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ABSTRACT 

Development Of A Rheological Measurement Technique To Study 

Diffusion In Molten Polystyrene 

Wissam Nakhle, Ph.D. 

Concordia University, 2018 

Diffusion through polymers impacts a wide range of existing applications, and could 

create new applications for polymers. Diffusion in polymer melts has gained considerable 

interest, and its industrial importance has triggered the need for faster measurement 

techniques. Rheological measurements characterize the behavior of polymeric materials, 

and are an effective tool to study various aspects of diffusion and interdiffusion in molten 

polymers. The rheological behavior in the molten state of high density polyethylene 

exposed to carbon dioxide has been probed under small amplitude oscillatory shear, but 

relatively few papers have been published on this topic. Results show that SAOS 

accelerates diffusion, but only a limited number of cases have been reported. This 

observation provides evidence that SAOS accelerates diffusion, and defines new research 

directions. This study aims at developing a robust experimental technique and accurate 

analytical and numerical methods to probe diffusion and interdiffusion in molten 

polymers. Both approaches can be applied to parallel disk rheometry data, to determine 

fundamental properties governing the diffusion process in polymer melts. Diffusion of 

small solvent molecules through molten polystyrene, as well as interdiffusion across a 

binary polystyrene interface, are studied here. We found that applying SAOS accelerates 

diffusion, even thought there is no large scale net convection of fluid. At constant 

temperature, the diffusion coefficient is independent of the oscillation frequency, and at 

temperatures closer to the glass transition temperature, applying SAOS further 

accelerates the diffusion. 
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CHAPTER 1 

INTRODUCTION 

1.1. OVERVIEW 

    Diffusion in polymers has been the subject of experiments for over three decades, 

using various experimental techniques such as rheology [1], fluorescence [2, 3] and light 

scattering [4]. Diffusion of small molecules (i.e., the addition of solvents) through 

polymers has significant importance in different scientific and engineering fields such as 

medicine, the textile industry, and packaging in the food industry. As a result, a better 

knowledge of the polymer’s morphology and structure [5], and of the diffusion properties 

is gained. 

    Diffusion experiments are often conducted under conditions [6] that are also quasi-

satisfied by the analytical mathematical solution available. Recently, considerable efforts 

was expended in numerical analysis of the diffusion equation, and in developing efficient 

computer programs to numerically solve it. While it is not necessary to establish a 

mathematical solution first, it is often harder to appreciate what the simpler numerical 

method has to offer. A large number of mathematical solutions are available, but their 

application to practical problems may present difficulties, in cases where diffusion is 

complicated by anisotropy or swelling. Analytical methods are often restricted to simple 

geometries, and apply strictly to linear forms of the diffusion equation.  

Solvent diffusion in molten polymers, is important in the design of many polymer 

processing operations. It is often difficult to measure diffusion coefficients at elevated 

temperatures, and limited data at low temperatures must be extrapolated. There is strong 

worldwide interest to provide a complete framework, and to realize more details about 

the fundamentals of the diffusion process, to generalize the governing laws, and to find 

fast and reliable measurement techniques.  
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1.2. OBJECTIVES 

    The main objectives of this study are now presented according to the sequence of 

chapters in this thesis. 

➢ To develop a rotational rheometry-based technique to measure and study solvent 

diffusion through molten polystyrene. This technique relies on equilibrium flow and LVE 

properties in SAOS. (1st stage presented in Chapter 3). To determine the diffusion 

coefficient from Small Amplitude Oscillatory Shear flow and Linear Viscoelastic 

properties. To determine whether applying SAOS accelerates diffusion and to describe 

the frequency dependence of diffusion, and the experimental conditions leading to higher 

diffusion coefficients. (Presented in Chapter 3). 

➢ To numerically resolve the torque-viscosity integral, and to solve the problem of 

inverting torque-time SAOS diffusion data using Tikhonov regularization. Local 

viscosity profiles are recovered from SAOS torque data during diffusion using a 

numerical algorithm, and the diffusion coefficient is determined for a wide range of 

diffusion systems. (Presented in Chapter 4). 

➢ To determine the effect of temperature on 1,2,4-TCB diffusion in molten polystyrene. 

This study investigates this accelerated diffusion kinetics due to SAOS flow over a wider 

range of temperature. (Presented in Chapter 5). We also investigate interdiffusion at a 

polymer-polymer interface using this rheological technique. We present novel data on the 

diffusion of TCB in molten polystyrene and the interdiffusion between two polystyrenes 

(Presented in Chapter 6). 
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1.3. THESIS ORGANIZATION 

    This thesis has seven chapters which are briefly described here. The first chapter 

provides a brief introduction to diffusion in molten polymers and an overview of current 

challenges. The objectives of the thesis are also presented in this chapter. 

Chapter 2 includes a comprehensive review on experimental diffusion measurements 

including rheology and gravimetry. The choice of solvent-polymer system, and of 

experimental procedures and conditions are discussed with a focus on rotational 

rheometry. The advantages/disadvantages of the various experimental methods available 

for measuring diffusion coefficients in polymeric systems are discussed. The 

thermodynamics and mathematics of diffusion are also discussed, and in the last section 

of Chapter 2 a review of diffusion models and numerical methods is presented. 

    In Chapter 3 we provide a validated method for rheological studies of diffusion in 

molten polymers, focusing on the characterization of solvent diffusion. The method 

combines, experimental measurements in SAOS, a Fickian diffusion model, the free 

volume model and the theory of linear viscoelasticity. The experimental procedure for 

rheological and gravimetric measurements of diffusion is discussed, and in the last 

section rheological and sorption diffusion data is presented at a single temperature. 

    Chapter 4 starts with a brief introduction to inverse problems and their numerical 

solutions, and then focuses on the numerical regularization technique (i.e., Tikhonov 

Regularization). The application of the flattest slope method to deterministically locate 

the most promising value of the regularization parameter is also discussed.  

    Chapter 5 includes a fundamental study of the effect of temperature on diffusion in the 

TCB/PS system in order to generalize the diffusion kinetics under SAOS. Temperature 

has a significant impact on the magnitude of this effect, and the combined temperature-

oscillation effect on diffusion is characterized in this chapter. Chapter 5 investigates this 

accelerated diffusion kinetics due to SAOS flow as a function of temperature, and 

confirms that the diffusion rate is increased by oscillatory motion. 
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    Polymer-polymer interdiffusion is discussed in Chapter 6. The effects of polydispersity 

and entanglements, and the effect of SAOS are explored to characterize the interface 

behavior and the composition profile. In Chapter 6, a novel analytical approach based on 

the Flory-Huggins and mean field theories is explained. The numerical regularization 

method is also applied for the PS/PS system with different molecular weights and 

dispersity index. Chapter 7 summarizes the conclusions and contributions.  

