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Abstract: 

Composite springs have been used in many engineering applications, particularly in the 

transportation industry. This is due to their light weight, good stiffness, good strength, good 

corrosion and fatigue resistances. Normally special molds need to be prepared in the 

manufacturing of these springs. The molds have curvatures which fit into the shape of the final 

product. 

Recently the concept of 4D printing of composites was introduced. This concept is a 

combination of 3D printing together with the reconfiguration of the part upon the activation of 

some mechanism such as heat, light, or the absorption of moisture. This concept allows the 

ability to make structures of complex shapes without the need to have complex molds. Layers of 

composites can be laid on a flat mold. Upon curing, the layers reconfigure into curved structures. 

As such, curved composite structures can be made using only flat molds. The mechanism for this 

reconfiguration depends on the anisotropic nature of layered composite materials.      

This paper presents the fundamental study, as part of a larger project intended to use the concept 

of 4D printing to develop complex composite structures without the need for complex curved 

molds. The fundamental study examines the mechanical characteristics of curved composite 

beams made by 4D printing. 

Introduction: 

Relevant aspects of leaf springs. 

Composite springs are used in many applications. Two typical applications are in leaf springs for 

automobiles (figure 1a) and in prostheses (figure 1b). 

Conventional leaf springs are usually made of steel. They consist of either a single leaf or many 

leaves connected together. Composite leaf springs were introduced by General Motors as an 

option for conventional leaf springs in 1981. These composite springs consist mainly of curved 

composite laminates. The basic constituent of a composite leaf spring is a curved composite 

beam. The reason for the selection of composite springs is due to the light weight, high stiffness 

and good fatigue and corrosion resistances of composites [3]. Beardmore [4] studied the 

application of composite springs in automobiles. Morris concentrated on the use of composites 

for the rear suspension system [5]. Daugherty [6] studied the application of composite leaf 
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springs in heavy trucks. Yu and Kim [7] designed and optimized a double tapered beam for 

automotive suspension leaf spring. 

 

Figure 1a: Examples of leaf springs [1] 

 

Figure 1b: Example of prostheses [2] 

The process of manufacturing composite leaf springs is usually Resin Transfer Molding (RTM). 

The process requires a high precision matched metal mold. Composite preforms are placed 

snugly inside the mold. Resin is then infused into the dry composite preforms using high 

pressure.  Fibers are usually glass or carbon, and the matrix is usually epoxy. 

Typical dimensions of composite leaf springs are shown in Table 1. 
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Table 1: Typical dimensions of composite leaf springs for automotive applications 

Items Typical dimensions 

Total length (mm) 1000 

Width (mm) 50 

Arc height (mm) 188 

Radius of curvature (mm) 950 

Thickness of leaf (mm) 10 

Spring constant (N/cm) 400 

 

Besides springs for automotive applications, composite springs have also been used for 

prostheses [2]. The manufacturing of these prostheses usually need to have a mold with curved 

configuration similar to that of the final part. 

The concept of 4D printing 

4D printing is a combination of 3D printing together with the reconfiguration of the simple 

shaped structure into complex shaped structures. First layers of materials with special properties 

are deposited using a method similar to 3D printing. Then the structure is subjected to the 

application of some activation mechanism such as heat, light, or the absorption of liquid such as 

water. This activation changes the configuration of the structure into some complex shape, 

depending on the design.  4D printing began with Tibbits [8].  A recent review is given in [9]. 

Most of the work on regular 4D printing utilizes materials that are soft and do not have high 

strength or stiffness. These materials are usually different types of plastics. Also in the regular 

4D printing process, usually isotropic materials are used and different types of materials may be 

deposited at different locations within the same plane. The difference in the deformation 

behavior of materials at different locations within the plane give rise to the 3D shape change. 

The calculations for the deformed shape usually depends on the difference in deformation 

behavior of materials within one plane. As such the deformation is due to the difference in the 

characteristics of the materials at different locations, rather than due to the anisotropy of the 

materials, as in the case of 4D printing of composites, presented below. 

