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LIST OF ABBREVIATIONS 

5-HT   5-hydroxytryptamine, or serotonin 

ACSF    artificial cerebrospinal fluid 

fEPSPs  field excitatory postsynaptic potentials 

GABA   gamma aminobutyric acid 

N-K   Newman-Keuls test 

NMDA  N-methyl-D-aspartate 
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ABSTRACT 

Serotonin (5-HT) has important effects on cognitive function within the hippocampal 

region where it modulates membrane potential and excitatory and inhibitory synaptic 

transmission.  Here, we investigated how 5-HT modulates excitatory synaptic strength in layers 

II/III of the parasubiculum in rat brain slices.  Bath-application of 1 or 10 µM 5-HT resulted in a 

strong, dose-dependent, and reversible reduction in the amplitude of field excitatory postsynaptic 

potentials (fEPSPs) recorded in the parasubiculum.  The 5-HT reuptake blocker citalopram (10 

µM) also reduced fEPSP amplitudes, indicating that 5-HT released within the slice inhibits 

synaptic transmission.  The reduction of fEPSPs induced by 5-HT was blocked by the 5-HT1A 

receptor blocker NAN-190 (10 µM), but not by the 5-HT7 receptor blocker SB-269970 (10 µM).  

Moreover, the 5-HT1A agonist 8-OH-DPAT induced a reduction of fEPSP amplitude similar to 

that induced by 5-HT.  The reduction was prevented by the 5-HT1A receptor blocker NAN-190.  

The reduction in fEPSPs induced by either 5-HT or by 8-OH-DPAT was accompanied by an 

increase in paired-pulse ratio, suggesting that it is due mainly to reduced glutamate release.  Our 

data suggest that the effects of serotonin on cognitive function may depend in part upon a 5-

HT1A-mediated reduction of excitatory synaptic transmission in the parasubiculum. This may 

also affect synaptic processing in the entorhinal cortex, which receives the major output 

projection of the parasubiculum. 

 

Key words: Parasubiculum, EPSP, rat, serotonin, 5-HT1A receptor. 
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INTRODUCTION 

The parasubiculum receives inputs from the hippocampal CA1 region, subiculum, 

basolateral amygdala, and anterior thalamus, and the single major output projection of the 

parasubiculum is to layer II of the medial and lateral entorhinal cortex, where it contacts neurons 

originating in all cell layers (Köhler, 1985, van Groen and Wyss, 1990, Shibata, 1993; Caballero-

Bleda and Witter, 1994; Canto et al., 2012).  The superficial layers of the entorhinal cortex 

receive inputs from sensory and associational cortices, and provide most of the cortical sensory 

input to the dentate gyrus and hippocampus (Witter et al., 1989; Burwell, 2000).  The 

parasubiculum is thought to contribute to cognitive functions including spatial memory and 

navigational processes in large part through its inputs to the entorhinal cortex (Taube, 1995; 

Boccara et al., 2010; Tang et al., 2016).  Stimulation of parasubicular inputs to the entorhinal 

cortex can heterosynaptically enhance entorhinal cortex responses to inputs from the olfactory 

cortex, consistent with a role for the parasubiculum in modulating entorhinal processing of 

sensory information (Caruana and Chapman, 2004; Sparks and Chapman, 2016).  The 

parasubiculum also generates 4-12 Hz theta-frequency electroencephalographic activity that is 

coordinated with theta activity in the hippocampus and entorhinal cortex (Buzsaki, 2002; 

Glasgow and Chapman, 2007, 2008), and theta activity may enhance parasubicular activation of 

the entorhinal cortex (Chrobak and Buzsaki, 1994; Sparks and Chapman, 2013).  Modulation of 

excitatory synaptic transmission within the parasubiculum may therefore affect not only local 

synaptic integration, but also how layer II entorhinal neurons respond to sensory inputs and 

impact hippocampal function. 

Serotonin (5-hydroxytryptamine, 5-HT) is a major modulatory transmitter with diffuse 

forebrain projections originating in median raphe nuclei, that is linked to variations in the sleep 

wake cycle, mood and psychiatric disorders (Urbain et al., 2006; Puig and Gulledge, 2011).  