---------------------------------------------------------------------- 

1. Chapter 3 is published as: Wissam Nakhle, Paula M. Wood-Adams, "Solvent diffusion 

in molten polystyrene under small amplitude oscillatory shear", Polymer:  vol. 132, pp. 

59 – 68, 2017. 

2. Chapter 4 is published as: Wissam Nakhle, Paula M. Wood-Adams, "A general method 

for obtaining diffusion coefficients by inversion of measured torque from diffusion 

experiments under small amplitude oscillatory shear", Rheologica Acta, (2018). 

https://doi.org/10.1007/s00397-018-1093-9. 

3. Chapter 5 is under review with Journal of Rheology: Wissam Nakhle, Paula M. Wood-

Adams, "Effect of Temperature on Solvent Diffusion in Molten Polystyrene under Small 

Amplitude Oscillatory Shear". 

4. Chapter 6 will be published shortly: Wissam Nakhle, Paula M. Wood-Adams and 

Marie-Claude Heuzey, "Interdiffusion Dynamics at the Interface between two 

Polystyrenes with Different Molecular Weight Probed by a Rheological Tool". 

Two conference papers have also been published based on this work, which are not 

presented in this thesis as chapters, but mentioned here: 

A. Diffusion in Polymer Melts under SAOS, The 17th International Congress on 

Rheology (ICR2016), Aug 2016, Kyoto, Japan. 

B. SAOS in Solvent-polymer Diffusion, The 89th annual meeting of the society of 

rheology, Oct 2017, Denver, CO, United States. 
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CHAPTER 2 

2.1. CHARACTERIZATION METHODS 

    One of the first direct measurements of time-dependent concentration profiles at the 

interface between two partially miscible polymers, was obtained using an ion beam 

technique [5 - 7]. Diffusion of chain molecules in a molten polymeric matrix has been 

studied using photo and fluorescent labelling [2 - 4], using deuteration [5] combined with 

SANS or ion scattering techniques [6, 7]. Despite many limitations in capturing diffusion 

in polymers, experimental characterization of diffusion is still required to accurately 

describe all its features. In the following section, advances and limitations in the 

experimental characterization of diffusion in polymers are summarized. 

In molecular probing, small molecules introduced into a host polymer are used as probe 

to investigate diffusion dynamics in polymers [2 - 4]. Molecular probing is commonly 

combined with fluorescence correlation spectroscopy [2 - 4], which detects fluorescent 

light emitted by probe molecules within a finite volume element, and correlates intensity 

fluctuations to diffusion properties [2]. In the last decade, dynamic rheological 

measurements [1] have been commonly used to characterize diffusion, and have shown to 

be suitable to study diffusion. 

    A relatively large number of experimental attempts related to various applications of 

diffusion are presented in previous literature [1 - 9] to study the diffusion of penetrant 

molecules through polymeric materials. Diffusion through polymers depends on several 

factors [10, 11] including solubility and diffusivity of the solvent, the polymer’s 

morphology, and the degree of plasticization. A fewer number of scientific attempts 

related to diffusion at higher temperatures in the molten state have been previously 

presented [5 - 7]. Low-temperature data is often extrapolated to estimate the diffusivity at 

higher temperatures, due to the lack of available experimental methods in this 

temperature range. Diffusion is often limited by the choice of diffusion system and 

operating conditions, such as temperature. 
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2.1.1. Measurement Techniques 

    Molecular probing and spectroscopy require different light absorbance levels [2]. They 

may also require heavy probes that affect diffusion. Industrial processes often involve 

both flow and diffusion, whereas probe molecules diffuse into quiescent polymers, and 

are more suitable to study diffusion problems in the absence of flow [2]. Fluorescence 

Correlation Spectroscopy correlates the intensity of light measured at a time t and its 

intensity measured at an incremental time τ, using statistical methods to detect non-

randomness in the data [2 - 4] (Figure 2.1). The resulting autocorrelation function can 

then be fitted with the diffusion autocorrelation function for molecules with three 

translational degrees of freedom, to measure the diffusion coefficient (Figure 2.2). 

 

Figure 2.1. Light intensity & Autocorrelation time in FCS measurements [2]. 

  

Figure 2.2. Diffusion Coefficient as a function of molecular weight from FCS measurements [2]. 
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    One of the first direct measurements of time-dependent concentration profiles at the 

interface between two polymers, was obtained using an ion beam technique [5, 6]. A 

Helium beam strikes the sample and penetrates through the interface to trigger a nuclear 

reaction [5, 6]. The reaction emits energetic particles, and the energy spectrum is used to 

determine the concentration profile as a function of depth (Figure 2.3).  

 

Figure 2.3. (a) Energy Spectra emitted from interdiffusion of deuterated and protonated 

polystyrene. (b) Concentration-depth profile for unannealed (light symbols) and annealed at 160 

°C (dark symbols). The solid curve is fit from the Flory-Huggins model to the annealed system 

[7]. 

    The diffusion coefficient can also be determined using rheometry by monitoring 

changes in rheological properties [1].  
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Further, recent findings have shown that SAOS accelerates diffusion of CO2 in HDPE, 

and significantly affects the diffusion process [12] (Figure 2.4). The rheology of molten 

high density polyethylene exposed to carbon dioxide has been probed under SAOS. 

Results show that SAOS accelerates diffusion of CO2 in HDPE, but only a limited 

number of cases have been reported [12]. The scope includes a study of the effect of 

frequency and SAOS on diffusion. The diffusion of small solvents through polymers, and 

interdiffusion between partially miscible polymers are also covered. 

 

Figure 2.4. Effect of oscillatory shearing on the viscosity decrease during absorption of CO2. 

The viscosity was measured at a shear rate of 0.63 s-1 [12]. (Lines show trends only, not model 

predictions.) 

Photolabeled polystyrene with different molecular weight, terminated with 

dichloroxylylene and characterized by Gel Permeation Chromatography (GPC), has been 

used to study interdiffusion [13, 14]. The diffusion coefficient was measured by a 

holographic grating technique [13]. A lower beam is diffracted, and the diffracted light is 

detected by a photomultiplier [13]. A data processor stores the diffraction intensity, 

which is then used to determine the diffusion coefficient in polystyrene matrices with 

different molecular weight. 
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Figure 2.5. Diffusion coefficients of labeled PS chains in a high molecular weight matrix at 

217°C [13]. 