The 4D printing of composites utilizes the concept of regular 4D printing. However 4D printing 

of composites uses materials made of long fiber embedded in polymeric resins. These are the 

long continuous fiber reinforced composites that have been used for many years to make 

airplanes, and automobiles etc. As such the materials used in 4D printing of composites have 

good strength, good stiffness, high fatigue resistance, and they are commercially available. The 

method of automated composites manufacturing is used to deposit many flat layers of 

composites to make stacks. The individual layers have different fiber orientations. Upon curing 

(application of heat), the resin cures, and serves as shear load transfer medium between the 

fibers. Upon cooling from the cure temperature down to room temperature, the difference in 

coefficients of thermal contraction between the different layers will provide the reconfiguration 

of the shape of the structure. Laminate theory can be used to determine and predict the 

curvatures created by the reconfiguration [10].  



  

4 

 

Requirements for 4D printing of composite springs 

Radius requirement: The concept of 4D printing of composites can provide structures of 

complex shapes using only flat molds. For leaf spring applications, Table 1 shows that the 

curvature of the common springs is about 950 mm. The springs also only have cylindrical 

curvature. As such, only lay ups containing 0o and 90o fiber orientation need to be considered.  

 

Table 2: Properties of composite materials [11] 

Properties Carbon/epoxy  

E1 (GPa) 155.0  

E2 (GPa) 12.1 

G12(GPa) 4.4 

ν12 0.248 

α1 (10-6/C) -0.018 

α2 (10-6/C) 24.3 

Longitudinal tensile strength (MPa) 1500 

Longitudinal compression strength (MPa) 1250 

Transverse tensile strength (MPa) 50 

Transverse compressive strength (MPa) 200 

Shear strength (MPa) 100 

 

Using the properties of carbon/epoxy as shown in Table 2, with the assumption of thickness of 

each layer to be 0.125 mm, and laminate theory in [10], the radii of curvature for different 

laminates with different stacking sequences can be calculated and are shown in Table 3. 

Experimental values: 

A few laminates were made using carbon/epoxy materials (CYTEC 977-2). The layers were laid 

on a flat mandrel using an automated fiber placement machine, with a curing temperature of 177 
ọC [10]. After being taken from the autoclave, the radii of the laminates were measured and are 

shown in Table 3.   

There is some difference between the calculated radii and the experimental radii. The reason for 

this can be due to the uncertainty in the contribution of the chemical shrinkage of the resin 

during the curing process. The chemical shrinkage tends to reduce the effect of the contraction 

coefficients and tend to result into larger radii of curvature. 
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Discussion: 

Two main groups of laminates have been considered, namely the [0/90n] laminates and the 

[02/90n] laminates. These were examined to study the effect of adding more layers of 90o on the 

radii of curvature. Figure 2 shows the variation of the curvature with respect to the value of n.  

It can be seen that for the [0/90n] laminates, as n goes from 1 to 2, there is a reduction in the 

radius of curvature. After that, as n increases, the radius of curvature increases. For the group of 

laminates [02/90n], as n goes from 1 to 2 to 3, the radius of curvature decreases. After that, as n 

increases, the radius of curvature increases. This behavior is due to the shifting of the neutral axis 

toward the 90o layers as the number of these layers increases. 

Note that the radius of curvature of laminate [02/902) is twice that of laminate [0/90]. In fact, it 

can be stated that the radius of curvature of a laminate in proportional to the thickness of the sub-

laminate within the laminate. For example, the radius of curvature of laminate [016/9024] is twice 

that of the laminate [08/9012], and eight times that of the laminate [02/903]. 

From figure 2, it can be seen that the [02/90n] laminates have larger radii of curvature than the 

[0/90n] laminate at small n, but as n increases, the curvatures of the two types of laminates 

approach each other. 

