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Abstract 

In porous reaction bonded silicon nitride, whiskers normally grow in globular clusters as the dominant 

morphology and deteriorate the pore interconnectivity. However, the ceramic microstructure was 

significantly transformed with the addition of MgO; specifically, the morphology was modified to a 

combination of matte and hexagonal grains. Microstructural observation along with thermodynamic 

studies suggest that MgO interfered with the presence and nitridation of SiO(g). Consequently, rather 

than being involved in the whiskers’ formation, surface silica instead reacted with volatile MgO to 

form intermediate products. Through these reactions, whisker formation was blocked, and a porous 

interconnected structure formed which was confirmed by 3D tomography. After heat-treatment at 

1700oC, β-Si3N4 crystallized in a glassy matrix containing magnesium. Resulting samples had an 

open-pore structure with porosity of 74-84 vol. %, and density of 0.48-0.75 g.cm-3. Combination of 

high porosity and pore size of <40 μm led to compressive strengths of 1.1 to 1.6 MPa. 
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1. Introduction 

According to Gibson and Ashby, porous structures represent a class of materials where a continuous 

network of the solid skeleton forms the edges and faces of pores. Exhibiting a special combination of 

high surface area, low density, low specific heat and high thermal insulation makes them widely 

applicable in various industrial fields [1, 2]. As porous structures can be quite complex, both 

application and performance of these materials are determined by the characteristics of their pores, 

i.e. texture, size, distribution and interconnectivity. For applications in tissue engineering scaffolds, 

environmental filters, forced convection heat-exchangers for electronics devices and aerospace fluid 

storage tanks, open pores are favored which make the structure permeable. Channel interconnectivity 

is the key factor allowing the uninterrupted flow of fluid through a membrane. In addition, at a 

constant porosity, both permeability and flow rate of a porous media are controlled by channel 

diameter. To target the applications where transport of high temperature fluids is required, the 

possibility of being able to design the porous ceramic structure is crucial [3-9]. 

By offering excellent thermal shock resistance and mechano-chemical stability, the high temperature 

capability of porous silicon nitride (Si3N4) to 1700˚C makes this ceramic an attractive candidate for 

molten metal and exhaust particulate filters [10]. In production of cellular Si3N4, there have been 

several successful manufacturing techniques, e.g. aqueous gel-casting [11], spray-dried method [12], 

protein foaming [13], sacrificial template [7, 14], emulsions, and replication of polymer foams [2]. 

However, the significant disadvantages of these processes are high cost of the starting silicon nitride 

powder and difficulty with machining of the final components which have limited their widespread 

usage. By maintaining the original dimensions, reaction bonding of silicon nitride (RBSN) is an easy 

and economical process that enables fabrication of complex shapes with low shrinkage of ±0.1 % and 

inherent porosity of ~02 % [7, 10, 15]. In this method, elemental silicon of any physical condition 

can react with nitrogen in the temperature range of 1250˚C to 1450˚C. Additionally, the silicon 

dioxide layer, which naturally exists on the surface of silicon, will contribute to the nitriding reaction 

by generating silicon monoxide gas. As an interesting feature, the nature of the nitriding reaction can 

alter the grain growth, crystallographic structure (α or β), and the resultant morphology of the RBSN 

grains, i.e., matte, hexagonal or whisker [5, 15-18].  
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As a reinforcing material for ceramic, glass or metal matrix composites, silicon nitride whiskers have 

received wide attention, mostly because of their high specific modulus, high specific strength, fracture 

toughness, and enhanced wear resistance. Having the advantage of better mechanical performance, 

the fracture toughness of whisker-reinforced composites depend on the whisker characteristics, i.e., 

radius, length, strength and elastic modulus [19-21]. However, whisker agglomerates often cause an 

inhomogeneous structure and hinder further improvement of fracture toughness and mechanical 

properties [22]. In addition to the toughening potential of whiskers, simultaneously they affect the 

pore characteristics in a porous structure.  

Homogenously dispersed SiC whiskers in a porous alumina substrate can enhance the filtering 

efficiency of particles by hindering their flow and by providing a large specific surface area as an 

absorption site [23]. However, as permeability is related to the open porosity and pore size, whiskers 

grow into void spaces and as the pore size decreases, the permeability reduces continuously [24-27]. 

In the production of highly porous RBSN structures, pore-forming agents, e.g. polymer beads were 

employed as sacrificial templates [7, 10, 28, 29]. Using this method, despite a homogenous 

distribution of pores and a controllable range of porosity, the production of a highly porous structure 

with a designed pore shape has been a challenge as the high free surface area leads to the formation 

of whisker agglomerates occupying the precursor cavities. While struts were composed of matte and 

hexagonal grains, whisker clusters grow within the pores, and thus, a suitably permeable porous body 

could not be obtained [29]. Therefore, a well understood mechanism is required to be able to control 

the formation of whiskers during the in situ nitridation of silicon. 

