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Abstract—Extracting features from a huge amount of data
for object recognition is a challenging task. Convolution neural
network can be used to meet the challenge, but it often requires
a large amount of computation resources. In this paper, a
computation-efficient convolutional module, named SdcBlock,
is proposed and based on it, the convolution network SdcNet
is introduced for object recognition tasks. In the proposed
module, optimized successive depthwise convolutions, supported
by appropriate data management, are applied in order to
generate vectors containing higher density and more varieties
of feature information. The hyperparameters can be easily
adjusted to suit varieties of tasks under different computation
restrictions without significantly jeopardizing the performance.
The experiments have shown that SdcNet achieved an error rate
of 5.60% in CIFAR-10 with only 55M Flops and also reduced
further the error rate to 5.24% using a moderate volume of
103M Flops. The expected computation efficiency of the SdcNet
has been confirmed.

Index Terms—Convolution Neural Network, Object Recog-
nition, Feature Extraction, Successive Depthwise Convolutions,
Data Flow Control

I. INTRODUCTION

Object recognition is widely used in various applications
such as autopilot [1] and security systems [2]. Extracting
various features related to the objects from diverse back-
grounds is a critical challenge. The normal procedure of
object recognition contains three steps, pre-processing, feature
extraction and classification.

The feature extraction can be done by applying filtering-
based methods, such as Wavelet [3] and SIFT [4]. SVM [5] and
Adaboost [6] are often used for classification. Such processing
methods are usually computation-efficient, however, they have
limitations in handling a huge number of variations in object
features.

To deal with the situation, machine learning approaches,
in particular convolution neural network(CNN), have no-
ticeable advantages. It uses a large number of samples to
progressively determine the system parameters in order to
detect various object features. The networks such as VGG
[7] and ResNet [8] have been reported to solve complex
object recognition problems. Normaly, CNN requires a large
number of layers, which, in consequence, needs a large number
of parameters and a huge computation volume to achieve a
good performance. Improving the computation efficiency of

CNNs requires critical research effort. Some network pruning
methods to reduce computation complexity are reported in
[9–11]. In MobileNetV2 [12] and ShuffleNet [13], depthwise
convolutions are used in their modules in an attempt to
make the computation more efficient. Architecture Xception
[14], a linear stack of depthwise convolution layers with
residual connections, resulted in some gains in classification
performance on the ImageNet dataset.

In convolution neural networks, different modes of convo-
lutions transform the properties of the input data in different
ways. It’s important to control various data of different nature
for appropriate modes of convolutions to extract features of
different orders. Based on this idea, we propose, in this paper,
a convolution module, named SdcBlock, and a CNN architec-
ture, named SdcNet, with a view to reducing significantly the
computation volume without sacrificing the processing quality.
The SdcBlock, in which successive depthwise convolutions
supported by appropriate data management are applied, is
specifically designed for the computation with different types
of data. The block is modularized to facilitate its applications
in varieties of networks.

II. PROPOSED METHOD

Feature extraction by CNN is performed by means of
progressive filtering through a good number of convolution
layers. In each of the layers, new feature vectors are generated,
based on a large volume of the input data, in a way that
the information relevant to the object features is extracted,
composed, strengthened, and/or concentrated, while filtering
out those irrelevant. Because of rich variations in the features,
a large number of filtering kernels are often used in a single
layer to increase the chance of extracting different features,
which will certainly increase computation complexity, but not
necessarily the concentration of the relevant feature informa-
tion in the generated vectors.

To build effective convolution layers with a maximized ca-
pacity of extracting critical feature information, it’s important
to look into the different convolution modes and to direct the
data to the appropriate convolution layers. In general, an input
of NI channels can be transformed to an output of K channels
by a convolution with K kernels. The following modes are the
most commonly used.
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(a) SdcBlock(Stride=1) (b) SdcBlock-S2(Stride=2)
(c) SdcBlock-S2-F(Stride=2)

Fig. 1. SdcBlock Modules. G Conv represents group convolution and DWConv represents dethwise convolution.

• Standard convolution [15]. In this mode, each of the K
convolution kernels is applied to all the NI input channels
to generate one output channel.