In addition, a few thicker laminates were also examined. These were added in order to achieve 

similar properties with the current leaf springs as shown in Table 1. Among the different 

laminates, the one with [016/9024] lay up sequence has a radius of curvature of 93 cm, which is 

closest to the value of 95 cm shown in Table 1 for current composite springs. As such, this lay up 

sequence will be selected for experimental evaluation. 

Table 3: Radii of curvatures, and included angles for laminates with different stacking 

sequences 

Laminate # 

layers 

Thickness 

(mm) 

Radius of 

curvature R (cm) 

Radius of 

curvature (exp) 

(cm) 

Included 

angle 2θo 

radian(o) 

(G=30.48 cm) 

0/90 2 0.250 6.3 5.6-7.2.  4.87(279) 

0/902 3 0.375 6.1 5.6-6.2 5.00(286) 

0/903 4 0.500 7.6 6.3-7.0 4.01(230) 

0/904 5 0.625 9.5  3.22(184) 

0/905 6 0.750 11.5  2.65(152) 

0/906 7 0.875 13.7  2.22(127) 

0/907 8 1.000 15.9 14.6-15.9 1.92(110) 

0/908 9 1.125 18.4  1.66(95) 

0/909 10 1.250 20.8  1.47(84) 

0/9010 11 1.375 23.4  1.30(75) 

02/90 3 0.375 20.1  1.52(87) 

02/902 4 0.500 12.5 13.3 2.43(139) 
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Figure 2: Variation of radii of curvature with respect to the value of n (calculated values). 

Stiffness requirement 

The stiffness of the curved beam depends on three elements. One is section modulus, which 

depends on the thickness and composition of the layers. The section modulus can be represented 

by the equivalent bending stiffness <EI>. The second element is the radius of curvature, and the 

third element is the length of the beam.  

Bending section modulus: 

The calculation of <EI> follows the sum of the contributions from the different layers and their 

positions in the stacking sequence. The bending section modulus of the laminate [0/904] is shown 

below. The center of the coordinate axis z is taken to be the mid plane of the laminate: 
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02/903 5 0.625 11.6 13.8 2.63(151) 

02/904 6 0.750 12.3  2.48(142) 

02/905 7 0.875 13.6  2.25(129) 

02/906 8 1.000 15.2  2.01(115) 

02/907 9 1.125 17.0  1.79(103) 

02/908 10 1.250 18.9  1.61(92) 

02/909 11 1.375 21.0  1.45(83) 

02/9010 12 1.500 23.1  1.32(76) 

08/9012 20 2.500 46.4 60 0.65(38) 

016/9024 40 5.000 93 105 0.33(19) 

024/9036 60 7.500 139  0.22(13) 
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Where <EI> represents the equivalent bending stiffness of the section. 

b: is the width of the beam 

h: is the thickness of each layer 

E90 is the modulus of the 90o layer 

Eo is the modulus of the 0o layer. 

Collecting terms, equation (1) gives: 

3
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From table 2, the ratio for E2/E1 is (12.1GPa/155 GPa = 0.078). Using this value in equation (2) 

gives: 
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Following the same procedure, the expression for other types of laminates can be obtained. 

For laminates of type [0/90n]: 
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For laminates of type [02/90n]: 
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Table 4: Stiffness and spring constant for different laminates (Eobh3/12 =1.92x10-3 Nm2) 

Laminate # 

layer

s 

R (cm) Normalized 

<EI>: 

<EI>/(Eobh3/12) 

Half included 

angle θo(rad) 

Spring 

constant 

(N/cm) 

(12” or 

30.48 cm 

long 

sample) 

Spring 

constant 

(exp) (N/cm) 

0/90 2 6.3 4.3 2.44   

0/902 3 6.1 14.1 2.50   

0/903 4 7.6 30.8 2.01   

0/904 5 9.5 54.9 1.61   
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Values for <EI> for different laminates were calculated and shown in Table 4. Figure 3 shows 

the variation of the section modulus for laminates with different stacking sequences. It can be 

seen that as n increases, the laminate [02/90n] has faster increasing bending modulus than the 

[0/90n] laminates. It can also be seen that a laminate with stacking sequence [0α m/90α n] would 

have the bending modulus <EI> that is α3 times the bending modulus of laminate with stacking 

sequence [0m/90n]. For example, the laminate with stacking sequence [016/9024] has <EI> that is 

83 ( or 512) times the <EI> of laminate [02/903]. 