The α structure of silicon nitride, which is thermodynamically unstable, forms equiaxed matte grain, 

whereas β-hexagonal exhibits elongated stable grains. Many studies have determined that through 

reaction with surface silica at temperatures between 1700˚C to 1900˚C, oxide additives promote the 

α- to β-Si3N4 phase transformation by nucleation and grain growth in the solution-precipitation stage 

of liquid-phase sintering (LPS). In combination with various oxides such as La2O3, Y2O3 and Yb2O3, 

MgO has been typically used as a Si3N4 sintering aid with the main function of densification. Given 

the favorable integration of the LPS process and inexpensive nitriding reaction, it has been of special 

interest to study post-sintered RBSN ceramics and the influence of sintering aids on the nitriding 

behavior of silicon particles. With various melting points and viscosities of eutectic melts, therefore, 

different microstructures of post-sintered bodies are expected. In addition, as these additives may be 

included in the starting silicon before nitriding, an effect on the nitridation behavior and thus phase 
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transformation, reaction rate and grain morphology is very likely [5, 10, 15, 30]. For instance, 

compared to the Al2O3-Y2O3 system, MgO-Y2O3 additions have been shown to increase the relative 

density, α/α+β phase ratio and percent nitridation of the post-sintered bodies [25]. Grain morphology 

and whisker formation in RBSN ceramics have also been affected by adding MgO, unlike Al2O3-

Y2O3 additions [31]. Most of these investigations, however, were carried out on low porosity samples, 

and studies focused on the interaction of these additives on the nitriding reaction are quite limited [5, 

10, 31]. Besides, no detailed information is available concerning the influence of MgO on the 

mechanism of grain morphology modification. 

To achieve a more precise control over the pore shape and interconnectivity of channels in porous 

RBSN, the objective of the current research was to study the nitriding reaction mechanism, 

crystallization and pore morphology modification in the presence of MgO. Using sequential nitriding, 

the migration of elements, phase formation, and reaction mechanism were clarified and then 

substantiated using available thermodynamic data obtained from FactSage package software. The 

resultant ceramic composition and microstructure were characterized via XRD, SEM-EDX and 3D 

tomography analysis. Subsequently, the porosity, density, linear shrinkage, weight loss and 

compressive strength of the porous bodies were measured as a function of oxide content.   

2. Experimental procedure  

2.1. Sample preparation  

The fabrication method used in this study was based on a published work where the reaction-bonding 

process has been combined with gel casting and a sacrificial template using polymer microbeads [29]. 

A uniform slurry was formed by dispersing silicon powder (99.995 %, 8 microns, ABCR) and PMMA 

beads (Microbeads, 10-40 μm) in deionized water with the weight ratio of Si: PMMA: H2O of 16: 44: 

40.  Various contents of MgO powder (>99 % purity, -325 mesh, Sigma-Aldrich) up to 12 wt. % of 

the resulting Si3N4 were then added. Using a monomer, cross-linker and gel-casting rheological 

agents, a uniform slurry was achieved at pH of 8.5, which was then cast and heated to complete the 

polymerization step. The porous silicon structure was created by polymer burn-out at 525˚C for 2 h 

of the de-molded dried bar. To produce porous RBSN, nitriding was carried out in a high purity 

nitrogen atmosphere (99.999 % purity, O2 <2 ppm, H2O <3 ppm, THC <0.5 ppm). Microstructural 

changes and phase transformation of samples during the nitriding process were investigated with a 

sequential heating process up to 1425˚C. The dwell time at this temperature was 4 h, whereas at lower 

temperatures samples were heated for 10 min. A further heat-treatment step at 1700˚C for 2 h was 
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then performed by immersing samples in a powder bed comprising Si3N4, BN and MgO powder. The 

latter minimized thermal decomposition of the ceramic body and loss of MgO by creating a local gas 

equilibrium.  

2.2. Characterization of the samples 

To determine the phase transformation during heat-treatment, X-ray diffractometry (XRD; X’Pert 

Pro, Panalytical) was carried out using CuKα radiation on the crushed samples. Identification of 

phases was achieved by comparing the diffraction pattern of the samples with JCPDS standard cards. 

According to the equation by Gazzara and Messier, the percentage of α- and β-Si3N4 can be evaluated 

by comparing the diffraction intensities of (101) and (210) reflections for the β-phase, and (102) and 

(201) reflections for α-phase [32]. 

Scanning electron microscopy (SEM, Hitachi, S-3400 N) was used to study the morphology and 

interconnectivity of the porous structure. Au-coated fracture surfaces of samples were studied under 

high vacuum with 5-15 kV and 40-50 mA imaging conditions. X-ray micro-tomography (SkyScan 

1172, camera pixel of 3 μm) was performed on a 3×3×12 mm3 sintered sample to obtain a three-

dimensional image of the porous body.  

In addition to the conventional SEM imaging, EDX mapping and point analysis (Oxford Instruments, 

Wave Model) were performed to identify elements and detect their distributions on the polished 

surface. For this, a low viscosity, slow-curing epoxy resin was used to infiltrate the pore volume 

inside a vacuum chamber. The surface of the sample was then ground and polished with different 

diamond pastes down to 0.5 μm for microscopic observation.  

Using Archimedes’ technique, ASTM C373-88 standard, the density and porosity of samples were 

measured. Linear shrinkage and weight loss were calculated for eight identically processed samples.  

