#### brought to you by 🔏 CORE

### Accepted Manuscript

Risk, Culture and Investor Behavior in Small (but notorious) Eurozone Countries

Seungho Lee, Lorne N. Switzer, Jun Wang

PII: S1042-4431(18)30445-1

DOI: https://doi.org/10.1016/j.intfin.2018.12.010

Reference: INTFIN 1091

To appear in: Journal of International Financial Markets, Institu-

tions & Money

Received Date: 11 November 2018 Accepted Date: 22 December 2018



Please cite this article as: S. Lee, L.N. Switzer, J. Wang, Risk, Culture and Investor Behavior in Small (but notorious) Eurozone Countries, *Journal of International Financial Markets, Institutions & Money* (2018), doi: https://doi.org/10.1016/j.intfin.2018.12.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Risk, Culture and Investor Behavior in Small (but notorious) Eurozone Countries \*

Seungho Lee a, Lorne N. Switzera, Jun Wang b

#### **ABSTRACT**

This research investigates how culture moderates the impact of risk on individual investors' trading behavior in nine Eurozone countries, where risk is measured by conventional and extreme risk. These markets were particularly affected by the global financial crisis, the subsequent European banking crisis, and the European sovereign debt crisis. Using mutual fund flows as proxy of investors' trading behavior, our evidence indicates that country culture variable significantly affects investor' trading responsiveness to risk. Specifically, the impact of risk on fund flows is significantly positive and is larger in scale in countries with individualist cultures.

JEL codes: G11, G12, G15

Keywords: volatility; extreme risk; small investor behavior; country culture

☆ This paper was presented at the 2017 Cross Country Perspectives of Finance conferences held in Chengdu, China and Chiang Mai, Thailand. We would like to thank the Editors, Zhenyu Wu and Gady Jacoby, the referee, and the conference participants. Financial support from the SSHRC to the Switzer and Wang and the Autorité des Marchés Financiers to Switzer is gratefully acknowledged. Wang further acknowledges support from the Dancap Research Fund in the DAN Department of Management and Organizational Studies, University of Western Ontario.

Email addresses: <a href="mailto:seungho.lee@concordia.ca">seungho.lee@concordia.ca</a> (S. Lee), <a href="mailto:lorne.switzer@concordia.ca">lorne.switzer@concordia.ca</a> (L.N. Switzer), <a href="mailto:jun.wang@uwo.ca">jun.wang@uwo.ca</a> (J. Wang).

<sup>\*</sup>Corresponding author

<sup>&</sup>lt;sup>a</sup> Finance Department, John Molson School of Business, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec, Canada, H3G 1M8.

<sup>&</sup>lt;sup>b</sup>DAN Department of Management and Organizational Studies, University of Western Ontario, London, Ontario, Canada.

Risk, Culture and Investor Behavior in Small (but notorious) Eurozone Countries

#### **ABSTRACT**

This research investigates how culture moderates the impact of risk on individual investor's trading behavior in nine Eurozone countries, where risk is measured by conventional and extreme risk. These markets were particularly affected by the global financial crisis, the subsequent European banking crisis, and the European sovereign debt crisis. Using mutual fund flows as proxy of investors' trading behavior, our evidence indicates that country culture variable significantly affects investor' trading responsiveness to risk. Specifically, the impact of risk on fund flows is significantly positive and is larger in scale in countries with individualist cultures.

#### 1. Introduction

How investors respond to risk has been a fundamental question in finance over the past several decades. Most studies that use the traditional volatility measure (standard deviation of stock returns) as it relates to investors' trading behavior find mixed results. For instance, Sirri and Tufano (1998), Barber, Odean, and Zheng (2005), Spiegel and Zhang (2013), and Kim (2017) assert that fund flows are negatively related to risk. On the other hand, O'Neal (2004) and Cashman et al. (2014) show a positive relation between fund inflows and risk. In a related vein, Clifford et al. (2013) show that fund inflows from small investors are positively related to unsystematic risk, while its relation to market risk is an open question. In a recent paper, Switzer et al. (2017) examine the responses of investors to both an extreme risk measure, and the traditional risk measure. They find that individual investors in G-7 countries have different reactions and sensitivities to these two types of risk. In this study, we use both traditional risk measure and extreme risk measure to study investors' response for countries particularly affected by the global financial crisis, the subsequent European banking crisis, and the European sovereign debt crisis. Specifically, we construct standard risk measures based on the logarithmic percentage changes of stock prices over different holding periods, with the assumptions of normality and symmetry of return distribution and risk averse investors. The standard deviation of returns is also an essential component of the traditional value-at-risk (VaR) measure. Such risk has been the focus of regulators in seeking to establish how much financial institutions should put aside to guard against the types of financial and operational risks banks (and the whole economy) face. However, because the standard deviation does not capture the risk to the investor when the distribution is non-symmetric, the traditional methods of calculating conventional value-at-risk (VaR) measures that are based on a normal distribution

are problematic, and need to be interpreted cautiously. Our second measure of risk, that focuses on the distribution around the tail, falls under the rubric of extreme value theory. Extreme risk observations are identified as the mild outliers in our samples, using the Tukey (1977) definition. They are computed using the percentage of extreme days, weeks, and months over a specific year. One advantage of this extreme measure is that we can decompose the total risk measure into a positive shock component and a negative shock component, so that we can observe accurately the behavior such investors whose utility responses to stock price change are asymmetric. Comparing the risks based on those two measures, our results show that the extreme measures do not always cohere with the classical standard deviation measure of risk for the countries considered.

While previous literature focuses on large developed countries, we examine nine relatively small European countries in this study, since it is observed that those countries have amplified impacts from internal or external financial shocks for recent years. More specifically, during the Global Financial crisis of 2007-08 and its aftermath, as G-7 countries generally recovered, relatively small economies such as Belgium, Greece, Ireland, and Portugal became the main epicenters of continued instability. For example, two of Belgium's largest banks: Fortis and Dexia, underwent reorganization and restructuring in order to survive. Fortis was spun off into two parts, while the Dutch group was nationalized and the Belgian component was sold to the French bank BNP Paribas. Ireland and Greece also went into a debt crisis in 2010. Allied Irish Bank and the Bank of Ireland received a €7 billion rescue package in 2009 and went into recapitalization. The four largest banks of Greece, National Bank of Greece SA, Piraeus Bank SA, Euro-bank Ergasias SA, and Alpha Bank AE, have been the regular recipients of emergency loans from the European Central Bank. Portugal applied for bail-out programs to

cover its insolvent sovereign debt, drawing a €79 billion from the International Monetary Fund (IMF), the European Financial Stabilization Mechanism (EFSM), and the European Financial Stability Facility (EFSF). The debt crises of Ireland, Greece and Portugal marked the start of the European sovereign debt crisis. One might posit that the behavior of investors in such countries experiencing protracted financial instability may not be consistent with those in larger countries that have more or less recovered. Therefore, in this paper, we focus on individual investors' response to the two aforementioned risk measures in those nine relatively small Eurozone countries: Austria, Belgium, Denmark, Finland, Greece, Ireland, Norway, Portugal, and Sweden that were epicenters of continued instability. By using mutual fund flow as proxy of individual investor's trading behavior, our results show significantly different behavior of investors in those countries in terms of their sensitivity to risks.

Why investors from those countries exhibit different responses to the same risk measures? This is a critical important research question addressed in this study. Previous literature in this line of research show cross-country investor behavioral variations. For example, Statman (2008) investigates twenty-two countries and identifies significant differences in stated propensities for risk taking of investors. Grinblatt and Keloharju (2001) emphasis culture variables in explaining stockholder's behavior. Eun, Wang, and Xiao (2015) find that culture influences stock price synchronicity by affecting correlations in investors' trading activities and a country's information environment.

While these studies typically show that individualism plays a significant role, they do not explore the actual trading behavior of market participants across different countries. Several researchers endeavor to ascertain the influence of such cultural dimension's influence on performance of financial markets. For example, by using use Hofstede's culture dimension

score of 26 developed countries' data, Chui et al. (2010) assert that country individualist score is positively related to trading volume, volatility, and the magnitude of momentum profits. Schmeling (2009) examines the impacts of investor sentiment on stock returns over 18 industrialized countries and finds that sentiment negatively forecasts aggregate stock returns. Chang and Lin (2015) provide comparable results. According to their findings, national cultures are associated with investor herding behavior. Such herding behavior is particularly observed in countries where Confucianism is dominant and in less sophisticated stock markets. Although these studies provide insights about how cultural factors influence overall investing activities in equity markets, they do not consider investors' attitudes against risk. Our paper provides new evidence on this issue, as we examine individual investor's trading behavior directly, as reflected in portfolio position changes in response to changing risk, and how culture factor plays a role in deterring investor's trading behavior based on different risk levels.

We use the Hofstede (2001) culture dimension score on individualism vs. collectivism, as the culture factor. The detailed score for each country can be found in Appendix 1. Based on Hofstede's classification, a country with higher cultural dimension score is classified more as individualism culture. Individualism cultures describes societies that emphasize the moral worth of the individuals, the exercise of individuals' goals, desires, freedom, independence, and self-reliance, and advocate that interests of individuals should be priority. Considering these culture characteristics, we hypothesize that subjective assessments among individuals may explain the differential or contrasting behaviors to risk: individual investors are more likely to take the initiative in actively trading in response to market signals. In addition, investors may have high risk tolerance, or are even adventuresome so exhibit "flight to risk" preferences, in the sense that they invest more, rather than liquidating their investments when they sense risk. On the

other hand, societies with collectivist traditions emphasize cohesiveness amongst members, and individuals in these societies are more likely to adjust their behavior with that of their cohorts, rather than maximizing their own private benefits. Therefore, we propose that more collectivist cultures constrain the initiative for investors to actively trading in response to market signals, and individual investors with these cultural attributes are more likely to exhibit herding behavior and are less sensitive to variations in the risk environment.

Our results support our hypothesis. We find that small investors' responses to risk (both traditional and extreme risks) in those small Eurozone countries are significantly influenced by country culture. In other words, the culture variable affects the impact of risk on investor's trading behavior. The impact of risk on fund flow is significantly positive and are larger from countries with more individualistic cultures. This implies that individual investors from these countries are more sensitive to variations in risk, in terms of engaging in active trading in response to risk changes. On the other hand, when controlling for the culture variable, small investors trading behavior is not directly affected by risk. Our results emphasize the importance of cultural factors in determining individual investor's behavior in response to risk in small Eurozone countries. To the best of our knowledge, our research is the first study that provides a detailed examination of individual investor's trading behavior and its key determinants in relatively small Eurozone countries that were particularly affected by the European banking and European sovereign debt crisis.

The remainder of the paper is organized as follows: Section 2 describes sample construction; Section 3 describes model specifications. The detail results are reported in Section 4, and the paper concludes with a summary in Section 5.

#### 2. Sample Construction

The data of mutual fund net flows used in this study are obtained from Thomson Reuters DataStream and Thomson ONE. For each of the countries in this study, we choose the equity index with the longest history as the major stock index to use in this study. The historical prices for those indices are collected from Bloomberg and Thomson Reuters DataStream. Table 1 presents the details of the indices, including the time period and the number of observations for each country when we use daily, weekly, and monthly data to calculate risk variables.

#### [Insert Table 1 here]

The index for our sample countries start from as early as 1987, including Finland's OMS Helsinki Index, Ireland's Irish Overall Index, and Sweden's Stockholm All-Share Index, to as late as 1995, including Norway's OMX Oslo All Share Index. The index for each country covers more than 18 years, from as short as 225 months (19 years) to as long as 445 months (37 years). Therefore, our sample period covers major historical events and business cycles, allowing for a broad perspective for investigating investors' behavior across different market conditions.

#### 2.1. Traditional risk (bases on standard deviations) and extreme risk estimation

#### 2.1.1 Traditional risk measure

In order to calculate both the standard and extreme risk measure, we need to calculate returns from index prices first. Following previous literature, we use the logarithmic percentage change (L%) of the stock index closing price to estimate returns on a daily, weekly, and

monthly basis, respectively. The summary statistics of logarithmic percentage changes for each country is shown in Table 2. Panel A, B, and C in Table 2 provide the statistics of returns based on daily, weekly, and monthly index prices, respectively. Panel D of Table 2 show the statistics during the crisis period of 2008-09, in addition to the whole sample period.

#### [Insert Table 2 here]

As shown in table 2, Greece has the lowest average returns during over its sample period with -0.47% daily return, while Norway and Sweden have the highest returns during the sample period. For all countries, significant departures from normality are observed for all data frequencies, based on the Jarque-Bera statistics. At daily, weekly, and monthly frequencies, for all nine countries, the markets show negative skewness and leptokurtosis. Jarque-Bera test rejects the normality of the return distribution, implying that extreme measure of risk which does not assume normal distribution may be better than standard risk measure. However, in this study we compare and use both measures comprehensively to check investor's response.

We then annualize the returns to get annualized geometric returns before calculating traditional and extreme risks, assuming 252 effective trading days over a year. The traditional risk measure is calculated as the annualized geometric standard deviation of the annualized return of index for each country.

#### 2.1.2 Extreme risk measure

The extreme measure of volatility is estimated as the percentage of extreme days, weeks or months over a given period. Most researchers define the extreme value as the lowest or the highest daily return of a stock market index observed over a given period (see e.g. Longin,

1996). Jones, Walker and Wilson (2004) use the statistical distribution of annualized geometric return to arbitrarily assign the distribution percentiles of 5% and 95% as cutoff points to distinguish extreme values. In our study, we define the extreme dates as the observations that are less than the difference between the lower quartile (Q1) and the value of 1.5 times of the interquartile range (IQR, aka. the lower inner fence), or greater than the sum of the upper quartile (Q3) and the value of 1.5 times of the interquartile range (IQR, aka. the upper inner fence), following the traditional outlier classification methodology suggested by Tukey (1977):

Extreme Observation < Q1 - 1.5  $\times$  IQR, or Extreme Observation  $> Q3 + 1.5 \times$  IQR

The range suggested by Tukey's fence is slightly narrower than  $\pm 3\sigma$  in normally distributed dataset, which declares about 1% of outliers. The extreme risk for a given year is determined as the percentage of outliers during a given interval over that year, i.e. Percentage of Extremes = No. of Outliers / Annual Trading Days (Weeks or Months).

#### 2.2. Comparison of two risk measures

One weakness of the traditional risk measure is that it is treats positive and negative price changes symmetrically. However, the extreme volatility method provides both positive and negative measures, and can be used to more accurately predict the behavior of risk-averse investors who responses are more dramatic to negative changes than to the positive changes of equity prices.

Figure 1 portrays the time series of the extreme measure of risk for Belgium, Greece, Ireland, and Portugal from 1986-2016. As shown in these graphs, 35.8% of Ireland's trading

days were characterized by extreme volatility in 2008; Belgian and Portuguese markets experienced extreme volatility on more than 25% of their trading days in the same year, reflecting the strong and persistent influence of the Global financial crisis in 2008-2009. Greece has 16% of extreme days in 2015, somewhat higher than its experience in 2008, when 13% of annual trading days are identified as extreme. In sum, the countries of this sample display some commonalities as well as differences in regards to the timing and magnitude of their exposure to extreme volatility over the sample period.

#### [Insert Figure 1 here]

In Tables 3 to 5, we compare the traditional risk and extreme risk as measured by the percentage of extreme days, weeks, or months by each country, respectively. As table 3 shows, estimated from daily data, volatility rankings of conventional risk measure are similar to those of extreme measures. In particular, the most volatile year and top ranked extreme years for each country are almost identical for all the nine countries.

#### [Insert Tables 3 here]

Using weekly data to measure risk, as shown in table 4, both methodologies almost cohere as well. In most countries, the most volatile 2 or 3 years are identical across risk measures. However, Greece and Sweden are exceptional cases. Traditional risk measure shows 1998, 2015, and 2014 as the most volatile years, while extreme measure suggests 2009, 1999, and 2011 in Greece. For Sweden, extreme measure approach indicates 2001, 2000, and 2002 are the most volatile years, whereas standard deviation catches 2008, 1998, and 2000 as the most unstable periods.

#### [Insert Table 4 here]

Using monthly data, we observe that in the majority of cases, the most volatile years based on extreme measure rankings also shown to be the most volatile based on traditional standard deviation analysis ranking.

#### [Insert Table 5 here]

According to Switzer et al (2017), for G-7 countries of their study, volatility as captured by the extreme measure shows similar patterns as the traditional volatility measure for most years. Many commonalities in the attribution of high risk by both measures are observed, consistent with Longin and Solnik (2001). However, differences are also observed, therefore, in our formal test, we use both risk measures in our analyses of investor behavior.