 

0/905 6 11.5 86.9 1.33 2.2  

0/906 7  13.7 127.3 1.11 2.8  

0/907 8 15.9 176.3 0.96 3.6 5.0 

0/908 9 18.4 234.8 0.88 3.9  

0/909 10 20.8 303 0.74 5.4  

0/9010 11 23.4 381.3 0.65 6.9  

02/90 3 20.1 15.0 0.76 2.8  

02/902 4 12.5 34.5 1.22 4.2  

02/903 5 11.6 66.9 1.32 4.9  

02/904 6 12.3 112.7 1.24 4.3  

02/905 7 13.6 172.4 1.13 3.8  

02/906 8 15.2 246.5 1.01 5.0  

02/907 9 17.0 335.3 0.90 6.5  

02/908 10 18.9 439.4 0.80 8.5  

02/909 11 21.0 559.2 0.73 10.2  

02/9010 12 23.1 695.4 0.66 12.6 11.0 

08/9012 20 46.4 4282.5 0.33 71.7  

016/9024 40 93 34253 0.17 509 486 

016/9024 

(60.96cm 

long) 

40 93 34253 0.34 64.6 60 

024/9036 60 139 115603 0.11 1838  
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Figure 3: Effect of values of n on bending section modulus (lower curve-series 1, upper 

curve-series 2). 

Effect of length and radius of curvature on bending stiffness: 

The bending stiffness of the beam depends not only on the section modulus <EI> but also on the 

length and radius of curvature of the beam. Figure 4 shows the comparison between three 

configurations, where beams of the same lengths but different radii of curvature are shown. For 

the purpose of comparison, assuming that all beams have the same length G (different spans L), 

the same load P, and the same boundary conditions. For the case of curved beams, there is a 

relation between the radius R, the length G, the height d (figure 5), and the included angle θo. 
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Figure 4: Comparison between three configurations 

The lay up sequence will determine the radius of curvature R. The combination of G and R can 

be used to determine the span length L, the included angle 2θo, and the height d, via the 

following relations: 

R

G
o

2
=θ            (6) 

Values for the included angle (2θo) are calculated for spring of 12 inch (30.48 cm) long and are 

shown in Table 3. 

The span L is given as:  
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oRL θsin2=            (7) 

And for the height d  

)cos1( oRd θ−=           (8) 

Figure 4a shows the situation of a straight beam with span L = G, subjected to simply supported 

boundary conditions, and mid point loading. The displacement at mid length due to the load P is 

given as (assume isotropic material): 

EI

PG

48

3

1 =δ            (9) 

Figure 4b shows the situation of a curved beam (half circle with radius R) with the same length 

G, but with different span L1, also subjected to a mid length load P. Figure 4c shows the situation 

of  a curved beam with larger radius than the case 4b. It is of interest to determine the 

load/deflection relations for the cases 4b and 4c. 

Figure 5 shows the parameters for analysis for the case of 4b and 4c (note that 4b is a special 

case of 4c). In this figure, all reactions at the support points are shown. In the case of simply 

supported beams, MA = MB = HA = 0. 

Let s be the coordinate along the length of the beam, the moment curvature relation can be 

written as: 

EI

M

ds

rd
=

2

2

           (10) 

where r is the radial displacement of the beam. 

This can be shown to be: 
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2

2 θθθ

θ
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Where VA is the reaction at the left end boundary. By equilibrium, it can be shown that VA = P/2. 