Cylindrical samples with the aspect ratio of ~1.3 (height of 15 mm and diameter of 11 mm) were 

subjected to uniaxial compression testing using an Instron-3382 machine. Data were recorded at 0.4 

sec intervals during testing with a pre-test crosshead velocity of 0.5 mm.sec-1 and a test crosshead 

velocity of 0.5 mm.min-1. The strengths presented are the average values of five individual tests.  

3. Results and Discussion 

3.1. Nitridation process 
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Prior to the nitriding reaction, the dried bodies were heated to 525˚C for 2 h in order to burn-out the 

polymer beads and reveal a porous silicon structure. SEM micrographs of fracture surfaces of dried 

and pyrolysed samples are shown in Fig. 1. Polymer burn-out during the pyrolysis step led to the 

formation of a porous structure with uniform pore distribution. With Fig. 1-b originating from the 

uniform structure of the dried body, Fig. 1-a microstructure indicates that the PMMA beads did not 

aggregate during suspension preparation. SEM observation revealed that the porous structure of the 

pyrolysed samples with and without MgO were essentially the same at this stage. Spherical pores 

connected with one another through more or less semi-circular windows on the strut’s walls created 

a 3D interconnected structure. Pore size distribution in this sample was a function of the polymer 

particle size, i.e., 10, 20 and 40 μm; however, due to the pyrolysis linear shrinkage, a slight shift to 

smaller values are generally expected. 

Fig.1. SEM micrographs of a) as dried precursor containing polymer beads and b) after pyrolysis  

3.1.1. Whiskers formation in the absence of MgO 

Grain morphologies of the nitrided samples with no additive are presented in Fig. 2. Along with 

formation of whiskers as the dominant morphology, some matte and hexagonal grains were observed 

in minor amounts. The α-matte deposits as small grains when Si vapor reacts with nitrogen through a 

gaseous phase reaction and continues by evaporation-condensation or diffusion of Si atoms to the 

nucleation sites. In contrast, the elongated β-Si3N4 hexagonal grains mainly grow when nitrogen 

diffuses in liquid or solid Si [15]. Fig 2-a, and -b revealed that silicon nitride whiskers were randomly 

elongated in different directions and formed spherical clusters occupying pore cavities. Most of these 

grains were quite straight, short and polyhedral in cross-section, which suggests they are potentially 

β-silicon nitride [33]. Some of them were characterized by the presence of small beads on their tips 

that were found to contain Si (61 wt. %), N (33 wt. %) and O (6 wt.%), based on EDX microanalysis. 

This was evidence that silicon nitride whisker growth proceeded through a vapor-liquid-solid (VLS) 

mechanism: where nitrogen and silicon monoxide gas species dissolve in a liquid droplet. The 

chemical composition of the starting silicon powder listed in Table 1 revealed the presence of 

impurities, which usually form low viscosity melts, especially compounds of iron and aluminum. The 

presence of these beads on growing whiskers suggests that the growth process was probably 

incomplete, and the whiskers would have grown further given more time at temperature [15, 34, 35]. 

Fig. 2. SEM of fracture surface at two different magnifications illustrating the blocked pores with 

silicon nitride whiskers  
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Table 1. Chemical compositions of the starting silicon 

An oxygen impurity of 1.3 wt. % in the starting silicon (Table 1) can be assumed to be mostly in the 

form of native surface silica. In the Si-O system, the stability region of different silicon oxides is a 

function of temperature and oxygen partial pressure in the ambient atmosphere, so by decreasing 

pO2/pθ at high temperature, SiO2 becomes unstable and SiO vapor is generated [36]. In this regard, 

despite the positive ∆G˚ of Eq. 1, at high temperature and an oxygen partial pressure below the critical 

amount, reduction of surface silica on silicon becomes feasible. Considering that nitriding occurred 

under an atmosphere of 99.999 % purity nitrogen gas, the pO2 would have been lower than 10-5 atm. 

This low oxygen content could enhance the partial pressure of SiO at the oxide-silicon interface and 

supply volatile SiO gaseous species for the formation of silicon nitride whiskers according to Eq. 2 

[10, 34, 36]. With the evaporation rate of 10-6 kg.m-2.sec-1, the vapor pressure of silicon would be of 

the order of 10-7 atm at 1350˚C [16]. Furthermore, considering that a high degree of porosity should 

promote silicon vaporization, the oxygen generated from the nitriding reaction zone would lead to the 

active oxidation of silicon, and thus, an increased partial pressure of SiO species via Eq. 3. 

Accordingly, the re-oxidation cycle accelerated whisker formation, which blocked the open pore 

volume. As nitriding through the gaseous phase reaction between SiO and N2 proceeds at a much 

faster rate than that involving Si vapor, correspondingly whisker formation occurs prior to the 

formation of matte or hexagonal grains [15, 16, 36]. ∆G˚ of reactions were calculated using the 

“Reaction” module in FactSage 6.4 package software.  

SiO2 (g) + Si (s) ↔ 2SiO (g),  

∆G˚= -328.1×10-3T+595.4 kJ.mol-1 (867~1412˚C) 

∆G˚= -292.8×10-3T+545.9 kJ.mol-1 (1412~1465˚C) 

Eq. 1 

3 SiO (g) + 2 N2 (g)↔ Si3N4(s) + 3/2 O2  

∆G˚= 619.8×10-3T-354.7 kJ.mol-1 

Eq. 2 

Si(g) + 0.5O2(g) ↔ SiO(g)   

∆G˚= -82.4×10-3T-125.1 kJ.mol-1 (25~1412˚C) 

Eq. 3 

3.1.2. Morphology modification in the presence of MgO 

With the dominant microstructure of matte and hexagonal grains, SEM images in Fig. 3 show that 

the addition of MgO in the starting silicon significantly reduced whisker formation. It seems that the 

open pore structure in Fig. 3-a and -c allows whiskers to become more elongated compared to Fig. 