 

    Beside with FTIR-FCS techniques, a variety of methods are available for measuring 

diffusion coefficients of small penetrants into polymers. Gravimetric techniques [8, 9] 

that directly follow mass changes with time are frequently used for investigating the 

sorption kinetics.  

 

2.1.2. Gravimetric Techniques 

    Gravimetric techniques directly follow mass changes with time, and are frequently 

used to investigate sorption kinetics [8, 9]. A thin polymer sample is placed in a 

diffusant-rich medium that is maintained at a constant temperature. Sorption kinetics are 

obtained by recording the sample weight as function of time. In sorption studies, 

rectangular samples are commonly immersed in a large solvent bath. This is the case of 

double-sided diffusion through a plane sheet of thickness 2L, whose surfaces at x = ± L, 

are maintained at a constant concentration [8, 9]. It is assumed that the solvent enters 

through the faces and only a negligible amount through the edges, that the region -L < x 

< L is initially free of solvent, and that the surfaces are maintained at a constant 

concentration (Figure 2.6). 
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Figure 2.6. Percentage of mass increase with time for polystyrene with different thickness in 

acids [8]. 

    Sorption measurements involve weighing the solvent uptake using a high accuracy 

electronic balance, this technique has been the source of the great majority of solvent-

polymer diffusion data [8, 9] (Figure 2.7). The polymer is immersed in a solvent bath, the 

change in mass of the polymer sample is measured with time, and Fick’s second law is 

applied to determine the diffusion coefficient. The use of a one dimensional Fick’s law in 

sorption measurements requires a thin sample, and a temperature below the solvent 

boiling point to avoid evaporation [8, 9].  

 

Figure 2.7. Sorption plots for linear carboxylic acids in polystyrene at different temperatures [9]. 
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 The solubility and the diffusivity of CO2 into the molten state polymers has been 

studied using a Magnetic Suspension Balance (MSB) [15]. Figure 2.8 illustrates the 

experimental setup. The resolution and the accuracy of the balance are 10 g (±0.002%) 

[15]. A polymer sample about 0.5 g in weight was set in an aluminum basket which was 

attached to the magnetic suspension [15]. The chamber was heated to the specified 

temperature and kept under vacuum for 30 minutes. Then, CO2 was introduced into the 

chamber. The data of the electronic microbalance readouts, are then retrieved on-line by a 

computer. 

 

Figure 2.8. Experimental Magnetic Suspension Balance (MSB) setup for CO2 diffusivity and 

solubility measurements [15]. 

    The gain in weight of the PS sample is measured as a function of time, and the amount 

of solvent which has diffused at time t is given as function of the equilibrium solubility 

M∞, which may be practically impossible to measure due to polymer dissolution [9]. 

Sorption measurements may also be affected by polymer dissolution, which may result in 

a weight loss. Sorption measurements yield valuable information about the diffusion 

process, without having to carry out difficult measurements [8, 9]. The sorption method 

may capture the diffusion mechanism to a reasonable extent, but diffusion coefficients 

can be determined with better accuracy from a number of other methods, including the 

rheological approach. Results from sorption measurements are used in this thesis to 

validate diffusion coefficients obtained from rheological measurements. 
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2.1.3. The Rheological Method  

    A fundamental difference between Newtonian fluids and Hookean solids is their 

response to an applied deformation [10, 11]. The behavior of non-Newtonian fluids such 

as molten polymers deviates from that of Newtonian fluids and elastic solids, and both 

constitutive equations fail to predict their response [11]. Polymers exhibit both viscous 

and elastic behaviors, and when subjected to shear flow their behavior depends on several 

factors [10]. Viscoelastic properties of polymers are a function of deformation, time, and 

other kinematic parameters that affect the flow (See Appendix A2.1 and A2.2). 

Oscillatory shear measurements using a rotational rheometer is one of the most widely 

used techniques to determine viscoelastic properties of polymers [10, 11]. Oscillatory 

shear measurements are almost always carried out in a cone-and-plate or a parallel-plate 

torsional rheometer. In small-amplitude oscillatory shear experiments, a sample is 

exposed to a sinusoidal strain of small amplitude. Deformation occurs within the linear 

viscoelastic limit, and rheological properties are independent of the size of the 

deformation [11]. Linear viscoelasticity is exhibited by molten polymers in SAOS, when 

molecules of a polymeric material are hardly disturbed from their equilibrium 

configuration and entanglement state [10, 11]. When subjected to diffusion, the complex 

viscosity becomes dependent on the kinematic parameters of diffusion as well (See 

Appendix A2.1). 

    In the study of diffusion of CO2 in HDPE, SAOS flow at a frequency of 0.01 Hz and a 

strain amplitude of 0.1 mm significantly accelerates the diffusion process (See Figure 2.4); 

this observation is made by comparing the saturation time of samples with and without 

continuous oscillatory shear [12]. It was also found that further increasing the frequency 

to 0.06 Hz did not enhance the diffusion process, and did not shorten the saturation time 

[12]. This study emphasizes the effects of pressure and concentration on changes in 

rheological properties. While pressure alone increases viscosity, the combined effect of 

pressure and CO2 concentration was found to decrease viscosity [12]. This decrease in 

viscosity is attributed to the plasticizing effect of CO2 having the larger impact on the 

viscosity of HDPE, and implies that viscosity measurements could be used to determine 
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the diffusion coefficient in molten polymers, with reasonable accuracy [12]. In this study 

of diffusion, the direct measurement of the diffusion coefficient is difficult and subject to 

considerable uncertainty, because the high-pressure sliding plate rheometer used does not 

allow for an independent control of pressure and concentration [12]. Further, the 

rheometer used can only operate at the saturation concentration, and experimental results 

are obtained when HDPE samples are saturated with CO2 [12]. 

    Diffusion-reaction systems are governed by two processes, diffusion and chemical 

reactions, and their reaction rate depends on both diffusive and reactive properties [18]. 

Diffusion-limited systems are systems in which products of chemical reactions form 

much faster than the rate of transport of reactants, and chemical reactions are limited by 

the rate of diffusion rather than the reaction rate [18]. In another study on diffusion-

reaction of epoxy and polybutylene terephthalate under SAOS, samples blended in a 

mixer were compared with planar samples in which epoxy is sandwiched between two 

PBT plates [18]. No clear increase in reaction rates (See Figure 2.9) was observed for 

samples blended in a mixer, but the reaction rates for planar sandwiched samples 

increased with angular frequency [18]. Chemical reactions in samples blended in a mixer, 

are not diffusion-limited and are controlled by the reaction rate rather than the rate of 

diffusion, thus the reaction between PBT and epoxy was not affected by small-amplitude 

oscillatory shear [18]. 