• Group convolution (G-Conv) [16]. The NI input channels
is divided into g groups, and K convolution kernels are
also divided into g sets. Each group of the input data
is convolved with a set of K/g kernels. The standard
convolution can be seen as the specific case, with g = 1,
of group convolution.

• Depthwise convolution (DW-Conv) [14]. It is, in fact, the
conventional 2-D spatial convolution. In the context of
CNN, it can be seen as another special case of group
convolution, in which g = NI , i.e., one channel per group,
and each of the K kernels is applied only to one input
channel, requiring g = NI = K.

With given NI and K, the standard convolution is the
most computation-demanding, as it generates each of the
output vectors based on the data sampled from all the input
channels. On the contrary, the depthwise mode is the least
computation-demanding, and each of its output vectors is
produced exclusively based on the data of a single channel.
This exclusivity can facilitate the control of the data flow of
individual channels. By using a preceding 1x1 convolution to
organize its input data channels, the depthwise convolution can
also process data of multiple channels.

The convolution module and architecture proposed in this
paper have been designed to make the best use of the
input data. It is done by means of a data management
designed to optimize successive depthwise convolution results.
The purpose is to generate feature vectors having a higher
density and more varieties of the information critical for the
classification.

A. Modules

The proposed convolution module, named SdcBlock (Suc-
cessive Depthwise Convolution Block), is illustrated in Fig.
1. If an input signal is composed of a large amount of data,
its features can be represented not only by its original data
form but also by the data resulting from filtering operations
of different orders. Successive convolutions performed to the
same signal can generate such feature information. Hence,
the pivotal part of this module is the successive depthwise
convolutions to implement the principle of multiple order
processing in each channel of the input data.

The module is mainly composed of three parts for the three
functions, Successive Depthwise Convolutions (Sdc), data
preparation, and arrangement of convoluted data, respectively.

1) Successive depthwise convolutions (Sdc). They are per-
formed by two boxes, indicated by 3x3 DWconv found
in Fig. 1(a), used to generate the data of the first



TABLE I
DETAILS OF SDCNET CONFIGURATIONS

Layer Image Output Size Stride Repeat Times Output Channels
SdcNet-G4-L(g = 4) SdcNet-G3-S(g = 3)

Input image data sized 32x32, 3 channels.
G-Conv(g = 3)* 32x32 1 1 36 36
Stages 1 32x32 1 1 24 24
Stages 2 32x32 1 2 36 24
Stages 3 16x16 2 1 72 36

16x16 1 2 72 36
Stages 4 8x8 2 1 96 72

8x8 1 3 96 72
Stages 5 8x8 1 3 144 96
Stages 6 4x4 2 1 300 150

4x4 1 2 300 150
Stages 7 4x4 1 1 600 300
Avg Pool** 1x1 2 1 600 300
FC*** 1x1 1 10 10
Complexity**** 106.1M 56.55M
* G-Conv stands for group convolution. The kernel size of the group convolution is 3x3.
** The kernel size of the average pooling is 4x4.
*** 10 is for CIFAR-10 dataset and 100 is for CIFAR-100 dataset.
**** The complexity is evaluated with FLOPs for the dataset CIFAR-10, i.e. the number of floating-point multiplication-adds.

and second order filtering operations. They must be
applied solely to the data of the same channel, for which
only depthwise convolution is suitable. If the module
is placed in the entry part of a CNN to process raw
image data, the successive depthwise convolutions will
generate the first and second order gradient maps in
order to obtain various low-level features. If the module
is placed in the middle or final parts of the convolution
stages, these convolution operations will produce vectors
of more dimensions and levels containing high order
feature information.
The extracted feature information of each of the two
convolutions needs to be carefully preserved. Hence,
the two sets of the convolution results are concatenated,
instead of being summed up.
In the current version of SdcBlock illustrated in Fig.
1(a), the kernel size of the two succisive depthwsise
convolutions is 3x3. Batch normalization [17] and non-
linear function ReLU [18] are applied after each of the
convolutions.