2-a, where the available space for grain growth was more constrained and the length of whiskers is 
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observed to be shorter. By increasing the amount of MgO to 9 wt. %, gradually the magnitude of 

whisker formation decreased. At 12 wt. % MgO, almost no whiskers were evident, and all the silicon 

nitride was either in the form of matte or hexagonal grains. With significant MgO present (Fig. 3-g) 

the pore morphology and characteristics were completely different compared to no additive, Fig. 3-

h. The pores became regular and spherical with diameters less than 40 μm instead of irregularly 

shaped whisker-blocked pores. The open versus blocked-pore morphology is even more obvious on 

their polished cross-sections shown in Fig. 4. Based on the contrast between dark regions (resin) and 

light regions (ceramic), pore cavities, whiskers and solid struts can be distinguished. For the same 

nitriding time, the unfilled cavities in the sample with no additive show the whisker-blocked pore 

structure, diminishing the structure’s permeability. Whereas with 12 wt. % MgO, the pore structure 

appears entirely whisker-free and interconnected which allowed the resin to completely infiltrate the 

microstructure and fill the cavities. 

Fig. 3. SEM of fracture surfaces illustrating the pore structures in the presence of different MgO 

contents nitrided at 1425oC; a and b) 3 % MgO, c) 6 % MgO, d) 9 % MgO, and e, f and g) 12 % MgO, 

and compared to h) 0 % MgO  

Fig. 4. Polished resin-infiltrated cross-sections showing the pore structures in silicon nitride 

containing a) 0 % MgO and b) 12 % MgO  

Fig. 5 and Table 2 show, respectively, the XRD patterns and relative phase ratios of the nitrided 

samples with different contents of MgO. After heating for 4 h, nitridation was complete as no residual 

silicon was detected in the nitrided samples. N2 gas could easily have diffused into the interior region 

of the porous Si body through the permeable pore channels. In such an open porous network the 

nitriding reaction proceeds very quickly compared to conventional RBSN structures with low 

porosity, which can take several days of heating for full nitridation depending on component size 

[15].  

Table 2 shows that, along with both the α and β polymorphs of Si3N4, minor amounts of silicon 

oxynitride (Si2N2O) formed when MgO was added. The α-Si3N4 content was higher in all MgO-

containing samples compared to those comprising no MgO and indicates preferential formation of 

the α-phase. Considering that in the MgO-SiO2 system the first eutectic liquid forms at a somewhat 

higher temperature (1543-1557˚C) than the nitriding temperature, we can assume that the α/β-phase 

ratio was not due to liquid formation. While the less stable α-phase is known to dissolve oxygen, β-

silicon nitride contains no oxygen [15, 16]. Therefore, an increased presence of oxygen in the system 
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originating from the oxide additive promoted the preferential formation of α-phase. To define the role 

of this oxide in the microstructural changes of the porous RBSN, samples contain 12 wt. % MgO 

were sequentially heated up to a temperature of 1700˚C. 

Fig. 5. XRD patterns of material nitrided at 1425oC with 0, 3, 6, 9 and 12 % MgO (α, β and ∗ show 

peaks corresponding to  α-Si3N4, β-Si3N4 and Si2N2O, respectively) 

Table 2. Phase fractions and α/β-Si3N4 phase ratio obtained by XRD from samples containing 

different MgO contents and nitrided at 1425oC  

The XRD results and phase compositions presented in Fig. 6 and Table 3 revealed that Si and MgO 

were the only crystalline phases detected in the sample after the pyrolysis step. By heating the porous 

silicon body to 1100˚C, some minor peaks between 2θ of 20˚ to 45˚ were present which corresponded 

to ~3 wt. % Forsterite, Mg2SiO4 as well as residual MgO.  

Fig. 6. XRD patterns of samples containing 12 % MgO heat-treated at 525, 1100, 1200, 1300, 1350, 

1400, 1425 and 1700℃ (α, β , ∗, ∨, ×  and ∎ show peaks corresponded to α-Si3N4, β-Si3N4, Si2N2O, 

Mg2SiO4, MgO and Si, respectively) 

Table 3. Phase fractions and α/β-Si3N4 phase ratio obtained for samples containing 12 % MgO and 

heat-treated at different temperatures  

At 1200˚C, while the Mg2SiO4 peaks intensified up to a maximum of ~9 wt. % content, crystalline 

MgO was no longer detected. Experimentally Mg2SiO4 can be formed at temperatures between 

1000˚C and 1400˚C by reaction between solid or gaseous MgO (g,s) and native surface SiO2 present 

on the surface of silicon particles [37]. Thermodynamic data in Eq. 4 confirms that this reaction can 

involve either gaseous or solid MgO, both of which have large negative ∆G˚. However, with MgO 

vapor present, the reaction is much more thermodynamically favorable. In an experiment where 

porous silicon (without additive) was placed on MgO powder during nitridation, it is revealed in Fig. 