#### 3. Results based on individual countries

In this research, our objective is to explain investor's reaction to both risk variables by measuring net flows to equity mutual funds against changes in both extreme volatility and standard deviation changes. In our initial specifications, our dependent variables is the net flow to equity mutual funds, with the risk measures lagged by one period in separate specifications. Our control variables include returns (GeoMean), linear time trend (Time) to account for possible secular growth in such funds, as well as a financial market crisis dummy variable (Crisis) in our following models.

$$NetFlows(t) = \alpha + \beta GeoMean(t-1) + \gamma GeoStdDev(t-1) + \delta Time + \lambda Crisis + \varepsilon(t)$$
 Model 1
$$NetFlows(t) = \alpha + \beta GeoMean(t-1) + \gamma TotalExtr(t-1) + \delta Time + \lambda Crisis + \varepsilon(t)$$
 Model

2

 $NetFlows(t) = \alpha + \beta GeoMean(t-1) + \gamma NegExtr(t-1) + \zeta PosExtr(t-1) + \delta Time + \lambda Crisis + \varepsilon(t)$  Model

The variable *NetFlow* refers to the net flows to equity mutual funds, which are defined as new sales plus reinvestment of income less withdrawals and transfers; *TotalExtr* denotes the percentage of the number of extreme days over the measure horizon; *NegExtr* and *PosExtr* represent the percentages of number of negative and positive extreme days over the measure horizon, respectively; *Crisis* is a dummy variable to indicate the global financial crisis in 2008-9. We expect that regression coefficients for mean returns are positive, and for market volatility are negative, using the traditional or extreme day risk measures. In addition, when volatility is divided into negative and positive components, the coefficient for the negative extreme days should be negative since when stock market is negatively volatile, loss averse investors tend to hold less equity, and the coefficient for the positive extreme days probably positive.

In order to anticipate the effect of the crisis variable, we compare summary statistics during the financial crisis and the full sample period, based on Panel D of Table 2. In most countries, the average monthly logarithmic percentage changes are negative, ranging between -4.53 to -8.86 percent in 2008, and between -0.08 to 1.00 percent across the whole sample period. The standard deviations also increase, during the financial crisis years, while Kurtosis decreases in both 2008 and 2009. To prevent possible "overfitting" using the crisis dummy variable, we also estimate our above three models with crisis dummy variable excluded.

In Table 6, we provide the regression results for the nine countries. Panel A (B) shows the results for models 1-3 (4-6) that include (exclude) the crisis dummy variable.

#### [Insert Table 6 here]

There is no major difference in the results between Models 1-3 and Models 4-6, except for the case of Belgium. The regression data shows significant statistic values for the traditional measure of the risk in Austria's case. Austrian retail investors also respond to extreme risk measures, according to the result of Model 2. Furthermore, they move into markets subsequent to negative extreme event. It is interesting to observe Austria's case since the country is classified as a relatively less individualistic culture according to Hofstede (2001). The only other country in which investors respond to risk/extreme risk is Belgium, which is one of central figures of the European banking crisis, suffering from the default of its two largest banks. As shown in Model 3, small investors in Belgium exhibit "flight to risk" behavior with increased negative extreme measures, while there was fund outflow when there are positive extreme outliers. This gives us a scenario that Belgian investors are attracted to negative extreme events (buying the dips) and exit the markets on positive extreme events (sell at the high). However, when we run regression without financial crisis dummy variable, such behavior is no longer observable in Models 4, 5 and 6.

For both Portugal and Ireland, the crisis dummy variable plays significant role, though in different directions. With the crisis dummy included, funds flow out of the Portuguese market while the opposite happens in Ireland. Hofstede's individualism vs. collectivism score classifies Portugal as a highly collectivist and Ireland as a highly individualistic culture. Indeed, investors in highly individualistic cultures such as Ireland show high risk tolerance or even risk loving proclivities. Hence, during the crisis period, they are more inclined to exhibit "flight to risk" behavior. However, as we see from the separate country results, the impacts of risks on fund flow are not monotonic with respect to increases of Hofstede's individualism score. For

example, at the same level of individualism score, countries such as Sweden and Norway do not show consistent result. Mutual fund flows of Greece, Norway, and Sweden are not significantly responsive to changes in with any of the variables in the models. Norway and Sweden show high levels of the individualism index. So far, the influence of culture on investor responsiveness to risk is not clearcut.

#### [Insert Figure 2 here]

These results are also depicted in Figure 2, where the relationship between investors' behavior vs. extreme risk is shown for Belgium, Greece, Ireland, and Portugal. Figure 2.1 graphs the case of Belgium, which is classified as an individualistic. The investors' tendency of "flight to risk" is evident in the graph, as it is observed that the increased risk of the equity market has the negative relationship with the equity market's mutual fund inflow, especially in 2002, 2005, and 2008. In collectivist cultures, the relation between risk and fund flow is mixed. For example, Figure 2.2 shows that in Greece, the equity market volatility moves in the same trend with the equity market's mutual fund inflow. However, for another collectivist culture country, Portugal, the relation between risk and fund flow is negative, as shown in Figure 2.4. For Ireland, the mutual fund flow is not responsive to changes in equity market volatility. Therefore, we cannot conclude decisively that the cultural variable has monotonic impact on the relation between fund flow and extreme risk.

The drawback of the regression based on individual countries is that we cannot incorporate the culture variable directly in the regression, since it is a highly persistent/time-invariant. As a consequence, in order to clearly understand the impact of culture in the relation between extreme risk and fund flow, in the next section, we perform a serious of panel

regressions including all the nine countries with culture dummy variable added.

#### 4. Country culture and panel regressions

One important research focus of this study is on the effects of cultural factors on small investors' behavior in response to both traditional and extreme risks. In order to examine the influence of individualism or collectivism in the market, we import Hofstede's cultural dimension score. As discussed in the previous section, according to the results of individual country analyses, investors' reaction against risks by country are non-monotonic, considering the cultural dimension score. This may due to the fact the impact of cultural factors on the relation between investors' response to risk factors are regime dependent, or there is a threshold level of culture score that affect such impact. Thus, in order to obtain distinct and intuitive outcomes, we separate the nine Eurozone countries into two groups: countries with individualistic cultures vs. countries with collectivist cultures, based on the median of Hofstede's cultural dimension score. Countries with Hofstede's score above the median are classified as individualistic, and we use a dummy variable, Individualism =1 to indicate this group. For our sample countries, Belgium, Denmark, Sweden, Ireland and Norway are members of this group. On the other hand, Finland, Austria, Greece, and Portugal are classified as collectivist societies (Individualism =0).

With this country classification, we perform panel regressions using the country specific, time invariant cultural variables, and consider the interaction between the culture variable and the risk variable to determine how culture moderates the impact of risk on investor's trading behavior. The maintained hypothesis of delayed responses of investors is carried forth from the previous regression models. In order to control for economic development

for each country, we also add GDP per capita (GDP) to the analysis. The specific models follow:

$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_3 Individualism + \beta_{11} GDP(t-1) + \beta_{12} Crisis + \varepsilon(t)$$
 1'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_2 GeoStdDev(t-1) + \beta_3 Individualism + \beta_{11} GDP(t-1) + \beta_{12} Crisis + \varepsilon(t)$$
 2'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_2 GeoStdDev(t-1) + \beta_4 Individualism * GeoStdDev(t-1) + \beta_{11} GDP(t-1)$$
 3'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_5 TotalExtr(t-1) + \beta_{11} GDP(t-1) + \beta_{12} Crisis + \varepsilon(t)$$
 4'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_3 Individualism + \beta_5 TotalExtr(t-1) + \beta_{11} GDP(t-1) + \beta_{12} Crisis + \varepsilon(t)$$
 5'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_5 TotalExtr(t-1) + \beta_6 Individualism * TotalExtr(t-1) + \beta_{11} GDP(t-1) + \beta_{12} Crisis + \varepsilon(t)$$
 6'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_5 NegExtr(t-1) + \beta_8 PosExtr(t-1) + \beta_{11} GDP(t-1) + \beta_{12} Crisis + \varepsilon(t)$$
 7'
$$NetFlows(t) = \alpha + \beta_1 GeoMean(t-1) + \beta_3 Individualism + \beta_7 NegExtr(t-1) + \beta_8 PosExtr(t-1) + \beta_1 InGDP(t-1) + \beta_1 InGDP(t-1) + \beta_1 InGDP(t-1) + \beta_1 Individualism * PosExtr(t-1) + \beta_1 InGDP(t-1) + \beta_2 Individualism * PosExtr(t-1) + \beta_3 Individualism * PosExtr(t-1) + \beta_6 Individualism * NegExtr(t-1) + \beta_6$$

In the regression models, Individualism is the cultural dummy variable. *GDP* represents for GDP per capita of each country at specific time point t. The definitions of the other variables are identical to the regression models in section 3. We also implement panel regressions that incorporate controls for year fixed effects. Table 7 below reports the results. Panel A provides results for models 1'to 9' without country fixed effects and Panel B reports results that include country fixed effects in the analyses.

#### [Insert Table 7 here]

We observe positive coefficients for the interaction variables *Individualism\*Geo StdDev* and *Individualism\*Total Extr.*, as shown in models 3' and 6' in both panel A and panel B.

However, it is interesting to note that neither the traditional risk nor the extreme risk measure affects fund flow directly, as shown by the insignificant coefficient of *Geo.Std.Deviation(t-1)* and coefficient of *Total Extreme Value (t-1)* in models 1', 2', 4' and 5' for both panels. We note that the culture-risk interaction variables show a significantly positive impact on fund flow (e.g., 0.163 in model 3' and 0.112 in model 6') at the 1% significant level. This finding can explain why our previous tests in section 3, based on risk variables only, does not systematically predict investors trading behavior. Further looking at the sign of the interaction terms in models 3' and 6' in both panels, in contrast to investors from collectivist cultures, investors based in individualistic cultures are more responsive to changes in both traditional and extreme risk. In addition, the positive sign of the interaction terms shows that investors from individualistic societies exhibit "flight to risk" behavior, performing like risk seekers with high risk tolerance. We use country size, as measured by GDP per capita as a control variable in the regressions. However, it is not found to be a significant determinant of investors' trading behavior.

Another noteworthy point is that when we further look at whether the positive extreme shock and negative extreme shock have different impact on investor's response to risk, we find out that investors are actually indifferent in this regard. For example, for each of the negative and positive extreme risk variables, the coefficients are not significant, shown in the results for models 7' and 8'. Similar results are also shown with the interaction terms (models 3', 6', and 9')

As a robustness check, we also separate sample countries into three groups based on Hofstede's culture score, with individualism in the top tercile group, neutral in the middle tercile group and collectivism in the bottom tercile group. Our results based on this alternative

17

<sup>&</sup>lt;sup>1</sup> Full sample results provide qualitatively and quantitatively similar findings, are available on request, and are omitted for brevity.

classification are qualitatively and quantitatively consistent with the previous findings: the culture-risk interaction term has a significantly positive impact on fund flows. In addition, small investors with individualism (or neutral) cultural backgrounds exhibit flight to risk behavior.

#### [Insert Table 8 here]

We also conduct a further robustness check using simultaneous equations to account for the possibility that both risk and fund flows are determined simultaneously. Table 8 present the results of the simultaneous regression analyses using 2SLS. The results are consistent with our previous findings that there is a significant positive impact of the traditional risk-individualism interaction term on fund flow, as shown in model 3' that the coefficient of *Individualism\*Geo StdDev* is 0.143 with 95% level. When we use extreme risk measure, the results are similar: the coefficient of *Individualism\*Total Extr* in model 6' is 0.101 with 5% level. Therefore, our results are robust to alternative classification of the culture dummy variable as well as simultaneous model specification.

#### 5. Conclusion

This study focuses on nine small European countries over a long-time frame and show that two different risk measures, i.e. the traditional risk measure and the extreme risk measure, capture different responses from investors in those countries. More importantly, we find that a country culture factor plays a critical role in explaining small stockholders' behavior, and in particular the trading responses of such investors to changes in the risk environment. In country specific regressions, with the exception of Austria, small investors domiciled in collectivist countries do not show much responsiveness to changes in the risk environment, which implies

that collectivism constrains the initiative for investors to actively trade in response to market signals. In a pooled panel regression where we can control for the highly persistent and time invariant country variable, we find that the culture-risk interaction variable has a significantly positive impact on fund flows. In addition, small investors from individualistic societies exhibit "flight to risk" behavior, consistent with high risk tolerance.

#### References

Bank for International Settlements. 2011. Interpretive issues with respect to the revisions to the market risk framework. Basel, Switzerland.

Barber, B. M., Odean, T., and Zheng L., 2005. Out of sight, out of mind: the effects of expenses on mutual fund flows. *Journal of Business* 78, 2095-2119.

Barberis, N., Schleifer, A., and Vishny, R., 1998. A model of investor sentiment. *Journal of Financial Economics* 49, 307-343.

Benartzi, S. and Thaler R.H., 1995. Myopic loss aversion and the equity premium puzzle. *Quarterly Journal of Economics* 110, 73-92.

Burnie, D.A., and De Ritter, A., 2009. Far tail or extreme day returns, mutual fund cash flows and investment behaviour. Gotland University. Working paper.

Cashman, G. D., Deli, D. N., Nardari, F., and Villupuram, S. V., 2014. Investor behavior in the mutual fund industry: evidence from gross flows. *Journal of Economics and Finance* 38, 541-567.

Chang, C., and Lin, S., 2015. The effects of national culture and behavioral pitfalls on investors' decision-making: herding behavior in international stock markets. *International Review of Economics and Finance* 37, 380-392.

Chui, A.C., Titman, S., and Wei, K.C., 2010. Individualism and momentum around the world. *Journal of Finance* 65 (1), 361-392.

Clifford, C.P., Fulkerson, J.A., Jordan, B.D., and Waldman, S., 2013. Risk and fund flows. University of Kentucky. Working paper.

Dimson, E., Marsh, P., and Staunton, M., 2002. Triumph of the optimists: 101 years of global investment returns. Princeton, NJ: Princeton University Press.

DiTraglia, F. J., and Gerlach, J. R., 2012. Portfolio Selection: an extreme value approach. University of Pennsylvania. Working paper.

Eun, C. S., Wang, L., and Xiao, S.C., 2015. Culture and R<sup>2</sup>. *Journal of Financial Economics* 115, 283-303.

Frazzini, A. and Lamont, O. A., 2008. Dumb money: mutual fund flows and the cross-section of stock returns. *Journal of Financial Economics* 88, 299-322.

Gelfand, M., Raver, J., Nishii, L., Leslie, L., Lun, J., et al. 2011. Differences between tight and loose societies. *Science* 33, 1100-1104.

Girard E, and Biswas, R., 2007. Trading volume and market volatility: developed versus emerging stock markets. *Financial Review* 42, 429-459.

Grinblatt, M., and Kelaoharju, M., 2001, How distance, language, and culture influence stockholdings and trades. *Journal of Finance* 56, 1053-1071.

Hofstede, G., 2001. Culture's consequences: comparing values, behaviors, institutions, and organizations across nations, Second edition. Beverly-Hills, CA: Sage Publication.

Hyung, N., and De Vries, C., 2005. Portfolio diversification effects of downside risk. *Journal of Financial Econometrics* 3, 107-125.

Hyung, N., and De Vries, C., 2007. Portfolio selection with heavy tails. *Journal of Empirical Finance* 14 (3), 383-400.

Ivkovic, Z., and Weisbenner, S., 2009. Individual investor mutual fund flows. *Journal of Financial Economics* 92, 223-237.

Jones, C. P., Walker, M. D., and Wilson, J. W., 2004. Analyzing stock market volatility using extreme-day measures. *Journal of Financial Research* 27, 585-601

Jones, C. P. and Wilson, J.W., 1989. Is stock price volatility increasing? *Financial Analysts Journal* 45, 20-26

Kim, M. S., 2017. Changes in mutual fund flows and managerial incentives. University of New South Wales. Working paper.

Longin, F. M., 1996. The asymptotic distribution of extreme stock returns. *Journal of Business* 69, 383-408.

Longin, F. M., and Solnik. B., 1981. Extreme correlation of international equity markets. *Journal of Finance* 56, 649-676.

Longin, F. M., 2005. The choice of the distribution of asset returns: how extreme value theory can help? *Journal of Banking and Finance* 29 (4), 1017-1035.

O'Neal, E. S., 2004. Purchase and redemption patterns of U.S. equity mutual funds, *Financial Management* 33, 63-90.

Schmeling, M., 2009. Investor sentiment and stock returns: some international evidence. *Journal of Empirical Finance* 16 (3), 394-408.