Serotonergic effects on cognitive functions mediated by the hippocampal region may arise 

through effects of 5-HT on cholinergic and dopaminergic systems (Fink and Göthert, 2007; 

Ogren et al., 2008; Seyedabadi et al., 2014).  5-HT, by disrupting rhythmic activity in the medial 

septum may interfere with learning by disrupting septal cholinergic and non-cholinergic 

projections to the hippocampal region (Vertes and Kocsis, 1997; Crooks et al., 2012).  5-HT is 

likely to have similar effects on cholinergic theta activity within the parasubiculum (Glasgow 

and Chapman, 2007).  In addition, the local effects of 5-HT on neuronal excitability, which vary 

markedly within the entorhinal cortex versus hippocampus (Schmitz et al, 1998a; Lei, 2012) may 
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affect the strength of synaptic transmission within the parasubiculum and modulate the output of 

the parasubiculum to the entorhinal cortex.  

The parasubiculum contains both serotonin immunopositive terminals and receptors that 

show the greatest density in superficial layers (Köhler, 1984; Köhler et al., 1981, 1986; Bjarkam 

et al., 2005), but the local effects of serotonin on excitatory synaptic responses in the 

parasubiculum have not been investigated.  The activation of 5-HT1A receptors hyperpolarizes 

membrane potential via the activation of a potassium conductance in prefrontal (Andrade, 2011; 

see also Behr et al., 1997) and entorhinal cortex (Grünschlag et al., 1997; Schmitz et al., 1998b; 

Ma et al., 2007; Deng et al. 2007).  Excitatory synaptic transmission in the entorhinal cortex is 

decreased by 5-HT, and a postsynaptic effect of 5-HT on excitatory synaptic transmission has 

been suggested by observations of reduced responses to iontophoretically applied glutamate 

(Sizer et al., 1992), and the stability of paired-pulse ratio in combination with reduced cellular 

input resistance (Grunschlag et al., 1997).  Other evidence indicates that activation of 5-HT1A 

receptors inhibits excitatory transmission in layers II/III of the entorhinal cortex presynaptically, 

with a reduced frequency of miniature excitatory postsynaptic currents, and a facilitation of 

paired-pulse ratio (Schmitz et al., 1995a, 1998c, 1999) and similar results have been observed in 

the anterior cingulate cortex (Tian et al., 2017).  In the hippocampus, in contrast, 5-HT reduces 

excitatory synaptic responses only at very high concentrations (Schmitz et al., 1995b), and its 

predominant effect is a reduction in inhibitory synaptic transmission via the inhibition of 

GABAergic interneurons (Oleskevich and Lacaille, 1992; Schmitz et al., 1995c; Schmitz et al., 

1998a).   

In the present study, we recorded field excitatory postsynaptic potentials (fEPSPs) in 

layer II/III of the parasubiculum in vitro evoked by stimulation of afferents in layer I to 

determine the effects of bath application of 5-HT on the strength of excitatory synaptic 

transmission.  The potent and selective 5-HT reuptake blocker citalopram was used to determine 

effects of release of endogenous 5-HT (Hyttel, 1982; Owens et al., 2001), and paired-pulse tests 

were used to assess if reductions in fEPSP amplitudes were due to a reduction in presynaptic 

release of neurotransmitter or due to postsynaptic mechanisms.  The dependence on 5-HT1A 

receptors was assessed by blocking the effects of either 5-HT or the 5-HT1A agonist 8-OH-DPAT 

with the 5-HT1A antagonist NAN-190.  Because 8-OH-DPAT can also activate 5-HT7 receptors, 

the role of 5-HT7 receptors was assessed by applying 5-HT in the presence of the selective 5-HT7 

blocker SB-269970. 
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EXPERIMENTAL PROCEDURES 

In vitro slice preparation 

 Experimental methods were conducted in accordance with the guidelines of the Canadian 

Council on Animal Care.  Acute brain slices were taken from 26 four to eight week-old rats that 

were anesthetized with isoflurane.  Brains were placed in 4 °C ACSF containing, in mM, 250 

sucrose, 2 KCl, 1.25 NaH2PO4, 7 MgCl2, 26 NaHCO3, 0.5 CaCl2 and 10 dextrose, saturated with 

95% O2 and 5% CO2.  Horizontal slices for field potential recordings (400 μm-thick) were cut 

with a vibratome (Leica, VT1200; Concord, ON, Canada), and then placed in normal ACSF (124 

NaCl, 5 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 26 NaHCO3, and 10 dextrose) for 30 min at 32 

°C.  Slices were then kept at room temperature for at least 1 hr prior to recordings.   