Integrating gives: 
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1
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Figure 5: Parameters for analysis of a curved beam 

Integrating again gives: 
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At θ = 0, r = 0,  
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At θ = θo, the displacement is: 
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For θo = π/2,  
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The spring constant can be defined as the ratio of load over displacement P/δ.  

From equation (16), we have: 

3
337.0 R

EIP

curved

=
δ

          (17) 

For a straight beam with the same length as the curved beam ( L = πR), equation (9) can be used 

to determine the spring constant for the straight beam: 

3 3 3

48

0.64straight

P EI EI

R Rδ π
= =          (18) 

As such, for beams with similar length subjected to similar loading and boundary conditions, 

curved beams are stiffer than straight beams. 

Equation (15) can be rewritten to evaluate the spring constant: 

        (19) 

Using equation (19), values of the spring constants for a few laminates are calculated and shown 

in Table 3. The variations of the spring constant with the values of n for laminates of type 

[02/90n] are shown in figure 6. 
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Figure 6: Variations of the spring constant with n for [02/90n], 12 inch long beam. 

Experimental values: 

In order to validate the above calculations, two example springs were made and tested. Both 

springs have the lay up sequence of [016/9024], made of carbon/epoxy, CYTEC 977-2. Both have 

width of 3 inch (7.62 cm). One has a length of 12 inch (30.48 cm) and the other has a length of 

24 inch (60.96 cm). The two samples were made using automated fiber placement machine at 

Concordia Center for Composites. The samples were cured in an autoclave. The flat stacks of the 

layers become curved as shown in figure 7. The 0o layers are on the convex side and the 90o 

layers are on the concave side. The curvatures of the sample were measured to be 105 cm as 

shown in Table 3.  

Strain gages were placed onto the samples, two on the convex side and one on the concave side. 

The two gages on the convex side are located at 4 inch (10.16 cm) from the mid length of the 

beam. The gage on the concave side is located at the same distance from the mid length, as the 

gage on the convex side. The samples were placed in an MTS machine for 3-point bending test 

as shown in figure 8. 
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Figure 7: Flat stack of layers become a curved spring (24 inch long sample) 

 

Figure 8: Sample under 3 point bending test. 

In the static test, the relation between the load and deformation for two types of samples (short 

and long) are shown in figure 9. 
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Figure 9: Load-displacement curve for long sample (24 inch long, lower curve) and short 

sample (12 inch long, upper curve) [12] 

 The spring constant (load versus displacement) is 6.0 N/cm for the long sample and about 48.6 

N/cm for the short sample. In addition two more samples were made and tested. These are 

laminates [0/907] and [02/9010]. These spring constants are shown in Table 4. In comparison with 

the calculate values, reasonable agreement is obtained. 

The convex side of the sample exhibits compressive strains while the concave side exhibits 

tensile strains. For the long sample, figure 10 shows the load versus strain curves for two strain 

gages placed at the same length position, but one on the convex side and the other on the 

concave side. It can be seen that for the same longitudinal position, the magnitude of the 

compressive strain on the convex side is smaller than the magnitude of the tensile strain on the 

concave side. At 150 N, the convex side shows -780 µε whereas the concave side shows 2030 

µε. The load versus strain curve for the short sample (concave side) was also obtained. The short 

sample is stiffer than the long sample.  

Strength requirement 

Under loading, the configuration of the composite spring is similar to that of figure 4c. For a lay 

up sequence such as [016/9024], the upper layers are the 0o layers and the lower layers are the 90o 

layers. For durability, it is necessary that the stresses developed during loading does not exceed 

the strength.  
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Figure 10: Load-strain in long sample (24” or 60.96 cm long) (upper curve- concave side; 

lower curve- convex side) [12] 

The curved laminate as shown in figure 4c was subjected to residual stresses due to the 

difference in coefficients of thermal contraction in the different layers during cooling from the 

cure temperature. Analysis can be done to determine these residual stresses.  Analysis can also 

be done to determine the stresses due to mechanical loading as in figure 4c. 