Schwert, G. W., 1990. Indexes of U.S. stock prices from 1802 to 1987. *Journal of Business* 63, 399-427.

Sirri, E. R., and Tufano, P., 1998. Costly search and mutual fund flows. *Journal of Finance* 53, 1589-1622.

Spiegel, M., and Zhang, H., 2013. Mutual fund risk and market share-adjust fund flows. *Journal of Financial Economics* 108, 506–528.

Statman, M., 2008. Countries and culture in behavioral finance. CFA Institute, 38-44.

Switzer, L. N., Wang, J., and Lee, S., 2017. Extreme risk and small investor behavior in developed markets. *Journal of Asset Management* 18 (6), 457-475.

Tukey, J. W., 1977. Exploratory data analysis. Reading, PA: Addison-Wesley



Figure 1. Extreme Risk Measure (in %) for Belgium, Greece, Ireland, and Portugal during 1983-2016

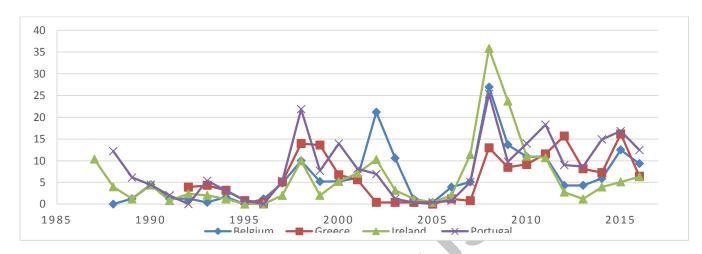



Figure 1.1. Extreme Risk Measure (in %) for Belgium, 1988-2016

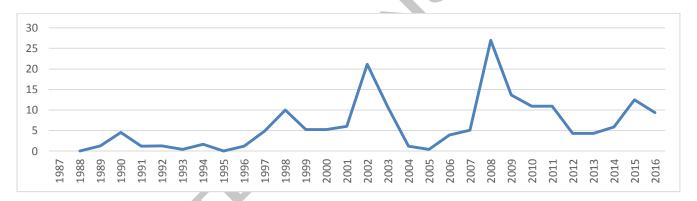



Figure 1.2. Extreme Risk Measure (in %) for Greece, 1992-2016

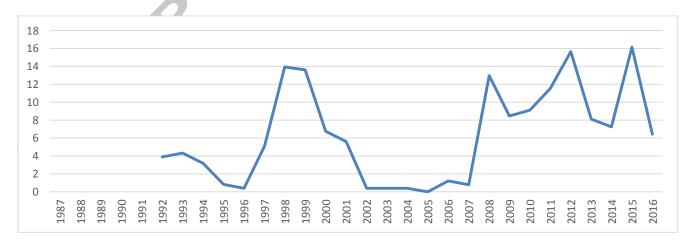



Figure 1.3. Extreme Risk Measure (in %) for Ireland, 1987-2016

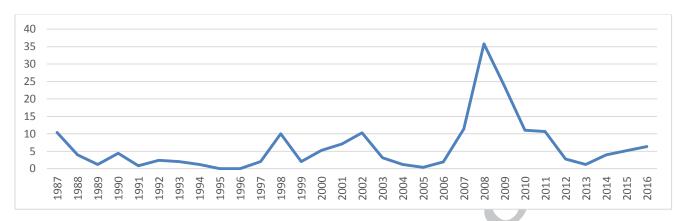



Figure 1.4. Extreme Risk Measure (in %) for Portugal, 1988-2016

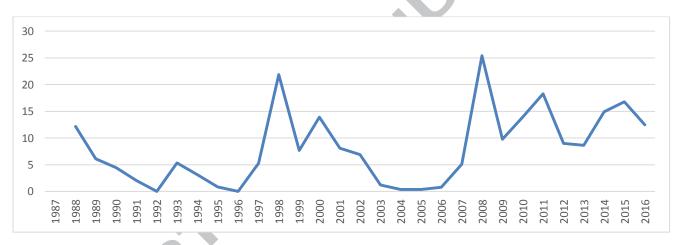



Figure 2.1. Net Flows (annual) into Equity Mutual Funds for Belgium (in USD \$100 Million) vs. Extreme Risk Measure (in %) in Belgium, 1995-2013

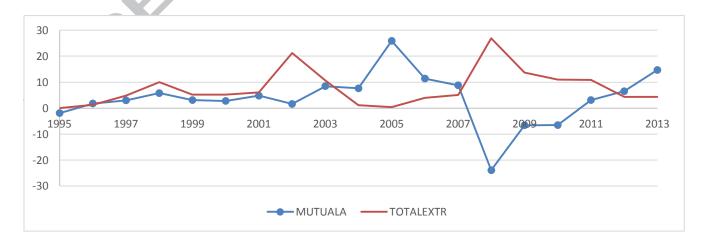



Figure 2.2. Net Flows (annual) into Equity Mutual Funds for Belgium (in USD \$100 Million) vs. Extreme Risk Measure (in %) in Greece, 1995-2013



Figure 2.3. Net Flows (annual) into Equity Mutual Funds for Belgium (in USD \$100 Million) vs. Extreme Risk Measure (in %) in Ireland, 2002-2012

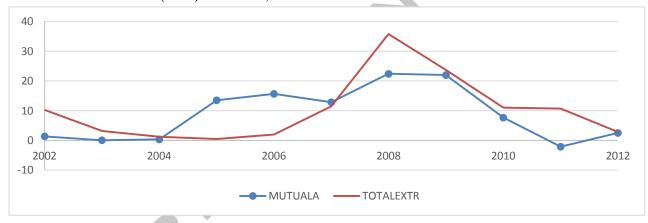
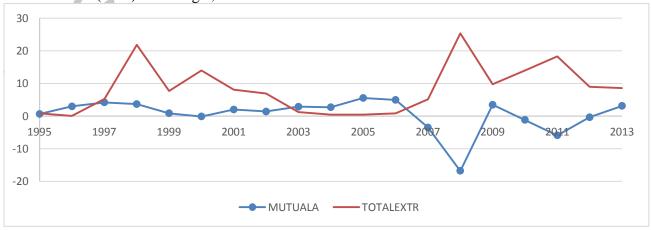




Figure 2.4.

Net Flows (annual) into Equity Mutual Funds for Belgium (in USD \$100 Million) vs. Extreme Risk Measure (in %) in Portugal, 1995-2013



#### **Table 1 Statistics of indices**

We focus on nine relatively small Eurozone countries in this study: Austria, Belgium, Denmark, Finland, Greece, Ireland, Norway, Portugal, and Sweden that were epicenters of European banking crisis, and the European sovereign debt crisis. For each country, we choose the equity index with the longest history as the major stock index to use in this study. The historical prices for those indices are collected from Bloomberg and Thomson Reuters DataStream. This table presents the details of \_the nine indices, including time period and the number of observations for each country when we use daily, weekly, and monthly data to calculate risk variables.

| No. | Country  | Index                             | Daily Data                              |      | Weekly Data                             |      | Monthly Data                             |      |  |
|-----|----------|-----------------------------------|-----------------------------------------|------|-----------------------------------------|------|------------------------------------------|------|--|
| NO. | Country  | ilidex                            | Time Period                             | Obs. | Time Period                             | Obs. | Time Period                              | Obs. |  |
| 1   | Austria  | Austrian Traded Index (ATX)       | June 5, 1992 -<br>March 24, 2017        | 6150 | June 5, 1992 -<br>March 24, 2017        | 1295 | June 30, 1992 -<br>February 28, 2017     | 297  |  |
| 2   | Belgium  | Belgium All Share Index (BELAS)   | October 3, 1988 -<br>March 24, 2017     | 7162 | October 7, 1988 -<br>March 24, 2017     | 1486 | October 7, 1988 -<br>February 28, 2017   | 341  |  |
| 3   | Denmark  | OMX Copenhagen 20 Index (KFX)     | December 4, 1989 -<br>March 24, 2017    | 6837 | December 8, 1989 -<br>March 24, 2017    | 1425 | December 29, 1989 -<br>February 28, 2017 | 327  |  |
| 4   | Finland  | OMS Helsinki Index (HEX)          | January 30, 1987 -<br>February 28, 2017 | 7549 | January 30, 1987 -<br>February 24, 2017 | 1570 | January 30, 1987 -<br>January 31, 2017   | 361  |  |
| 5   | Greece   | Athens Stock Exchange (ASE) Index | Jun 30, 1992 -<br>February 28, 2017     | 6140 | July 3, 1992 -<br>February 24, 2017     | 1282 | July 31, 1992 -<br>January 31, 2017      | 294  |  |
| 6   | Ireland  | Irish Overall Index (ISEQ)        | January 2, 1987 -<br>March 24, 2017     | 7609 | February 4, 1983 -<br>February 24, 2017 | 1786 | January 31, 1983 -<br>February 28, 2017  | 410  |  |
| 7   | Norway   | OMX Oslo All Share Index (OSEAX)  | December 29, 1995<br>- March 24, 2017   | 5331 | December 29, 1995<br>- March 24, 2017   | 1109 | December 29, 1995 -<br>February 28, 2017 | 255  |  |
| 8   | Portugal | Portugal All Share Index (PSI)    | January 5, 1988 -<br>March 24, 2017     | 7154 | January 9, 1988 -<br>March 24, 2017     | 1520 | January 29, 1988 -<br>February 28, 2017  | 350  |  |
| 9   | Sweden   | Stockholm All-Share Index (SAX)   | January 2, 1987 -<br>February 28, 2017  | 7573 | January 2, 1987 -<br>February 28, 2017  | 1574 | January 31, 1980 -<br>January 31, 2017   | 445  |  |

 $Table\ 2.\ Summary\ statistics\ of\ daily/weekly/monthly\ logarithmatic\ percent\ changes\ (i.e.\ returns)\ of\ indices$ 

|                  | Maria        | Martin | Cr. ID | C1       | TZ       | Jarque-    |          |         | Percent | ile    |        |         |
|------------------|--------------|--------|--------|----------|----------|------------|----------|---------|---------|--------|--------|---------|
| Country          | Mean         | Median | StdDev | Skewness | Kurtosis | Bera       | 1%       | 5%      | 10%     | 90%    | 95%    | 99%     |
| Panel A. Daily D | <b>D</b> ata |        |        |          |          |            |          |         |         |        |        |         |
| Austria          | 0.0168       | 0.0600 | 1.3605 | -0.3699  | 7.0939   | 13033.5632 | -4.1698  | -2.1652 | -1.4002 | 1.4208 | 1.9056 | 3.4388  |
| Belgium          | 0.0296       | 0.0599 | 1.0437 | -0.1100  | 7.6207   | 17342.4548 | -2.9831  | -1.6847 | -1.0868 | 1.0716 | 1.5673 | 2.7324  |
| Denmark          | 0.0312       | 0.0596 | 1.1896 | -0.2878  | 5.4294   | 8490.7097  | -3.3404  | -1.8812 | -1.2997 | 1.3315 | 1.8244 | 3.0799  |
| Finland          | 0.0283       | 0.0560 | 1.6216 | -0.2981  | 7.6116   | 18332.9331 | -4.6496  | -2.5136 | -1.6873 | 1.6915 | 2.4616 | 4.5382  |
| Greece           | -0.0047      | 0.0115 | 1.8742 | -0.2601  | 5.6020   | 8096.5801  | -5.4298  | -2.9842 | -2.0064 | 2.0397 | 2.8572 | 5.1334  |
| Ireland          | 0.0238       | 0.0495 | 1.2607 | -0.8218  | 10.5498  | 36138.0111 | -3.8700  | -1.8522 | -1.2400 | 1.3019 | 1.7842 | 3.3301  |
| Norway           | 0.0381       | 0.1043 | 1.3554 | -0.5958  | 6.0898   | 8551.5429  | -4.1378  | -2.1205 | -1.4159 | 1.4479 | 2.0026 | 3.3202  |
| Portugal         | 0.0131       | 0.0140 | 1.0759 | -0.3667  | 9.7827   | 28683.4787 | -3.1829  | -1.6620 | -1.0920 | 1.1272 | 1.6241 | 2.8246  |
| Sweden           | 0.0342       | 0.0801 | 1.3225 | -0.1239  | 5.3008   | 8884.3645  | -3.8125  | -2.0677 | -1.4092 | 1.4066 | 1.9700 | 3.5672  |
|                  |              |        |        |          |          |            |          |         |         |        |        |         |
|                  |              |        |        |          |          |            |          |         |         |        |        |         |
| Panel B. Weekly  |              |        |        |          |          | Y          |          |         |         |        |        |         |
| Austria          | 0.0801       | 0.2580 | 3.0910 | -1.4792  | 14.4433  | 11719.3723 | -8.2113  | -4.5514 | -3.4394 | 3.2815 | 4.3767 | 6.7723  |
| Belgium          | 0.1420       | 0.3113 | 2.3731 | -1.4583  | 14.9052  | 14272.7576 | -6.7343  | -3.9823 | -2.4188 | 2.6087 | 3.4002 | 5.7797  |
| Denmark          | 0.1512       | 0.3175 | 2.6330 | -0.9537  | 6.6591   | 2846.9231  | -7.0802  | -4.1158 | -2.8720 | 3.0625 | 3.8407 | 5.8779  |
| Finland          | 0.1362       | 0.2652 | 3.5620 | -0.5548  | 3.6421   | 947.6775   | -10.1309 | -5.5977 | -4.0108 | 4.0295 | 5.6184 | 8.7303  |
| Greece           | -0.0185      | 0.0574 | 4.2358 | -0.1996  | 3.3167   | 595.6637   | -12.0981 | -6.9053 | -4.8627 | 4.6592 | 6.1885 | 10.9949 |
| Ireland          | 0.1702       | 0.3937 | 2.8646 | -1.5298  | 12.7169  | 12724.0204 | -8.5059  | -4.1356 | -2.8895 | 3.2471 | 4.2346 | 6.6763  |
| Norway           | 0.1834       | 0.5046 | 2.9096 | -1.1327  | 7.3826   | 2753.1451  | -8.3526  | -4.8245 | -2.9110 | 3.0252 | 3.8062 | 6.8770  |
| Portugal         | 0.0528       | 0.1028 | 2.5132 | -0.7780  | 6.2558   | 2630.1025  | -8.2099  | -3.7179 | -2.7498 | 2.7429 | 3.9139 | 6.5868  |
| Sweden           | 0.1646       | 0.4128 | 2.8486 | -0.6693  | 5.4360   | 2054.1876  | -7.6722  | -4.5096 | -3.1517 | 3.1939 | 4.2327 | 7.1231  |

| Panel C. Monthly | Data    |        |        |         |        |          |          |          |          |         |         |         |
|------------------|---------|--------|--------|---------|--------|----------|----------|----------|----------|---------|---------|---------|
| Austria          | 0.3615  | 1.0892 | 6.1555 | -1.1407 | 3.7602 | 238.5806 | -18.5845 | -10.1973 | -6.9855  | 7.5428  | 8.8351  | 12.4084 |
| Belgium          | 0.6137  | 1.0386 | 4.6288 | -1.0080 | 2.4974 | 145.9397 | -14.5691 | -8.1971  | -4.6983  | 5.3307  | 6.7679  | 9.5863  |
| Denmark          | 0.6637  | 0.9758 | 5.3089 | -0.5545 | 1.3498 | 41.4537  | -14.8811 | -8.1400  | -6.0569  | 6.9451  | 8.2421  | 11.6878 |
| Finland          | 0.5861  | 0.6732 | 7.4341 | -0.2154 | 1.6876 | 45.5041  | -19.1259 | -11.3699 | -8.3427  | 8.8410  | 11.4745 | 20.3757 |
| Greece           | -0.0887 | 0.4265 | 9.0829 | -0.2345 | 1.3781 | 25.8701  | -25.3191 | -15.4895 | -11.8359 | 10.4745 | 14.0990 | 20.0462 |
| Ireland          | 0.7458  | 1.3983 | 6.0320 | -1.0131 | 3.2589 | 250.9545 | -17.6699 | -9.1039  | -6.3349  | 7.1754  | 9.5612  | 12.6107 |
| Norway           | 0.8019  | 1.3902 | 5.9166 | -1.3484 | 4.4471 | 286.2679 | -22.8869 | -8.3305  | -5.5780  | 7.3036  | 8.8279  | 11.1287 |
| Portugal         | 0.2573  | 0.3602 | 5.4960 | -0.4136 | 2.3449 | 89.9131  | -16.1342 | -8.3648  | -5.9919  | 6.6518  | 8.8381  | 14.5988 |
| Sweden           | 1.0082  | 1.2433 | 5.9358 | -0.4064 | 2.0092 | 86.9052  | -15.3517 | -9.3336  | -6.1547  | 7.7278  | 10.2612 | 14.0407 |