2) Data preparation for the successive depthwise convolu-
tions. Since the pivotal part in the proposed module is
the depthwise convolutions performed in the individual
input channels, it is important to prepare the input data in
order to optimize the convolution results. In SdcBlock,
a set of 1x1 convolution kernels are applied to the input
data, as illustrated in Fig. 1(a), for the preparation. By
doing so, the data can be scaled to suit the succeeding
convolution and, meanwhile, the number of the input
data channels are expanded to match that required in the
successive depthwise convolutions. If NI input channels
are expanded to E ∗ NI channels, E is the expansion
number, used as one of the hyperparameters.
In the current version of the SdcNet, the group con-
volution mode is used in the first set of 1x1 con-

volution in each block, as illustrated in Fig. 1(a), in
the data preparation so that the input channels can be
grouped according to their nature. Moreover, the group
convolutions can reduce the computation complexity
significantly, with respect to the standard convolution. It
should also be mentioned that batch normalization and
non-linear function ReLU are applied after the first 1x1
group convolution.

3) Data arrangement after the successive depthwise con-
volutions. As mentioned previously, the results from
the two successive depthwise convolution operations
are concatenated. The data produced by the different
depthwise convolutions are placed separately in different
sections of the vectors generated by the concatenation.
Rearranging the vector elements so that every segment
in the vectors has elements randomly taken from the
two convolutions results may benefit the following
operations. Thus, the results of the concatenation are
permuted to mingle the data produced by the two
depthwise convolutions. Another group convolution, the
second 1x1 kernel convolution illustrated in Fig. 1(a), is
applied to combine the data from 2xExNI channels to
NO output channels. A batch normalization is followed
after the second 1x1 group convolution.

The proposed module can be varied by a choice of the
hyper parameter stride. In the basic version of the proposed
SdcBlock illustrated in Fig. 1(a), it takes stride=1. A residual
operation [8] is applied to the inputs and the rearranged
convolved results. There are three ReLUs in each SdcBlock
to ensure the non-linear ability of the module and there is no
ReLU after the addition. In some cases, convolution layers of
stride=2 can be used in order to reduce computation cost. The
SdcBlock with stride = 2, named SdcBlock-S2, is shown in
Fig. 1(b). In order to compensate for the eventual information
lost due to the stride = 2 convolution, a concatenation of



the average-pooled input data and the rearranged convolved
data is performed. The output of SdcBlock-S2 contains both
the sampled input information and the successive depthwise
convolution results. A variation of the SdcBlock-S2, named
SdcBlock-S2-F (Feature), has also been proposed and the
procedure is shown in Fig. 1(c). Compared to SdcBlock-S2,
the final output data result exclusively from the successive
depthwise convolutions without being combined with the
input.

B. Network architecture
A convolution neural network architecture mainly composed

of a stack of SdcBlocks is named SdcNet. Two SdcNets
have been designed for the CIFAR image classification and
the details of the designs are presented in Table I. Each of
these SdcNets is composed of seventeen SdcBlocks grouped
in seven stages. The hyperparameters in each stage are made
the same, except stride.

In a SdcBlock, the hyperparameters g, the number of
groups, and E, the expansion number, are used to control the
computation volume. Furthermore, the volume is also closely
related to the number of output channels in each stage. The
two SdcNet networks, specified in Table I, differ in the number
of groups and the number of output channels in stages. In
SdcNet-G4-L, ”G4” indicates g = 4 is applied to all the stages
whereas g = 3 is used in SdcNet-G3-S. As the former has a
larger number of output channels than the latter, the name of
the former ends with ”L”, standing for ”larger”, and that of
the latter with ”S”, standing for ”smaller”. Besides, the basic
SdcBlock is used in case of stride=1 and SdcBlock-S2 is used
in case of stride=2, unless otherwise specified.

III. PERFORMANCE EVALUATION

To evaluate the performance of SdcNet, a set of experiments
have been performed with CIFAR-10 and CIFAR-100 image
classification datasets.

A. Experiment Conditions
1) Datasets. The CIFAR dataset [19] (Canadian Institute

For Advanced Research) is a collection of images that are
commonly used to train machine learning and computer vision
algorithms. CIFAR-10 and CIFAR-100 datasets contain 60000
RGB images of 32x32 pixels in 10 classes and 100 classes,
respectively. For the CIFAR-10 dataset, the training set has
5000 images per class and the testing set contains 1000
randomly-selected images from each class. In the CIFAR-100
dataset, there are 500 training images per class and 100 testing
images per class.