 Slices were transferred to a nylon net in a temperature-regulated gas-fluid interface 

chamber (Fine Science Tools, North Vancouver, BC, Canada), and slices were visualized using a 

dissecting microscope (Leica, MS5).  The upper surfaces of slices were exposed to a humidified 

95% O2 and 5% CO2 atmosphere, and oxygenated ACSF flowed through the recording chamber 

at a rate of 1.5 - 2.0 ml/min at 22-24 ºC.  Effects of serotonin on synaptic transmission have been 

demonstrated previously in the hippocampus at both at room temperature and at higher recording 

temperatures (e.g.s, Costa et al., 2012; Schmitz et al., 1999). 

Stimulation and recording 

 Field potential recording electrodes were made from borosilicate glass (1.0 mm OD) 

using a pipette puller (Sutter Instruments, P-97, Novato, CA, USA; 3-6 MΩ).  Electrodes were 

filled with ACSF and placed at the border of layer II/III, 50-180 µM below the surface of the 

slice (see inset in Figure 1A2).  Recordings were obtained using an Axoclamp 2B amplifier and 

HS-2Ax0.1LU headstage (DC-3 kHz, Molecular Devices, Sunnyvale, CA, USA), and digitized 

(20 kHz; Molecular Devices, Digidata 1322A) using the pClamp 8.2 software package 

(Molecular Devices).   

Bipolar stimulating electrodes were made from two tungsten electrodes (1 MΩ; FHC 

Inc., Bowdoin, ME, USA) and electrode tips were placed in layer I of the parasubiculum, parallel 

to the cortical surface, approximately 0.3-0.4 mm anterior to the recording electrode.  Cathodal 

monophasic square-wave constant current pulses (0.1 ms in duration) were delivered using a 

stimulus generator (WPI, Model A300; Sarasota, FL, USA) and a stimulus isolation unit (Model 

A360).  Stimulation intensities were adjusted to evoke fEPSPs with an amplitude of ~65-75% of 

the maximal response (typically < 100 µA).  
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Pharmacology 

Evoked field potential responses were monitored once every 30 sec.  To assess the effects 

of serotonin (5-hydroxytryptamine, 5-HT) on synaptic responses, after a 10 min period of stable 

baseline recordings in normal ACSF, 1 or 10 µM 5-HT was bath-applied for 15 min, followed by 

a 45 min washout period in normal ACSF.  All drugs were obtained from Tocris Bioscience 

(Oakville, ON, Canada), and were stored frozen as concentrated stock solutions.  Reduced 

release of transmitter can result in increased paired-pulse ratio due to an increase in the pool of 

readily releasable transmitter available during the response to the second stimulation pulse, and 

changes in paired-pulse depression during application of 5-HT were therefore examined to assess 

if the reduction of fEPSPs was due to changes in transmitter release or to post-synaptic factors.  

Paired-pulse tests, in which 10 samples were recorded using a 30 ms interpulse interval 

(Glasgow et al., 2012), were recorded during the start of the baseline period, the end of the 5-HT 

application period, and at the end of the washout period.   

To determine if endogenous 5-HT can induce a reduction of fEPSPs similar to that 

observed during bath application of 5-HT, recordings were obtained before, during and after 

application of the serotonin reuptake inhibitor citalopram hydrobromide (10 µM).  The role of 5-

HT1A and 5-HT7 receptors in the 5-HT-induced reduction of fEPSPs was assessed by first 

applying either the 5-HT1A receptor antagonist NAN-190 hydrobromide (10 µM), or the 5-HT7 

receptor antagonist SB-269970 hydrochloride (10 µM; Thomas et al., 2002) for a period of 15 

min, followed by co-application of 5-HT (1 µM) for 15 min.  Recordings in the presence of the 

receptor antagonist were continued for a further 30 min.  

To further test the role of 5-HT1A receptors, following a 10 min baseline period in normal 

ACSF, the 5-HT1A receptor agonist 8-OH-DPAT hydrobromide (10 µM) was applied for 15 min, 

prior to a 45 min washout period.  Paired-pulse responses were also obtained during these tests 

as they were during 5-HT application.  Then, to determine if the effects of 8-OH-DPAT are 

mediated by 5-HT1A receptors, the 5-HT1A antagonist NAN-190 was applied for 15 min prior to 

co-application of 8-OH-DPAT for a period of 15 min.  

Data analysis 

Peak amplitudes of fEPSPs and the fiber volley were measured relative to the baseline 

prior to the stimulation pulses using pClamp 8.2 software (Molecular Devices), and SigmaPlot 

11.0 (Systat Software Inc.) was used for statistical analysis and preparation of figures.  The fiber 

volley was not analyzed in 3 slices in which it was not distinguishable from the stimulus artefact.  
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Data for each slice were expressed as a percentage of the average amplitude of baseline 

responses, and mean values for groups of slices were expressed as the mean ± one SEM. Paired-

pulse ratio was determined by expressing the amplitude of the fEPSP response to the second 

pulse in each pair as a percentage of the amplitude of the response to the first pulse.  The average 

amplitudes obtained during the last five min of the baseline period, and last two min of both the 

drug and washout periods were assessed using separate repeated measures analyses of variance, 

to determine if drug application resulted in statistically significant changes in fEPSP amplitude. 