Panel D. Whole sample period vs. crisis period.

| Period     | Observation | Mean    | Median  | StdDev  | Clearymann | Kurtosis | Jarque-  |          |          | Percen   | tile    |         |         |
|------------|-------------|---------|---------|---------|------------|----------|----------|----------|----------|----------|---------|---------|---------|
| renou      | Observation | Mean    | Median  | StuDev  | Skewness   | Kurtosis | Bera     | 1%       | 5%       | 10%      | 90%     | 95%     | 99%     |
| Austria    |             |         |         |         |            |          |          |          |          |          |         |         |         |
| Jun 1992 - |             |         |         |         |            |          |          |          |          |          |         |         |         |
| Feb 2017   | 296         | 0.3615  | 1.0892  | 6.1555  | -1.1407    | 3.7602   | 238.5806 | -18.5845 | -10.1973 | -6.9855  | 7.5428  | 8.8351  | 12.4084 |
| 2009       | 12          | 2.9535  | 3.3022  | 8.5102  | -0.8379    | 0.7025   | 1.6508   | -14.7698 | -10.4303 | -5.4879  | 12.0763 | 12.8230 | 13.4021 |
| 2008       | 12          | -7.8906 | -5.1448 | 12.6039 | -0.6202    | 0.3061   | 0.8161   | -31.9413 | -29.3298 | -25.6027 | 2.7774  | 7.2486  | 11.4020 |
| Belgium    |             |         |         |         |            |          |          |          |          |          |         |         |         |
| Oct 1988 - |             |         |         |         |            |          |          |          |          |          |         |         |         |
| Feb 2017   | 340         | 0.6137  | 1.0386  | 4.6288  | -1.0080    | 2.4974   | 145.9397 | -14.5691 | -8.1971  | -4.6983  | 5.3307  | 6.7679  | 9.5863  |
| 2009       | 12          | 2.0548  | 3.2581  | 6.0660  | -0.4587    | -0.3349  | 0.4768   | -9.1809  | -6.9306  | -4.5274  | 9.2403  | 10.0677 | 10.5426 |
| 2008       | 12          | -5.3790 | -3.6539 | 9.0788  | -0.2209    | -1.2006  | 0.8183   | -20.1941 | -17.5311 | -14.7823 | 5.2510  | 6.3431  | 7.1137  |
| Denmark    |             |         |         |         |            |          |          |          |          |          |         |         |         |
| Dec 1989 - |             |         |         |         |            |          |          |          |          |          |         |         |         |
| Feb 2017   | 326         | 0.6637  | 0.9758  | 5.3089  | -0.5545    | 1.3498   | 41.4537  | -14.8811 | -8.1400  | -6.0569  | 6.9451  | 8.2421  | 11.6878 |
| 2009       | 12          | 2.5572  | 1.8970  | 7.0328  | 0.7288     | 1.3946   | 2.0348   | -7.8010  | -6.7073  | -5.3600  | 7.3126  | 12.3817 | 17.2850 |
| 2008       | 12          | -5.2324 | -3.8184 | 8.9896  | -0.4373    | -0.6429  | 0.5892   | -20.5937 | -19.7455 | -18.2835 | 5.1821  | 6.4481  | 7.2954  |

| Finland                |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
|------------------------|-----|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|---------|---------|---------|
| Jan 1987 -<br>Jan 2017 | 36  | 0.4     | 5861    | 0.6732  | 7.4341  | -0.2154 | 1.6876   | 45.5041  | -19.1259 | -11.3699 | -8.3427  | 8.8410  | 11.4745 | 20.3757 |
| 2009                   | 1   |         |         | 2.5201  | 8.6403  | 0.1700  | 1.4814   | 1.1552   | -14.0734 | -10.4541 | -6.6444  | 7.7624  | 13.2955 | 18.4713 |
| 2008                   | 1   |         |         | -6.1905 | 6.8957  | -0.6141 | -0.4420  | 0.8520   | -19.5638 | -16.3998 | -13.0412 | 0.5285  | 0.8950  | 1.2246  |
| Greece                 |     |         |         | 0.17 00 | 0.0507  | 0.01.1  | 020      | 0.0020   | 17.0000  | 10.0770  | 10.0.112 | 0.0200  | 0.0,00  | 1,22.0  |
| Jul 1992 -             |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
| Jan 2017               | 29  | 3 -0.0  | 0887    | 0.4265  | 9.0829  | -0.2345 | 1.3781   | 25.8701  | -25.3191 | -15.4895 | -11.8359 | 10.4745 | 14.0990 | 20.0462 |
| 2009                   | 1   | 2 1.7   | 7204    | 2.6189  | 10.7347 | -0.3204 | -0.1370  | 0.2147   | -16.8673 | -15.8082 | -13.7705 | 12.1840 | 15.8038 | 19.0224 |
| 2008                   | 1   | 2 -8.8  | 3693 ·  | -6.1391 | 10.3716 | -1.0793 | 1.3006   | 3.1757   | -31.2140 | -25.3777 | -19.1827 | -0.9396 | 2.0115  | 4.8559  |
| Ireland                |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
| Jan 1983 -             | 400 | 0.7450  | 1 2002  | 6.0220  | 1 0121  | 2.2500  | 250.0545 | 17.6600  | 0.10     | 20       | 2240     | 7 1754  | 0.5612  | 12 (107 |
| Feb 2017               | 409 | 0.7458  | 1.3983  | 6.0320  |         | 3.2589  | 250.9545 | -17.6699 |          |          |          | 7.1754  | 9.5612  | 12.6107 |
| 2009                   | 12  | 1.9889  | 3.4268  | 9.0016  |         | 0.5340  | 0.4708   | -14.9858 |          |          |          | 0.1154  | 13.7264 | 17.0055 |
| 2008                   | 12  | -9.0412 | -5.9859 | 8.7199  | -0.1941 | -1.2916 | 0.9095   | -22.9332 | -20.33   | 69 -17.  | 6670     | 1.9485  | 2.6709  | 2.7593  |
| Norway                 |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
| Dec 1995               |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
| - Feb 2017             | 254 | 0.8019  | 1.3902  | 5.9166  | -1.3484 | 4.4471  | 286.2679 | -22.8869 | -8.33    | 05 -5.   | 5780     | 7.3036  | 8.8279  | 11.1287 |
| 2009                   | 12  | 3.6776  | 4.0228  | 5.2600  | 0.1802  | 0.6893  | 0.3025   | -5.3866  | -4.19    | 03 -2.   | 5998     | 9.6991  | 11.8826 | 13.5900 |
| 2008                   | 12  | -6.2202 | -5.2617 | 12.8421 | -0.4010 | -0.9388 | 0.7624   | -27.0131 | -25.63   | 63 -23.  | 9752     | 7.6412  | 9.4098  | 11.0751 |
| Portugal               |     |         |         |         |         |         | 1/2      |          |          |          |          |         |         |         |
| Jan 1988 -             |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
| Feb 2017               | 349 | 0.2573  | 0.3602  | 5.4960  | -0.4136 | 2.3449  | 89.9131  | -16.1342 | -8.36    | 48 -5.   | 9919 (   | 5.6518  | 8.8381  | 14.5988 |
| 2009                   | 12  | 2.8017  | 2.6839  | 4.9600  | -0.0534 | -0.6464 | 0.2146   | -5.5719  | -3.91    | 26 -2.   | 1452     | 8.1656  | 9.3783  | 10.5464 |
| 2008                   | 12  | -5.7293 | -2.5220 | 8.6310  | -0.8762 | 0.0096  | 1.5356   | -22.6329 | -19.39   | 63 -16.  | 0307     | 2.2100  | 3.8644  | 5.2217  |
| Sweden                 |     |         |         |         |         |         |          |          |          |          |          |         |         |         |
| Jan 1980 -<br>Jan 2017 | 444 | 1.0082  | 1.2433  | 5.9358  | -0.4064 | 2.0092  | 86.9052  | -15.3517 | -9.33    | 36 -6.   | 1547     | 7.7278  | 10.2612 | 14.0407 |
| 2009                   | 12  | 3.1910  | 1.9663  | 5.6680  | 1.2865  | 3.1955  | 8.4160   | -5.3646  | -2.70    | 40 0.    | 0672     | 9.1543  | 13.0364 | 16.3422 |
| 2008                   | 12  | -4.5332 | -1.3914 |         | -0.7971 | -1.0682 | 1.8412   | -19.2165 |          |          |          | 3.0916  | 3.3752  | 3.5383  |
| 2000                   | 12  | 1.5552  | 1.5514  | 0.5117  | 0.7771  | 1.0002  | 1.0.12   | 17.2103  | 17.20    | 10.      |          |         | 2.3732  | 3.3333  |

Table 3. The top 15 year rankings of volatility as measured by standard deviation and by the percentage of extreme days for each of the nine European countries

|      |      | Austria                      |      |                       | _    | Ве                           | elgium         |                       |           |
|------|------|------------------------------|------|-----------------------|------|------------------------------|----------------|-----------------------|-----------|
|      | Geo  | metric Standard<br>Deviation |      | entage of<br>eme Days | Geo  | metric Standard<br>Deviation |                | entage of<br>eme Days | 2         |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                  | Year | GeoStdDev(%)                 | Year           | L(%)                  | Rank      |
| 1    | 2008 | 47.9863                      | 2008 | 28.4000               | 2008 | 35.7265                      | 2008           | 35.7265               | 1         |
| 2    | 2009 | 35.7144                      | 2009 | 24.1935               | 2002 | 25.6784                      | 2002           | 25.6784               | 2         |
| 3    | 2011 | 29.1925                      | 2011 | 13.3065               | 2009 | 22.5379                      | 2009           | 22.5379               | 3         |
| 4    | 1998 | 24.3126                      | 1992 | 8.4507                | 2011 | 21.2453                      | 2011           | 21.2453               | 4         |
| 5    | 2010 | 23.8813                      | 2012 | 7.6923                | 2015 | 20.5910                      | 2015           | 20.5910               | 5         |
| 6    | 2016 | 21.8380                      | 1998 | 7.6613                | 2003 | 19.8203                      | 2003           | 19.8203               | 6         |
| 7    | 2012 | 21.7115                      | 2010 | 7.6305                | 2010 | 19.5069                      | 2010           | 19.5069               | 7         |
| 8    | 2006 | 20.5959                      | 2016 | 5.622                 | 2016 | 18.9441                      | 2016           | 18.9441               | 8         |
| 9    | 2007 | 20.2668                      | 1997 | 5.2632                | 1998 | 18.6076                      | 1998           | 18.6076               | 9         |
| 10   | 1997 | 20.1104                      | 2007 | 4.4534                | 1999 | 16.0590                      | 1999           | 16.0590               | 10        |
| 11   | 2015 | 20.0032                      | 2015 | 4.0323                | 2014 | 15.8120                      | 2014           | 15.8120               | 11        |
| 12   | 1992 | 18.5516                      | 2006 | 3.6585                | 2000 | 15.6013                      | 2000           | 15.6013               | 12        |
| 13   | 2014 | 16.8607                      | 2000 | 3.2520                | 2007 | 15.2289                      | 2007           | 15.2289               | 13        |
| 14   | 1993 | 16.6748                      | 1993 | 3.2129                | 2001 | 14.7436                      | 2001           | 14.7436               | 14        |
| 15   | 1999 | 16.2005                      | 2014 | 2.8340                | 2013 | 14.5637                      | 2013           | 14.5637               | 15        |
|      |      | Denmark                      |      |                       | · -  | Fi                           | nland          |                       |           |
|      | Geo  | metric Standard<br>Deviation |      | entage of<br>me Days  | Geor | netric Standard<br>Deviation | Perce<br>Extre |                       |           |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                  | Year | GeoStdDev(%)                 | Year           | L(%)                  | -<br>Rank |
| 1    | 2008 | 38.4943                      | 2008 | 23.2000               | 2000 | 54.7089                      | 2000           | 35.4582               | 1         |
| 2    | 2009 | 26.6886                      | 2009 | 12.4498               | 2001 | 51.0954                      | 2001           | 33.3333               | 2         |
| 3    | 2002 | 24.4199                      | 2002 | 10.0402               | 2002 | 39.1523                      | 2002           | 24.8996               | 3         |
| 4    | 1998 | 23.3034                      | 1998 | 9.6000                | 2008 | 37.5657                      | 2008           | 15.4150               | 4         |
| 5    | 2016 | 22.0259                      | 2001 | 8.8353                | 1998 | 33.0828                      | 1999           | 13.5458               | 5         |
| 6    | 2000 | 21.8666                      | 2011 | 8.3333                | 1999 | 31.0529                      | 1998           | 12.8000               | 6         |
| 7    | 2011 | 21.2402                      | 2016 | 7.5397                | 2009 | 29.9125                      | 2011           | 12.6482               | 7         |
| 8    | 2015 | 20.4903                      | 2000 | 7.1713                | 2011 | 28.2242                      | 2009           | 12.3506               | 8         |
| 9    | 2001 | 19.9714                      | 2015 | 6.0241                | 2003 | 27.8146                      | 2003           | 9.2000                | 9         |
| 10   | 2010 | 19.8851                      | 1992 | 5.6000                | 1997 | 23.4500                      | 1992           | 4.3825                | 10        |
| 11   | 2003 | 17.9649                      | 2010 | 5.5777                | 1995 | 22.5236                      | 1997           | 4.0161                | 11        |
| 12   | 2007 | 17.6929                      | 2007 | 4.8193                | 1992 | 22.0537                      | 2007           | 3.2000                | 12        |
| 13   | 1992 | 17.4694                      | 2003 | 4.0161                | 2012 | 20.8853                      | 2006           | 3.1873                | 13        |
| 14   | 2012 | 16.0330                      | 2006 | 3.9683                | 1993 | 20.3695                      | 2012           | 2.8000                | 14        |
| 15   | 2006 | 15.8967                      | 2012 | 3.6145                | 2004 | 20.1625                      | 2012           | 2.7778                | 15        |
| 13   | 2000 | 13.0907                      | 2012 | 5.0145                | ∠004 | 20.1023                      | 2010           | 4.1110                | 13        |

