE 5.2: Complete changes of F after applying rules

C4 are disjoint with C1 when C2uC1 = ⊥, C6 v C2, C3 ≡ C4 and C3 v C6 reasoning us-

ing different threads. Therefore, when C2, C6, C3 and C4 are added to D1, there might

exist potential conflicts when modifying D1. In order to guarantee exclusive write

access for all the processors at the same time without being interrupted, an atomic op-

eration is used to ensure currently running process cannot be interrupted. Therefore,

the problem mentioned above can be solved as shown in Figure 5.3. The solid arrows

indicate the sequence of making the changes in A1 and the potential conflicts men-

tioned above can be resolved by having steps 3 and 5 to make sure the unique access

of D1 in the half-martix.

87

step1

step2

step4
｛

｛
step3

step5

FIGURE 5.3: Using atomic operations to solve conflicts in A1

5.3 Improved Ontology Classification

5.3.1 Precomputing Phase

In the precomputing part, OWL API [26] is applied to retrieve all declared axioms of

an ontologyO, and a pool of axioms is created to store these axioms. Whenever a sub-

sumption can be directly derived from an axiom, e.g., A v B, if the converse subsump-

tion is unknown, it is tested using the chosen black-box reasoner, e.g., SUBS?(A, B).

Because of different kinds of potential relations among concepts, currently three kinds

of relations are covered: subClass (S), equivalence (E) and disjointness (D) axioms

(see Algorithm 16).

88

FIGURE 5.4: Parallel precomputing phase

Algorithm 16: PRECOMPUTING(Ai)

1 for each pair {Ci, Cj} ∈ Ai do

2 if SubClass (Ci, Cj) then

3 UPDATESUBSUMEE(Ci, Cj)

4 else if Equivalence (Ci, Cj) then

5 UPDATEEQUIVALENCE(Ci, Cj)

6 else if Disjointness (Ci, Cj) then

7 UPDATEDISJOINTNESS(Ci, Cj)

In Example 5.2, the OWL input can be interpreted as shown in Figure 5.4, which has an

axiom pool containing the identified axioms and three threads (T1, T2, T3) to analyze

the results. From the results shown in Figure 5.2, all the possible sets are empty, which

means all the possible relations among the six satisfiable concepts have been tested or

inferred and the results are recorded in sets S , E ,D of A respectively.

89

FIGURE 5.5: Work-Stealing strategy applied between T1 and T3

5.3.2 Classification Phase

However, it is possible that RO is not empty after the precomputing phase, then the

classification phase is processed to finish the classification and guarantee the complete-

ness of this method. Because of the differences of every subsumption test performed

by black-box reasoners, it it important to ensure concurrency and avoid longer waiting

time for the rest of concepts especially when the tests are taking longer than estimated.

A work-stealing strategy is applied to schedule different threads dynamically and im-

prove load balancing among threads to speed up the classification process.

Work-Stealing Strategy

First, find all the remaining possible PCi ∈ RO with PCi 6= ∅. Second, separate RO

into smaller subgroups Gi and put them into a queue Qi. The sizes of groups depend

on the remaining size of P and the number of processor n currently available. Third,

90

Algorithm 17: CLASSIFICATIONSUBTEST(Gi, T)

1 ENQUEUE(Qi, Gi)

2 for each pair {Ci, Cj} ∈ Qi do

3 UPDATESUBSUMEE(Ci, Cj)

4 DEQUEUE(Qi, {Ci, Cj})

5 if ¬ISEMPTY(Qi) then

6 STEALWORK(T, Qi)

7 procedure STEALWORK(T, Qj)

8 if SCHEDULEWORK(T) then

9 for each pair {Cm, Cn} ∈ Qj do

10 UPDATESUBSUMEE(Cm, Cn)

11 DEQUEUE(Qj, {Cm, Cn})

12 if ¬ISEMPTY(Qj) then

13 STEALWORK(T, Qj)

if there is an idle thread available during the classification process, a new group from

the queue will be given to that thread dynamically until all the subgroups have been

classified andRO is empty (see Algorithm 17).

Example 5.3 Using the six concepts generated in Example 5.2, all the concepts in

P are divided into subgroups Gi and put into a queue Q. As shown in Figure 5.5,

all the generated subgroups are indicated by the colors grey or white to separate

them. Suppose there are three threads (T1, T2, T3) available, then three queues will

be generated for each thread, e.g., Q1 = {GC2_1 , GC3_1}, Q2 = {GC2_2 , GC3_2 , GC1_2},

Q3 = {GC2_3 , GC1_1 , GC4_1 , GC5_1}. During the classification, when all tasks of Q1 as-

signed in T1 have been finished, a task GC5_1 (see Figure 5.5 in darker grey) needs to

be done by T3, which is currently working on GC4_1 . Therefore, the task GC5_1 will be

91

stolen from T3 and reallocated to T1. Accordingly, all the updated information will be

recorded in A as well.

After classification, all the relevant information of each concept Ci is recorded in

ACi . According to ACi , the whole taxonomy of ontology O is computed.

Theorem 1 (Soundness) Let Ai,PCi be a complete set for concept Ci and Aj,PCj for

concept Cj. If the subsumption relations between a pair {Ci, Cj} are correctly inferred

by sound black-box reasoners, e.g., SUBS?(Ci, Cj) and SUBS?(Cj, Ci), or the algorithms

of maintaining sets (see Algorithm 13, 14, 15), which do not conclude a wrong sub-

sumption relation between two concepts, then this parallel method is sound for O.

Theorem 2 (Completeness) For all the satisfiable concepts Ci ∈ NO, both Ai and PCi

of Ci are created completely. All the possible relations among concepts are recorded

in P . A subsumption test for each pair {Ci, Cj} (i 6= j) is performed either by a com-

plete black-box reasoner via SUBS?(Ci, Cj) and SUBS?(Cj, Ci) or by maintaining sets (see

Algorithm 13, 14, 15). Therefore, the set RO is empty if and only if all the possible re-

lations in the sets PCi have been derived.

5.4 Summary

In this part, an improved parallel OWL ontology classification method is presented

based one the first version described in Chapter 4. Compared to the previous version,

this method applies two phases - precomputing and classification to achieve a better

performance when compete with the black-box reasoners. Furthermore, due to the

improvements of our atomic data structure, more potential subsumption relations can

be reduced without testing by the black-box reasoners.

92

6 Evaluation

In this part, we use the first version parallel method (see Chapter 4) to evaluate the

results of ontology scale, complexity and load balancing with increasing number of

threads. Secondly, the improved version (see Chapter 5) is used to compete with orig-

inal black-box reasoners in precomputing and complete classification process.