 

 

 

 

 

Figure 2.9. Plot of reaction conversion at various angular frequencies (at 240 °C); (a) for 

sandwich samples. (b) for blended samples [18]. 

http://en.wikipedia.org/wiki/Diffusion
http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Chemical_reaction
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    Epoxy reacts with the carboxyl acid end group of PBT, and by comparing the carboxyl 

acid content before and during the experiment, the reaction rate can be determined [18]. 

The end group determination method monitors the carboxyl acid content to obtain the 

reaction rate, by measuring pH-values of the mixture before and during the experiment 

[18]. When experimental results from the rheological method are compared with results 

from the end group determination method, the agreement supports the use of the 

rheological method to study diffusion-reaction systems [18]. 

 

Another rheological approach allowing the quantification of diffusion at 

polymer/polymer interfaces and the measurement of the self-diffusion coefficient of 

polymer melts using rheological tools has been previously used [16]. The technique 

consists of measuring the dynamic moduli as a function of time for a multilayer 

sandwich-like assembly as shown in Figure 2.10. The technique was tested on a 

polystyrene/polystyrene system sheared in oscillatory mode under small amplitudes of 

deformation for different times of welding. 

 

Figure 2.10. Multilayer polystyrene sample setup for rheological testing [16]. 

    A free volume approach of the diffusion of organic molecules in polymers above their 

glass transition temperature has also been previously addressed [17]. They have shown 

[17] that the diffusion of small molecules, like plasticizers, above Tg, can be described by 

Fick’s classical law [17]. The experiments were carried out on a parallel plate geometry 

rheometer, as shown in Figure 2.11. 
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Figure 2.11. Sample setup for rheological testing of DOP in EVA [17]. 

    The last decade has seen extensive efforts in the use of rheology as a tool to probe 

diffusion in polymers, and results in key rheological studies show that SAOS 

significantly affects diffusion in reactive and non-reactive polymeric systems [5-7, 18-

20]. Despite advances made in the experimental characterization of diffusion, there is no 

clear theoretical framework that defines the mechanism of diffusion in polymer melts 

under SAOS. From torque measurements during solvent diffusion, fundamental 

parameters such as the concentration profile and the diffusion coefficient can be 

determined. SAOS is ideal for probing diffusion because of its sensitivity to changes in 

the microstructure, and can be used to study the effect of molecular weight, frequency 

and other relevant parameters. SAOS measurements are thus suitable to investigate 

various aspects of diffusion and interdiffusion in molten polymers. 

 

For a specified frequency within the linear viscoelastic limit, the measured torque for neat 

polymers retains a constant value as a function of time. Torque measurements carried out 

during diffusion, are a function of time and are used to measure and study diffusion. The 

torque measured in this case reflects the translational diffusivity of the solvent. 

Measurements of rotational diffusion are usually difficult, and require extremely sensitive 

atomic resolution techniques, such as Nuclear Magnetic Resonance. 
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2.2. DIFFUSION THERMODYNAMICS 

    Polymeric systems can exhibit pseudo-Fickian, Fickian, anomalous, and case II 

diffusion [19]. In anomalous and case II diffusion, the solvent diffusion rate is faster than 

the polymer relaxation rate, and the interface moves at constant speed in the direction of 

the concentration gradient. The Flory-Huggins theory [19 - 21] has also been used to 

describe interdiffusion and the slow evolution of an initial sharp interface separating two 

molten polymers. The type of diffusion behavior is therefore strongly dependent on both 

host polymer and diffusing species, and on the experimental temperature. In the case of 

solvent diffusing in a polymer well above its glass transition temperature the behavior is 

Fickian and the only parameter necessary is the diffusion coefficient. 

    According to the free volume theory [22], diffusion occurs in the portion of free 

volume available in the host polymer [22]. The free volume theory also accounts for the 

contribution of the diffusing polymer to the increase in free volume (See Appendix 

A2.3). Diffusion is an irreversible mass transport process that occurs in the accessible 

free volume [22]. The number of ways atoms or molecules can rearrange defines the 

entropy of mixing [19 - 21]. Diffusion is accompanied by heat addition or removal, due 

to the endothermic repulsions and the exothermic attractions, which defines the enthalpy 

of mixing [19 - 21]. In the study of diffusion of CO2 in HDPE, The relationship between 

the viscosity of HDPE and the concentration of CO2 contains two parameters, one is a 

characteristic of the available free volume in HDPE and the other accounts for the 

contribution of CO2 to the increase of free volume in the system [12]. A model based on 

the free-volume theory has been used to determine this relationship for the CO2/HDPE 

system [12].  

     

2.2.1. Fujita-Kishimoto: Free Volume Theory 

    The free volume theory (See Appendix A2.3) accounts for the contribution of solvent 

to the increase in free volume, and describes the effect of solvent concentration on the 

complex viscosity of a molten polymer. Free volume parameters A and B reflect the 

fractional free volume in the pure polymer, and the solvent’s contribution to the increase 
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in free volume [22]. The free volume theory serves as a method for describing polymer–

solvent systems, it is commonly used to correlate the effect of solvent concentration on 

viscoelastic behavior, and it has been shown to produce good predictions for melt, 

rubbery and glassy polymer-solvent systems as well as being convenient for use in 

understanding diffusion. Fujita and Kishimoto [22] derived an equation analogous to the 

Williams – Landel – Ferry (WLF) [24] and Arrhenius equations, to determine the 

concentration-viscosity relationship. In the study of diffusion of CO2 in HDPE, the Fujita 

Kishimoto model with two parameters is used [12] (See Figure 2.12). Free volume 

models [22, 23] describe well the effect of concentration on the viscosity of melts, 

provided the polymer is not saturated. The horizontal shift factor aC describes the effect 

of solvent concentration on the melt viscosity, and the vertical shift factor bC is a 

correction factor that describes changes in polymer density [10]. 

 

Figure 2.12. Effect of concentration on the concentration shift factor for CO2. The line is the 

best fit of the Fujita-Kishimoto model, with A =2.67 and B=0.22 [12]. 
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2.2.2. Flory-Huggins: Solution Theory 

    During diffusion, expansion and compression forces arise and polymer chains 

experience configuration changes [25 - 27]. Diffusion depends on interactions between 

diffusant molecules and polymer chains. Fick’s laws do not account for these 

interactions, and are only valid when diffusing molecules are sufficiently small [25]. In 

the absence of significant interactions, the time for structural rearrangements of 

polymeric chains is short [23]. Non-Fickian diffusion is best explained in terms of 

chemical thermodynamics (See Appendix A2.4.), which indicates that the fundamental 

driving force for diffusion is the chemical potential gradient of each component in the 

system [21]. Diffusion is essentially due to the existence of chemical potential differences 

and reflects the time for structural rearrangement [25 - 27]. 