7 that the formation of whiskers was stopped. Indeed, a similar microstructure is observed in Fig. 3-

g (12 % MgO addition), in which the pore cavities became entirely spherical and whisker-free. This 

both confirms that MgO is highly volatile at elevated temperature and also that it interfered with the 

nitriding reaction to change the microstructure and morphology of the porous Si3N4.  

2MgO (g, s) + SiO2 (s) → Mg2SiO4 (s)  

∆Gg
˚ = 368.9×10-3 T-10+3 kJ.mol-1 (866~1465˚C) 

Eq. 4 
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∆Gs
˚ = 62.4×10-3 T-100.5 kJ.mol-1 (800~1465˚C) 

Fig. 7. SEM micrograph of pure silicon precursor nitrided on top of MgO powder bed  

In addition, a relatively uniform elemental distribution of Mg and O around the Si particles shown in 

Fig. 8 suggests that magnesium silicate formed predominantly through reaction of an Mg-containing 

gaseous phase rather than that of a solid phase. Aside from the elevated temperature, the high surface 

area and levels of porosity would enhance the vaporization rate. Accordingly, Mg-containing vapor 

migrated to the silica-rich surface and reacted to form Mg2SiO4 [38-40]. The protective SiO2 layer 

acting as a “sink” for magnesium, reacted with gaseous magnesium oxide rather than with the silicon 

and hence SiO gas formation was suppressed. It is worth noting that under neutral and reducing 

atmospheres, along with molecular MgO, the major vapor species in thermodynamic equilibrium with 

solid MgO are reported to be O2 (g) and Mg (g) [41]. Therefore, we can expect that with vaporization 

of MgO, the local oxygen vapor pressure in the pore volume would increase and alter the partial 

pressure of the SiO in the very early stage of nitriding. This is also in agreement with the higher α-

Si3N4 content in samples containing MgO compared to that of silicon nitride with 0 % MgO (Table 

1) since small amounts of oxygen to the reaction zone are reported to alter the α/β-Si3N4 ratio [42]. 

Fig. 8. EDX mapping of 12 % MgO addition to the porous silicon precursor and nitrided at different 

temperatures (note Mg and O segregation on the particle surfaces)  

The XRD pattern of samples with 12 % MgO additions showed the formation of both α- and β- Si3N4 

at 1350˚C with α being the dominant phase. As the temperature was increased to 1425˚C, the α/β ratio 

decreased and is attributed to the melting of silicon and formation of more β phase. After 4 h heating, 

Si2N2O coexisted along with silicon nitride up to an amount of ~15 wt. %. Unfortunately, due to the 

similar elemental contrast of these two phases and the limited resolution of the EDX system, 

microstructural distinction between Si3N4 and Si2N2O phases was not possible.  

Formation of Si2N2O has been reported at temperatures ≥1700˚C due to oxidation of Si3N4 [43-46]. 

In the current work, Si2N2O formed at a lower temperature, just prior to any silicon nitride formation 

and confirmed that oxidation of Si3N4 was not involved in the development of this phase. On the other 

hand, the appearance of Si2N2O coincided with a simultaneous decrease in magnesium silicate content 

when MgO was present. Therefore, by decomposition of Mg2SiO4, as an intermediate phase through 

reaction with nitrogen, formation of Si2N2O was initiated and enhanced by the presence of oxygen. 

The calculated Gibbs free energy for this reaction described in Eq. 5 gives a very large negative ∆G˚, 
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indicating that this reaction is very thermodynamically favorable. Further formation of Si2N2O could 

have occurred through oxidation of silicon due to the increased local pO2 [36]. 

Mg2SiO4(s)+3Si(s)+2N2(g)→2Si2N2O(s)+ 2MgO (s, g)  

∆G˚= 371.8T – 745×10+3 kJ.mol-1 (640~1414˚C) 

Eq. 5 

Based on these observations, in the presence of MgO, a decrease in whisker formation was found to 

coincide with an increase in Mg2SiO4 and Si2N2O contents. This favored the formation of equiaxed 

grains of Si3N4 rather than whiskers. Given the fact that the Si3N4 morphology is closely related to the 

gaseous partial pressure of the various species present, MgO changed the partial pressure of the 

reactants, thus modifying the grain morphology to a mixture of matte and hexagonal grains. 

Consequently this created an open and interconnected porous microstructure.   

3.2. High Temperature Heat-treatment 

3.2.1. Effect on Microstructure 

When MgO-containing nitrided samples were further heated to 1700oC for 2 h, the only detectable 

crystalline phase was β-Si3N4.  Consequently, it is proposed that silicon oxynitride, remaining after 

nitriding, contributed to liquid phase formation and enabled complete α- to β-Si3N4 phase 

transformation. Fig. 9 presents the overall microstructural evolution during heat-treatment from the 

silicon precursor shown in Fig. 9-a, to the final β-Si3N4 microstructure in Fig. 9-d. It is clear from 

Fig. 9-b that the nitriding reaction initiated at the surface of the Si and progressed inwards by diffusion 

of nitrogen. Once a nitride layer covered the surface of the silicon particles, further nitridation 

depended on the diffusion of nitrogen through the surface silicon nitride layer [15]. Fully nitrided 

grains, observed in Fig. 9-c, were a combination of α- and β-phase. The elongated β-Si3N4 grains in 

Fig. 9-d developed during liquid phase transformation. XRD pattern of the sample in Fig. 6 confirmed 

that the only phase present in this structure was β-Si3N4.  