6.1 First Evaluation

6.1.1 Benchmarks

The parallel classification architecture is implemented as a Java shared-memory pro-

gram using HermiT 1.3.8 as OWL reasoner plug-in. The experiments are performed

on a HP DL580 Scientific Linux1 SMP server with four 15-core processors (Gen8 Intel

Xeon E7-4890v2 2.8GHz) and 1 TB RAM.

For the first evaluation of the classification architecture, a set of 9 real-world ontolo-

gies are selected from the ORE 2015 [45] repository that contain up to 13,000 concepts

and 33,000 axioms to test scalability and 6 ontologies from the ORE 2014 [44] reposi-

tory that contain up to 7,000 axioms and 967 qualified cardinality restrictions (QCRs)

(see Section 2.2.1), which are used to constrain the number of values of a particular

property and type and are considered to be an important parameter in testing the

1GNU/Linux Version 2.6.32-642.15.1.el6.x86_64

93

complexity factors of this approach. Their metrics are shown in Tables 6.1+6.4 (see

Section 2.2.1 about naming DLs). For benchmarking we ensured exclusive access to

the server in order to avoid that other jobs affect the elapsed time of the tests. For

tests with a smaller set of threads we ran several jobs in parallel but jobs exceeding 60

threads were run exclusively.

TABLE 6.1: Metrics of tested OWL ontologies

Ontology Concept Axiom SubClass Expressivity

WBbt.obo 6785 19138 12347 EL

EHDA#EHDA 8341 33367 8339 EL

obo.PREVIOUS 1663 4099 1377 ELH+

actpathway.obo 7911 25314 17402 EL

EHDAA2 2726 16818 13458 ELH+

lanogaster.obo 10925 16567 5641 EL

MIRO#MIRO 4366 21274 4454 EL+

CLEMAPA 5946 16864 10916 EL

EMAP#EMAP 13735 27467 13732 EL

6.1.2 Ontology Scale

In order to assess the scalability of the architecture, a series of experiments are con-

ducted where the number of workers/threads available for classification varied be-

tween 1 (sequential case) to 140. Due to the limitations of the test environment we

restricted the maximum number of threads to 140. We computed the speedup as the

ratio of the runtime (sum of runtimes of all threads) divided by the elapsed time. Each

94

0

5

10

15

20

25

1 2 4 8 12 18 20 24 32 48 60 80 100

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

n=1663
n=2726
n=4366

(a) n ∈ {1663, 2726, 4366}

0

10

20

30

40

50

60

1 4 8 16 24 32 48 56 66 80 100 110 125 140

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

n=5946
n=6785
n=7911

(b) n ∈ {5946, 6785, 7911}

0

10

20

30

40

50

60

70

80

1 4 8 16 24 32 48 56 66 80 100 110 125 140

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

n=8342
n=10925
n=13735

(c) n ∈ {8341, 10925, 13735}

FIGURE 6.1: Speedup factors for ontologies from Table 6.1 with an in-
creasing number of concepts (n = number of concepts)

95

individual experiment was repeated three times and the resulting average was used

to determine its runtime and elapsed time. The 9 ontologies can be roughly divided

into three groups of similar sizes measured by their number of contained concepts (n).

Figure 6.1(a) shows a set of smaller ontologies. For the two smallest ontologies the

peak speedup is reached with 20-32 workers. A higher number of workers indicates a

performance degradation that is due to the current partitioning scheme where the size

of the partition allocated to of each worker is roughly n
w (n is the number of concepts

in an ontology and w the number of workers). When the partition size becomes too

small, overhead affects the performance adversely.

Figure 6.1(b) shows medium-sized and Figure 6.1(c) large ontologies. With the

exception of the smallest ontology in Figure 6.1(b) both figures show a similar speedup

increase. This is due to bigger partition sizes and reduced overhead. The peak is

currently reached with 140 workers. It is necessary to make partition sizes reasonably

big.

6.1.3 Ontology Complexity

There are other factors that can affect the experiments such as the complexity of an

ontology and the efficiency of HermiT, the selected plug-in reasoner, which is also im-

plemented in Java. For most of the used ontologies we observed that the runtimes of

individual subsumption tests performed by HermiT are rather uniform but for ontolo-

gies with a higher expressivity it is well known that just a few subsumption tests may

require a significant amount of the total runtime. Furthermore, the plug-in reasoner

might be more or less efficient depending on the expressivity of the test ontologies.

In order to test the performance of this architecture for complex ontologies, we

96

TABLE 6.2: Metrics of the used OWL ontologies with QCRs

Ontology Concept Axiom Sub QCR Expressivity

nskisimple_functional 1737 4775 2234 43 SRIQ(D)

ncitations_functional 2332 7304 2786 47 SROIQ(D)

ddiv2_functional 1469 4080 1832 48 SRIQ(D)

rnao_functional 731 2884 1235 446 SRIQ

jectOWLDL2_functional 482 1093 325 425 ALN

bridg.biomedical_domain 320 6347 295 967 SROIN (D)

used the same experimental environment and selected six smaller real-world ontolo-

gies with a logic of high expressivity as shown in Table 6.4, which lists for each ontol-

ogy its expressivity, number of concepts, axioms, subclasses, equivalent classes, dis-

joint classes, QCRs, existential and universal restrictions.

Since the maximum number of concepts for these ontologies is 2332, experiments

are conducted where the number of available workers range from 1 to 100. We com-

puted the speedup as the ratio of runtime divided by elapsed time. Each experiment

was repeated three times and the resulting runtime and elapsed time averages were

used to calculate the speedup. We roughly divided the six ontologies into two groups

based on their number of QCRs and speedup. Moreover, in order to better understand

how the performance of the plug-in reasoner and thus the runtimes of individual sub-

sumption tests affect the results, we collected for the six tested ontologies statistics

about subsumption test runtimes (in milliseconds) such as minimum, maximum, av-

erage, median, and deviation (see Table 6.3).

In Figure 6.2(a), the number of QCRs in the first group ranges between 40-446.