Residual stresses due to cooling from cure temperature:  

For a laminate subjected to a temperature gradient of ∆T, the relation between the thermal 

stress/moment resultants and strains and curvatures are: 
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For the case of cross ply laminates, it can be shown that A16 = A26 = B12 = B16 = B26 = D16 = D26 

= 0. Equation (20) can be shown to consist of two decoupled equations, one containing the x and 

y components and the other containing the xy component. For the x and y components only, we 

have: 
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κ

    
    
    =
    
    
       

         (21) 

Inverting yields: 

11 12 11 12

12 22 21 22

11 12 11 12

21 22 12 22
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T

x x

T

y y
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a a b b N

b b d d M

b b d d M

ε

ε

κ

κ

    
    
    =
    
    
       

        (22) 

The stresses at any particular point is given as: 

11 12

12 22

T oT oT

x x x x

T oT oT

y y y y

Q Q z T

z TQ Q

σ ε κ α

σ ε κ α

    + − ∆
=     

+ − ∆        
        (23) 

Where  

2

2
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x
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2
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1 mny ααα +=       (24) 

∫
−

∆++=
2

2

161211 )(

H

H

T

xy

T

y

T

x

T

x dzTQQQN ααα        (25a) 
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Stresses due to mechanical load: 
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Since the only mechanical load is the bending moment Mz caused by the load P, the moment 

resultant-strain relation can be written as: 
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        (26) 

Inverting yields: 
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     =
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     
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        (27) 

Based on Kirchhoff assumption, the strain at any point across the thickness of the laminate can 

be written as: 

11 11( )o

x x x z
zk b d z Mε ε= + = +                     (28) 

The neutral axis is located at: 

11

11

b
z

d
= −             (29) 

The stresses due to mechanical load at any point can be given as 

11 12

12 22

M oM oM

x x x

M oM oM

y y y

Q Q z

zQ Q

σ ε κ

σ ε κ

    +
=     

+        
        (30) 

Stresses due to combination of residual stresses and mechanical loads: 

The stresses due to the combination of thermal residual stresses and mechanical loads can be 

obtained using both equations (23) and (30): 

11 12

12 22

C oT oT oM oM

x x x x x x

C oT oT oM oM

y y y y y y

Q Q z T z

z T zQ Q

σ ε κ α ε κ

σ ε κ α ε κ

    + − ∆ + +
=     

+ − ∆ + +        
     (31) 

Example: 

The particular case of the laminate [016/9024] will be examined here. For this, using the properties 

in Table 2, one has: 

11 12 22 66155.7 3.02 12.16 4.40Q GPa Q GPa Q GPa Q GPa= = = =  
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For 0o layer: 

GPaQGPaQ

GPaQGPaQGPaQGPaQ

00

40.416.1202.37.155

2616

66221211

==

====
 

For the 90o layer: 

GPaQGPaQ

GPaQGPaQGPaQGPaQ

00

40.47.15502.316.12

2616

66221211

==

====
. 

For a laminate with a stacking sequence [02m/902n], ( m < n), the components of the stiffness can 

be shown to be: 

 

])()[(2 90222222 nQmQhA
o
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1290121212 )(2])()[(2 QnmhnQmQhA
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+=+=       (32) 

])()[(2 119011

2
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2

22 ])()[(2 BQQmnhB o −=−=        (33) 

3
2 3 2 3

11 11 11 90
[( ) (6 2 ) ( ) (6 2 )]

3
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h
D Q mn m Q m n n= + + +  

3
2 3 2 3

22 22 22 90
[( ) (6 2 ) ( ) (6 2 )]

3
o

h
D Q mn m Q m n n= + + +  

3 3 3 2 2

12 12

2
( 3 3 )

3
D h Q m n m n mn= + + +         (34) 

Then, for the [016/9024] laminate ( m = 8, n = 12) 