Significant effects were investigated using Student Newman-Keuls tests to assess the 

significance of drug-induced changes in fEPSPs and their reversibility during washout. 

Assumptions of normality and equal variance were met for all statistical tests. 

 

RESULTS 

 Bath application of 5-HT for 15 min resulted in a concentration-dependent, reversible 

reduction of excitatory synaptic responses in the parasubiculum (Figure 1A1,2).  The amplitude of 

evoked field EPSPs recorded in layers II/III was rapidly reduced by 24 ±5.6 % during 15 min 

bath-application of 1 µM 5-HT (-0.27 ±0.02 vs. -0.36 ±0.02 mV; n = 8 slices; F2,14= 21.21, p < 

0.001; Newman-Keuls (N-K) p < 0.01 for baseline vs. 5-HT) and responses recovered from this 

reduction after approximately 15 min of washout in normal ACSF (N-K p < 0.071 for wash vs. 

baseline).  Bath application of 10 µM 5-HT resulted in a stronger reduction in EPSP amplitudes 

of 39.6 ±4.0 % (-0.23 ±0.01 vs. -0.38 ±0.02 mV; n = 8; F2,14= 19.99,  p < 0.001; N-K p < 0.001 

for 5-HT vs. baseline) and this effect was reversed after about 15 min of washout in normal 

ACSF (N-K p = 0.214 for wash vs. baseline). Changing 5-HT concentration from 1 to 10 µM led 

to a significant increase in reduction of synaptic transmission in layers II/III of the 

parasubiculum (t14= 2.24, p < 0.05).  

Serotonin may modulate synaptic responses through both pre- and postsynaptic 

mechanisms (Grünschlag et al., 1997; Schmitz et al., 1999).  The amplitude of the fiber volley 

(Figure 1A3) reflects sodium entry in activated fibers during the compound action potential, and 

was not significantly affected during application of 1 or 10 µM 5-HT (1 µM -0.23 ±0.03 vs. -

0.23 ±0.03 mV; n = 8; F2,14= 0.76,  p = 0.48; 10 µM -0.31 ±0.02 vs. -0.30 ±0.02 mV; n = 7; 

F2,12= 2.3, p =0.13).  The reduction in the EPSP is therefore not associated with reduced action 

potentials in presynaptic fibers.  The volley was increased non-significantly after washout of 10 

µM 5-HT (-0.34 ±0.03 vs. -0.30 ±0.02 mV), however, and this may have contributed to the non-
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significant increase in mean EPSP amplitudes at the end of the recording period in this group of 

slices. 

In the CA1 region, the fiber volley is not sensitive to 5-HT-induced reductions in calcium 

influx into terminals that results in reduced transmitter release and depression of fEPSPs (Ropert, 

1988; Schmitz et al., 199b).  Paired-pulse tests were therefore used to determine if the reduction 

of fEPSPs was likely due to a presynaptic reduction in glutamate release (Glasgow et al., 2012).  

Responses evoked during baseline recordings in normal ACSF displayed moderate paired-pulse 

depression of the responses to the second pulse.  Application of 1 or 10 µM 5-HT resulted in a 

reduction of the amplitude of the response to the first pulses, but also resulted in a concentration-

dependent increase in paired-pulse ratios that reversed during washout in normal ACSF (Figure 

1B).  Bath application of 1 µM 5-HT increased paired pulse ratio from 74.8 ±4.6 to 95.7 ±7.4, 

(F2,14= 9.82, p < 0.01; N-K p < 0.01), and 10 µM 5-HT increased paired pulse ratio from 79.1 

±7.5 to 120.2 ±7.9 (F2,14= 57.63, p < 0.001; N-K p < 0.001).  Note that mean paired-pulse 

depression observed during baseline recordings was changed to paired-pulse facilitation during 

application of 10 µM 5-HT, and this effect was also observed in the slice from which sample 

traces were obtained for 1 µM 5-HT (Figure 1B).  The increase in paired-pulse ratio was 

significantly greater for 10 µM 5-HT versus 1 µM 5-HT (t14= 2.26, p < 0.05), and ratios returned 

to baseline values during washout in both groups of slices.  Because a reduction in transmitter 

release in response to the first stimulation pulse can increase  the pool of readily releasable 

transmitter during the second stimulation pulse, the larger increases in paired-pulse ratio induced 

by 10 µM 5-HT are consistent with a stronger reduction of presynaptic glutamate release induced 

by 5-HT.  