Since we try to select reasonable partition sizes, we used up to 100 threads to compute

the speedup factors for all four ontologies. As the number of threads is increased, a

97

TABLE 6.3: Time metrics using 10 workers (in milliseconds)
(Ave = Average, Med = Median, Dev = Deviation)

Ontology Min Max Ave Med Dev

nskisimple_functional 18.23 440.29 39.86 195.29 108.34

ncitations_functional 17.54 711.58 27.95 176.14 251.25

ddiv2_functional 10.66 300.89 27.35 19.59 44.64

rnao_functional 17.18 206.96 66.47 92.49 144.15

jectOWLDL2_functional 0.004 231.56 0.033 0.09 36.90

bridg.biomedical_domain 0.004 357.62 0.036 0.95 48.71

better speedup is observed and the maximum is reached with 60-100 threads except

for the one with q = 446, which has small-sized concepts and reached its maximum

speedup around 40 threads. Table 6.3 shows that average runtimes are similar but

deviation is several orders of magnitude higher than the average, which does not affect

the experimental results significantly. From these results we also can see that if the

subsumption tests become more complex, i.e., they take longer, the optimized method

can also achieve a good speedup for ontologies of smaller sizes. The speedup is even

better compared to a similarly sized ontology such as obo.PREVIOUS (see Table 6.1

and Figure 6.1(a)).

In Figure 6.2(b), the number of QCRs is reaching 425 (n=482) and 967 (n=320),

which indicates the difficulty of ontology classification. Due to the complexity and

limitations of HermiT, these two ontologies show the best performance for four work-

ers and afterwards the speedup factor remains around 4. As we observed, these on-

tologies include some difficult QCRs, which cause several subsumption tests to take

much longer than others (as indicated in Table 6.3 by a very high deviation), therefore

their speedup does not always increase.

98

0

5

10

15

20

25

30

35

1 4 10 18 24 32 40 52 66 80 100

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

nskisimple_functional,	n=	1737,	q	=	43
ddiv2_functional,	n=1469,	q	=	48
ncitations_functional,	n=2332,	q	=	47
rnao_functional,	n=731,	q	=	446

(a) q ∈ {43, 47, 48, 446}

0

2

4

6

8

10

12

14

16

18

20

1 4 10 18 24 32

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

bridg.biomedical_domain,	n=320,	q	=	967
jectOWLDL2_functional,	n=482,	q	=	425
improved-bridg.biomedical_domain
improved-jectOWLDL2_functional

Applied	Improved	Group	Division	 Strategy

(b) q ∈ {425, 967}

FIGURE 6.2: Speedup factors for ontologies with QCRs from Table 6.4 (q
= number of QCRs)

In order to improve the performance for these complex ontologies, we used the

Fork/Join framework already mentioned in the improved group division strategy (see

Section 4.4.2) to reschedule tasks which require a significantly longer runtime for sub-

sumption tests. The old and improved results are shown in Figure 6.2(b). Because of

99

dividing bigger tasks into smaller ones by using work stealing, compared with the old

results a continuously increasing speedup factor can be achieved until the maximum

with around 20 workers has been reached.

As expected, in general the results show that this method has a speedup linear to

the number of threads. Due to the new group division strategy, the scheduling of idle

threads achieves a better load balancing.

6.1.4 Load Balancing

From the experiments we observed that the first (random division) phase (with ran-

domly created groups of similar average size) exhibits a better load balancing than the

second (group division) phase. However, the classification process can only terminate

once the second phase has been completed. To get a better understanding of the per-

formance for both the random division and the group division phase, we used a ratio

representing the decrease of the number of possible subsumers in each phase.

Definition 6.1 InitialPossible is defined as the initial number of possible subsumers

for an ontology and RemainingPossible is the number of possible subsumers after com-

pleting each division cycle. Therefore, the possible ratio is defined in (6.1) as follows.

Possible =
InitialPossible− RemainingPossible

InitialPossible
(6.1)

We chose the ontology ncitations_functional.owl from Table 6.4 with 2332 concepts and

used 10 workers. We decided on ten random division cycles and one group division

cycle to determine the load balance factors. We also recorded the runtime for each

phase and calculated the runtime ratio as the accumulated cycle runtimes divided by

the total runtime. The result is shown in Figure 6.3.

100

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

Ra
tio

Division	Cycle

Possible	Ratio

Runtime	Ratio

FIGURE 6.3: Division cycle result of ncitations_functional.owl (concepts =
2332, threads = 10, random division cycle = 10, group division cycle = 1)

Since we implemented two parallel classification phases in the methods and the

random division phase applied a completely random division strategy to minimize

possible on a large scale. As expected, the random division strategy (cycles 1-10) in-

creased the value Possible up to 60, i.e., the number of possible subsumees was reduced

by 60%, before the group division strategy was applied. The runtime ratio is almost

at the same level as the possible ratio (see Figure 6.3). However, from the test results

we noticed that with an increasing number of threads, the ratio factor not necessarily

increases too, especially if the number of threads is more than 60. We are still working

on finding a better load balancing between the two phases which can both shorten the

runtime and reduce the number of possible subsumees as quickly as possible. There-

fore, the ratio factor affecting load balancing of the two parallel phases can be expected

to be improved when much larger ontologies are tested.

101

6.1.5 Summary

The first version parallel method is tested using the sequential OWL reasoner HermiT.

For some difficult ontologies this method can outperform the stand-alone version of

HermiT. However, due to processor and reasoner restrictions, not all ontologies could

be tested on the current platform within a reasonable amount of time. From the test

results which are evaluated by a set of real-world ontologies, the experiments demon-

strate a very good scalability resulting in a speedup that is linear to the number of

available cores.

6.2 Improved Parallel Classification

In order to achieve a better performance compared to the first version and compete

with the black-box reasoners, we also tested the improved parallel framework, which

is implemented with shared-memory half-matrix structure of Atomic, which is a toolkit

of variable in Java Concurrent package. The chosen black-box OWL reasoner is used

for deciding concept satisfiability and subsumption, and integrates Java Concurrency

Framework, which supports generating more than one thread to maximize CPU uti-

lization. We performed the evaluation by exclusively using a HP DL580 Scientific

Linux SMP server with four 15-core processors and a total of 1 TB RAM (each pro-

cessor has 256 GB of shared RAM). Due to the limitations of the current experimental

environment, we used at most 120 threads for every experiment. In order to better

compare the performance of the system with other popular OWL reasoners [20], the

test ontologies were selected from the ORE [44] repository to evaluate the performance

of this parallel approach. They vary by the number of axioms, concepts, and for pre-

computing by the number of subclass, equivalence and disjointness axioms. Consider-

ing the implementations of different reasoners and their Java compatibility, currently

102

we successfully applied this parallel reasoning framework by using two OWL reason-

ers as black-box reasoners: (i) Hermit 1.3.8 [22] is an OWL reasoner fully supporting

OWL datatypes; and (ii) JFact 5.0.3 is a Java port of FaCT++ [55], a tableau based OWL

reasoner. For reasons of compatibility and performance, we mainly focus on the com-

parison and evaluation with Hermit.

6.2.1 Benchmarks

We tested the parallel framework using two reasoners (Hermit and JFact) individually.

