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Abstract

This paper presents a new control strategy based on Fourier transformation and

intelligent optimization for a planar Pendubot with a passive second link, which

can be treated as a second-order nonholonomic system whose control has been

an open and challenging issue. A controller acting within a time corresponding

to the frequency of its fundamental harmonic term is designed to realize the sys-

tem control objective, which is to move the system from its initial position to

the target position. By employing Fourier transformation, a general expression

of the controller composed of a constant term and harmonic terms is obtained.

Next, the constant term is obtained by the angular momentum theorem, and

the particle swarm optimization algorithm is employed to obtain the harmonic

terms of the controller. A feedback control strategy based on a nonlinear dis-

turbance observer is then applied to overcome the uncertainties/disturbances in

the system. Finally, simulation results prove the validity of this control method.
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1. Introduction

When control inputs of a mechanical manipulator is less than its degree of

freedom, it is considered an underactuated system [5, 10]. For underactuated

manipulators, two different types have been considered: the vertical underactu-

ated manipulators [17, 22], and the planar underactuated manipulators [2, 23].5

For the former ones, gravity is considered. Thorough studies have been made

on such systems and many control methods have been proposed utilizing the

fact that its upright equilibrium position satisfies the approximate linearization

controllable condition [4, 27, 28].

However, the planar underactuated manipulators are without gravity. Any10

point on the plane is its equilibrium position, and does not satisfy the approxi-

mate linearization controllable condition [21]. As a result, control methods for

vertical underactuated manipulators may not work for the planar ones.

Nonholonomic systems are systems whose acceleration constraint or velocity

constraint is not integrable [13, 18]. Most planar underactuated manipulators15

are treated as nonholonomic. The only exception is the two-link planar Acrobot

with a passive first joint, which belongs to holonomic systems. [16] utilizes such

holonomic characteristic, and has achieved its control objective based on the

constraint between angles of the two links.

For planar underactuated manipulators with a passive first joint and with20

more than two links, the acceleration constraint can be integrated, but velocity

constraint cannot. These are first-order nonholonomic systems. Various of

proposals have been made to achieve the control objective of these manipulators

effectively. Including order-reduction method [14], continuous state-feedback

control [15, 30], etc.25

For planar underactuated manipulators with a passive joint which is not

the first one, both acceleration constraint and velocity constraint cannot be in-

tegrated, these are second-order nonholonomic systems [3, 24, 29]. No angle

constraints nor angular velocity constraints can be utilized for them. As a re-

sult, it is hard to effectively control this type of nonholonomic manipulators.30
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[1] proposes a control strategy for planar second-order nonholonomic manipu-

lators based on bi-direction trajectory planning. But it contains three control

steps, which is complicated. And it neglects some important factors such as

the value of the torque, which should be taken into consideration. A chained

form method is proposed to realize the control objective for planar multi-link35

manipulators with a passive link which is the last one [11]. However, for planar

manipulators whose passive link is neither the first nor the last, an effective

control strategy has not been found. To achieve their control objectives, a basic

step is to first find a valid control strategy for the planar two-link Pendubot,

which has a passive second link. A method based on the nilpotent approxima-40

tion has been suggested to control the planar Pendubot [8]. But this control

method is iteratively based, which may take a long time to complete the whole

control process. To conclude, finding an alternative control strategy for planar

Pendubot is necessary.

Nowadays, with the rapid development of the intelligent control technology45

[12, 20], we can explore the hidden relationship between the control objective

and the dynamic behavior of the system by employing intelligent optimization

algorithm. Such technology allows us to discover new strategies to achieve

the control objective of mechanical manipulators more effectively. Many opti-

mization algorithms, including the particle swarm optimization algorithm, the50

genetic algorithm, the differential evolution algorithm, etc. have been proposed

and used widely, to improve the performance of controllers [25, 26]. On the

other hand, the controller designs for mechanical manipulators usually should

take into consideration of uncertainties and external disturbances, which include

internal friction, unwanted coupling, unmodeled dynamics etc. Thus, finding a55

strategy to overcome such uncertainties/disturbances should also be considered

during controller design.

By exploring the relationship between the control objective and the dynamic

behavior of the system, this paper presents a control strategy for the planar

Pendubot with a second passive link using Fourier transformation and intelligent60

optimization to realize its control objective, which is to move the Pendubot from
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any initial position to the target position. First, we design a controller by using

the time required to achieve the control objective as a variable of the controller.