To determine if the reduction of fEPSP amplitudes induced by bath application of 5-HT 

could be mimicked by enhancing effects of 5-HT released from neurons, recordings were 

conducted during application of the selective 5-HT reuptake inhibitor citalopram (Figure. 2).  

The amplitude of synaptic responses was reduced by 12.3 ±4.7 % during 15 min bath-application 

of citalopram (10 µM; -0.40 ±0.05 vs. -0.45 ±0.04 mV; n = 9).  The repeated measures analysis 

of variance did not reach significance due to variability in recovery of responses during the wash 

period (F2,16= 1.76, p = 0.205), but pairwise comparison reflected a significant reduction in 

responses recorded during application of citalopram versus the baseline period (t8 = 2.63, p < 

0.05). Note that the slower onset of effects of citalopram versus bath application of 5-HT is 

similar to results obtained by Schmitz et al. (1999) with the re-uptake inhibitor fenfluramine in 
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the entorhinal cortex, likely due to a gradual accumulation of 5-HT during block of re-uptake.  

The amplitude of the fiber volley was not significantly altered by citalopram, but there was a 

trend towards an increase in volley amplitude during the washout period (-0.32 ±0.04 during 

baseline vs. -0.32 ±0.05 mV in citalopram, and -0.35 ±0.05 at wash; n = 7; F2,12= 3.37, p = 0.07). 

The contributions of 5-HT1A receptors, or 5-HT7 receptors which can be activated by the 

5-HT1A agonist 8-OH-DPAT (Costa et al., 2012), were assessed by application of 1 µM 5-HT 

during constant bath application of receptor blockers.  The 5-HT7 receptor antagonist SB-269970 

(10 µM) had no significant effect on fEPSP amplitudes, and also did not prevent the reduction of 

fEPSPs induced by 5-HT (Figure 3A).  Field EPSP amplitudes were reduced by 26.4 ±4.5 % 

after 15 min application of 5-HT (-0.26 ±0.03 vs. -0.36 ±0.03 mV; n = 5, F2,8= 17.17,  p < 0.001; 

N-K p < 0.01 for 5-HT vs. baseline), and returned to baseline during washout (N-K p =0.46 for 

wash vs. baseline).  The amplitude of the fiber volley was not significantly altered by 5-HT in 

the presence of SB-269970 (-0.15 ±0.03 vs. -0.15 ±0.03 mV; n = 5; F2,8= 1.49, p = 0.282). In 

contrast, the 5-HT1A receptor antagonist NAN-190 (10 µM) also had no effect on fEPSP 

amplitudes when applied alone, but blocked the reduction of fEPSP amplitude induced by 5-HT 

(Figure. 3B). Field EPSP amplitudes did not change significantly after application of 5-HT (-0.32 

±0.04 vs. -0.32 ±0.03 mV; n = 5, F2,8= 0.261,  p = 0.78; N-K p = 0.71) and remained stable 

during the washout period (N-K p = 0.81), suggesting that 5-HT1A receptors mediate the 5-HT-

induced reduction of fEPSPs in the parasubiculum. 

The 5-HT1A receptor agonist 8-OH-DPAT was used to assess whether more selective 

activation of the 5-HT1A receptors is sufficient to cause the reduction of synaptic responses. 

Application of 8-OH-DPAT (10 µM) led to a reduction of fEPSP amplitudes similar to that 

induced by 5-HT (Figure. 4A).  Responses were reduced by 17.7 ±7.4 % (-0.31 ±0.03 vs. -0.38 

±0.03 mV; n = 7, F2,12= 7.25,  p < 0.01; N-K p < 0.05), and returned towards baseline values 

during the washout period (N-K p = 0.21).  The amplitude of the fiber volley was not 

significantly altered by 8-OH-DPAT (-0.11 ±0.07 vs. -0.12 ±0.08 mV; n = 7; F2,12= 0.33, p = 

0.724). The initial increase in mean fEPSP amplitude during application of DPAT is likely not 

due to drug application, because drug effects in our recording system require several minutes for 

drug concentrations to increase within the recording chamber.  Similar to results obtained for 5-

HT application, paired pulse ratios were enhanced during application of 8-OH-DPAT (from 66.1 

±4.6 at baseline to 88.4 ±11.7 in 8-OH-DPAT, and 60.9 ±4.6 at washout; n = 4, F2,6= 9.64, p 
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<0.05; data not shown), consistent with a presynaptic mechanism for the reduction of fEPSPs 

mediated by activation of 5-HT1A receptors. 