The wall clock time is recorded for the precomputing phase and whole classification

process separately. The current experimental environment allows us to use up to 120

threads. The actual number of threads depends on the ontology’s size and reasoning

difficulty. All the experiments were repeated five times and the resulting average is

used to determine the wall clock time and speedup factors. Table 6.4 shows the char-

acteristics of 10 selected ontologies including the number of axioms, named concepts,

subClass, equivalent and disjoint axioms. In the precomputing phase, an axiom pool

is created to contain all the axioms eligible for precomputing. Axiom preprocessing

is parallelized using the maximum number of threads allowed. In order to test the

performance of precomputing, we tested both the sequential and parallel cases using

different numbers of threads (20, 60, 100, 120) with Hermit. The results (wall clock

time (WCT) in seconds) are shown in Table 6.5. The best result is indicated for each

ontology in bold.

In order to better assess the impact of the overhead due to parallelization and other

potential factors such as the efficiency of the selected black-box reasoner, we also

recorded time statistics of subsumption tests performed by the black-box reasoner,

such as deviation, maximum, minimum, median, and average time. Table 6.6 reports

various time metrics and data for 11 different ontologies over the whole classification

103

TABLE 6.4: Metrics of tested ontologies for precomputing
(Equi = Equivalence Axioms, Disjoint = Disjointness Axioms)

Ontology Axiom Concept SubClass Equi Disjoint

microbial.type 13,584 4,636 7,255 935 31

MSC_classes 13,584 5,559 8,220 930 382

CURRENT 26,374 6,595 17,180 2,297 218

natural.product 169,498 9,463 12,370 0 56,192

vertebrate 94,564 18,092 71,579 4,428 0

pr_simple 149,568 59,006 89,854 0 693

attributes 221,783 62,035 141,224 18,029 137

CLASSIFIED 169,155 83,036 55,046 30,363 693

behavior 354,825 99,360 241,046 14,013 62

havioredit 354,971 99,399 241,140 14,026 62

process. Table 6.7 presents the wall clock time of the system with (Para) and without

using work-stealing (PW), the times of Hermit, and the speedup factors, which are

calculated by dividing the wall clock time of PW by Para and Hermit by Para. In addi-

tion, the results of a larger set of ontologies compare with Hermit is shown in Section

6.2.5. The best results are all indicated in bold.

6.2.2 Precomputing Phase

Table 6.5 shows that the precomputing time could be significantly improved due to

parallelization by using up to 120 threads (bold font indicates the best time). The

ontologies microbial.type and CURRENT could be processed about 600 times faster than

in the sequential case when 100 or 120 threads are applied. The ontology vertebrate

104

TABLE 6.5: Precomputing Results using Hermit
(timeout (TO) = 1,000 seconds, WCT = wall clock time in seconds, T =

number of threads, >1,000 = more than 1000 times)

PreComputing WCT Speedup

Ontology T = 1 T = 20 T = 60 T = 100 T = 120 Factor

microbial.type 304 93.9 17.5 0.5 3.2 608

MSC_classes 156 61.9 9.7 1.46 2.83 107

CURRENT 391 182 10.9 8.7 0.74 528

natural.product 67.9 23.6 8.91 3.48 2.16 31.5

vertebrate TO TO TO TO TO >1,000

pr_simple TO 464 147 105 38.2 >1,000

attributes TO 860 630 218 120 >1,000

CLASSIFIED TO TO TO 883 79.2 >1,000

behavior TO TO 972 729 303 >1,000

havioredit TO TO TO TO TO -

timed out even for 120 threads due to the black-box reasoner that is already used in

the precomputing phase. The next four bigger ontologies timed out if only one thread

is used but could be processed with an increasing number of threads and lead to a

speedup of more than 1,000 compared to the sequential case. The biggest ontology

havioredit still timed out for 120 threads. Due to the use of parallelization and a atomic

half-martix shared-memory structure together with the maximum number of available

threads, a better performance is achieved by updating accumulative information and

reducing the total number of subsumption tests, which results in a decreased wall

clock time in the precomputing phase compared to the sequential case.

105

6.2.3 Improved Classification

TABLE 6.6: Time Metrics of tested OWL ontologies
(timeout (TO) = 1,000 seconds, Dev = Deviation, Med = Median, Ave =

Average)

Subsumption Test Statistics

Ontology Axiom Concept Dev Max Min Med Ave

mfoem.emotion 2,389 902 0.26 1.92 0.03 0.22 0.12

nskisimple 4,775 1,737 0.07 0.42 0.0001 0.23 0.03

geolOceanic 6,573 2,324 0.21 1.01 0.017 0.55 0.07

stateEnergy 10,270 3,018 1.94 9.78 0.07 1.12 0.25

aksmetrics 11,134 3,889 0.73 1.24 0.005 0.34 0.21

microbial.type 13,584 4,636 2.15 13.6 0.03 3.38 1.13

MSC_classes 15,092 5,559 - TO - - -

CURRENT 26,374 6,595 10.9 32.8 0.01 6.34 2.72

compatibility 21,720 7,929 4.37 9.38 0.005 3.72 0.98

natural.product 169,498 9,463 12.5 87.2 0.02 15.8 6.93

havioredit 354,971 99,399 - TO - - -

Table 6.6 + 6.7 indicate two important factors affecting the performance of this sys-

tem: the partition size and the efficiency of subsumption tests. A reasonable partition

size for each thread can reduce the overhead of waiting or updating information in the

atomic half-matrix structure, e.g., mfoem.emotion and nskisimple are more than 10 times

faster than Hermit when 80-100 threads are applied since each thread has a reasonable

partition size and less overhead according to the deviation that is closer to the aver-

age time. When the size of ontologies increases, such as for geolOceanic, stateEnergy,

and aksmetrics, a better performance is achieved with 100-120 threads because of rea-

sonable partition sizes and uniformity of subsumption tests, which result in smaller

106

TABLE 6.7: Improved classification results using Hermit
(timeout (TO) = 1,000 seconds, WCT = wall clock time in seconds)

WCT Speedup

Ontology Axiom Concept Parallel Hermit Factor

mfoem.emotion 2,389 902 2.7 42.1 15.6

nskisimple 4,775 1,737 2.9 29.3 10.1

geolOceanic 6,573 2,324 1.4 12.1 8.6

stateEnergy 10,270 3,018 12.3 72.9 5.9

aksmetrics 11,134 3,889 3.3 13.6 4.2

microbial.type 13,584 4,636 26.7 308 11.5

MSC_classes 15,092 5,559 TO TO -

CURRENT 26,374 6,595 112 452 4.0

compatibility 21,720 7,929 20.2 22.5 1.1

natural.product 169,498 9,463 98.7 11.21 0.1

havioredit 354,971 99,399 TO TO -

differences between deviation and average time.