Fig. 9. Microstructural development and grain growth of the Si precursor containing 12 % MgO after 

heat-treatment at different temperatures: a) 1100℃, b) 1400℃, c) 1425℃ and d) 1700℃ 

SEM micrographs of MgO-containing samples in Fig. 10 shows that after heat-treatment at 1700oC, 

the β phase precipitated as elongated hexagonal grains. In samples containing 3 % MgO, local 

supersaturation led to abnormal grain growth in abundant regions of liquid phase. Low content of 

sintering additives resulted in the formation of grains with various sizes and thus, an inhomogeneous 

microstructure, as shown in Fig. 10-a and -b. By increasing the MgO content and Si2N2O phase ratio, 

ACCEPTED M
ANUSCRIP

T



 12 

the amount of liquid phase became high enough that the low viscosity melt migrated to the boundaries 

and suppressed the abnormal grain growth. Hence, with homogenous distribution of liquid phase 

during the heat-treatment process, grain growth occurred in multiple regions and fine β-Si3N4 with 

uniform size distribution were precipitated in the 6 % MgO samples. From 9 wt. % to 12 wt. % MgO, 

while the length of the rod-like grains remained relatively constant indicating negligible grain growth 

on the β-basal plane (001), grain coarsening occurred mainly on the prismatic planes (100). Grains 

with the maximum length of 6 μm were surrounded by glassy phase as indicated by arrows in Fig. 

10-g. The results of EDX analysis of this figure showed the presence of magnesium, nitrogen and 

oxygen in the form of an M-Si-O-N oxynitride amorphous phase.  

X-ray micro-tomography was used as a non-destructive analysis to visualize and characterize the 

porosity of the heat-treated structure. Through the LPS process, all whiskers vanished, and the 

precipitated hexagonal β-grains formed the struts in the resulting porous microstructure.  

The interconnected pore network of 12 wt. % MgO samples was observed in 2D cross-sections of 

eight sequential slices cut through z axis (Fig. 11).  Furthermore, 3D construction images of thin 

layers with a thickness of 116 μm, illustrate a continuous network of pore channels interconnected in 

three-dimensional space (Fig. 12). The pores were relatively uniform and completely whisker-free; 

consequently, a porous structure with high interconnectivity was obtained. 

Fig. 10. SEM micrographs of various MgO precursor contents heat-treated at 1700℃: a and b) 3 % 

MgO, c and d) 6 % MgO, e) 9 % MgO, f) 12 % MgO and g) shows glassy phase and EDX spectrum 

of (f)  

Fig. 11. Slice images of xyz planes for eight sequential slices of porous silicon nitride containing 12 

% MgO (green region shows the solid body and black areas are pores)  

Fig. 12. 3D reconstruction images of porous silicon nitride ceramic (orange region shows the solid 

body) 

3.2.2. Properties of the porous samples 

The weight losses and linear shrinkages obtained as a function of additive content are plotted in Fig. 

13. Thermal decomposition of Si3N4 and evaporation of MgO were the main sources of weight loss 

which can be controlled by the contents of liquid phase and partial pressure of MgO in the ambient 

atmosphere. Therefore, from 0 to 9 % MgO, weight loss was increased as liquid phase formation was 

enhanced with higher additive contents.  However, the sudden drop at 12 wt. % MgO is explained by 
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the high partial pressure of volatile MgO diffusing from the powder bed, which could be high enough 

in the local atmosphere to effectively suppress oxide loss. 

The smallest shrinkage (0.4 %) was found with 3 % MgO content, whereas the highest shrinkage (1.6 

%) occurred in the case of 12 % MgO owing to the presence of more liquid phase. Particle size and 

shape, type and amount of oxide additives are the main factors governing the shrinkage and 

densification behavior during heat-treatment at this temperature. In typical LPS, if the amount of low 

viscosity liquid phase is high enough, the liquid penetrates between the grains and induces the first 

stage of shrinkage by grain rearrangement. Later, through solution-precipitation and densification, 

further shrinkage is observed. In post-sintering of RBSN, however, the particle rearrangement would 

not occur as bonding between nitrided grains hinder the effect of capillary forces. This leads to the 

low shrinkage of all samples indicating that the dimensions of the nitrided bodies remained virtually 

unchanged during heat-treatment at 1700oC. By increasing the oxygen content of the system, 

originating from MgO, silica or Si2N2O, accumulation of liquid phase could result in some particle 

rearrangement and enhanced shrinkage through solution of α-phase and neck junctions [5, 15]. The 

overall LPS shrinkage results in a decrease in porosity and thus some densification. Fig. 14 shows 

the bulk density and apparent porosity for 12 % MgO samples heat-treated at 1700oC is ~74 vol. % 

and 0.75 g.cm-3 compared to ~81 vol. % porosity and 0.53 g.cm-3 density for as-nitrided samples. 