To confirm that effects of 8-OH-DPAT were mediated by 5-HT1A receptors, 8-OH-DPAT 

was applied during constant bath application of the 5-HT1A receptor antagonist NAN-190 (10 

µM; Figure 4B).  Application of NAN-190 alone was associated with an increase in mean fEPSP 

amplitude, but this was not a reliable effect (see Figure 3B2). Field EPSP amplitudes were 

reduced nonsignificantly by 3.7 ±3.3 % during addition of 8-OH-DPAT (n = 6, F2,10= 0.84, p = 

0.46) and also remained stable during the washout period (N-K p = 0.85). This reinforces the 

conclusion that the reduction of fEPSPs induced by 5-HT in the parasubiculum is mediated by 5-

HT1A receptors.   
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Figure 1.  Bath-application of serotonin (5-HT) results in a reversible reduction the amplitude of 

evoked field excitatory postsynaptic potentials (fEPSPs) in layers II/III of the parasubiculum in 

vitro.  A.  The amplitudes of fEPSPs evoked by stimulation of layer I were reduced in a 

concentration-dependent manner by addition of 1 or 10 µM 5-HT to ACSF for 15 min. The 

responses recovered during washout. Averaged recordings of fEPSPs, using five consecutive 

responses obtained at the end of each recording period, are shown for representative slices tested 

with either 1 or 10 µM 5-HT (A1; asterisks indicate the fiber volley).  Mean amplitudes of the 

fEPSP (A2) and fiber volley (A3) are shown for each group of slices. The inset in A2 indicates 

positions of the bipolar stimulation electrode (**) and recording electrode (●) on a horizontal 

section adapted from the atlas of Paxinos and Watson (1998). B.  The serotonergic reduction of 

fEPSPs was associated with reduced paired-pulse depression (30 ms interpulse interval), 

suggesting that the inhibition of fEPSPs results from a reduction in transmitter release.  

Representative averaged traces obtained during the baseline period in ACSF and in the presence 

of 1 µM 5-HT are shown (top).  Traces are superimposed and scaled to the amplitude of the first 

response in baseline recordings (bottom, left) to reflect the increase in paired-pulse ratio during 

application of 5-HT (arrow). The histogram displays average paired pulse ratios among slices 

receiving 1 or 10 µM 5-HT (asterisks indicate p < 0.01 and < 0.001 with respect to baseline for 1 

and 10 µM respectively).   
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Figure 2.  Bath-application of the selective 5-HT reuptake inhibitor citalopram reduces the 

amplitude of field EPSPs evoked in layers II/III of the parasubiculum.  A.  Representative 

averaged fEPSPs recorded at the end of each recording period are shown.  B.  The mean 

amplitude of fEPSPs among the group of slices was reduced during 15 min bath-application of 

10 µM citalopram.  
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Figure 3.  The serotonergic reduction of synaptic transmission is dependent on activation of 5-

HT1A receptors but not 5-HT7 receptors.  A.  The 5-HT7 receptor antagonist SB-269970 did not 

significantly affect baseline field EPSP amplitudes, and did not prevent the reduction in fEPSP 

amplitudes induced by 1 µM 5-HT. Averaged field EPSP recordings (A1) and mean amplitudes 

for the group of slices (A2) are shown.  B.  The 5-HT1A receptor antagonist NAN-190 blocked 

the reduction in representative averaged field EPSPs (B1) and mean field EPSP amplitude (B2) 

induced by 1 µM 5-HT, indicating that 5-HT acts through 5-HT1A receptors.  
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Figure 4.  The 5-HT1A receptor agonist 8-OH-DPAT results in a reduction in the amplitude of 

synaptic responses, and this effect is blocked in the presence of the 5-HT1A receptor antagonist 

NAN-190.  A.  Application of 10 µM 8-OH-DPAT resulted in a reversible reduction of synaptic 

responses, reflected in averaged field EPSP recordings from a representative slice (A1) and the 

mean amplitudes of field EPSPs in the group of slices tested (A2).  B.  Constant bath application 

of the 5-HT1A antagonist NAN-190 prevented effects of 8-OH-DPAT on averaged field EPSP 

recordings (B1) mean amplitude of field EPSPs (B2). 
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DISCUSSION 