In order to better assess the impact of black-box reasoners on the framework, we

computed more statistics on subsumption tests that are also shown in Table 6.6. The

statistics lists 9.78s as maximum time for stateEnergy. Thus, the performance of the

framework cannot be below that maximum time. MSC_classes times out for Hermit

and this framework. The individual subsumption tests are performed by the black-

box reasoners, and its effectiveness also constrains the performance of this framework,

i.e., if a single subsumption test times out as indicated for MSC_classes, then the system

times out also due to the black-box reasoner. For the ontology microbial.type, many sub-

sumptions can be derived during parallel precomputing, which results in a speedup

107

factor of almost 600 (see Table 6.4). Moreover, if tested sequentially, this ontology re-

quires some difficult tests which take more time than the maximum of 13.6s (parallel

testing). Due to parallel processing and fast accumulation and synchronous updating

of concept relations in the atomic structure, the system can avoid these difficult tests,

which makes this framework more than 10 times faster than the black-box reasoner.

When the size of ontologies increases even more, such as for CURRENT, where

many subsumptions can be derived during parallel precomputing, we achieved a

speedup of 4 with 120 threads. For compatibility, which has about 8,000 concepts,

the performance of this approach is below but close to the black-box reasoner, be-

cause some subsumption tests could be avoided by black-box reasoner optimizations

but were required for the framework in order to guarantee completeness. However,

for the second last ontology natural.product this system cannot compete with Hermit

because the maximum subsumption time is very high and it seems that black-box rea-

soner optimizations can avoid this test that are inaccessible to the system due to the

black-box approach. The last ontology havioredit, which is the biggest one we chose,

times out for all the reasoners and this framework. Each thread is overloaded by the

number of concepts to classify, which results in more overhead in the whole classifica-

tion process and, thus, causes a timeout for havioredit, even though the precomputing

phase becomes faster.

Overall, this optimized parallel framework achieves a better performance than

Hermit when enough threads are available to ensure reasonable partitions for different

ontology sizes, especially if the number of concepts is less than 10,000.

6.2.4 Load Banlancing

In order to get a better understanding the performance of the parallel framework when

work-stealing is applied, the improved version of this method is applied work-stealing

108

TABLE 6.8: Improved classification results using Hermit
(timeout (TO) = 1,000 seconds, WCT = wall clock time in seconds, P(ara)

= Parallel, W = without work stealing)

WCT Speedup

Ontology Axiom Concept Para PW Factor

mfoem.emotion 2,389 902 2.7 25.3 9.4

nskisimple 4,775 1,737 2.9 28.1 9.7

geolOceanic 6,573 2,324 1.4 19.2 13.7

stateEnergy 10,270 3,018 12.3 201 16.3

aksmetrics 11,134 3,889 3.3 46.5 14.1

microbial.type 13,584 4,636 26.7 512 19.2

MSC_classes 15,092 5,559 TO TO -

CURRENT 26,374 6,595 112 783 6.9

compatibility 21,720 7,929 20.2 240 11.9

natural.product 169,498 9,463 98.7 352 3.6

havioredit 354,971 99,399 TO TO -

strategy to make a balance of group distribution, which is caused by each subsump-

tion tested by different black-box reasoners. Therefore, Table 6.8 shows the wall clock

time of the parallel framework without applying work stealing (PW) and in the sec-

ond last column the speedup factors defined by PW
Para . From the results, the best per-

formances have a factor of 19.2 and 16.3 for the ontology microbial.type and stateEnergy

respectively, which have a high maximum time compared to the wall clock time of

Para. Most of the improved speedup factors are in the range of 9-15, which show the

improvements when the work-stealing strategy is applied in this approach.

109

6.2.5 Comparison with DL Reasoners

There are two larger sets of ontologies tested including the ones used in the Section

6.2. The results present the wall clock time of this framework compared with Hermit

or JFact. The wall clock time for sequential and parallel precomputing is listed in Table

6.9 + 6.10. Ontologies are sorted by their number of concepts.

6.2.6 Summary

Using the improved parallel classification framework, the results demonstrate the per-

formance of this parallel framework against the selected black-box reasoner by clas-

sifying a great variety of ontologies. The results show that the wall clock time of the

parallel framework has better results when the ontologies can be classified by black-

box reasoner. However, since the efficiency of the subsumption tests is constrained

by the black-box reasoner and due to the limitation of the current experimental envi-

ronment (a total of 60 hyper-threading cores supporting 120-150 threads), the results

outperform the black-box reasoner when the size of ontologies are less than 10,000

concepts in most cases.

110

TABLE 6.9: Time Metrics of tested OWL ontologies using parallel
framework with Hermit (timeout (TO) = 1000 seconds)

(Sequ = Sequential, Para = Parallel)

Precomputing Classification Speedup

Ontology Concept Sequ Para Para Hermit Factor

1 SocialUnits 156 84.3 0.86 16.1 353 21.9

2 00021 156 105 0.91 15.4 260 16.9

3 rnao.owl 240 1.16 0.29 3.06 109 35.9

4 tionmodule 256 523 1.12 640 909 1.42

5 genetic 386 671 8.80 31.2 530 17.0

6 WM30 415 TO 0.74 TO 798 -

7 ainability 824 6.06 0.14 0.91 15.4 16.9

8 sadiobjects 828 0.66 0.49 2.53 4.42 1.75

9 Microbiota 868 6.36 0.19 0.97 17.9 18.5

10 mfoem.emotion 902 35.1 0.88 2.77 42.1 15.2

11 onsumption 945 233 1.21 2.19 20.8 9.51

12 emistrycomplex 1,041 12.4 0.61 8.53 14.2 1.66

13 nskisimple 1,737 36.3 0.21 2.9 29.3 10.1

14 Earthquake 2,013 20.5 0.68 7.73 14.8 1.91

15 geolOceanic 2,324 23.8 0.55 1.38 12.1 8.72

16 landCoastal 2,660 29.0 0.70 1.48 17.2 11.6

17 mergedobi 2,638 351 0.96 TO 364 -

18 00350 2,638 441 3.25 28.2 310 11.0

19 obi_functional 2,750 336 2.49 35.3 342 9.72

20 quanSpace 2,999 145 0.42 38.2 380 9.95

111

TABLE 6.10: Time Metrics of tested OWL ontologies using parallel
framework with Hermit (timeout (TO) = 1000 seconds)

(Sequ = Sequential, Para = Parallel)