Table 3. Cont'd

|      |      | Greece                       |      |                        | Ireland |                              |         |                        |      |  |  |
|------|------|------------------------------|------|------------------------|---------|------------------------------|---------|------------------------|------|--|--|
|      | Geor | metric Standard<br>Deviation |      | entage of<br>eme Days  | Geor    | metric Standard<br>Deviation |         | entage of<br>eme Days  |      |  |  |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                   | Year    | GeoStdDev(%)                 | Year    | L(%)                   | Rank |  |  |
| 1    | 2015 | 46.4653                      | 2015 | 16.1435                | 2008    | 47.8976                      | 2008    | 35.8268                | 1    |  |  |
| 2    | 2012 | 39.9886                      | 2012 | 15.6627                | 2009    | 32.6774                      | 2009    | 23.7154                | 2    |  |  |
| 3    | 2008 | 38.8718                      | 1998 | 13.9442                | 1987    | 30.7513                      | 2007    | 11.4173                | 3    |  |  |
| 4    | 1998 | 38.4077                      | 1999 | 13.6000                | 2010    | 25.2077                      | 2010    | 11.0236                | 4    |  |  |
| 5    | 1999 | 37.6695                      | 2008 | 12.9555                | 2007    | 23.2181                      | 2011    | 10.6719                | 5    |  |  |
| 6    | 2011 | 37.0962                      | 2011 | 11.5538                | 2011    | 22.8458                      | 1987    | 10.3586                | 6    |  |  |
| 7    | 2014 | 34.6443                      | 2010 | 9.1270                 | 2016    | 22.7368                      | 2002    | 10.2767                | 7    |  |  |
| 8    | 2010 | 34.1359                      | 2009 | 8.4677                 | 1998    | 22.5521                      | 1998    | 10.0000                | 8    |  |  |
| 9    | 2009 | 33.2648                      | 2013 | 8.1301                 | 2002    | 22.0552                      | 2001    | 7.1146                 | 9    |  |  |
| 10   | 2000 | 32.4245                      | 2014 | 7.2581                 | 2001    | 19.4826                      | 2016    | 6.2992                 | 10   |  |  |
| 11   | 2016 | 32.0999                      | 2000 | 6.7460                 | 2015    | 18.8086                      | 2000    | 5.2209                 | 11   |  |  |
| 12   | 1997 | 31.0177                      | 2016 | 6.4257                 | 2000    | 17.6076                      | 2015    | 5.1181                 | 12   |  |  |
| 13   | 2013 | 30.4778                      | 2001 | 5.6000                 | 1990    | 16.7002                      | 1990    | 4.3825                 | 13   |  |  |
| 14   | 2001 | 28.6758                      | 1997 | 5.0980                 | 1999    | 16.4688                      | 1988    | 3.9841                 | 14   |  |  |
| 15   | 1993 | 26.0297                      | 1993 | 4.3307                 | 2014    | 16.2031                      | 2014    | 3.9370                 | 15   |  |  |
|      |      | Norway                       |      |                        |         | P                            | ortugal |                        |      |  |  |
|      | Geo  | metric Standard<br>Deviation |      | centage of<br>eme Days | Geo     | metric Standard<br>Deviation |         | centage of<br>eme Days |      |  |  |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                   | Year    | GeoStdDev(%)                 | Year    | L(%)                   | Rank |  |  |
| 1    | 2008 | 46.8717                      | 2008 | 24.2063%               | 2008    | 32.8977                      | 2008    | 25.3906%               | 1    |  |  |
| 2    | 2009 | 31.7568                      | 2009 | 17.5299%               | 1998    | 26.4106                      | 1998    | 21.8623%               | 2    |  |  |
| 3    | 1998 | 25.2844                      | 2011 | 9.0909%                | 2010    | 22.3970                      | 2011    | 18.2879%               | 3    |  |  |
| 4    | 2011 | 24.6472                      | 1998 | 8.3665%                | 2011    | 22.0392                      | 2015    | 16.7969%               | 4    |  |  |
| 5    | 2006 | 24.0700                      | 2006 | 6.7729%                | 2015    | 22.0009                      | 2014    | 14.9020%               | 5    |  |  |
| 6    | 2010 | 21.1818                      | 2002 | 6.0241%                | 2014    | 20.0170                      | 2010    | 13.9535%               | 6    |  |  |
| 7    | 2002 | 20.7336                      | 2016 | 5.5336%                | 2000    | 19.3877                      | 2000    | 13.9344%               | 7    |  |  |
| 8    | 2016 | 20.3397                      | 2010 | 5.1587%                | 2016    | 19.3550                      | 2016    | 12.4514%               | 8    |  |  |
| 9    | 2007 | 19.7297                      | 2000 | 4.7809%                | 1989    | 18.0892                      | 1988    | 12.1827%               | 9    |  |  |
| 10   | 2000 | 19.3475                      | 2001 | 3.6290%                | 1988    | 17.9535                      | 2009    | 9.7656%                | 10   |  |  |
| 11   | 2001 | 19.1654                      | 2005 | 3.5573%                | 2009    | 17.5111                      | 2012    | 8.9844%                | 11   |  |  |
| 12   | 2015 | 17.6858                      | 2014 | 3.2000%                | 2012    | 17.2451                      | 2013    | 8.6275%                | 12   |  |  |
| 13   | 2005 | 17.5407                      | 2007 | 3.2000%                | 2001    | 16.9526                      | 2001    | 8.0972%                | 13   |  |  |
| 14   | 2012 | 16.5922                      | 2012 | 3.1873%                | 2013    | 16.8674                      | 1999    | 7.6613%                | 14   |  |  |
| 15   | 1999 | 16.0560                      | 1999 | 1.9841%                | 1997    | 16.3335                      | 2002    | 6.9106%                | 15   |  |  |

Table 3. Cont'd

| Table | 3. Com | u                             |      |                       |   |   |
|-------|--------|-------------------------------|------|-----------------------|---|---|
|       |        | Sweden                        |      |                       |   |   |
|       | Geo    | ometric Standard<br>Deviation |      | entage of<br>eme Days |   |   |
| Rank  | Year   | GeoStdDev(%)                  | Year | L(%)                  |   |   |
| 1     | 2008   | 37.9923                       | 2008 | 21.0317%              |   |   |
| 2     | 2001   | 29.9827                       | 2000 | 15.9363%              |   |   |
| 3     | 2002   | 29.2078                       | 2002 | 14.0000%              |   | 2 |
| 4     | 2000   | 28.5168                       | 2001 | 12.8000%              |   |   |
| 5     | 1987   | 28.2888                       | 2009 | 11.5538%              |   |   |
| 6     | 2009   | 27.2778                       | 2011 | 10.6719%              |   |   |
| 7     | 2011   | 26.9015                       | 1998 | 10.0000%              | • |   |
| 8     | 1998   | 26.7977                       | 1987 | 8.0000%               |   |   |
| 9     | 1992   | 23.7326                       | 1992 | 7.1713%               |   |   |
| 10    | 2007   | 19.4590                       | 2007 | 5.2000%               |   |   |
| 11    | 1990   | 19.3971                       | 1990 | 4.8000%               |   |   |
| 12    | 2003   | 19.2338                       | 2003 | 4.4177%               | V |   |
| 13    | 2016   | 19.2001                       | 2006 | 4.3825%               |   |   |
| 14    | 1997   | 19.1660                       | 1997 | 4.0161%               |   |   |
| 15    | 2015   | 18.6994                       | 2016 | 3.9526%               |   |   |

Table 4. The top 15 year rankings of volatility as measured by standard deviation and by the percentage of extreme weeks for each of the nine European countries

|      |      | Austria                       |      |                       |      | Ве                            | lgium |                         |      |  |  |  |
|------|------|-------------------------------|------|-----------------------|------|-------------------------------|-------|-------------------------|------|--|--|--|
|      | Geor | metric Standard<br>Deviation  |      | entage of<br>ne Weeks |      | netric Standard<br>Deviation  |       | entage of<br>ne Weeks   | 2    |  |  |  |
| Rank | Year | GeoStdDev(%)                  | Year | L(%)                  | Year | GeoStdDev(%)                  | Year  | L(%)                    | Rank |  |  |  |
| 1    | 2008 | 51.7178                       | 2008 | 59.6154               | 2008 | 37.2575                       | 2008  | 63.4615                 | 1    |  |  |  |
| 2    | 2009 | 36.6474                       | 2009 | 57.6923               | 2009 | 24.4423                       | 2011  | 53.8462                 | 2    |  |  |  |
| 3    | 2011 | 29.6846                       | 1992 | 48.2759               | 2011 | 22.1039                       | 2009  | 51.9231                 | 3    |  |  |  |
| 4    | 2010 | 25.6182                       | 2010 | 45.2830               | 2001 | 21.4142                       | 1997  | 50.0000                 | 4    |  |  |  |
| 5    | 1998 | 23.8982                       | 1998 | 44.2308               | 1998 | 21.3581                       | 2002  | 46.1538                 | 5    |  |  |  |
| 6    | 1992 | 23.2436                       | 2011 | 38.4615               | 2002 | 20.7649                       | 1999  | 45.2830                 | 6    |  |  |  |
| 7    | 2006 | 21.5954                       | 2014 | 36.5385               | 2003 | 19.4470                       | 1998  | 44.2308                 | 7    |  |  |  |
| 8    | 2012 | 19.5731                       | 2012 | 34.6154               | 2015 | 17.9414                       | 2015  | 42.3077                 | 8    |  |  |  |
| 9    | 2016 | 19.5607                       | 1997 | 34.6154               | 2010 | 17.8058                       | 2010  | 41.5094                 | 9    |  |  |  |
| 10   | 2007 | 19.4641                       | 2015 | 32.6923               | 1990 | 17.6666                       | 2014  | 36.5385                 | 10   |  |  |  |
| 11   | 1999 | 19.4486                       | 1999 | 32.0755               | 1999 | 17.5854                       | 2013  | 36.5385                 | 11   |  |  |  |
| 12   | 1997 | 19.1372                       | 1993 | 32.0755               | 2016 | 17.4139                       | 2003  | 36.5385                 | 12   |  |  |  |
| 13   | 2014 | 19.0307                       | 2016 | 30.1887               | 2007 | 16.4739                       | 1990  | 36.5385                 | 13   |  |  |  |
| 14   | 2015 | 18.4312                       | 2007 | 28.8462               | 1997 | 16.3341                       | 2016  | 35.8491                 | 14   |  |  |  |
| 15   | 1993 | 18.1802                       | 2006 | 28.8462               | 2000 | 16.1972                       | 2007  | 34.6154                 | 15   |  |  |  |
|      |      | Denmark                       |      |                       |      | Finland                       |       |                         |      |  |  |  |
|      | Geo  | ometric Standard<br>Deviation |      | entage of<br>me Weeks | Geo  | ometric Standard<br>Deviation |       | centage of<br>eme Weeks |      |  |  |  |
| Rank | Year | GeoStdDev(%)                  | Year | L(%)                  | Year | GeoStdDev(%)                  | Year  | L(%)                    | Rank |  |  |  |
| 1    | 2008 | 40.6063                       | 2009 | 51.9231               | 2000 | 52.3659                       | 2000  | 67.3077                 | 1    |  |  |  |
| 2    | 2009 | 28.7925                       | 2008 | 46.1538               | 2001 | 48.5823                       | 2002  | 61.5385                 | 2    |  |  |  |
| 3    | 2001 | 23.9041                       | 1998 | 42.3077               | 2008 | 35.3267                       | 2001  | 61.5385                 | 3    |  |  |  |
| 4    | 2016 | 21.4325                       | 2000 | 40.3846               | 2002 | 34.4546                       | 2008  | 50.0000                 | 4    |  |  |  |
| 5    | 2011 | 21.2590                       | 1997 | 40.3846               | 1998 | 32.4487                       | 1999  | 49.0566                 | 5    |  |  |  |
| 6    | 2010 | 21.1865                       | 2015 | 36.5385               | 2011 | 29.8203                       | 2009  | 48.0769                 | 6    |  |  |  |
| 7    | 2002 | 20.6397                       | 2001 | 36.5385               | 2009 | 29.0908                       | 1998  | 44.2308                 | 7    |  |  |  |
| 8    | 2000 | 19.3637                       | 2002 | 34.6154               | 2003 | 28.0922                       | 2011  | 42.3077                 | 8    |  |  |  |
| 9    | 1998 | 19.2449                       | 2016 | 33.9623               | 1999 | 27.9954                       | 2003  | 42.3077                 | 9    |  |  |  |
|      | 1992 |                               |      | 32.6923               |      | 27.5150                       |       |                         | 10   |  |  |  |
| 10   |      | 19.2035                       | 2003 |                       | 1992 |                               | 1992  | 40.3846                 |      |  |  |  |
| 11   | 1997 | 18.3778                       | 1992 | 32.6923               | 1995 | 25.5737                       | 1993  | 37.7358                 | 11   |  |  |  |
| 12   | 2015 | 17.5312                       | 1999 | 32.0755               | 1993 | 24.5855                       | 1995  | 36.5385                 | 12   |  |  |  |
| 13   | 1999 | 16.9973                       | 2011 | 30.7692               | 2004 | 23.4496                       | 1991  | 34.6154                 | 13   |  |  |  |
| 14   | 1990 | 16.6178                       | 2010 | 30.1887               | 1997 | 21.7572                       | 1997  | 32.6923                 | 14   |  |  |  |
| 15   | 2007 | 16.6049                       | 1993 | 30.1887               | 2012 | 20.6029                       | 1994  | 28.8462                 | 15   |  |  |  |

Table 4. Cont'd

|      |      | Greece                       |      |                             | Ireland |                                 |        |                             |      |  |  |
|------|------|------------------------------|------|-----------------------------|---------|---------------------------------|--------|-----------------------------|------|--|--|
|      | Geo  | metric Standard<br>Deviation |      | entage of<br>me Weeks       | Geo     | metric Standard<br>Deviation    |        | entage of<br>me Weeks       |      |  |  |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                        | Year    | GeoStdDev(%)                    | Year   | L(%)                        | Rank |  |  |
| 1    | 1998 | 45.5930                      | 2009 | 57.6923                     | 2008    | 50.4654                         | 2008   | 69.2308                     | 1    |  |  |
| 2    | 2015 | 42.9724                      | 1999 | 56.6038                     | 1987    | 37.6552                         | 2009   | 67.3077                     | 2    |  |  |
| 3    | 2014 | 41.8967                      | 2011 | 51.9231                     | 2009    | 34.7781                         | 2007   | 51.9231                     | 3    |  |  |
| 4    | 2008 | 40.9340                      | 2014 | 50.0000                     | 1998    | 26.0643                         | 1987   | 50.0000                     | 4    |  |  |
| 5    | 1999 | 40.8248                      | 2015 | 48.9362                     | 2001    | 24.6354                         | 1998   | 42.3077                     | 5    |  |  |
| 6    | 2012 | 39.8754                      | 2013 | 48.0769                     | 2007    | 23.9698                         | 2001   | 40.3846                     | 6    |  |  |
| 7    | 2011 | 33.6441                      | 1998 | 48.0769                     | 2010    | 23.3425                         | 2010   | 39.6226                     | 7    |  |  |
| 8    | 2013 | 33.4140                      | 2012 | 46.1538                     | 2011    | 22.0351                         | 1986   | 38.4615                     | 8    |  |  |
| 9    | 2000 | 33.3201                      | 2010 | 45.2830                     | 2002    | 21.6112                         | 2014   | 36.5385                     | 9    |  |  |
| 10   | 2009 | 33.2355                      | 2008 | 44.2308                     | 1986    | 20.3187                         | 2011   | 36.5385                     | 10   |  |  |
| 11   | 2010 | 31.3972                      | 1997 | 42.3077                     | 2014    | 18.8292                         | 1994   | 36.5385                     | 11   |  |  |
| 12   | 2001 | 31.1299                      | 2000 | 34.6154                     | 1990    | 18.6988                         | 2015   | 34.6154                     | 12   |  |  |
| 13   | 1997 | 30.6134                      | 2001 | 32.6923                     | 2016    | 17.3470                         | 2002   | 34.6154                     | 13   |  |  |
| 14   | 2016 | 28.9728                      | 2016 | 32.0755                     | 2000    | 17.2497                         | 1990   | 32.6923                     | 14   |  |  |
| 15   | 1992 | 23.2622                      | 1992 | 32.0000                     | 1988    | 16.8934                         | 2000   | 30.7692                     | 15   |  |  |
|      |      | Norway                       |      |                             |         | Po                              | rtugal |                             |      |  |  |
|      | Geo  | metric Standard<br>Deviation |      | Percentage of Extreme Weeks |         | Geometric Standard<br>Deviation |        | Percentage of Extreme Weeks |      |  |  |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                        | Year    | GeoStdDev(%)                    | Year   | L(%)                        | Rank |  |  |
| 1    | 2008 | 45.8560                      | 2008 | 55.7692                     | 2008    | 33.2408                         | 1998   | 76.9231                     | 1    |  |  |
| 2    | 2009 | 29.1440                      | 2009 | 50.0000                     | 1998    | 31.7820                         | 2014   | 59.6154                     | 2    |  |  |
| 3    | 1998 | 28.1193                      | 1998 | 40.3846                     | 2014    | 24.7682                         | 2008   | 55.7692                     | 3    |  |  |
| 4    | 2001 | 23.5154                      | 2010 | 33.9623                     | 1988    | 23.6870                         | 2010   | 52.8302                     | 4    |  |  |
| 5    | 2011 | 22.9092                      | 2007 | 30.7692                     | 2010    | 22.1164                         | 2016   | 50.9434                     | 5    |  |  |
| 6    | 2006 | 21.1417                      | 2006 | 30.7692                     | 2011    | 21.2006                         | 2015   | 50.0000                     | 6    |  |  |
| 7    | 2010 | 20.6750                      | 2002 | 30.7692                     | 2015    | 20.5779                         | 1997   | 50.0000                     | 7    |  |  |
| 8    | 1999 | 18.6570                      | 2011 | 28.8462                     | 2016    | 19.3491                         | 2009   | 48.0769                     | 8    |  |  |
| 9    | 2002 | 18.5096                      | 1999 | 26.4151                     | 1997    | 19.1329                         | 2011   | 46.1538                     | 9    |  |  |
| 10   | 2016 | 18.1036                      | 2001 | 25.0000                     | 2001    | 18.8394                         | 1988   | 43.1373                     | 10   |  |  |
| 11   | 2007 | 17.8288                      | 2016 | 24.5283                     | 2000    | 18.7302                         | 2007   | 42.3077                     | 11   |  |  |
| 12   | 2005 | 17.3425                      | 2005 | 23.0769                     | 1989    | 18.6647                         | 2000   | 42.3077                     | 12   |  |  |
| 13   | 2014 | 17.0615                      | 2003 | 23.0769                     | 1999    | 18.0941                         | 1999   | 41.5094                     | 13   |  |  |
| 14   | 2000 | 16.7580                      | 2014 | 21.1538                     | 2009    | 17.9053                         | 2002   | 40.3846                     | 14   |  |  |
| 15   | 2003 | 15.8350                      | 1997 | 21.1538                     | 1990    | 17.8543                         | 2001   | 40.3846                     | 15   |  |  |