 We have found here that application of serotonin (5-HT) results in a strong, concentration-

dependent reduction in the amplitude of excitatory synaptic responses in layer II/III of the 

parasubiculum evoked by stimulation of layer I in acute rat brain slices in vitro.  Similar to other 

findings in entorhinal cortex (Schmitz et al., 1998c; 1999), the reduction of fEPSPs was 

associated with an increase in paired-pulse ratio, suggesting that 5-HT reduces fEPSPs through a 

presynaptic reduction in glutamate release.  The reduction in synaptic responses was mimicked 

by the potent and selective 5-HT reuptake blocker citalopram (Hyttel, 1982; Owens et al., 2001);  

this is most likely due to an enhancement of the effects of 5-HT release within the parasubiculum 

(Köhler, 1984; Köhler et al., 1981, 1986; Bjarkam et al., 2005) although the relative contribution 

of synaptic an extrasynaptic serotonin, and release from nearby regions in the slice, is not clear.  

Results also indicate that the reduction of fEPSPs induced by 5-HT is mediated by 5-HT1A 

receptors;  the reduction of fEPSPs was mimicked by the 5-HT1A receptor agonist 8-OH-DPAT, 

and the inhibitory effects induced by either 5-HT or 8-OH-DPAT were blocked by the 5-HT1A 

receptor blocker NAN-190.  

 The 5-HT1A agonist 8-OH-DPAT can also activate 5-HT7 receptors (Costa et al., 2012), but 

we found here that the reduction of fEPSP amplitude induced by 8-OH-DPAT was blocked by 

NAN-190.  Further, the 5-HT7 receptor blocker SB-276690 did not affect the reduction of 

fEPSPs induced by 5-HT.  5-HT7 receptors, which can affect hippocampal synaptic responses 

(Andreetta et al., 2016; Costa et al., 2012), therefore do not contribute the 5-HT receptor-

mediated reduction of fEPSPs in the parasubiculum.  

 The depression of fEPSP amplitudes observed here is likely to be primarily due to a 

presynaptic mechanism resulting in reduced glutamate release.  Paired-pulse depression was 

reduced during the reduction of fEPSPs induced by either 5-HT or by the 5-HT1A agonist 8-OH-

DPAT, consistent with reduced release of transmitter in response to the first stimulation pulse 

that provides a larger remaining pool of readily releasable transmitter during the response to the 

second stimulation pulse.  This is consistent with findings in layers II/III of entorhinal cortex 

where inhibition of evoked synaptic responses by 5-HT1A receptors is accompanied by an 

increase in paired-pulse ratio (Schmitz et al., 1995a, 1999).  Findings in the entorhinal cortex 

also show that the frequency distribution, but not the amplitude, of miniature excitatory 

postsynaptic currents is reduced by 5-HT1A receptor activation (Schmitz et al., 1998c), and that 

5-HT does not affect the amplitude of glutamate-evoked postsynaptic currents in isolated patches 
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(Schmitz et al., 1998c). At corticostriatal synapses, 5-HT also reduces EPSCs through a 

presynaptic mechanism, but the reduction is mediated by 5-HT1B receptors, and is a long-lasting 

effect rather than the transient reduction observed here (Mathur et al., 2011).  A reduction in 

action potentials in presynaptic fibers does not do not appear to contribute to the present results, 

and the stability of the fiber volley observed here during application of 5-HT is consistent with 

findings in the CA1 region where 5-HT reduces fEPSPs and calcium entry into presynaptic 

terminals without affecting the fiber volley (Schmitz et al., 1995b).      

Although a presynaptic reduction in transmitter release likely mediates most of the 

reduction of fEPSPs observed here, postsynaptic factors might contribute to some degree.  

Activation of 5-HT1A receptors in lateral entorhinal cortex increases a potassium conductance 

and hyperpolarizes neurons, and the associated reduction in cellular input resistance mediates a 

reduction in EPSP amplitude (Grunschlag et al., 1997). Parallel effects are induced by serotonin 

in subicular neurons (Behr et al., 1997), and are also possible in the parasubiculum.  A 

postsynaptic effect on glutamate receptors is also possible, as 5-HT has been shown to reduce 

depolarizations induced by glutamate in entorhinal layer II/III neurons (Sizer et al., 1992), and 5-

HT1A receptor activation can inhibit NMDA-mediated synaptic currents in prefrontal neurons 

(Yuen et al., 2005).  In the anterior cingulate cortex, the reduction of EPSCs induced by 5-HT is 

associated with increased paired pulse ratio and reduced frequency of miniature EPSCs;  these 

effects are blocked by NAN-190, suggesting 5-HT1A receptors mediate the reduction in 

transmitter release (Tian et al., 2017).  However, the authors found that 5-HT induces a residual 

depression in the presence of NAN-190, and that blocking postsynaptic G-proteins also reduces 

the depression of EPSCs induced by 5-HT, suggesting that postsynaptic 5-HT receptors also 

contribute. 