Precomputing Classification Speedup

Ontology Concept Sequ Para Para Hermit Factor

21 EnergyFlux 3,008 193 0.36 121 277 2.29

22 stateEnergy 3,018 131 0.99 12.2 72.9 5.95

23 rDataModel 3,049 136 1.32 68.3 757 11.1

24 virControl 3,274 164 0.42 45.6 439 9.65

25 aksmetrics 3,889 6.43 0.6 3.25 13.6 4.20

26 microbial.type 4,636 304 0.51 26.6 308 11.6

27 MSC_classes 5,559 156 1.46 TO TO -

28 obo.PREVIOUS 6,580 378 0.55 311 646 2.07

29 obo.CURRENT 6,595 391 0.74 112 452 4.02

30 PREVIOUS 7,335 TO 1.79 TO TO -

31 SMOtop 7,782 TO 32.4 432 TO 2.31

32 COSMO 7,804 TO 33.4 728 TO 1.37

33 compatibility 7,929 37.7 0.63 20.1 22.2 1.10

34 EnzyO 8,223 TO 1.74 TO TO -

35 natural.product 9,463 67.9 2.16 98.7 11.2 0.11

36 vertebrate 18,092 TO 13.8 TO TO -

37 temetazoan 32,750 TO TO TO TO -

38 ewasserted 63,848 TO 5.3 TO TO -

39 ersections 70,232 TO TO TO TO -

40 havioredit 99,399 TO TO TO TO -

112

7 Conclusion

The main purpose of this research is to design and implement a sound and complete

parallel framework for ontology classification. This framework can be used for differ-

ent DL reasoners to speedup their classification process. Following all the objectives

described in Chapter 1, a novel prototype of parallel classification approach was de-

veloped and a series of experimental results were conducted by using selected real

world ontologies, which demonstrated that this work can be adapted to the various

ontologies. These ontologies are not only complex but also have an increasing num-

ber of concepts in order to better compare our approach with existing sequential DL

reasoners.

7.1 Thesis Contributions

• The first version of our parallel approach (see Chapter 4) has been published

in [46] and [47] which presents a thread-level parallel architecture for ontology

classification and ideally suited for shared-memory SMP servers, but does not

rely on locking techniques and thus avoids possible race conditions. A newly

designed atomic data structure (see Section 4.4.1) consists of a possible list and

remaining list for all the satisfiable concepts of an ontology to record all the sub-

sumption relations. There are two parallel strategies: random division and group

division strategies (see Section 4.3), which have been defined and applied in this

113

approach. The prototype is evaluated with a set of real-world ontologies. The

results demonstrate a very good scalability resulting in a speedup that is linear

to the number of available cores.

• The improved version of this approach [48] (see Chapter 5) can be applied to ex-

isting OWL reasoners and speed up their classification process. The data struc-

ture is updated with subsumee, equivalent and disjoint sets in Section 5.2. The

parallel precomputing phase (see Section 5.3.1) is applied to speed up the clas-

sification process. A new work-stealing strategy (see Section 5.3.2) is designed

to reduce the overhead. In comparison to the selected black-box reasoner our

results demonstrate that the wall clock time of ontology classification can be im-

proved by one order of magnitude for most real-world ontologies.

• Ontology Scale. For the first evaluation of our parallel classification architec-

ture (see Section 6.1), a set of 9 real-world ontologies are selected that contain up

to 13,000 concepts and 33,000 axioms to test scalability. For the small-sized the

peak is reached around 140-200 workers and large-sized around 200-280 work-

ers. With a growing ontology size, a better speedup can be achieved by increas-

ing the number of workers, which is linear to the number of threads.

• Ontology Complexity. For the first evaluation (see Section 6.1), a set of 6 real-

world ontologies are selected that contain up to 7,000 axioms and 967 qualified

cardinality restrictions (QCRs). As the number of threads is increased, a better

speedup is observed and the maximum is reached with 60-100 threads except

for the one with 446 QCRs, which has small-sized concepts and reached its max-

imum speedup around 40 threads.

• Runtimes. For the improved version (see Section 6.2), 11 different ontologies

with QCRs are selected and compared with black-box reasoners over the whole

114

classification process. The evaluation shows that our approach is more efficient

in most cases for ontologies which have less than 10,000 concepts with up to

120 threads. The evaluation results indicate that if our framework would use

a different and more efficient black-box reasoner, it could scale better for more

difficult and/or bigger ontologies.

7.2 Future Work

The main parts of this work have been finished. Furthermore, there are some thoughts

and proposals which can be discussed and explored by further experiments.

• Shared-memory Structure. In this research, a shared-memory half-matrix data

structure is designed to reduce the exchange of updates and requirements of

memory. However, through the observation of conducting experiments, it is

difficult to find an ideal server which has a shared-memory with enough re-

sources for processing classification of much bigger size ontologies as we ex-

pected. Therefore, a distributed memory approach might be a better option for

further research to enlarge the scalability of much bigger size ontologies.

• The Black-box Reasoners. This work has been successfully implemented with

two DL reasoners: Hermit and JFact. In comparison to the selected black-box

reasoners our results demonstrate that the wall clock time of ontology classifica-

tion can be improved by one order of magnitude for most real-world ontologies.

Due to the wide range and different characteristics of DL reasoners, a module

which combines different reasoners can be considered to improve the whole clas-

sification process [49].

115

• Optimization Techniques. Currently, the techniques applied in this research rely

on parallel computing and transitive closure to reduce more subsumption rela-

tions without testing and schedule all the available threads to reduce the over-

head. Due to the features of different modern techniques, more strategies from

different perspectives could be applied to simply the classification process, such

as learning the feasibility of reasoners and the internal relations of an ontology.

116

Bibliography

[1] Acar, U. A., Blelloch, G. E., and Blumofe, R. D. (2000). The data locality of work

stealing. In In Proceedings of the twelfth annual ACM symposium on Parallel algorithms

and architectures, pp. 1-12. ACM.

[2] Ameloot, T. J., Geck, G., Ketsman, B., Neven, F., and Schwentick, T. (2017). Reason-

ing on data partitioning for single-round multi-join evaluation in massively parallel

systems. In Communications of the ACM, volume 60, pages 93–100.

[3] Aslani, M. and Haarslev, V. (2010). Parallel TBox classification in description logics

- first experimental results. In Proc. of the 19th European Conf. on AI, pages 485–490.

[4] Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., and eds

(2003). The description logic handbook: Theory, implementation and applications. Cam-

bridge University Press.

[5] Baader, F., Franconi, E., B. Hollunder, B. N., and Profitlich, H. (1994). An Empirical

Analysis of Optimization Techniques for Terminological Representation Systems or:

Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge

Base Management 4, 109–132.