    Various aspects of diffusion can be characterized by monitoring the interface width 

and mass. The mass uptake and interface width increase with the square root of time for a 

Fickian diffusion, but the diffusion type exponent for interdiffusion in partially miscible 

polymers is expected to be smaller [25 - 27]. This is a result of the reduced entropy or 

accessible free volume, and the increased heat of mixing or interaction energy, during 

interdiffusion in partially miscible polymers [19, 21]. The interface width is determined 

from the local concentration profile, but the mass uptake depends on the average 

concentration and is much less sensitive to the local structure [25 - 27]. 

    The Flory-Huggins theory provides a framework for understanding the 

thermodynamics of polymer melts [21]. It describes the competition between entropy and 

enthalpy of mixing, and defines the available Gibbs free energy of mixing [21]. This 

Gibbs energy determines the evolution of an initial sharp interface separating two molten 

polymers, and to what extent initially separate systems of different composition mix [25 - 

27]. When the diffusion type and free volume parameters are known, it is possible to 

determine the Flory-Huggins interaction parameter for Non-Fickian interdiffusion, the 

front velocity for Anomalous and Case II diffusion, and the diffusion coefficient for all 

cases. 
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2.3. DIFFUSION MODELS: SOLVENTS 

    Solvent diffusion in polymeric systems can be of Fickian, Anomalous, or Case II 

diffusion type. Fickian diffusion is observed in polymer melts well above their glass 

transition temperature, and Case II and anomalous diffusion is observed in glassy 

polymers [28]. The solvent diffusion rate for Fickian diffusion is slower than the polymer 

relaxation rate, its concentration decreases exponentially, and a large penetration gradient 

is observed. This is shown on the 0.9 and 0.99 curves in figure 2.13, which represent 

Fickian diffusion, and an exponentially decaying concentration profile (zero front 

velocity).  

Solvent diffusion close to or below the glass transition induces significant polymer 

swelling, and results in a special diffusion, known as Case II diffusion. In Anomalous and 

Case II diffusion, the solvent diffusion rate is faster than the polymer relaxation rate. 

Case II and anomalous diffusion requires Fick's second law to be modified to describe 

adequately the solvent penetration [28, 29]. In anomalous and Case II diffusion, the 

solvent front moves into the polymer at a constant velocity [28] (See Figure 2.13). This is 

shown on the 0.01 and 0.1 curves in figure 2.13, which represent a concentration front 

moving at constant velocity. Measurement of the diffusion coefficient in a glassy 

polymer is complicated by the slow mechanical response of the polymer chains. 

 

Figure 2.13. Pressure (or concentration) profiles with constant front velocity versus depth, as a 

function of the diffusion coefficient: 0.99 and 0.9 curves represent higher diffusion coefficients 

and a more Fickian Behavior; 0.01 and 0.1 curves are typical of Glassy diffusion [29]. 
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2.4. INTERDIFFUSION MODELS: POLYMERS 

    Polymer-polymer diffusion is usually described using the mean-field theory and a free 

energy mixing function (See Appendix A2.4). The volume of the system does not change 

during interdiffusion, and this free energy function describes chain interaction and 

entropy, based on a Flory-Huggins approach [25 - 27]. Each polymer rearranges and 

repels unfamiliar chains across the interface, the two polymers do not freely and 

completely mix, and the diffusion mechanism is different from free (or Fickian) 

diffusion. In the case of Non-Fickian solvent-polymer diffusion and polymer-polymer 

interdiffusion, the diffusion flux is a non-linear function of the chemical potential, and 

the concentration profile is obtained by solving a non-Fickian diffusion equation [25 - 27] 

(See Figure 2.14). 

 

Figure 2.14. Concentration profiles for Non-Fickian interdiffusion between two partially 

miscible polymers versus depth, as a function of the molecular weight ratio between the two: R = 

1 curves represent the case of Fickian diffusion, R = 2 and R = 3 curves are typical of polymeric 

interdiffusion [25]. 
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CHAPTER 3 

Solvent Diffusion in Molten Polystyrene Under Small Amplitude 

Oscillatory Shear 

 

ABSTRACT 

Diffusion of 1, 2, 4-trichlorobenzene through polystyrene in the melt state is studied 

using a rotational rheometer under small amplitude oscillatory shear (SAOS), and the 

diffusion coefficient D is measured at various oscillation frequencies, ω0. The effect of 

solvent concentration C on the polymer complex viscosity η* is described using the 

Fujita-Kishimoto free volume relationship. Free volume parameters A and B are 

determined separately to diffusion measurements, from melt viscosities of neat and 

homogeneous solvent-polymer mixtures, and a single parameter fitting is then used to 

determine the diffusion coefficient. Oscillatory shearing leads to a faster diffusion. This 

observation is made by comparing the diffusion coefficient of samples subjected to 

intermittent-type oscillations and those subjected to continuous SAOS. The study clearly 

confirms that such SAOS measurements can be used to determine the diffusion 

coefficient with reasonable accuracy as compared to sorption measurements, and shows 

that the diffusion rate is increased by oscillatory motion.  

 

3.1. INTRODUCTION 

Over the last decade, understanding diffusion through molten polymers has been 

essential to advances in polymer technologies such as coating [30], foaming [31], and 

plastic welding [32]. In polymers, diffusion is complicated by free volume limitations 

[33], multiple relaxation time scales [34, 35], and often limited by partial miscibility [36]. 

Solvent diffusion can be captured in polymer solutions using a variety of sorption 

techniques [37] and drying-based techniques coupled with spectroscopic quantification of 

concentration [33, 38], which are limited by vitrification or crystallization and there is a 
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real lack of experimental data [33]. The quantitative study of solvent diffusion is also 

complicated by other processes such as polymer swell and dissolution which are typically 

occurring along with solvent diffusion [39].  

Diffusion of chain molecules in a molten polymeric matrix has been studied using 

photo and fluorescent labelling [40, 41], using deuteration combined with SANS [42] or 

ion scattering techniques [43] and by rheometry using a sandwich configuration [34]. The 

importance of further experimental study of diffusion of both polymer chains and 

particles in molten polymer nanocomposites has recently been clearly elucidated [44]. 