Table 4. Cont'd

|      |      | Sweden                       |      |                       |
|------|------|------------------------------|------|-----------------------|
|      | Geor | metric Standard<br>Deviation |      | entage of<br>me Weeks |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                  |
| 1    | 2008 | 38.0421                      | 2001 | 57.6923               |
| 2    | 1998 | 28.6410                      | 2000 | 55.7692               |
| 3    | 2000 | 27.3161                      | 2002 | 53.8462               |
| 4    | 2001 | 27.0393                      | 2008 | 48.0769               |
| 5    | 2002 | 26.8213                      | 2009 | 44.2308               |
| 6    | 2011 | 26.7513                      | 1998 | 44.2308               |
| 7    | 1990 | 26.5180                      | 2011 | 36.5385               |
| 8    | 1987 | 25.8891                      | 1990 | 34.6154               |
| 9    | 1992 | 25.7377                      | 1992 | 32.6923               |
| 10   | 2009 | 25.5469                      | 1991 | 32.6923               |
| 11   | 1991 | 18.6649                      | 1987 | 31.3725               |
| 12   | 2010 | 18.6029                      | 1999 | 30.1887               |
| 13   | 2007 | 18.5062                      | 2003 | 26.9231               |
| 14   | 1994 | 18.0107                      | 1994 | 26.9231               |
|      | 1997 | 17.9156                      | 1993 | 24.5283               |

Table 5. The top 15 year rankings of volatility as measured by standard deviation and by the percentage of extreme months for each of the nine European countries

|                |                      | Austria                       |                      |                        |                      | В                             | elgium               |                               |                |  |
|----------------|----------------------|-------------------------------|----------------------|------------------------|----------------------|-------------------------------|----------------------|-------------------------------|----------------|--|
|                | Geo                  | metric Standard<br>Deviation  |                      | entage of<br>me Months | Geor                 | metric Standard<br>Deviation  |                      | Percentage of Extreme Months  |                |  |
| Rank           | Year                 | GeoStdDev(%)                  | Year                 | L(%)                   | Year                 | GeoStdDev(%)                  | Year                 | L(%)                          | Rank           |  |
| 1              | 2008                 | 43.6612                       | 1993                 | 91.6667                | 2008                 | 31.4498                       | 1998                 | 91.6667                       | 1              |  |
| 2              | 2009                 | 29.4802                       | 2008                 | 83.3333                | 1998                 | 23.5242                       | 1997                 | 91.6667                       | 2              |  |
| 3              | 1998                 | 29.1508                       | 2005                 | 83.3333                | 2002                 | 21.6430                       | 2009                 | 83.3333                       | 3              |  |
| 4              | 1997                 | 23.1339                       | 2016                 | 75.0000                | 1990                 | 21.2586                       | 2005                 | 83.3333                       | 4              |  |
| 5              | 1993                 | 21.8066                       | 2015                 | 75.0000                | 2009                 | 21.0132                       | 2004                 | 83.3333                       | 5              |  |
| 6              | 2010                 | 21.5577                       | 1997                 | 75.0000                | 2003                 | 20.1805                       | 2015                 | 75.0000                       | 6              |  |
| 7              | 1992                 | 21.3587                       | 2012                 | 66.6667                | 2015                 | 19.1744                       | 2008                 | 75.0000                       | 7              |  |
| 8              | 1999                 | 20.8975                       | 2010                 | 66.6667                | 2000                 | 17.0880                       | 1989                 | 75.0000                       | 8              |  |
| 9              | 2015                 | 20.4569                       | 2009                 | 66.6667                | 1997                 | 16.5425                       | 2014                 | 66.6667                       | 9              |  |
| 10             | 2011                 | 20.3502                       | 2004                 | 66.6667                | 1991                 | 15.0907                       | 2012                 | 66.6667                       | 10             |  |
| 11             | 2012                 | 18.0167                       | 2002                 | 66.6667                | 1989                 | 13.9651                       | 2010                 | 66.6667                       | 11             |  |
| 12             | 2016                 | 17.9077                       | 1999                 | 66.6667                | 2010                 | 13.5704                       | 1993                 | 66.6667                       | 12             |  |
| 13             | 2001                 | 17.7594                       | 1998                 | 66.6667                | 2001                 | 13.3557                       | 1990                 | 66.6667                       | 13             |  |
| 14             | 2006                 | 17.4930                       | 1994                 | 66.6667                | 1992                 | 12.2344                       | 2011                 | 58.3333                       | 14             |  |
| 15             | 1996                 | 16.8506                       | 1992                 | 66.6667                | 1999                 | 12.0797                       | 2007                 | 58.3333                       | 15             |  |
|                |                      | Denmark                       |                      |                        |                      | F                             | inland               |                               |                |  |
|                | Geo                  | metric Standard<br>Deviation  |                      | entage of<br>ne Months |                      | metric Standard<br>Deviation  |                      | entage of<br>me Months        |                |  |
| Rank           | Year                 | GeoStdDev(%)                  | Year                 | L(%)                   | Year                 | GeoStdDev(%)                  | Year                 | L(%)                          | Rank           |  |
| 1              | 2008                 | 31.1409                       | 2016                 | 83.3333                | 2001                 | 58.8500                       | 2001                 | 100.0000                      | 1              |  |
| 2              | 2009                 | 24.3624                       | 2002                 | 83.3333                | 1992                 | 39.5677                       | 2004                 | 91.6667                       | 2              |  |
| 3              | 1998                 | 23.1493                       | 1997                 | 83.3333                | 2002                 | 35.0402                       | 2002                 | 91.6667                       | 3              |  |
| 4              | 2001                 | 22.9897                       | 1992                 | 83.3333                | 1999                 | 34.1264                       | 1998                 | 91.6667                       | 4              |  |
| 5              | 2002                 | 22.8876                       | 2009                 | 75.0000                | 1998                 | 33.2609                       | 1997                 | 83.3333                       | 5              |  |
| 6              | 2003                 | 21.2062                       | 1990                 | 75.0000                | 2009                 | 29.9307                       | 1994                 | 83.3333                       | 6              |  |
| 7              | 1990                 | 21.1136                       | 2015                 | 66.6667                | 1991                 | 28.2831                       | 1993                 | 83.3333                       | 7              |  |
| 8              | 1992                 | 20.2355                       | 2010                 | 66.6667                | 1995                 | 26.0440                       | 1987                 | 81.8182                       | 8              |  |
|                |                      |                               |                      |                        |                      | 25 1011                       | 2015                 | 75 0000                       | 9              |  |
| 9              | 2011                 | 19.0249                       | 2008                 | 66.6667                | 2004                 | 25.1911                       | 2015                 | 75.0000                       |                |  |
| 9<br>10        | 2011<br>1997         | 19.0249<br>18.5076            | 2008<br>2005         | 66.6667<br>66.6667     | 2004<br>1994         | 25.1911 24.9458               | 2013                 | 75.0000                       | 10             |  |
| 10             | 1997                 | 18.5076                       | 2005                 |                        | 1994                 | 24.9458                       | 2011                 | 75.0000                       | 10             |  |
| 10<br>11       | 1997<br>2015         | 18.5076<br>18.3247            | 2005<br>2003         | 66.6667<br>66.6667     | 1994<br>2003         | 24.9458<br>24.3057            | 2011<br>2009         | 75.0000<br>75.0000            | 10<br>11       |  |
| 10<br>11<br>12 | 1997<br>2015<br>1994 | 18.5076<br>18.3247<br>17.1399 | 2005<br>2003<br>2001 | 66.6667<br>66.6667     | 1994<br>2003<br>1997 | 24.9458<br>24.3057<br>24.2671 | 2011<br>2009<br>2000 | 75.0000<br>75.0000<br>75.0000 | 10<br>11<br>12 |  |
| 10<br>11       | 1997<br>2015         | 18.5076<br>18.3247            | 2005<br>2003         | 66.6667<br>66.6667     | 1994<br>2003         | 24.9458<br>24.3057            | 2011<br>2009         | 75.0000<br>75.0000            | 10<br>11       |  |

Table 5. Cont'd

|      |      | Greece                       |      |                        |      | Ireland                      |         |                        |      |  |  |
|------|------|------------------------------|------|------------------------|------|------------------------------|---------|------------------------|------|--|--|
|      | Geo  | metric Standard<br>Deviation |      | entage of<br>ne Months | Geor | metric Standard<br>Deviation |         | entage of<br>me Months |      |  |  |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                   | Year | GeoStdDev(%)                 | Year    | L(%)                   | Rank |  |  |
| 1    | 1998 | 56.6405                      | 2010 | 91.6667                | 1987 | 45.1398                      | 2008    | 100.0000               | 1    |  |  |
| 2    | 2012 | 43.5045                      | 2000 | 83.3333                | 2009 | 31.1825                      | 2001    | 91.6667                | 2    |  |  |
| 3    | 2015 | 40.4667                      | 1997 | 83.3333                | 2008 | 30.2065                      | 1992    | 91.6667                | 3    |  |  |
| 4    | 1997 | 37.4118                      | 2012 | 75.0000                | 1998 | 27.0171                      | 2005    | 83.3333                | 4    |  |  |
| 5    | 2009 | 37.1860                      | 2009 | 75.0000                | 2002 | 26.6785                      | 2002    | 83.3333                | 5    |  |  |
| 6    | 2008 | 35.9283                      | 2008 | 75.0000                | 1990 | 25.1560                      | 1997    | 83.3333                | 6    |  |  |
| 7    | 2013 | 35.1912                      | 2003 | 75.0000                | 2010 | 23.3673                      | 1990    | 83.3333                | 7    |  |  |
| 8    | 2011 | 34.6977                      | 2001 | 75.0000                | 1986 | 22.2488                      | 1987    | 83.3333                | 8    |  |  |
| 9    | 2000 | 33.8414                      | 1999 | 75.0000                | 1991 | 22.1082                      | 1985    | 83.3333                | 9    |  |  |
| 10   | 2010 | 32.2309                      | 2015 | 72.7273                | 2001 | 22.0702                      | 1983    | 81.8182                | 10   |  |  |
| 11   | 2001 | 31.0690                      | 2016 | 66.6667                | 1988 | 21.2369                      | 2009    | 75.0000                | 11   |  |  |
| 12   | 2016 | 30.6310                      | 2013 | 66.6667                | 2016 | 20.1764                      | 1994    | 75.0000                | 12   |  |  |
| 13   | 2003 | 27.3089                      | 1998 | 66.6667                | 1984 | 19.1826                      | 1986    | 75.0000                | 13   |  |  |
| 14   | 2014 | 26.9293                      | 2014 | 58.3333                | 2000 | 19.0909                      | 1984    | 75.0000                | 14   |  |  |
| 15   | 1993 | 23.9730                      | 2011 | 58.3333                | 1985 | 18.7222                      | 2016    | 66.6667                | 15   |  |  |
|      |      | Norway                       |      |                        |      | Po                           | ortugal |                        |      |  |  |
|      | Geo  | metric Standard<br>Deviation |      | entage of<br>ne Months | Geor | metric Standard<br>Deviation |         | entage of<br>me Months |      |  |  |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                   | Year | GeoStdDev(%)                 | Year    | L(%)                   | Rank |  |  |
| 1    | 2008 | 44.4863                      | 2005 | 91.6667                | 1998 | 38.1811                      | 1988    | 100.0000               | 1    |  |  |
| 2    | 1998 | 32.4518                      | 2008 | 83.3333                | 2008 | 29.8985                      | 1998    | 91.6667                | 2    |  |  |
| 3    | 2002 | 22.4656                      | 2007 | 83.3333                | 1989 | 25.1228                      | 1997    | 91.6667                | 3    |  |  |
| 4    | 2001 | 21.7071                      | 2003 | 83.3333                | 1988 | 24.5670                      | 1994    | 91.6667                | 4    |  |  |
| 5    | 2010 | 20.4839                      | 2002 | 83.3333                | 2002 | 23.0465                      | 2002    | 83.3333                | 5    |  |  |
| 6    | 2003 | 20.1908                      | 2001 | 83.3333                | 2000 | 21.9241                      | 1999    | 83.3333                | 6    |  |  |
| 7    | 2005 | 19.1972                      | 2010 | 75.0000                | 1997 | 19.6740                      | 1993    | 83.3333                | 7    |  |  |
| 8    | 2009 | 18.2212                      | 2009 | 75.0000                | 2015 | 19.2287                      | 2015    | 75.0000                | 8    |  |  |
| 9    | 1999 | 17.9293                      | 2004 | 66.6667                | 2010 | 19.1633                      | 2014    | 75.0000                | 9    |  |  |
| 10   | 2011 | 16.7016                      | 2000 | 66.6667                | 2014 | 18.4535                      | 2012    | 75.0000                | 10   |  |  |
| 11   | 2006 | 16.6438                      | 1998 | 66.6667                | 2001 | 17.8566                      | 2010    | 75.0000                | 11   |  |  |
| 12   | 2000 | 16.5380                      | 2006 | 58.3333                | 1994 | 17.1879                      | 2009    | 75.0000                | 12   |  |  |
| 13   | 2004 | 15.6969                      | 1999 | 58.3333                | 2009 | 17.1818                      | 2003    | 75.0000                | 13   |  |  |
| 14   | 2012 | 13.8440                      | 2015 | 50.0000                | 2007 | 16.3367                      | 1989    | 75.0000                | 14   |  |  |
| 15   | 1997 | 13.8072                      | 1997 | 50.0000                | 1999 | 16.2677                      | 2016    | 66.6667                | 15   |  |  |

Table 5. Cont'd

|      |      | Sweden                       |      |                        |
|------|------|------------------------------|------|------------------------|
|      | Geo  | metric Standard<br>Deviation |      | entage of<br>ne Months |
| Rank | Year | GeoStdDev(%)                 | Year | L(%)                   |
| 1    | 1987 | 37.0711                      | 1997 | 91.6667                |
| 2    | 1992 | 32.3222                      | 2002 | 83.3333                |
| 3    | 2002 | 31.7092                      | 1987 | 83.3333                |
| 4    | 2001 | 30.5038                      | 2015 | 75.0000                |
| 5    | 1990 | 29.5851                      | 2001 | 75.0000                |
| 6    | 1983 | 28.8175                      | 1989 | 75.0000                |
| 7    | 2008 | 28.7925                      | 1988 | 75.0000                |
| 8    | 1998 | 25.9940                      | 1983 | 75.0000                |
| 9    | 1994 | 21.7047                      | 1981 | 75.0000                |
| 10   | 1993 | 21.0375                      | 2005 | 66.6667                |
| 11   | 2000 | 20.9825                      | 2003 | 66.6667                |
| 12   | 1981 | 20.2546                      | 1998 | 66.6667                |
| 13   | 1997 | 19.9931                      | 1994 | 66.6667                |
| 14   | 1991 | 19.8585                      | 1993 | 66.6667                |
| 15   | 2009 | 19.6344                      | 1992 | 66.6667                |