[6] Baader, F. and Sattler, U. (2001). An Overview of Tableau Algorithms for Descrip-

tion Logics. Studia Logica, 69:5–40.

117

[7] Benavides, D., Pablo, T., and Ruiz-Cortés, A. (2005). Automated reasoning on fea-

ture models. In International Conference on Advanced Information Systems Engineering,

pages 491–503, Berlin, Heidelberg. Springer.

[8] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific

American, 284(5):34–43.

[9] Blumofe, R. D. and Leiserson, C. E. (1999). Scheduling multithreaded computa-

tions by work stealing. Journal of the ACM (JACM), 46(5):720–748.

[10] Borgida, A. and Serafini, L. (2003). Distributed description logics: Assimilating

information from peer sources. In Journal on data semantics I, pp. 153-184. Springer,

Berlin, Heidelberg.

[11] Bruijn, J. D. and Heymans, S. (2007). Logical Foundations of (e)RDF(S): Complex-

ity and Reasoning. pages pp 86–99. 6th International Semantic Web Conference.

[12] Bulpin, J. R. and Pratt, I. (2005). Hyper-threading aware process scheduling

heuristics. In USENIX Annual Technical Conference, General Track.

[13] Cederman, D., Gidenstam, A., Ha, P., Sundell, H., Papatriantafilou, M., and Tsi-

gas, P. (2017). Programming Multicore and Many-core Computing Systems, chapter

Lock-free concurrent data structures. John Wiley and Sons, Inc.

[14] Chase, D. and Lev, Y. (2005). Dynamic circular work-stealing deque. In In Pro-

ceedings of the seventeenth annual ACM symposium on Parallelism in algorithms and ar-

chitectures, pp. 21-28. ACM.

[15] Chen, Y.-K., Tian, X., Ge, S., and Girkar, M. (2004). Towards efficient multi-level

threading of h. 264 encoder on intel hyper-threading architectures. In 18th Interna-

tional Parallel and Distributed Processing Symposium, Proceesings, IEEE.

118

[16] Davis, E. and Marcus, G. (2016). The scope and limits of simulation in automated

reasoning. Artificial Intelligence (2016), 233:60–72.

[17] Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified Data Processing on

Large Clusters. Communications of the ACM 51.1, 107-113.

[18] Dinan, J., Larkins, D. B., Sadayappan, P., Krishnamoorthy, S., and Nieplocha, J.

(2009). Scalable work stealing. In Proc. ACM Conference on High Performance Com-

puting Networking, Storage and Analysis, pages 1–11. IEEE.

[19] Faddoul, J. and MacCaull, W. (2015). Handling non-determinism with description

logics using a fork/join approach. International Journal of Networking and Computing,

5(1):61–85.

[20] Gardiner, T., Horrocks, I., and Tsarkov, D. (2006). Automated benchmarking of

description logic reasoners. In Proc. 19th Int. Workshop on Description Logics (DL’06),

volume 198, page 191.

[21] Glimm, B., Horrocks, I., Motik, B., Shearer, R., and Stoilos, G. (2012). A Novel

Approach to Ontology Classification. Web Semantics: Science, Services and Agents on

the World Wide Web, 14(0):84 – 101.

[22] Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang, Z. (2014). HermiT: an

OWL 2 reasoner. Journal of Automated Reasoning, 53(3):245–269.

[23] González, J. F. (2017). Java 9 Concurrency Cookbook. Packt Publishing Ltd.

[24] Guo, Y., Pan, Z., and Heflin., J. (2005). LUBM: A benchmark for OWL knowledge

base systems. Web Semantics: Science, Services and Agents on the World Wide Web,

3(2-3):158–182.

119

[25] Haarslev, V., Hidde, K., Möller, R., and Wessel, M. (2012). The RacerPro knowl-

edge representation and reasoning system. Semantic Web, 3(3):267–277.

[26] Horridge, M. and Bechhofer, S. (2011). The OWL API: A java API for OWL on-

tologies. Semantic Web, 2(1):11–21.

[27] Hsu, C. and Feng, W. (2005). A power-aware run-time system for high-

performance computing. In In SC’05: Proceedings of the 2005 ACM/IEEE Conference

on Supercomputing, pp. 1-1. IEEE.

[28] Huang, W., Liu, J., Abali, B., and Panda, D. K. (2006). A case for high performance

computing with virtual machines. In In Proceedings of the 20th annual international

conference on Supercomputing, pp. 125-134. ACM.

[29] Kazakov, Y., Krötzsch, M., and Simančík, F. (2011). Concurrent classification of

EL ontologies. In International Semantic Web Conf., pages 305–320.

[30] Kazakov, Y., Krötzsch, M., and Simancik, F. (2012). ELK Reasoner: Architecture

and Evaluation. OWL Reasoner Evaluation Workshop.

[31] Kirk, D. B. and Wen-Mei, W. H. (2016). Programming massively parallel processors: a

hands-on approach. Morgan Kaufmann.

[32] Koufaty, D. and Marr, D. T. (2003). Hyperthreading technology in the netburst

microarchitecture. In IEEE Micro 23(2).

[33] Leng, T., Ali, R., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2002). An em-

pirical study of hyper-threading in high performance computing clusters. In Linux

HPC Revolution 45.

[34] Magro, W., Petersen, P., and Shah, S. (2002). Hyper-threading technology: Impact

on compute-intensive workloads. Intel Technology Journal 6(1).

120

[35] Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., and

Upton, M. (2002). Hyper-threading technology architecture and microarchitecture.

Intel Technology Journal, 6(1).

[36] Meissner, A. (2011). Experimental analysis of some computation rules in a sim-

ple parallel reasoning system for the ALC description logic. International Journal of

Applied Mathematics and Computer Science, 21(1):83–95.

[37] Mergen, M. F., Uhlig, V., Krieger, O., and Xenidis, J. (2006). Virtualization for

high-performance computing. In ACM SIGOPS Operating Systems Review, 40(2), 8-

11.

[38] Metke-Jimenez, Alejandro, and Lawley, M. (2013). Snorocket 2.0: Concrete Do-

mains and Concurrent Classification. The 2nd International Workshop on OWL Rea-

soner Evaluation.

[39] Möller, R. and Haarslev, V. (2009). Tableau-Based Reasoning. Handbook on

Ontologies-Tableau-based reasoning, pages pp 509–528.

[40] Motik, B. (2009). Resolution-Based Reasoning for Ontologies. Handbook on

Ontologies-International Handbooks on Information Systems, pages pp 529–550.

[41] Mutharaju, R., Maier, F., and Hitzler, P. (2010). A MapReduce algorithm for EL+.

23rd International Workshop on Description Logics DL2010, vol. 456.