Therefore, the post-nitriding heat-treatment step in the presence of MgO led to the some densification 

and a slight decrease in porosity. However, for lower MgO contents a different trend was observed: 

for 6 % MgO addition, the porosity was ~84 vol. %, and the bulk density decreased to ~0.48 g.cm-3 

and is attributed to MgO evaporation. However, at higher MgO content, lower porosity and a denser 

structure was achieved due to the densification promoted by liquid phase formation. 

3.2.3. Compression Testing 

Compression tests were carried out on samples heat-treated at 1700oC and the results are presented 

as a function of oxide content in Fig. 15.  As strength is closely related to microstructure, the high 

porosity content of samples led to the relatively low compressive strengths. Low-magnification SEM 

micrographs of samples contain 6 and 12 wt. % MgO show the differences in their cellular structures. 

The highest porosity content, 6 % MgO, showed a compressive strength of ~1.1 MPa whereas with 

enhanced shrinkage and a lower porosity of 74 vol. %, the 12 % MgO samples led to a higher strength 

of ~1.6 MPa. These values are comparable with those reported for cellular Si3N4 structures fabricated 

for biomedical applications [6]. In the latter case, interconnected large pores and high porosity are 
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considered suitable for tissue in-growth and nutrition delivery [6]. The compression testing data are 

in good agreement with the microstructures of samples; therefore, we can assume that in the current 

study, the high porosity content was the main factor limiting the compressive strength. In addition to 

the influence of porosity, one should consider the differences in pore size distribution of samples, 

especially the fact that pores are major flaws in any porous structure and the maximum and mean 

pore size highly affect the mechanical properties of samples. Although the amount and size of 

polymer beads were essentially the same for all samples; with different MgO content, samples 

experienced various linear shrinkage; thus, resulting in different pore size distribution.  

Fig. 13. Linear shrinkage and weight loss vs MgO content for samples heat-treated at 1700℃  

Fig. 14. Porosity and density variation vs MgO content after heat-treatment at 1700℃  

Fig. 15. Compressive strength of samples vs MgO content heat-treated at 1700oC 

Conclusion 

The formation and morphology change of highly porous RBSN structure was investigated in the 

presence of MgO. Quantitative and visual comparisons showed a strong correlation between the 

ceramic’s composition and morphology of grains. In the presence of MgO, Mg2SiO4 formed as an 

intermediate phase predominantly via a gaseous phase reaction between MgO and surface silica. At 

higher temperature, with a concurrent decrease in the content of Mg2SiO4, Si2N2O formed and 

coexisted with α-Si3N4 at 1425˚C. This mechanism significantly altered the dominant reaction, 

simultaneously modifies the grains morphology to fine equiaxed grains and enhances the pore channel 

interconnectivity. From 0 to 12 wt. % MgO, the α/β-phase ratio significantly increased from ~0.4 to 

~1.5.  Low content of MgO restrained whisker growth and led to the formation of sintered grains with 

relatively bimodal size distributions. No whiskers appeared with 12 wt. % MgO content during the 

nitriding process and coarse sintered grains with a uniform size distribution formed in a highly porous 

interconnected structure. X-Ray tomography confirmed that the pore network extended continuously 

and homogeneously throughout the microstructure. Upon heat-treatment up to 1700oC, Si2N2O 

disappeared by its incorporation into a liquid phase out of which β-Si3N4 formed. Upon cooling to 

room temperature, the liquid became a glassy phase and contained magnesium, oxygen and nitrogen. 

The resulting material showed a high porosity of 74-84 vol. % and density of 0.48-0.75 g.cm-3 with a 

mean compression strength of between 1.1 to 1.6 MPa, with the highest porosity displaying the 

weakest strengths.  
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Fig. 1. SEM micrographs of a) as dried precursor containing polymer beads and b) after pyrolysis 

Fig. 2. SEM of fracture surface at two different magnifications illustrating the blocked pores with 

silicon nitride whiskers 

Fig. 3. SEM of fracture surfaces illustrating the pore structures in the presence of different MgO 

contents nitrided at 1425oC; a and b) 3 % MgO, c) 6 % MgO, d) 9 % MgO, and e, f and g) 12 % 

MgO, and compared to h) 0 % MgO 

Fig. 4. Polished resin-infiltrated cross-sections showing the pore structures in silicon nitride 

containing a) 0 % MgO and b) 12 % MgO 

Fig. 5. XRD patterns of material nitrided at 1425oC with 0, 3, 6, 9 and 12 % MgO (α, β and ∗ 

show peaks corresponding to  α-Si3N4, β-Si3N4 and Si2N2O, respectively) 

Fig. 6. XRD patterns of samples containing 12 % MgO heat-treated at 525, 1100, 1200, 1300, 

1350, 1400, 1425 and 1700℃ (α, β , ∗, ∨, ×  and ∎ show peaks corresponded to α-Si3N4, β-Si3N4, 

Si2N2O, Mg2SiO4, MgO and Si, respectively) 

Fig. 7. SEM micrograph of pure silicon precursor nitrided on top of MgO powder bed 

Fig. 8. EDX mapping of 12 % MgO addition to the porous silicon precursor and nitrided at 

different temperatures (note Mg and O segregation on the particle surfaces) 