These techniques are versatile, but require sophisticated equipment and are limited to 

particular systems. Mass uptake measurements [37] are simple and accurate, and can be 

used to measure the diffusion coefficient of solvents or gases in molten polymers. 

Rheometry is another potential technique for studying diffusion [45] that has not been 

fully exploited. Here we develop and validate a simple and versatile rheometry-based 

technique for measuring diffusion of solvents in polymer melts and concentrated 

solutions. 

Mass uptake measurements which provide the evolution of the mass of a specimen 

during sorption require the application of a model to infer the diffusion coefficient. In 

general, the mass uptake in molten polymers follows a power law dependency on time 

[45], with an exponent of ½. In this case, the polymer’s relaxation rate is fast compared to 

the solvent diffusion rate, and classic Fickian diffusion occurs. An experimental 

complication with this technique is dissolution of the polymer which is confounded with 

the impact of sorption on the overall specimen mass. 

Small amplitude oscillatory shear (SAOS) measurements are widely used to determine 

linear viscoelastic properties of a material, and are extremely sensitive to compositional 

or structural changes in the material. SAOS measurements in the linear viscoelastic 

region are only frequency-dependent, which makes them suitable to examine irreversible 

processes such as diffusion [44]. If rheometry is applied to measure diffusion coefficients 

then models of the diffusion process and of SAOS flow, as well as the dependency of the 

LVE properties on composition, are all required. 
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Fickian diffusion [45] of small molecules in polymers is often observed well above the 

glass transition temperature of the polymer. In this case, the polymer relaxation rate is 

faster than the solvent diffusion rate, its concentration decreases exponentially and a large 

penetration gradient is observed. However, there are cases where diffusion is non-Fickian 

[46]. It may be useful to characterize this behavior using a type of Deborah number: the 

ratio of the relaxation time to the diffusion time. When this number is much larger than 

unity, diffusing molecules move into an almost elastic polymer, this is a typical case of 

diffusion of small molecules into a glassy polymer. When the Deborah number is much 

less than unity, relaxation is fast, and the diffusion mechanism is of Fickian type. The 

mass uptake profile in polymer-penetrant and polymer-polymer systems varies as a 

power law function of time of the form: 

𝑴𝒕

𝑴∞
= 𝑲 ∙ 𝒕𝒏                    (1)  

where Mt and M∞ are the mass uptakes at times t and at saturation respectively. Here, K is 

a constant which depends on the diffusion system and temperature and n is an exponent 

related to the transport mechanism [45, 47] defining the diffusion type. 

The effect of material composition on the LVE properties can be modeled in different 

ways ranging from tube model based molecular theories [48, 49] to the free volume 

theory [50]. These models generally involve a set of parameters that must be fit from 

experimental measurements of homogeneous systems. The free volume theory involves 

two fitting parameters and is most accurate in the region of high polymer concentration. 

These parameters can be determined from LVE data of the neat polymer melt and 

concentrated solutions.   

In SAOS flow [51], the deformation is sufficiently small that polymer chains are 

hardly disturbed from their equilibrium state and linear viscoelasticity is exhibited. The 

response is measured in terms of torque, which remains constant during time sweep 

measurements at constant frequency on homogeneous samples. Solvents plasticize 

molten polymers, which causes the measured torque to decrease as solvent diffuses into 

the polymer in the outward radial direction. The SAOS torque curve is thus dependent on 

the diffusion kinetics and the concentration profile. The diffusion model [45], the free 
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volume theory [49], and the theory of linear viscoelasticity [50] are then used to 

determine the diffusion coefficient from the torque curve. Recent findings suggest that 

SAOS accelerates diffusion [52, 53] but only a limited number of cases have been 

reported. It is well known that polymeric chains under SAOS in the LVE region are 

hardly disturbed from their equilibrium state and therefore physical factors that lead to a 

faster diffusion are unclear. The main objective is to determine the diffusion coefficient 

from time-dependent rheological measurements, and to explain if and why SAOS 

accelerates diffusion in polymer melts. 

In a study of diffusion of carbon dioxide in high density polyethylene [51, 52], Park 

and Dealy show that subjecting the sample to SAOS at a frequency of 0.01Hz 

significantly accelerates the diffusion process as compared to the quiescent case. It was 

also found that further increasing the frequency to 0.06Hz did not enhance the diffusion 

process. The authors used the free volume theory to describe the viscosity of the 

polymer-CO2 solution with two parameters: one is a characteristic of the available free 

volume in the polymer and the other accounts for the increase of free volume in the 

system due to CO2 [51]. In another study on the diffusion of epoxy and its reaction with 

polybutylene terephthalate (PBT) under SAOS [54], samples blended in a mixer were 

compared with planar samples in which epoxy is sandwiched between two PBT plates. 

The reaction rates for planar samples increased with frequency while those of 

homogeneous samples did not, indicating that epoxy diffusion is limiting the reaction rate 

in the planar samples and that the rate of diffusion increases with frequency [54].  

In the Park and Dealy study, a High Pressure Sliding Plate (HSPR) rheometer with a 

rectilinear flow geometry is used. In that case the flow direction is x, the velocity-

gradient direction is z and the diffusion occurs in x and y. In the Xie and Zhou study, a 

rotational rheometer with parallel-plate geometry is used but the specimens are in the 

form of sandwiches. Here the flow direction is , the velocity-gradient direction is z and 

the diffusion direction is z. In comparison to these two studies, our experiments are 

performed on a rotational rheometer with concentric specimens.  Therefore the flow is in 

the  direction, the velocity-gradient direction is z and the diffusion direction is r. 
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There exists no satisfactory explanation for the observed effect of SAOS and 

oscillation frequency on diffusion. In this work we provide a validated method for 

rheological studies of diffusion in molten polymers, focusing on the characterization of 

solvent diffusion. The method combines, experimental measurements in SAOS, a Fickian 

diffusion model, the free volume model and the theory of linear viscoelasticity. 

 

3.2. THEORETICAL CONSIDERATIONS: DIFFUSION DYNAMICS 

Polymeric systems can exhibit pseudo-Fickian, Fickian, anomalous, and case II 

diffusion [45]. In anomalous and case II diffusion, the solvent diffusion rate is faster than 

the polymer relaxation rate, and the interface moves at constant speed in the direction of 

the concentration gradient. The Flory-Huggins [39, 55, 61] theory has been used to 

describe interdiffusion [39, 55, 61], and the slow evolution of an initial sharp interface 

separating two molten polymers [57, 58]. The type of diffusion behavior is therefore 

strongly dependent on both host polymer and diffusing species, and on the experimental 

temperature. In the case of solvent diffusing in a polymer well above its glass transition 

temperature the behaviour is Fickian and the only parameter necessary is the diffusion 

coefficient. Here we consider Fickian diffusion described by Fick’s second law (eq. 2). 