 Changes in inhibitory synaptic transmission, which is stronger in superficial versus deep 

layers of the parasubiculum (Funahashi and Stewart, 1998), is unlikely to have contributed.  

Activation of 5-HT1A receptors reduces polysynaptically evoked IPSCs in entorhinal neurons 

(Schmitz et al., 1998b), and also reduces inhibitory synaptic transmission in the hippocampus 

(Oleskevich and Lacaille, 1992; Schmitz et al., 1998a; Fink and Gothert, 2007), but reduced 

inhibition cannot contribute to the reduction of fEPSPs observed here.  Increases in inhibition, 

however, have also been observed in the entorhinal cortex;  5-HT can increase firing frequency 

in inhibitory neurons (Lei, 2012), and increase the frequency of spontaneous IPSC without 

affecting miniature IPSCs (Deng and Lei, 2008).  Both of these effects appear to be due to 
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depolarization of inhibitory cells induced by a 5-HT2A-mediated inhibition of a potassium 

conductance (Deng and Lei, 2008), but this is unlikely to have contributed to the reduction of 

fEPSPs observed here because the reduction was completely blocked by the 5-HT1A blocker 

NAN-190.  Similarly, excitation of inhibitory cells in prefrontal cortex induced by stimulation of 

the raphe nuclei is mediated by 5-HT3 receptors rather than by 5HT1A receptors (Puig et al., 

2004).  However, possible effects of 5-HT on the excitability of GABAergic neurons and IPSCs 

in the parasubiculum are yet to be determined.   

 The parasubiculum receives inputs from the hippocampus and subiculum in addition to 

subcortical inputs from thalamus and amygdala, and the contribution of modulatory effects of 5-

HT in the parasubiculum on cognitive function are likely to depend both on reduced synaptic 

integration within the parasubiculum, and changes in its output to the entorhinal cortex (Witter et 

al., 1989; Tang et al., 2016).  A 5-HT-induced reduction of EPSPs is likely to reduce firing in 

parasubicular inputs to layer II of the entorhinal cortex, and might also inhibit epileptiform 

activity as 5-HT does in the entorhinal cortex (Lei, 2012).  It has been proposed that reduced 

excitatory transmission in the entorhinal cortex induced by 5-HT may result in reduced 

feedforward inhibition and enhanced excitability within the dentate gyrus (Schmitz et al., 1998a). 

Synaptic inhibition in the entorhinal cortex might be similarly reduced by reduced excitatory 

transmission in the parasubiculum.  In the prefrontal cortex, serotonin has complex actions, and 

has both excitatory effects on prefrontal network activity through 5-HT2 receptors, and a 

depressive effect on firing of pyramidal neurons via 5-HT1A receptors (Puig and Gulledge, 2011). 

In the parasubiculum, 5-HT may be associated with a generalized reduction of excitatory 

transmission that may enhance the relative strength of more active excitatory inputs. It is also 

possible that periods of reduced 5-HT activity associated with rapid eye movement sleep (Urbain 

et al., 2006) may result in a generalized increase in excitatory transmission that may promote 

mechanisms of memory consolidation.  A further assessment using intracellular recordings will 

be required to determine the effects of 5-HT on membrane potential and firing activity of 

parasubicular neurons.  
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Highlights for “Serotonin 5-HT1A receptor-mediated reduction of excitatory synaptic 

transmission in layers II/III of the parasubiculum.” by F. Carter and C.A. Chapman.  

1) Serotonin reduces the amplitude of evoked field excitatory postsynaptic potentials in the 

parasubiculum in vitro. 

 

2) The reduction of excitatory synaptic transmission induced by serotonin is concentration-

dependent and reversible. 

 

3) The reduction is mimicked by the 5-HT1A receptor agonist 8-OH-DPAT, and is blocked 

by the 5-HT1A receptor blocker NAN-190. 

 

4) The serotonin reuptake blocker citalopram also reduces the amplitude of excitatory 

synaptic responses. 

 

5) Serotonin and 8-OH-DPAT increase paired-pulse ratio, consistent with a reduction in 

glutamate release. 
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