Next, we define the above time as the period of a periodic function, whose

value is the exact same as the control torque during its one period. We use65

the Fourier transformation on the above periodic function, and we can obtain a

general form of the controller during the control process, expressed by Fourier

series, which is composed of a constant term and harmonic terms. We then

solve the constant term based on the angular momentum theorem. As for the

solution of the harmonic terms, particle swarm optimization (PSO) algorithm70

is performed based on the control objective of the system. To overcome the

uncertainties/disturbances in the system, a feedback control strategy is applied

by employing a nonlinear disturbance observer to the system. By performing

a large amount of simulation, the highest order of the harmonic terms of the

controller is determined to ensure that the system control objective can be75

achieved effectively with high accuracy. Meantime, simulation results show that

the control of the planar Pendubot can be achieved using this method, and is

strong against disturbance.

2. Dynamic model of planar Pendubot

Figure 1 shows the model of a planar Pendubot, here the subscript 1 repre-80

sents the actuated joint and the link attached to it, while subscript 2 represents

the passive ones.

Listed below are the parameters used in Figure 1, here the subscript i = 1, 2.

qi: angle of the ith link.

mi: mass of the ith link.85

Li: length of the ith link.

Lci: distance between the ith link and its center of mass.

Ii: moment of inertia of the ith link around its center of mass.

τi: torque applied to the ith link.

The dynamic equations related to the system can be described by Lagrange90

4
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Figure 1: Planar Pendubot

equation

M (q) q̈ +H (q, q̇) = τ + d (1)

where q = [q1 q2]T is the angle vector of this system, q̇ and q̈ are the angular

velocity vector and the angular acceleration vector separately. τ = [τ1 0]T is

the torque vector. d = [d1 0]
T

is the uncertain/disturbant component of the

dynamics. M (q) is the inertia matrix, which is always positive definite. And95

H (q, q̇) represents the combination of the Coriolis and centrifugal forces. Their

general forms can be written as

M (q) =


 M11 M12

M12 M22




H (q, q̇) =


 H1

H2




(2)

Each elements of the matrix can be given as

M11 = a1 + a2 + 2a3 cos q2

M12 = a2 + a3 cos q2

M22 = a2

H1 = −a3 +
(
2q̇1q̇2 + q̇22

)
sin q2

H2 = a3q̇
2
1 sin q2

(3)

5
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where

a1 = m1Lc1
2 +m2L1

2 + I1

a2 = m2Lc2
2 + I2

a3 = m2L1Lc2

(4)

For a planar Pendubot, its potential energy is zero, and its total kinetic100

energy E is a very important variable to evaluate its dynamic characteristics

E =
1

2
q̇TM (q) q̇ (5)

The control objevtive of the planar Pendubot is to move the system from its

initial position to the desired final position. The position of the planar Pendubot

can be described by the x and y coordinates of its endpoint in Figure 1,where

x = L1 sin q1 + (L1 + L2) sin (q1 + q2)

y = L1 cos q1 + (L1 + L2) cos (q1 + q2)
(6)

For a given target position (xd, yd), (6) gives two sets of solutions, and we105

can select one of them to be the target angles for the two links. So that we can

turn the position control into angle control.

According to (1), we can obtain the constraint equation for planar Pendubot,

given by

M12q̈1 +M22q̈2 +H2 = 0 (7)

The constraint equation (7) cannot be integrated to obtain a velocity con-110

straint relationship, so the planar Pendubot is treated as a second-order non-

holonomic system [19]. As a result, when we use conventional method to control

the system to the target angles, the passive link usually ends up with a non-

zero angular velocity. To solve this issue, the nilpotent approximation in [8] is

proposed for the control of planar Pendubot, but this strategy is constructed115

iteratively, which may take a long time to achieve the control objective. An al-

ternative effective control strategy to realize the control objective of the planar

Pendubot is needed.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Controller design

In the first three subsection, we neglect the uncertain/disturbant component120

d in (1) and design the controller for the active link of the planar Pendubot, and

we solve the parameters of the controller with angular momentum theorem and

PSO algorithm. Then, in the last subsection, we take into account d, and we de-

sign a nonlinear disturbance observer to overcome such untertainty/disturbance.