𝛛𝐂

𝛛𝐭
= 𝐃 ∙ 𝛁𝟐𝐂                                   (2) 

3.2.1. Diffusion Dynamics in Rheometry 

Parallel disk rheometers measure torque [58], which is the integral or sum of moments 

generated by circumferential stresses at a given time. In the absence of a composition 

gradient and in the LVE region, the magnitude of the circumferential stress is known and 

linear. The integral equation relating measured torque and shear stress in SAOS can be 

solved, and expressed in terms of complex viscosity (eq. 3). In the presence of a 

composition gradient, the torque integral cannot be explicitly solved (eq. 4). 

Under SAOS at constant frequency [59] the complex viscosity of a pure polymer 

(Figure 1a) is time-independent and the torque amplitude is constant (eq. 3).  
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𝐓(𝛚𝟎, 𝟎) = [
𝛑𝛚𝟎𝛉𝟎𝐑𝟒

𝟐𝐇
] |𝛈∗(𝛚𝟎, 𝟎)| ≠ 𝐟(𝐭)                       (3)  

 

Here T (ω0, 0) is the torque amplitude, θ0 is the angular displacement, ω0 is the frequency, 

H is the gap size, η*(ω0, 0) is the complex viscosity of the polymer, and R is the disc 

radius.  

On the other hand, the torque in constant frequency SAOS measurements carried 

out on a concentric binary specimen (Figure 3.1(b)) is time-dependent and reflects the 

diffusion process (eq. 4). 

𝐓(𝛚𝟎, 𝒕) = [
𝟐𝛑𝝎𝟎𝛉𝟎

𝐇
]  ∫ [| 𝛈∗(𝝎𝟎, 𝑪)| ∙ 𝐫𝟑]𝐝𝐫

𝐛

𝐚
= 𝐟(𝐭)                  (4)  

 

Here T (t, ω0) is the time-dependent torque amplitude, a is the inner radius, b is the outer 

radius, and η*(ω0, C) is the concentration-dependent complex viscosity. We note that eq. 

4 shows that the design of our specimen geometry is such that the solvent diffusion in the 

outward radial direction will have a much more significant impact on the torque than 

polymer dissolution in the center of the ring.    

   

Figure 3.1. Schematics of samples used in rheological characterization of: (a) Neat polystyrene; 

(b) Solvent diffusion. The inner radius is variable, and two different geometries are studied. 

Free volume models describe well the effect of concentration on the viscosity of melts, 

provided the polymer is not saturated [49], and if the volume of the mixture is additive 

[52]. The horizontal shift factor aC describes the effect of solvent concentration on the 

melt viscosity, and the vertical shift factor bC is a correction factor that describes changes 

in polymer density [52]. In this case, the pure polymer density is constant, and the 

vertical correction factor bC can be determined (eq. 5): 

b 

Polystyrene 

a 
TCB 

R 

Polystyrene 

(a) (b) 
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𝛒(𝟎) ≡
𝐂

𝐛𝐂(𝐂)
                                  (5) 

    In practice, shift factors are determined by a simultaneous shift vertically (aC ∙ bC) and 

horizontally (aC) on the complex viscosity of homogeneous solvent-polymer samples at 

different concentrations, and the response of the pure polymer [51]. Consistency is 

verified using (eq. 5) with a constant density for the pure polymer (±0.6%).  

    The free volume theory accounts for the contribution of solvent to the increase in free 

volume, and describes the effect of solvent concentration on the complex viscosity of a 

molten polymer (eq. 6). Free volume parameters A and B reflect the fractional free 

volume in the pure polymer, and the solvent’s contribution to the increase in its free 

volume [49]. 

𝐚𝐂(𝐂) ∙ 𝐛𝐂(𝐂) =
𝛈∗(𝛚,   𝐂)

𝛈∗(𝛚,   𝟎)
= 𝐞 

− 
𝟏

[𝐀]+[𝐁] ∙ 
𝟏
𝐂                               (6) 

In combination with eq. (4), the free volume theory allows us to define a relationship 

between concentration, and measured torque eq. (7).  

𝐓(𝐭)

𝐓(𝟎)
= 

𝟒

𝐑𝟒
 ∙ ∫ [𝐞 

− 
𝟏

𝐀+ 𝐁 ∙ 
𝟏

𝐂(𝐫,𝐭)]
𝐛

𝐚
∙ 𝐫𝟑 ∙ 𝐝𝐫                                  (7) 

where A, B are the free volume parameters. The Fickian diffusion model can then be 

incorporated by assuming that: (i) a finite amount of solvent is initially distributed 

uniformly through a thin cylinder of radius a, and (ii) there is no flow of diffusant leaving 

the system. We start with Fick’s 2nd law (eq. 8), in a semi-infinite medium with the 

following boundary and initial conditions (eq. 9): 

𝟏

𝐫
∙

𝛛

𝛛𝐫
(𝐫 ∙

𝛛𝐂

𝛛𝐫
)  =

𝟏

𝐃
∙
𝛛𝐂

𝛛𝐭
                                     (8) 

𝐂 =  𝐂𝟎               𝐚𝐭                 𝟎 <  𝐫 < 𝐚,                         𝐭 = 𝟎  

𝐂 =  𝟎                 𝐚𝐭                  𝐚 <  𝐫 < ∞,                       𝐭 =  𝟎  

𝐂 =  𝟎                  𝐚𝐭                       𝐫 =  ∞,                           𝐭 ≥  𝟎                    (9) 

The solution [60] to this problem is: 

𝐂(𝐫,𝐭)

𝐂𝟎
=

𝟏

𝟐𝐃𝐭
∙ 𝐞−

𝐫𝟐

𝟒𝐃𝐭 ∙ ∫ 𝐞−
𝐫́𝟐

𝟒𝐃𝐭
𝐚

𝟎
∙ 𝐈𝟎 (

𝐫𝐫́

𝟐𝐃𝐭
) ∙ 𝐫́𝐝𝐫́                       (10)  
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where D is the diffusion coefficient, and I0 is the modified Bessel function of 1st kind 

and of order 0. 

    This solution has been obtained by Crank [59], and whether it is applicable to this 

diffusion problem depends on the exact experimental conditions. This solution is realized 

in practice in the experiment in which the PS rings contain a small volume of solvent 

relative to the sample volume. In other words, the concentration tends to zero at the outer 

rim. This means that concentration changes do not reach the outer rim during the time of 

the experiment. We note that our approach is similar to the model used in and the 

analysis of Park and Dealy [52]. 