[42] Mutharaju, R., Mateti, P., and Hitzler, P. (2015). Towards a rule based distributed

OWL reasoning framework. In Intern. Experiences and Directions Workshop on OWL,

pages 87–92. Springer.

[43] Nieuwpoort, V., V., R., Maassen, J., Wrzesińska, G., Hofman, R. F., Jacobs, C. J.,

Kielmann, T., and Bal, H. E. (2005). Ibis: a flexible and efficient java-based grid

121

programming environment. In Concurrency and Computation: Practice and Experience

17, no. 7-8: 1079-1107.

[44] ORE (2014). 3rd OWL reasoner evaluation (ORE) workshop.

[45] ORE (2015). 4th OWL reasoner evaluation (ORE) workshop.

[46] Quan, Z. and Haarslev, V. (2017). A parallel shared-memory architecture for OWL

ontology classification. In 46th International Conference on Parallel Processing Work-

shops (ICPPW), pages 200–209. IEEE.

[47] Quan, Z. and Haarslev, V. (2018). A parallel computing architec-

ture for high-performance OWL reasoning. Parallel Computing (2018),

https://doi.org/10.1016/j.parco.2018.05.001.

[48] Quan, Z. and Haarslev, V. (2019). A framework for parallelizing OWL classifi-

cation in description logic reasoners. submitted to International Joint Conferences on

Artificial Intelligence, 2019.

[49] Romero, A. A., Grau, B. C., and Horrocks, I. (2012). More: Modular combination

of owl reasoners for ontology classification. In International Semantic Web Conference,

pp. 1-16. Springer, Berlin, Heidelberg.

[50] Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept descriptions with

complements. Artificial intelligence 48.1: 1-26.

[51] Seidenberg, J. and Rector, A. (2006). Web ontology segmentation: analysis, classi-

fication and use. In 15th international conference on World Wide Web. ACM.

[52] Serafini, L. and Tamilin, A. (2005). Drago: Distributed reasoning architecture for

the semantic web. In European Semantic Web Conf., pages 361–376. Springer.

122

[53] Steigmiller, A., Liebig, T., and Glimm, B. (2014). Konclude: system description.

Web Semantics, 27:78–85.

[54] Suksompong, W., Leiserson, C. E., and Schardl, T. B. (2016). On the efficiency of

localized work stealing. Information Processing Letters, 116(2):100–106.

[55] Tsarkov, D. and Horrocks, I. (2006). FaCT++ description logic reasoner: System

description. In International Joint Conference on Automated Reasoning, pages 292–297.

[56] Tsarkov, D., Riazanov, A., Bechhofer, S., and Horrocks, I. (2004). Using vampire

to reason with owl. In In International Semantic Web Conference, pp. 471-485. Springer,

Berlin, Heidelberg.

[57] Urbani, J. (2010). Scalable and parallel reasoning in the semantic web. In The

Semantic Web: Research and Applications, pages 488–492. Springer.

[58] Urbani, J., Kotoulas, S., Maassen, J., Harmelen, F. V., and Bal, H. (18 October 2012).

WebPIE: A Web-scale Parallel Inference Engine using MapReduce. Web Semantics:

Science, Services and Agents on the World Wide Web.

[59] Urbani, J., Kotoulas, S., Oren, E., and Harmelen, F. V. (2009). Scalable distributed

reasoning using mapreduce. In International Semantic Web Conference, pp. 634-649.

Springer, Berlin, Heidelberg.

[60] Wu, K. and Haarslev, V. (2012). A parallel reasoner for the description logicALC.

In Proc. of the Int. Workshop on Description Logics, pages 378–388.

[61] Wu, K. and Haarslev, V. (2013). Exploring parallelization of conjunctive branches

in tableau-based description logic reasoning. In Proc. of the Int. Workshop on Descrip-

tion Logics, pages 1011–1023.

123

[62] Wu, K. and Haarslev, V. (2014). Parallel OWL reasoning: Merge classification. In

Proc. of the 3rd Joint Int. Semantic Technology Conf. (JIST), Seoul, Korea, November 28-30,

2013, LNCS, pages 211–227.

124

Appendix

Publications

1. Zixi Quan and Volker Haarslev. A Parallel Shared-Memory Architecture for

OWL Ontology Classification. 46th International Conference on Parallel Processing

Workshops (ICPPW), Pages 200-209, 2017

2. Zixi Quan and Volker Haarslev. A parallel computing architecture for high-

performance OWL reasoning. Parallel Computing Journal (2018).

https://doi.org/10.1016/j.parco.2018.05.001 (In Press).

3. Zixi Quan and Volker Haarslev. A Framework for Parallelizing OWL Classifi-

cation in Description Logic Reasoners. International Joint Conference on Artificial

Intelligence (IJCAI) 2019 (Under Review).

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis Objectives
	Thesis Contributions
	Thesis Outline

	Preliminaries
	Introduction
	Description Logics
	Description Language ALC
	Tableau Algorithm
	Transitive Closure

	Reasoning
	RDF Reasoning
	Resolution-based Reasoning
	Tableau-based Reasoning

	Reasoning Systems
	Sequential Systems
	Concurrent Systems
	Distributed Systems

	Parallel Computing
	High-performance Computing
	Atomic Data
	Work-Stealing
	Hyper-Threading

	Background and Related Work
	Introduction
	Sequential Classification Methods
	Brute Force
	Simple Traversal Method
	Enhanced Traversal Method
	Optimized Classification Method

	Parallel Classification and Reasoning Methods
	Parallel TBox Classification Algorithm
	Merge Classification
	Scalable and Parallel Reasoning Approach
	Distributed Reasoning Architecture

	Parallel Reasoning Techniques
	MapReduce
	ELK
	Snorocket
	Konclude

	Summary

	Parallel Reasoning
	Introduction
	Architecture
	Ontology Classification
	Random Division Strategy
	Group Division Strategy
	Ontology Taxonomy

	Optimization
	Half-Matrix Structure
	Improved Division Strategy
	Optimized Parallel Phase

	Summary

	Improved Parallel Classification
	Introduction
	Improved Data Structure
	Atomic Half-Matrix Structure F
	Maintaining Sets

	Improved Ontology Classification
	Precomputing Phase
	Classification Phase

	Summary

	Evaluation
	First Evaluation
	Benchmarks
	Ontology Scale
	Ontology Complexity
	Load Balancing
	Summary

	Improved Parallel Classification
	Benchmarks
	Precomputing Phase
	Improved Classification
	Load Banlancing
	Comparison with DL Reasoners
	Summary

	Conclusion
	Thesis Contributions
	Future Work

	Bibliography
	Appendix