A11 = 3.48x108 N/m A12 = 0.15 x108 N/m A22 = 4.91 x108 N/m 

B11 = -4.31 x 105 N B22 = -B11 = 4.31 x105 N 

D11 = 868 Nm  D22 = 880 Nm  D12 = 31.4 Nm 

Strains due to thermal loads: 

Equation (21) becomes: 

])()[(2 90111111 nQmQhA
o

+=
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8 8 5
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Using Mathematica to invert, one has: 
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  (36) 

The thermal stress resultants and moment resultants are calculated using equations (25) to be: 

6 6

2 2
7 7

8.22 10 6.42 10

8.64 10 8.64 10
2 2

T T

x y

T T

x y

N x h T N x h T

h h
M x T M x T

= ∆ = ∆

= ∆ = − ∆
     (37) 

Using the value of h= 0.125 mm and ∆T = 20-177 = -157 oC into equation (37) gives the 

following values: 

161,318 / 126,008 /

106 106

T T

x y

T T

x y

N N m N N m

M N M N

= − = −

= − =
     (38) 

Substituting into equation (36) gives 

31.36 10

0.921

o

x

x

x

k

ε −= −

= −          (39) 

The strain at any point across the thickness of the laminate is given as: 

        (40) 

 

The neutral surface is where the strain is equal to 0: 

31.36 10
1.472
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x
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−

= = −
−

 

This is located about 12 layers above the mid plane, and is within that 0o layers. Location of the 

neutral surface is as shown in figure 11. 
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x x x
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z or

x z

ε ε κ

ε −

= +

= − −
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Figure 11: Locations of mid plane, neutral surface and interface 

Using equation (40), the strains at different critical locations are: 

Position Strains (µε) 

Concave surface (90o layers) ( z = 2.5 mm) -3660 

Convex surface (0o layers) (z = -2.5 mm) 947 

Interface between 90o and 0o layers, z=-0.5mm -946 

 

It can be seen that all of the 90o layers are under compressive strains, while some of the 0o layers 

(about 10 layers) are under compressive strains, while the rest of the 0o layers (about 6 layers) 

are under tensile strain.  

Strains due to mechanical load: 

Equation (36) can be used to write the strain-stress resultant for the case of mechanical load as: 
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   − −  
     

− − −     =
     − −
     

− − −      

 

The strain at any point can be written as: 

6(3.7 10 0.003 )
x z

x z Mε −= +          (41) 

Combining equations (40) and (41), the combined strains due to residual thermal stresses and 

applied mechanical load is: 

 
3 61.36 10 3.7 10 ( 0.921 0.003 )

x z z
x x M M zε − −= − + + − +      (42) 

The neutral axis corresponds to when the strain is zero, given by: 



  

23 

 

3 61.36 10 3.7 10

0.921 0.003

z
n

z

x x M
z

M

− −−
=

− +
          (43) 

Based on figure 4c, the bending moment at a section of the beam depends on the location of the 

beam. As such, the neutral axis would vary along the length of the beam.  From the experimental 

result, the load P varies from 0 to 200 N, and half length of the beam is 6 inch (about 15 cm). As 

such, the range for the bending moment is from 0 to 15 N.m. The influence of the bending 

moment on the strength of the laminate can be examined by examining the strains at the bottom 

of the laminate. At the bottom of the laminate (90o layers), z = 2.5 mm, and from (42), the strain 

is -3500 µε. This shows that the strains on the 90o layers are always compressive.  The 24 inch 

(60.96 cm) long sample was subjected to fatigue test under three-point bending with maximum 

displacement of 2.4 mm and minimum displacement of 0.24 mm for 175,000 cycles. The spring 

constant of the laminate did not change after the fatigue test. 

Conclusion: It was shown that it is possible to make composite springs with practical stiffnesses 

and strengths comparable with composite springs that are currently used, using the method of 4D 

printing of composites. The method of 4D printing of composites allows the manufacturing of 

curved structures without the need for curved molds. 
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