Fig. 9. Microstructural development and grain growth of the Si precursor containing 12 % MgO 

after heat-treatment at different temperatures: a) 1100℃, b) 1400℃, c) 1425℃ and d) 1700℃ 

Fig. 10. SEM micrographs of various MgO precursor contents heat-treated at 1700℃: a and b) 3 % 

MgO, c and d) 6 % MgO, e) 9 % MgO, f) 12 % MgO and g) shows glassy phase and EDX 

spectrum of (f) 

Fig. 11. Slice images of xyz planes for eight sequential slices of porous silicon nitride containing 

12 % MgO (green region shows the solid body and black areas are pores) 

Fig. 12. 3D reconstruction images of porous silicon nitride ceramic (orange region shows the solid 

body) 

Fig. 13. Linear shrinkage and weight loss vs MgO content for samples heat-treated at 1700℃ 

Fig. 14. Porosity and density variation vs MgO content after heat-treatment at 1700℃ 
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Fig. 15. Compression strength of samples vs MgO content heat-treated at 1700oC 

 

 

Table 1. Chemical compositions of the starting silicon 

Element  Si C O Fe Al Ca 

Value (%)  100.000 <0.1 1.3 0.001 <0.001 0.0003 

 

 

Table 2. Phase fractions and α/β-Si3N4 phase ratio obtained by XRD from samples containing different 

MgO contents and nitrided at 1425oC  

MgO content  wt. % 

α-Si3N4 β-Si3N4 α/β-Si3N4 Si2N2O 

0 % MgO 30.8 69.2 0.4 0 

3 % MgO 60.4 34.7 1.7 4.9 

6 % MgO 56.5 34.2 1.6 9.3 

9 % MgO 51.8 35.4 1.4 12.8 

12 % MgO 51.6 33.6 1.5 14.8 

 

 

Table 3. Phase fractions and α/β-Si3N4 phase ratio obtained for samples containing 12 % MgO and heat-

treated at different temperatures 

Heat-treatment 

temperature 

wt. % 

Si MgO Mg2SiO4 Si2N2O α-Si3N4 β-Si3N4 α/β-Si3N4 

T=525℃ 97.5 2.5 0 0 0 0 0 

T=1100℃ 95 2 3 0 0 0 0 

T=1200℃ 91.0 0 9 0 0 0 0 

T=1300℃ 94.0 0 4.0 2.0 0 0 0 

T=1350℃ 90.5 0 4.0 2.5 2.3 0.6 3.8 

T=1400℃ 49.4 0 1.5 7.4 29.2 12.5 2.3 

T=1425℃ 0 0 0 14.8 51.6 33.6 1.5 

T=1700℃ 0 0 0 0 0 100 0 
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Fig. 1. SEM micrographs of a) as dried precursor containing polymer beads and b) after pyrolysis  
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Fig. 2. SEM of fracture surface at two different magnifications illustrating the blocked pores with silicon nitride whiskers 
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Fig. 3. SEM of fracture surfaces illustrating the pore structures in the presence of different MgO contents nitrided at 1425oC; 

a and b) 3 % MgO, c) 6 % MgO, d) 9 % MgO, and e, f and g) 12 % MgO, and compared to h) 0 % MgO 
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Fig. 4. Polished resin-infiltrated cross-sections showing the pore structures in silicon nitride containing a) 0 % MgO and b) 12 

% MgO 
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Fig. 5. XRD patterns of material nitrided at 1425oC with 0, 3, 6, 9 and 12 % MgO (α, β and ∗ show peaks corresponding to  α-

Si3N4, β-Si3N4 and Si2N2O, respectively) 
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Fig. 6. XRD patterns of samples containing 12 % MgO heat-treated at 525, 1100, 1200, 1300, 1350, 1400, 1425 and 1700℃ (α, 

β , ∗, ∨, ×  and ∎ show peaks corresponded to α-Si3N4, β-Si3N4, Si2N2O, Mg2SiO4, MgO and Si, respectively) 
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Fig. 7. SEM micrograph of pure silicon precursor nitrided on 

top of MgO powder bed 
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Fig. 8. EDX mapping of 12 % MgO addition to the porous silicon precursor and nitrided at different temperatures (note Mg and O 

segregation on the particle surfaces) 
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Fig. 9. Microstructural development and grain growth of the Si precursor containing 12 % MgO after heat-treatment at 

different temperatures: a) 1100℃, b) 1400℃, c) 1425℃ and d) 1700℃ 
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Fig. 10. SEM micrographs of various MgO precursor contents heat-treated at 1700℃: a and b) 3 % MgO,  

c and d) 6 % MgO, e) 9 % MgO, f) 12 % MgO and g) shows glassy phase and EDX spectrum of (f) 
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Fig. 11. Slice images of xyz planes for eight sequential slices of porous silicon nitride containing 12 % MgO (green region 

shows the solid body and black areas are pores) 
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Fig. 12. 3D reconstruction images of porous silicon nitride ceramic (orange region shows the solid 

body) 
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Fig. 13. Linear shrinkage and weight loss vs MgO content for samples heat-treated at 1700℃ 
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Fig. 14. Porosity and density variation vs MgO content after heat-treatment at 1700℃ 
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Fig. 15. Compression strength of samples vs MgO content heat-treated at 1700oC 
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