**Table 6. Regression Results of Equity Mutual Fund Net Flows on Risk Measures for Small Eurozone Countries** 

|                        | Aı              | ustria (1996-20 | 12)           | Bel               | lgium (1995-20 | 013)      |
|------------------------|-----------------|-----------------|---------------|-------------------|----------------|-----------|
|                        | Model (1)       | Model (2)       | Model (3)     | Model (1)         | Model (2)      | Model (3) |
| Panel A: Annual Observ | vation with Fin | ancial Crisis D | ummy Variable | (Austria: n=17;   | Belgium: n=19  | 9)        |
| Constant               | 2.4426          | 7.7979          | 6.9923        | 2.4233            | 2.8781         | 0.3985    |
|                        | 0.77            | 3.98            | 3.88          | 0.63              | 0.65           | 0.10      |
| GeoMean(t-1)           | 9.5968          | 8.1307          | 26.7668       | 0.0000            | -6.0533        | -1.5173   |
|                        | 0.81            | 0.82            | 2.08          | -                 | -0.20          | -0.06     |
| GeoStdDev(t-1)         | 0.4081          |                 |               | -1.7749           |                |           |
|                        | 2.20            |                 |               | -0.08             |                |           |
| TotalExtr(t-1)         |                 | 0.1976          |               |                   | -0.0345        |           |
|                        |                 | 2.85            |               |                   | -0.23          |           |
| NegExtr(t-1)           |                 |                 | 0.7464        |                   |                | 1.1290    |
| 0 ( )                  |                 |                 | 2.65          |                   |                | 2.22      |
| PosExtr(t-1)           |                 |                 | -0.4502       |                   |                | -1.7044   |
| ,                      |                 |                 | -1.36         |                   |                | -2.38     |
| Time                   | -0.5968         | -0.6136         | -0.7059       | 0.3782            | 0.4107         | 0.5843    |
| 1,,,,,,                | -2.15           | -2.52           | -3.17         | 1.13              | 1.09           | 1.75      |
| Dummy Variable         | -9.7441         | -9.3226         | -10.7261      | -23.4073          | -23.4763       | -28.1261  |
| Dunny variable         | -2.43           | -2.55           | 0.00          | -3.24             | -3.14          | -4.16     |
| Adjusted R Square      | 0.3863          | 0.4860          | 0.0596        | 0.3307            | 0.3567         | 0.5162    |
|                        | Aı              | ustria (1996-20 | 12)           | Bel               | gium (1995-20  | 13)       |
|                        | Model (4)       | Model (5)       | Model (6)     | Model (4)         | Model (5)      | Model (6) |
| Panel B: Annual Obser  |                 | Financial Cris  |               | stria: n=17; Belg | gium: n=19)    |           |
|                        | 3.1549          | 7.9911          | 7.4769        | 1.2937            | 1.4899         | 0.1372    |
| Constant               | 0.85            | 3.42            | 3.13          | 0.27              | 0.27           | 0.02      |
|                        | 20.5567         | 19.7462         | 33.2442       | 0.0000            | 38.4154        | 44.9684   |
| GeoMean(t-1)           | 1.60            | 1.87            | 1.96          | -                 | 1.13           | 1.27      |
|                        | 0.3679          |                 |               | 40.2214           |                |           |
| GeoStdDev(t-1)         | 1.69            |                 |               | 1.65              |                |           |
|                        |                 | 0.1914          |               |                   | -0.0150        |           |
| TotalExtr(t-1)         |                 | 2.31            |               |                   | -0.08          |           |
|                        |                 |                 | 0.5542        |                   |                | 0.5583    |
| NegExtr(t-1)           |                 |                 | 1.51          |                   |                | 0.78      |
| *                      |                 |                 | -0.2382       |                   |                | -0.8332   |
| PosExtr(t-1)           |                 |                 | -0.55         |                   |                | -0.83     |
|                        | -0.7288         | -0.7640         | -0.8402       | 0.1343            | 0.1481         | 0.2078    |
| Time                   | -2.28           | -2.71           | -2.89         | 0.32              | 0.32           | 0.44      |
| A directed DAG         |                 |                 |               |                   |                |           |
| Adjusted R^2           | 0.1541          | 0.2681          | 0.2698        | -0.0235           | -0.0246        | -0.0467   |

| Table 6. Cont'd        | De              | nmark (2003-    | 2013)            | Fin               | Finland (1995-2012) |           |  |  |  |
|------------------------|-----------------|-----------------|------------------|-------------------|---------------------|-----------|--|--|--|
|                        | Model (1)       | Model (2)       | Model (3)        | Model (1)         | Model (2)           | Model (3) |  |  |  |
| Panel A: Annual Obser  | vation with Fin | ancial Crisis I | Dummy Variable   | (Denmark: n=1     | 1; Finland: n=      | =19)      |  |  |  |
| Constant               | -1.9165         | -1.3322         | -1.9737          | 3.8327            | 2.4267              | 3.5382    |  |  |  |
| Constant               | -1.03           | -1.32           | -1.58            | 0.75              | 0.69                | 0.90      |  |  |  |
| CooMogn(t, 1)          | -2.0470         | -0.7117         | 5.0563           | -9.5690           | -9.3994             | -17.6914  |  |  |  |
| GeoMean(t-1)           | -0.34           | -0.12           | 0.56             | -0.89             | -0.88               | -1.09     |  |  |  |
| GeoStdDev(t-1)         | 0.0597          |                 |                  | -1.2308           |                     |           |  |  |  |
| GeosiaDev(t-1)         | 0.64            |                 |                  | -0.61             |                     |           |  |  |  |
| TotalEntu(4 1)         |                 | 0.0407          |                  |                   | -0.0322             |           |  |  |  |
| TotalExtr(t-1)         |                 | 0.91            |                  |                   | -0.58               |           |  |  |  |
| No Fretu(t 1)          |                 |                 | 0.2428           |                   |                     | -0.3713   |  |  |  |
| NegExtr(t-1)           |                 |                 | 1.05             |                   | 7                   | -0.75     |  |  |  |
| PosExtr(t-1)           |                 |                 | -0.1350          |                   |                     | 0.2691    |  |  |  |
| I OSLAII(t I)          |                 |                 | -0.67            |                   |                     | 0.61      |  |  |  |
| Time                   | 0.5586          | 0.5399          | 0.5130           | 0.4734            | 0.4853              | 0.4990    |  |  |  |
|                        | 3.98            | 3.88            | 3.54             | 1.69              | 1.74                | 1.75      |  |  |  |
| Dummy Variable         | -1.0069         | -1.0615         | -0.9845          | -7.3596           | -7.5456             | -8.2332   |  |  |  |
| zaminy , an talete     | -0.77           | -0.84           | -0.76            | -1.61             | -1.63               | -1.70     |  |  |  |
| Adjusted R Square      | 0.6288          | 0.6509          | 0.6385           | 0.0880            | 0.0857              | 0.0474    |  |  |  |
|                        | Denr            | nark (2003-20   | 013)             | Fin               | land (1995-20       | 012)      |  |  |  |
|                        | Model (4)       | Model (5)       | Model (6)        | Model (4)         | Model (5)           | Model (6) |  |  |  |
| Panel B: Annual Observ | ation without F | inancial Crisis | s Variable (Denm | nark: n=11, Finla | and: n=18)          |           |  |  |  |
| C                      | -1.8887         | -1.4059         | -2.0784          | 3.3158            | 2.0470              | 2.5779    |  |  |  |
| Constant               | -1.04           | -1.43           | -1.73            | 0.62              | 0.55                | 0.62      |  |  |  |
|                        | -0.5161         | 0.8002          | 6.7826           | -5.1050           | -4.3124             | -8.1711   |  |  |  |
| GeoMean(t-1)           | -0.09           | 0.14            | 0.81             | -0.47             | -0.40               | -0.50     |  |  |  |
|                        | 0.0510          |                 |                  | -0.8899           |                     |           |  |  |  |
| GeoStdDev(t-1)         | 0.57            |                 |                  | -0.42             |                     |           |  |  |  |
|                        |                 | 0.0355          |                  |                   | -0.0161             |           |  |  |  |
| TotalExtr(t-1)         |                 | 0.82            |                  |                   | -0.28               |           |  |  |  |
|                        |                 |                 | 0.2496           |                   |                     | -0.1825   |  |  |  |
| NegExtr(t-1)           |                 |                 | 1.12             |                   |                     | -0.35     |  |  |  |
| <b>&gt;</b>            |                 |                 | -0.1499          |                   |                     | 0.1332    |  |  |  |
| PosExtr(t-1)           |                 |                 | -0.77            |                   |                     | 0.29      |  |  |  |
|                        | 0.5475          | 0.5297          | 0.5020           | 0.3662            | 0.3778              | 0.3797    |  |  |  |
| Time                   | 4.04            | 3.91            | 3.61             | 1.27              | 1.32                | 1.28      |  |  |  |
| Adjusted R^2           | 0.6502          | 0.6658          | 0.6638           | -0.0149           | -0.0220             | -0.0917   |  |  |  |

| Table 6. Cont'd        |                  | Greece (2003-   | -2013)            | Ire                | land (1995-20 | 012)           |
|------------------------|------------------|-----------------|-------------------|--------------------|---------------|----------------|
|                        | Model (1)        | Model (2)       | Model (3)         | Model (1)          | Model (2)     | Model (3)      |
| Panel A: Annual Obs    | ervation with F  | inancial Crisis | Dummy Variabl     | e (Greece: n=19,   | Ireland: n=1  | 1)             |
| Constant               | 0.2781           | 0.0801          | 0.0839            | 7.1932             | 5.6588        | 10.3754        |
| Constant               | 0.51             | 0.21            | 0.21              | 0.97               | 1.24          | 0.84           |
| GeoMean(t-1)           | -0.4488          | -0.3883         | -0.3515           | 22.5714            | 27.4193       | -11.3329       |
| Geometin(t-1)          | -0.42            | -0.37           | -0.29             | 0.69               | 0.93          | -0.12          |
| GeoStdDev(t-1)         | -0.0110          |                 |                   | -1.8291            |               |                |
| Geosiabev(i 1)         | -0.59            |                 |                   | -0.27              |               |                |
| TotalExtr(t-1)         |                  | -0.0057         |                   |                    | -0.0120       |                |
| 1011112111(11)         |                  | -0.42           |                   |                    | -0.08         |                |
| NegExtr(t-1)           |                  |                 | -0.0006           |                    |               | -0.7822        |
|                        |                  |                 | -0.01             |                    | 7             | -0.42          |
| PosExtr(t-1)           |                  |                 | -0.0113<br>-0.14  |                    |               | 0.6076<br>0.41 |
|                        | 0.0110           | 0.0097          | 0.0096            | 0.0117             | -0.0972       | -0.0750        |
| Time                   | 0.31             | 0.0077          | 0.26              | 0.0117             | -0.12         | -0.0730        |
|                        | -0.4872          | -0.4651         | -0.4999           | 25.1384            | 25.4558       | 24.9086        |
| Dummy Variable         | -0.79            | -0.75           | -0.61             | 2.82               | 2.87          | 2.58           |
| Adjusted R Square      | -0.2057          | -0.2200         | -0.3134           | 0.4184             | 0.4120        | 0.3181         |
|                        | Gree             | ece (2003-201)  | 3)                | Irelan             | d (1995-2012  | 2)             |
|                        | Model (4)        | Model (5)       | Model (6)         | Model (4)          | Model (5)     | Model (6)      |
| Panel B: Annual Observ | vation without F | Financial Crisi | s Variable (Greed | ce: n=19, Ireland: | n=11)         |                |
|                        | 0.2541           | 0.0804          | 0.0633            | 10.8503            | 6.9073        | 15.5529        |
| Constant               | 0.47             | 0.21            | 0.16              | 1.05               | 1.07          | 0.92           |
|                        | -0.2048          | -0.1601         | -0.4038           |                    | -26.9905      | -96.2743       |
| GeoMean(t-1)           | -0.20            | -0.16           | -0.34             | -1.03              | -0.84         | -0.75          |
|                        | -0.0098          |                 |                   | -4.8519            |               | *****          |
| GeoStdDev(t-1)         | -0.53            |                 |                   | -0.51              |               |                |
|                        | -0.55            | 0.0054          |                   | -0.51              | 0.0470        |                |
| TotalExtr(t-1)         |                  | -0.0054         |                   |                    | -0.0479       |                |
|                        |                  | -0.40           |                   |                    | -0.23         |                |
| NegExtr(t-1)           |                  |                 | -0.0289           |                    |               | -1.4663        |
| 8 ( )                  |                  |                 | -0.49             |                    |               | -0.57          |
| PosExtr(t-1)           |                  |                 | 0.0195            |                    |               | 1.0958         |
| I USLAII(I-I)          |                  |                 | 0.31              |                    |               | 0.53           |
| <b>T</b> :             | 0.0050           | 0.0044          | 0.0068            | 0.6344             | 0.4075        | 0.4284         |
| Time                   | 0.15             | 0.12            | 0.19              | 0.54               | 0.36          | 0.36           |
| Adjusted R^2           | -0.1757          | -0.1849         | -0.2548           | -0.1613            | -0.1959       | -0.3268        |

| Table 6. Cont'd       | N                 | orway (1997-    | 2013)          | Por              | tugal (1995-2  | 2013)     |
|-----------------------|-------------------|-----------------|----------------|------------------|----------------|-----------|
|                       | Model (1)         | Model (2)       | Model (3)      | Model (1)        | Model (2)      | Model (3) |
| Panel A: Annual Obse  | ervation with Fin | ancial Crisis   | Dummy Variable | e (Norway: n=17  | ; Portugal: n= | =19)      |
| Constant              | 0.6241            | 0.2738          | 0.4143         | 4.2220           | 4.3452         | 4.1639    |
| Constant              | 0.76              | 0.59            | 0.63           | 1.28             | 1.79           | 1.64      |
| GeoMean(t-1)          | -0.5150           | -0.1188         | -0.9350        | -19.0232         | -19.4260       | -13.6505  |
| Geomeun(t-1)          | -0.22             | -0.05           | -0.27          | -1.58            | -1.58          | -0.74     |
| GeoStdDev(t-1)        | -0.3677           |                 |                | 0.0066           |                |           |
| GeosiaDev(i 1)        | -0.57             |                 |                | 0.04             |                |           |
| TotalExtr(t-1)        |                   | -0.0065         |                |                  | -0.0025        |           |
| TotalExit(t 1)        |                   | -0.33           |                |                  | -0.04          |           |
| NegExtr(t-1)          |                   |                 | -0.0335        |                  |                | 0.1693    |
| Tregum(t 1)           |                   |                 | -0.37          |                  |                | 0.42      |
| PosExtr(t-1)          |                   |                 | 0.0274         |                  |                | -0.1721   |
| 1 002 (1 1)           |                   | 0.0400          | 0.25           |                  |                | -0.43     |
| Time                  | 0.0244            | 0.0190          | 0.0173         | -0.2368          | -0.2334        | -0.2657   |
|                       | 0.49              | 0.38            | 0.33           | -1.18            | -1.16          | -1.21     |
| Dummy Variable        | -1.3454           | -1.4294         | -1.4458        | -9.5473          | -9.5090        | -10.5338  |
| J                     | -1.70             | -1.84           | -1.78          | -2.56            | -2.57          | -2.35     |
| Adjusted R Square     | 0.0908            | 0.0751          | -0.0002        | 0.2496           | 0.2496         | 0.2033    |
|                       | Norw              | ay (1997-201    | 3)             | Portu            | ıgal (1995-20  | 13)       |
|                       | Model (4)         | Model (5)       | Model (6)      | Model (4)        | Model (5)      | Model (6) |
| Panel B: Annual Obser | vation without F  | inancial Crisis | Variable (Norw | ay: n=17, Portug | gal: n=19)     |           |
| Constant              | 0.9339            | 0.2795          | 0.3672         | 5.1340           | 4.3824         | 4.7160    |
|                       | 1.09              | 0.55            | 0.51           | 1.33             | 1.54           | 1.63      |
| GeoMean(t-1)          | 0.2369            | 1.1121          | 0.6116         | -11.6650         | -11.0451       | -23.6160  |
|                       | 0.10              | 0.49            | 0.17           | -0.85            | -0.79          | -1.14     |
| GeoStdDev(t-1)        | -0.6878           |                 |                | -0.0786          | ****           |           |
| GeosiaDev(i 1)        | -1.03             |                 |                | -0.37            |                |           |
| TotalExtr(t-1)        | 1.03              | -0.0128         |                | 0.57             | -0.0207        |           |
| TotalExtr(t 1)        |                   | -0.62           |                |                  | -0.26          |           |
|                       |                   | -0.02           | 0.0207         |                  | -0.20          | 0.2402    |
| NegExtr(t-1)          |                   |                 | -0.0297        |                  |                | -0.3403   |
|                       |                   |                 | -0.31          |                  |                | -0.87     |
| PosExtr(t-1)          |                   |                 | 0.0083         |                  |                | 0.3022    |
|                       |                   |                 | 0.07           |                  |                | 0.76      |
| Time                  | 0.0167            | 0.0051          | 0.0040         | -0.3115          | -0.3185        | -0.2403   |
|                       | 0.32              | 0.10            | 0.07           | -1.34            | -1.37          | -0.95     |
|                       | 0.32              | 0.10            | 0.07           | 1.51             | 1.57           | 0.75      |

| Table 6. Cont'd            | S                 | weden (1995-2013    | )              |
|----------------------------|-------------------|---------------------|----------------|
| •                          | Model (1)         | Model (2)           | Model (3)      |
| Panel A: An                | nual Observation  | (Sweden: n=19)      |                |
| C                          | -5.6016           | -1.3133             | 0.2287         |
| Constant                   | -0.60             | -0.25               | 0.04           |
|                            | -17.1531          | -16.9401            | -25.2051       |
| GeoMean(t-1)               | -0.62             | -0.59               | -0.83          |
|                            | 0.3240            |                     |                |
| GeoStdDev(t-1)             | 0.81              |                     |                |
|                            |                   | 0.1506              |                |
| TotalExtr(t-1)             |                   | 0.76                |                |
|                            |                   |                     | -0.5469        |
| NegExtr(t-1)               |                   |                     | -0.71          |
|                            |                   |                     | 0.8997         |
| PosExtr(t-1)               |                   |                     | 1.10           |
| T.                         | 0.6340            | 0.6420              | 0.6337         |
| Time                       | 1.70              | 1.72                | 1.69           |
| D W 11                     | -11.8822          | -11.9234            | -9.4073        |
| Dummy Variable             | -1.63             | -1.63               | -1.20          |
| Adjusted R^2               | 0.1623            | 0.1586              | 0.1518         |
|                            | Model (4)         | Model (5)           | Model (6)      |
| anel B: Annual Observation | without Financial | Crisis Variable (Sv | veden: n=19)   |
| Constant                   | -6.4102           | -1.8243             | 0.5465         |
|                            | -0.65             | -0.33               | 0.10           |
| GeoMean(t-1)               | -1.0663           | -0.9150             | -17.6518       |
|                            | -0.04             | -0.03               | -0.59          |
| GeoStdDev(t-1)             | 0.3450            |                     |                |
|                            | 0.81              |                     |                |
| TotalExtr(t-1)             |                   | 0.1591              |                |
|                            |                   | 0.77                |                |
| NegExtr(t-1)               |                   |                     | -0.8457        |
|                            |                   |                     | -1.15          |
| PosExtr(t-1)               |                   |                     | 1.2330         |
| <i>T</i> :                 | 0.4064            | 0.5040              | 1.57           |
| Time                       | 0.4964            | 0.5049              | 0.5346         |
| Adjusted R^2               | 1.30<br>0.0700    | 1.32<br>0.0655      | 1.44<br>0.1245 |
| Aujusieu N. 2              | 0.0700            | 0.0055              | 0.1243         |

Table 7.