2) Network Configurations. Four different versions of
SdcNets have been tested. The details of the network
configurations are specified in Table I and the explanation of
the network names is found in Section II B. These SdcNets
differ in the number of groups in each stage, the number
of output channels and types of used blocks. In cases of
SdcNet-G4-L-F and SdcNet-G3-S-F, SdcBlock-S2-F are used
for all the blocks in case of stride=2. In all the four networks,
E is equal to 6.

TABLE II
COMPARISON OF CLASSIFICATION ERROR RATE ON CIFAR- 10 (C-10)

AND CIFAR-100 (C-100) WITH EXISTING CNNS

Model FLOPs Params C-10 C-100
VGG-16-pruned[9] 206M 5.40M 6.60% 25.28%
VGG-19-pruned[10] 195M 2.30M 6.20% -
VGG-19-pruned[10] 250M 5.00M - 26.20%
ResNet-56-pruned[11] 62M - 8.20% -
ResNet-56-pruned[9] 90M 0.73M 6.94% -
ResNet-110-pruned[9] 213M 1.68M 6.45% -
ResNet-164-B-pruned[10] 124M 1.21M 5.27% 25.28%
SdcNet-G3-S-F 56.55M 1.09M 5.79% 25.83%
SdcNet-G3-S 55.12M 1.04M 5.60% 25.01%
SdcNet-G4-L-F 106.1M 2.61M 5.27% 23.52%
SdcNet-G4-L 103.3M 2.53M 5.24% 23.12%

3) Training Details. The network has been trained with
mini-batch size of 128 for 300 epochs. The cross entropy
between the distribution of the network outputs and that of
the ground truth data has been calculated to measure the loss.
It is defined as H(y, p) = Σiyilog(pi), where yi is the ground
truth data and pi is the model outputs. The stochastic gradient
descent (SGD) [20] optimization method has been applied
using similar optimization parameters as those in [8]. Besides,
Nesterov momentum with a momentum weight of 0.9 and a
weight decay of 0.0001 has been adopted. A variable learning
rate starting from 0.1 has been used and it was reduced to
0.002 following a non-linear cosine-curve in the 300 epochs
[21]. The simple data augmentation in [22] has also been
applied for training, four zero pixels are padded on each side,
and then a 32x32 crop is randomly sampled from the padded
image or its horizontal flip. The weights of the network have
been initialized by using the method reported in [23], i.e.,
the weights being initialized in such a way that the variance
between inputs and outputs is the same in each layer.

B. Results on CIFAR 10 and CIFAR 100

The test result is presented in Table II. They are compared
with those given by the VGG-pruned [9, 10] and ResNet-
pruned [9–11]. In general, the error rates achieved by SdcNets
are not above 5.79% in CIFAR-10 and 25.83% in CIFAR-100,
which are better than those given by ResNet-pruned and VGG-
pruned nets under the similar computation conditions, in terms
of Flops.

With the restriction of low computation cost, SdcNet can
achieve an error rate of 5.60% in CIFAR-10 with 55M Flops
in comparison with 8.20% by ResNet-56 with 62M Flops.
In terms of quality of processing, the error rate achieved by
SdcNet can be as low as 5.24% in CIFAR-10 using 103M
Flops, versus 5.27% given by ResNet-164-B-pruned using
124M Flops. These results confirm that the proposed modules
and networks have a better performance in terms of efficiency.

IV. CONCLUSION

In this paper, a computation-efficient convolutional module,
named SdcBlock, has been proposed and based on it, the
convolution network SdcNet introduced for object recognition
tasks. The pivotal part of the SdcBlock is the optizimized



successive depthwise convolutions supported by the appropri-
ate data management to generate vectors containing higher
density and more variety feature information. The hyperpa-
rameters can be adjusted for varieties of tasks under different
computation restrictions without significantly jeopardizing the
performance. Examples of SdcNet have been designed and
tested. It has been demonstrated that SdcNet achieved an error
rate of 5.60% in CIFAR-10 with only 55M Flops, and also
reduced further the error rate to 5.24% using a moderate
volume of 103M Flops. The computation efficiency of the
SdcNet has been confirmed although the results can be further
improved by fine adjustments of hyperparameters.
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