3.1. Controller design based on Fourier transformation125

In this subsection we obtain the general form of the controller based on

Fourier transformation. We define tf as the time at which the two links of the

Pendubot reach their target angles. Therefore, when the control objective is

realized at t = tf , the states and energy of the system can be given as follows

q1 (tf ) = q1d, q2 (tf ) = q2d

E (tf ) = 0, which means q̇1 (tf ) = 0, q̇2 (tf ) = 0
(8)

where q1d and q2d are angles for the first and second link corresponding to the130

target position of the system. E (tf ) is the total kinetic energy of the system at

t = tf , given by (5). Note that at t = tf , the torque τ1 that we use should be

switched to zero to keep it static, which means

τ1 (t) =





u (t) t ∈ [0, tf )

0 t ∈ [tf ,∞)
(9)

We want to obtain a specific expression of the torque u (t) that gives the

inner relationship between the control torque we apply and the total control135

time tf . To do so, we define tf as the period of u (t). Such definition is valid

since we only care about the value of u (t) during time [0, tf ). Then, we use

Fourier transformation [6] to expand the periodic function u (t) into Fourier

series

u (t) =
1

2
A0 +

∞∑

i=1

Ai sin (iωt+ ϕi) (10)

where ω = 2π/tf . Here, the torque u (t) can be divided into two parts. One is140

the constant term, described by a constant parameter A0. Another is the sum
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of harmonic terms, described by harmonic parameters (ω,Ai, ϕi) (i = 1, 2, . . . ).

(10) gives the general form of u (t) which can achieve the control objective in

a finite time tf . Thus, with the purpose of obtaining a controller to achieve

the control objective, we need to solve the constant parameter as well as the145

harmonic parameters for (10).

3.2. Solution of the constant parameter based on angular momentum theorem

The constant term in (10) can be obtained based on the angular momentum

theorem. Since for the planar Pendubot, the torque only applies on the first

joint. We can select the first joint to be the reference point, and obtain the150

following equation based on the angular momentum theorem

L̇ (q, q̇) = u (t) (11)

where L̇ (q, q̇) is the time derivative of L (q, q̇), which is the total angular mo-

mentum of the system relative to the first joint. By integrating both sides of

(11) from t = 0 to t = tf , we have

L (q, q̇)|t=tf
− L (q, q̇)|t=0 =

∫ tf

0

u (t) dt (12)

The total angular momentum of the system can be given by155

L (q, q̇) = J1 (q) q̇1 + J2 (q) q̇2 (13)

where J1 (q) and J2 (q) are two parameters related to the model parameters and

angles of the two links. The system is static in both the initial and final states.

So, according to (12) and (13), we have
∫ tf

0

u (t) dt = 0 (14)

Substitute (10) into (14), we obtain the following result

A0 = 0 (15)

The equation (15) shows that the constant parameter in (10) is zero, so the160

torque of the system can be written as

u (t) =

∞∑

i=1

Ai sin (iωt+ ϕi) (16)

8
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which means that the torque for this system only contains harmonic terms.

3.3. Solution of harmonic parameters by PSO

Generally speaking, when a signal expressed by Fourier series is applied to

the system, people make a simplification by neglecting the high-order harmonic165

terms, leading to reduced number of parameters in the controller.

Hence, here we can define (16) as follows

u (t) =
D∑

i=1

Ai sin (iωt+ ϕi) (17)

where parameter D is the highest order being selected. For a given control

objective, there are a total of 2D+1 parameters to be determined. We apply the

PSO algorithm to solve these harmonic parameters (ω,Ai, ϕi) (i = 1, 2, . . . , D)170

based on the control objective of the system.

PSO is an optimization method where we use a population of N candidate

solutions to navigate in a multi-dimensional space to search for a specific spot,

which is determined based on the evaluation function [9]. The movements of

these candidate solutions can be described using their positions and velocities.175

The iteration rule of the velocity and position of the kth candidate can be given

as

vkj+1 = γvkj + C1r1
(
bkj − xkj

)
+ C2r2

(
gj − xkj

)

xkj+1 = xkj + vkj+1

(18)

xkj and vkj are the position and velocity of the kth particle at the jth iteration

(j = 1, 2, . . . and k = 1, 2, . . . , N). γ is the inertia weight, C1 and C2 are two

weighting factors, r1 and r2 are two random number from 0 to 1. bkj is the best180

position of the kth particle and gj is the best position of the whole population,

both at the jth generation.

The evaluation function ft for PSO is defined as follows based on the control

objective of the system

ft = E + β1[q1 − q1d]
2

+ β2[q2 − q2d]
2

(19)

9
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where β1 and β2 are positive constants. A small value of ft ensures that the185

system reaches the target position with high accuracy.