Panel A: Pooled regression results of equity mutual fund net flows on risk measures, with no country fixed effect controlled. The countries examined are separated into two groups, individualism and collectivism, based on Hofstede's culture dimension score of individualism vs. collectivism.

|                               | (1)                    | (2)                     | (3)                     | (4)                    | (5)                  | (6)                     | (7)                    | (8)                     | (9)                     |
|-------------------------------|------------------------|-------------------------|-------------------------|------------------------|----------------------|-------------------------|------------------------|-------------------------|-------------------------|
| VARIABLES                     | Model 1'               | Model 2'                | Model 3'                | Model 4'               | Model 5'             | Model 6'                | Model 7'               | Model 8'                | Model 9'                |
| Geometric Mean (t-1)          | -9.045**               | -9.740**                | -9.053**                | -8.035                 | -8.224*              | -1.432                  | -6.569                 | -7.738                  | -5.112                  |
| (° 1)                         | (4.157)                | (4.025)                 | (3.909)                 | (5.072)                | (4.859)              | (4.079)                 | (5.242)                | (4.963)                 | (4.874)                 |
| Geo. Std. Deviation (t-1)     | 0.00983                | 0.00239                 | -0.0907                 | (= : = : = )           | (11327)              | (110.12)                |                        | (11, 22)                | (110.1)                 |
| , ,                           | (0.0561)               | (0.0573)                | (0.0697)                |                        |                      |                         |                        |                         |                         |
| Individualism                 | ,                      | 4.196***                | ,                       |                        | 4.647***             |                         |                        | 4.082***                |                         |
|                               |                        | (1.456)                 |                         |                        | (1.414)              |                         |                        | (1.503)                 |                         |
| ndividualism*Geo StdDev (t-1) |                        |                         | 0.163***                |                        |                      |                         |                        |                         |                         |
|                               |                        |                         | (0.0553)                |                        |                      |                         |                        |                         |                         |
| Total Extreme Value (t-1)     |                        |                         |                         | -0.0632                | -0.0780*             | -0.112**                |                        |                         |                         |
|                               |                        |                         |                         | (0.0435)               | (0.0418)             | (0.0511)                |                        |                         |                         |
| ndividualism*Total Extr (t-1) |                        |                         |                         |                        |                      | 0.112***                |                        |                         |                         |
|                               |                        |                         |                         |                        |                      | (0.0399)                |                        |                         |                         |
| Negative Extreme Value (t-1)  |                        |                         |                         |                        |                      |                         | 0.0608                 | 0.0580                  | 0.105                   |
|                               |                        |                         |                         |                        |                      |                         | (0.127)                | (0.123)                 | (0.163)                 |
| Positive Extreme Value (t-1)  |                        |                         |                         |                        |                      |                         | 0.00169                | -0.0250                 | -0.220                  |
|                               |                        |                         |                         |                        |                      |                         | (0.134)                | (0.133)                 | (0.205)                 |
| ndividualism*Neg Extr (t-1)   |                        |                         |                         |                        |                      |                         |                        |                         | 0.0157                  |
|                               |                        |                         |                         |                        |                      |                         |                        |                         | (0.217)                 |
| Individualism*Pos Extr (t-1)  |                        |                         |                         |                        |                      |                         |                        |                         | 0.221                   |
| CDD (4.1)                     | 2.6005                 | 4.24 - 05               | 2.10.05                 | 1.00 - 05              | 5 0C 05**            | 1.6005                  | 2.52.05                | 4.22 - 05               | (0.255)                 |
| GDP (t-1)                     | 2.60e-05<br>(2.18e-05) | -4.34e-05<br>(2.85e-05) | -3.10e-05<br>(2.61e-05) | 1.99e-05<br>(2.20e-05) | -5.86e-05**          | -1.60e-05<br>(2.40e-05) | 2.52e-05<br>(2.31e-05) | -4.33e-05<br>(3.09e-05) | -7.64e-06<br>(2.69e-05) |
| Crisis                        | (2.18e-03)<br>-5.446*  | -5.240                  | -5.334*                 | -3.034                 | (2.87e-05)<br>-2.269 | -1.459                  | -5.691*                | -5.460*                 | -5.765*                 |
| C11818                        | (3.145)                | (3.186)                 | (3.146)                 | (2.726)                | (2.797)              | (2.689)                 | (3.119)                | (3.180)                 | (3.182)                 |
| Constant                      | 2.888*                 | 3.486**                 | 5.336***                | 4.296***               | 5.065***             | 5.078***                | (3.119)                | 3.142***                | 3.860***                |
| Constant                      | (1.608)                | (1.600)                 | (1.850)                 | (1.274)                | (1.193)              | (1.344)                 | (1.139)                | (1.112)                 | (1.296)                 |
| Fixed Effect                  | (1.008)<br>No          | (1.000)<br>No           | (1.830)<br>No           | No                     | (1.193)<br>No        | (1.344)<br>No           | (1.139)<br>No          | (1.112)<br>No           | (1.290)<br>No           |
| Inca Effect                   | 140                    | 140                     | 110                     | 110                    | 110                  | 110                     | 110                    | 110                     | 110                     |
| Observations                  | 141                    | 141                     | 141                     | 141                    | 141                  | 141                     | 141                    | 141                     | 141                     |
| R-squared                     | 0.058                  | 0.111                   | 0.108                   | 0.080                  | 0.143                | 0.144                   | 0.065                  | 0.113                   | 0.095                   |

Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Panel B: Pooled regression results of equity mutual fund net flows on risk measures, with country fixed effect controlled.

| VARIABLES                           | (1)<br>Model 1'        | (2)<br>Model 2'          | (3)<br>Model 3'          | (4)<br>Model 4'        | (5)<br>Model 5'         | (6)<br>Model 6'         | (7)<br>Model 7'        | (8)<br>Model 8'         | (9)<br>Model 9'         |
|-------------------------------------|------------------------|--------------------------|--------------------------|------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|
| Geometric Mean (t-1)                | -8.278<br>(6.087)      | -9.594<br>(5.644)        | -10.10*<br>(5.793)       | -8.839<br>(6.681)      | -9.429<br>(6.512)       | -7.362<br>(6.883)       | -9.733<br>(7.284)      | -10.79<br>(7.062)       | -8.674<br>(6.795)       |
| Geo. Std. Deviation (t-1)           | 0.0165<br>(0.0581)     | -0.00314<br>(0.0604)     | -0.105<br>(0.0782)       | (0.001)                | (0.312)                 | (0.003)                 | (7.204)                | (7.002)                 | (0.173)                 |
| Individualism                       | (                      | 4.396***<br>(1.278)      | (33333)                  |                        | 4.446***<br>(1.333)     |                         |                        | 4.258***<br>(1.385)     |                         |
| Individualism*Geo StdDev (t-1)      |                        | ` ,                      | 0.182***<br>(0.0450)     |                        | , ,                     |                         |                        | , ,                     |                         |
| Total Extreme Value (t-1)           |                        |                          | ,                        | 0.0197<br>(0.0366)     | -0.00766<br>(0.0395)    | -0.0411<br>(0.0432)     | >                      |                         |                         |
| Individualism*Extreme Measure (t-1) |                        |                          |                          | (*******)              | (,                      | 0.103*** (0.0207)       |                        |                         |                         |
| Negative Extreme Value (t-1)        |                        |                          |                          |                        | 46                      |                         | -0.0477<br>(0.151)     | -0.0631<br>(0.114)      | -0.0514<br>(0.0873)     |
| Positive Extreme Value (t-1)        |                        |                          |                          |                        |                         |                         | 0.142<br>(0.174)       | 0.0952<br>(0.136)       | -0.0620<br>(0.191)      |
| Individualism*Neg Extr (t-1)        |                        |                          |                          |                        | 7                       |                         | (******)               | (31223)                 | 0.106<br>(0.129)        |
| Individualism*Pos Extr (t-1)        |                        |                          |                          |                        |                         |                         |                        |                         | 0.134<br>(0.218)        |
| GDP (t-1)                           | 1.66e-05<br>(1.93e-05) | -5.95e-05*<br>(3.20e-05) | -5.02e-05*<br>(2.61e-05) | 1.86e-05<br>(2.11e-05) | -6.11e-05<br>(3.67e-05) | -1.41e-05<br>(2.40e-05) | 2.45e-05<br>(2.18e-05) | -5.22e-05<br>(3.66e-05) | -1.77e-05<br>(2.49e-05) |
| Crisis = $o$ ,                      | -                      | -                        | -                        | (2.110 03)             | -                       | -                       | -                      | -                       | -                       |
| Constant                            | 2.455                  | 3.524*                   | 5.595**                  | 2.342<br>(1.369)       | 3.646**                 | 3.630**                 | 1.858                  | 3.177**                 | 3.902**                 |
| Fixed Effect                        | (1.763)<br>Yes         | (1.962)<br>Yes           | (2.204)<br>Yes           | (1.369)<br>Yes         | (1.617)<br>Yes          | (1.618)<br>Yes          | (1.159)<br>Yes         | (1.416)<br>Yes          | (1.539)<br>Yes          |
| Observations                        | 141                    | 141                      | 141                      | 141                    | 141                     | 141                     | 141                    | 141                     | 141                     |
| R-squared<br>Number of year         | 0.011<br>18            | 0.084<br>18              | 0.088<br>18              | 0.012<br>18            | 0.085<br>18             | 0.065<br>18             | 0.021<br>18            | 0.087<br>18             | 0.066<br>18             |

Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Table 8. Simultaneous Regression Results (2 Groups: Individualism vs Collectivism), 2SLS Estimates

|                                 | Mode                    | el (2')                 | Mod                     | el (3')                 | Mod                    | el (4')                 | Mode                    | el (5')                  | Mod                     | el (6')                 |
|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|
| VARIABLES                       | Net Flow                | Geo.StDev               | Net Flow                | Geo.StDev               | Net Flow               | Total Extr.             | Net Flow                | Total Extr.              | Net Flow                | Total Extr.             |
| Geometric Mean (t-1)            | -2.872<br>(5.514)       | 8.552<br>(5.950)        | -2.405<br>(5.513)       | 8.599<br>(5.946)        | -2.158<br>(5.419)      | 15.76<br>(11.63)        | -3.657<br>(5.299)       | 16.06<br>(11.52)         | -2.196<br>(5.335)       | 16.05<br>(11.60)        |
| Geo. StdDev (t-1)               | 0.212** (0.0851)        | , ,                     | 0.125<br>(0.0951)       | ` ,                     | , ,                    | , ,                     |                         |                          | ,                       | ` ,                     |
| Individualism                   | 4.012*** (1.505)        | -0.571<br>(1.881)       | , ,                     |                         |                        |                         | 3.555**<br>(1.497)      | 4.321<br>(3.642)         |                         |                         |
| Net Flow(t-1)                   |                         | 0.230**<br>(0.115)      |                         | 0.219*<br>(0.114)       |                        | 0.539**<br>(0.224)      | 4                       | 0.461** (0.223)          |                         | 0.509**<br>(0.219)      |
| Individualism*Geo StdDev (t-1)  |                         |                         | 0.143**<br>(0.0559)     |                         |                        |                         |                         |                          |                         |                         |
| Total Extr. (t-1)               |                         |                         |                         |                         | 0.106***<br>(0.0372)   | C                       | 0.0896** (0.0365)       |                          | 0.0313<br>(0.0495)      |                         |
| Individualism*Total Extr. (t-1) |                         |                         |                         |                         |                        |                         |                         |                          | 0.101**<br>(0.0451)     |                         |
| GDP (t-1)                       | -4.46e-05<br>(3.96e-05) | -1.97e-05<br>(4.87e-05) | -2.82e-05<br>(3.63e-05) | -2.89e-05<br>(3.78e-05) | 2.78e-05<br>(3.10e-05) | -0.000109<br>(7.39e-05) | -3.13e-05<br>(3.91e-05) | -0.000180*<br>(9.44e-05) | -1.48e-06<br>(3.32e-05) | -0.000109<br>(7.37e-05) |
| Crisis                          | -5.773***<br>(1.949)    | 17.60***<br>(2.404)     | -5.857***<br>(1.948)    | 17.59***<br>(2.403)     | -6.036***<br>(1.962)   | 39.42*** (4.699)        | -5.782***<br>(1.913)    | 39.37***<br>(4.655)      | -5.849***<br>(1.936)    | 39.33***<br>(4.689)     |
| Constant                        | -0.944<br>(2.331)       | 19.88***<br>(1.854)     | 0.758<br>(2.529)        | 0.219*<br>(0.114)       | 0.887<br>(1.679)       | (3.590)                 | 1.603<br>(1.657)        | 18.35***<br>(3.589)      | 0.0313<br>(0.0495)      | 17.79***<br>(3.582)     |
| Var(e.netflow)                  | (5.8                    | 3***<br>351)            | (5.                     | 81***<br>836)           | (5.                    | 20***<br>607)           | (5.3                    | 32***<br>304)            | (5.                     | )2***<br>450)           |
| Var(e.risk)                     |                         | 2***<br>188)            |                         | 1***<br>162)            |                        | .6***<br>.250)          |                         | .0***<br>.590)           |                         | .8***<br>.02)           |
| Covariance                      |                         | 94***<br>760)           |                         | 35***<br>778)           |                        | 22***<br>.910)          |                         | 31***<br>340)            |                         | 53)                     |
| Observations                    | 141                     | 141                     | 141                     | 141                     | 141                    | 141                     | 141                     | 141                      | 141                     | 141                     |

Standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Appendix A: Hofstede's Cultural Dimension Score (Individualism vs Collectivism)

| Rank | Country        | Score<br>(Individualism) | For our study Dummy = individualism (1) vs. Collectivism (0) |
|------|----------------|--------------------------|--------------------------------------------------------------|
| 1    | United States  | 91                       | N/A                                                          |
| 2    | United Kingdom | 89                       | N/A                                                          |
| 3    | Canada         | 80                       | N/A                                                          |
| 3    | Netherland     | 80                       | N/A                                                          |
| 5    | Italy          | 76                       | N/A                                                          |
| 6    | Belgium        | 75                       | Individualism                                                |
| 7    | Denmark        | 74                       | Individualism                                                |
| 8    | France         | 71                       | N/A                                                          |
| 8    | Sweden         | 71                       | Individualism                                                |
| 10   | Ireland        | 70                       | Individualism                                                |
| 11   | Norway         | 69                       | Individualism                                                |
| 12   | Switzerland    | 68                       | N/A                                                          |
| 13   | Germany        | 67                       | N/A                                                          |
| 14   | Finland        | 63                       | Collectivism                                                 |
| 15   | Austria        | 55                       | Collectivism                                                 |
| 16   | Spain          | 51                       | N/A                                                          |
| 17   | Japan          | 46                       | N/A                                                          |
| 18   | Greece         | 35                       | Collectivism                                                 |
| 19   | Portugal       | 27                       | Collectivism                                                 |

[dataset] Hofstede, G., 2001. The 6-D model of national culture: country comparison. https://www.hofstede-insights.com/country-comparison/