The process to solve the harmonic parameters based on the PSO algorithm

can be described as follows:

Step 1: Initialize the candidate solutions xk1 =
(
ωk
1 , A

k
1i, ϕ

k
1i

)
(i = 1, 2, . . . , D

and k = 1, 2, . . . , N) and set the velocity vector vk1 to zero, subscript 1 represents190

the first generation.

Step 2: For the jth generation (j = 1, 2, . . . ), based on the dynamic equation

(1), calculate the angle and angular velocity of each link at time tf . Then,

calculate the corresponding evaluation function ft using (19), update bkj for

each solution and gj for the whole population.195

Step 3: If the ft corresponding to gj is smaller than ε0, which is a very small

positive number, the solution has been found and the whole process can stop.

Otherwise, update the whole population to the (j + 1)th generation based on

equation (18), then go to step 2.

The above PSO algorithm will solve parameters (ω,Ai, ϕi) of the controller200

given by (17). The total time for the system to achieve its control objective

will be 2π/ω. Thus, by solving the parameters of the torque on the system,

we obtain a controller which can achieve the control objective of the system at

t = tf .

3.4. Nonlinear disturbance observer for planar Pendubot205

In the previous subsections, we have neglected d in (1) for convenience. How-

ever, for mechanical manipulators, disturbances in the system strongly affects

the performance of the controller. In this subsection, we take into account the

disturbant components of the dynamics, and we apply a nonlinear disturbance

observer to achieve a feedback control, with the purpose of compensating for210

the uncertainties/disturbances in the system.

The nonlinear disturbance observer that we apply provides an estimation on

d, defined as d̂ =
[
d̂1, d̂2

]T
. We assume that d varies slowly comparing with the

control torque τ , and we can add a nonlinear disturbance observer according to

10
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[7]. Thus, d̂ can be given by215





d̂ = z + p (q̇)

ż = −G (q) z +G (q) (H (q, q̇)− τ − p (q̇))
(20)

where z is an auxiliary variable vector, G (q) and p (q̇) can be given as follows

G (q) = c


 1 0

1 1


M−1 (q)

p (q̇) = c [q̇1 q̇1 + q̇2]
T

(21)

c is a positive constant. With the convergence discussion in [7], by setting

the parameter c > a3 |max (q̇2)| where a3 is given by (4) and |max (q̇2)| is the

maximum angular velocity of the second link, we can easily prove that this

nonlinear disturbance observer is convergent. This observer is designed based220

on a nominal model.

For planar Pendubot, the second joint does not contain an actuator, that is,

d2 = 0. So we should have d̂2 = 0. The controller for the first link after adding

the nonlinear disturbance observer can be given by

τ ′1 (t) = τ1 (t)− d̂1 (22)

where τ1 (t) is given by (9), (17), and d̂1 is given by (20). With this feedback225

control strategy based on the nonlinear disturbance observer, the controller will

become much stronger against disturbances in the system.

Furthermore, the term d in (1) can also represent the uncertainties in the

system. As a result, we can design a nonlinear disturbance observer to overcome

the such uncertainties with a similar approach.230

4. Simulation

A planar Pendubot model has been built with MATLAB tools. After per-

forming simulations with different D, D is selected to be 4. Which ensures

that the control objective can be achieved with high accuracy. For the PSO

algorithm, the parameters are selected as follows235

γ = 0.5, C1 = 2.8, C2 = 1.3 (23)

11
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The parameter ϕ1 of the controller is fixed to be 0 rad for simplification.

For the evaluation function given by (19). The errors of the angular velocities

of the two links at the time tf are required to be smaller than 10−5 rad · s−1. As

a result, according to (5) and (19), ε0 is set to be 10−10. Meanwhile, the errors

of the angles of the two links are required to be within 10−4 rad. So, β1 and β2240

are set to be 0.001, and as a result, the three terms in (19) will have the same

order of magnitude when they’re evaluated as a whole.

To validate the control strategy of this paper, we study two cases with dif-

ferent model parameters, initial positions and target positions. We then discuss

another case where the uncertainties/disturbances in the system is considered.245

4.1. Case A

In this case, the model parameters of the system are selected as shown in

the following table

Table 1: Model parameters for planar Pendubot

Link i mi (kg) Li (m) Ii
(
kg ·m2

)

1 1 1 0.333

2 1 1 0.333

The initial state of the system is set to be [q, q̇] = [0, 0, 0, 0], with target

angles q1d = 0.5 rad, q2d = −1 rad. PSO is performed to obtain the controller250

parameters

(ω,A1, A2, A3, A4, ϕ2, ϕ3, ϕ4) = (4.57, 3.81, 4.65, 3.84, 0, 4.16, 2.41, 5.71) (24)

By substuting (24) into (17), we obtain the controller for this system. Sim-

ulation results in Figure 2 shows that the angles and angular velocities of both

links are able to smoothly converge to their target values. The whole control

process only takes 1.4 seconds. These results show that the control strategy255

proposed in this paper can achieve the control objective of the planar Pendubot

quickly and effectively.

12
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Figure 2: Simulation results for case A

4.2. Case B

To further illustrate the effectiveness of the control strategy proposed in

this paper, we compare with the nilpotent approximation method for planar260

Pendubot proposed in [8]. We select the model parameters, initial state and

target angles of the system to be the same as in [8]. According to parameters

13
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in [8], we obtain a1, a2 and a3 to be

a1 = 0.447, a2 = 0.420, a3 = 0.195 (25)

The initial states of the two links are [q, q̇] = [1.291, 1.588, 0, 0], their tar-

get angles are q1d = 0 rad, q2d = 0.785 rad. Using PSO, parameters for the265

controller can be obtained

(ω,A1, A2, A3, A4, ϕ2, ϕ3, ϕ4) = (0.78, 0.10, 0, 0, 2.20, 2.51, 2.80, 4.29) (26)

The simulation results are shown in Figure 3. The torque applied in this

case has a maximum value 2.3 N ·m, smaller than the maximum torque value

shown in Figure 8 of [8], which is 5.0 N ·m. The system can achieve its control

objective in about 8.0 seconds, much faster than the total control time shown270

in Figure 5 of [8], which takes more than 50 seconds.

4.3. Case C

In this case, we verify the validity of the feedback control strategy based on

the nonlinear disturbance observer when uncertainties/disturbances are taken

into consideration. The model parameters, initial state and target angles are275

selected to be the same as in case B. We apply a disturbance d1 on the first

torque, given by

d1 = Ad sin (ωdt) (27)

We choose Ad = 0.2 N ·m which is about 10% of the maximum torque in

case B, and ωd = 0.4 rad · s−1, which is about half of the frequancy ω in case

B. Parameter c in (21) is selected to be 100.280

Figure 4 shows the simulation results when there is disturbance without its

observer, the angles of the two links will be divergent, which means that they

cannot converge to the target angles. Figure 5 shows the simulation results

for the system with the aid of the nonlinear disturbance observer. Figure 5(a)

and Figure 5(b) show that the system can overcome the disturbance, and the285

angles and angular velocities of the system both converge to the target values

smoothly. To conclude, the feedback control strategy based on the nonlinear

14
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Figure 3: Simulation results for case B

disturbance observer can effectively overcome the uncertainties/disturbances in

the system.

5. Conclusion290

This paper proposes a new control strategy for the planar Pendubot based

on Fourier transformation and intelligent optimization. We design a controller

15
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which uses the total control time as a variable of the controller. Its general

form is obtained by expressing it in Fourier series using Fourier transformation.

We obtain the constant term of Fourier series based on the angular momen-295

tum theorem. Meanwhile, we employ the PSO algorithm to solve the harmonic

terms of the Fourier series according to the control objective of the system. We

then use a feedback control strategy based on a nonlinear disturbance controller

to overcome the uncertainties/disturbances in the system. The simulation re-

sults show that this control strategy can achieve the control objective of the300

planar Pendubot effectively, with the ability to overcome uncertain/disturbant

components of the dynamics.

It is worth mentioning that such control strategy for planar Pendubot can

be easily extended to planar APAn (n ≥ 1) manipulators with one passive link

which is the second link. For this type of systems, we can first apply the method305

proposed in this paper to achieve the control objective of the first link, so that

the whole multi-link system can be reduced to a PAn system. Then we can

apply the control method for the holonomic system (n = 1) or the first-order

nonholonomic system (n > 1) to control the rest of the links, so that the control

objective for the whole system can be achieved. However, this paper focuses310

on showing the controller design strategy based on Fourier transformation and

intelligent optimization in a simple setting that reveals its essential features.
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Figure 5: Simulation results with disturbance observer

This is the reason for simply discussing the control of a planar Pendubot with

a second passive link.
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