    In some instances of our experiments, small concentration changes reach the outer rim, 

and the boundary condition that the concentration tends to zero as x approaches the outer 

rim must be replaced by the condition that there is no flow of diffusing substance through 

the outer rim necessitating a different solution than eq. 10. This time refers to the late 

diffusion stages, and limits the applicability of the analytical solution (eq. 10). Applying 

conservation of mass for Fickian diffusion shows that this critical time for violating the 

outer boundary condition, can be estimated from the geometric factor k (k=b/a), and the 

diffusion time scale or the time required for the measured torque to become quasi-

constant.  

 

3.2.2. Diffusion Dynamics in Sorption Experiments  

In the sorption studies, rectangular samples are immersed in an infinite solvent bath 

[37]. This is the case of double-sided diffusion through a plane sheet of thickness 2L, 

whose surfaces at x = ± L, are maintained at a constant concentration. It is assumed that 

the solvent enters through the faces and a negligible amount through the edges [37], that 

the region -L < x < L is initially free of solvent, and that the surfaces are maintained at a 

constant concentration. The amount of diffusing substance [59] which has entered the 

sheet at time t is given by: 

𝐌(𝐭)

𝐌∞
= 𝟏 −

𝟖

𝛑𝟐
∑ {

𝟏

(𝟐𝐧+𝟏)𝟐
} ∙ 𝐞

[−
𝐃𝐭

𝟒𝐋𝟐
]∙𝛑𝟐∙(𝟐𝐧+𝟏)𝟐∞

𝐧=𝟎                        (11)  
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where D is the diffusion coefficient. The values of D determined from eq. (11) using the 

sorption data, are used to validate values of D obtained from eq. (7) and eq. (10) using the 

rheological method. 

 

3.3. EXPERIMENTAL METHODS 

3.3.1. Materials and Sample Preparation  

A commercial grade polystyrene (Mw = 350 kg/mol, Mw / Mn = 2) was purchased from 

Sigma - Aldrich (product 441147). The solvent, 1, 2, 4-trichlorobenzene (Acros Organics 

product 296104) was used as diffusant because of its high boiling point (214ºC). Neat 

polymer pellets are dried in a vacuum oven at 110°C for 48h, to remove moisture. 

Polymer disks (1.2mm thick and 25mm diameter) and flat rings (1.2mm thick with an 

outer diameter of 25mm and an inner diameter of 6.25 or 12.5mm) are prepared by 

compression molding under identical molding conditions. We refer to the geometry of the 

rings using the ratio of outer-to-inner radius, k. Square specimens for sorption tests (45 x 

45mm x 1.2mm) are also prepared by compression molding. 

 

3.3.2. Rheological Measurements  

All small-amplitude oscillatory shear measurements are done at 190°C under nitrogen 

atmosphere, at a gap of 1.1mm using an Anton-Paar MCR500 rheometer equipped with 

parallel plate geometry (25mm diameter). For small strains, viscoelastic properties are 

independent of the strain amplitude, and a strain sweep is used to identify this linear 

region. When the experiment time is unusually long as is the case for diffusion studies, 

thermal degradation becomes an important factor. Long-time sweeps in the LVE region 

were used to confirm the stability of the neat polymer under these conditions. A 

frequency sweep is then used to determine LVE properties of the neat polymer and 

homogeneous solvent-polymer mixtures, at various mixing concentrations. To study 

diffusion using rheometry, we use polymer specimens in the shape of flat rings. The ring 

is loaded into the rheometer and the solvent is dispensed into the center hole. Time 

sweeps at a constant frequency are performed and the torque is measured as a function of 



30 
 

time, with a strain amplitude of 4%. Although these measurements lie in the linear 

viscoelastic region, there are indications in the literature that SAOS may still affect the 

diffusion process [45, 51].  

To clarify the effect of SAOS on diffusion both continuous and intermittent-type 

oscillation experiments are performed. In the continuous-type experiments shown in 

Figure 3.2, the sample is subjected to oscillatory flow during the entire test time.  In the 

intermittent-type oscillation experiments in Figure 3.2, oscillations are applied for 2 

minutes followed by rest stages where no flow is applied. Rest stages of 2000, 4000 and 

10000s were studied. 

 

Figure 3.2. Schematic illustration of strain histories in intermittent-type oscillation experiments 

compared with continuous-type oscillation experiments. 

3.3.3. Sample Geometry in Rheometric Diffusion Studies 

In diffusion measurements, a PS ring with the solvent dispensed at the center, is squeezed 

between the bottom and top plate of the rheometer. The excess is then trimmed at the 

outer radius, so that there is no net change in the radial position of the outer boundary 

(b=12.5mm). Consequently, the interface position at the inner radius moves toward the 

centre due to squeezing as follows: 

𝐚(𝐇, 𝐤) = 𝐚𝐢 ∙ [(
−𝐇𝐤+𝐇+𝐤+𝟏

𝟐
)]                      𝐇 =

𝐡𝐢

𝐡𝐭𝐞𝐬𝐭
   ,        𝐤 =

𝐛

𝐚𝐢
                              (12)  

Here, a(H, k) is the inner radius after squeezing, ai is the initial inner radius, k is the ratio 

of outer-to-inner radius, and H is the squeeze ratio.  
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Table 3.1. Effect of squeezing on sample geometry and interface position in diffusion 

measurements 

ai (mm) k a(H, k) – mm Displacement - % 

3.125 4 2.75 12 

6.25 2 5.94 5 

    The values of a(H, k) for the two geometries studied experimentally, and with H=1.1 

(hi=1.2mm and htest=1.1mm) are shown in Table 3.1. The volumetric thermal expansion 

coefficient of polystyrene [62] is on the order of 4×10-4 1/C, and the inner radius at 

190°C is displaced due to thermal expansion, but by less than 0.1%. Thermal expansion 

results in negligible changes in the inner radius in comparison to squeezing. Therefore we 

consider only the squeezing effect and the correction factor applied to the interface 

boundary at the inner radius is 12% and 5% for k = 4 and k = 2 respectively. 

 

3.3.4. Sorption Measurements  

The square specimen is immersed in a beaker containing the preheated solvent which 

is placed in an oil bath to control the temperature at 190°C. The system shown in Figure 

3.3 is placed under a fume hood, and the beaker, is sealed with an open-ended watch 

glass to control solvent evaporation. An abundant amount of solvent is used to insure 

continuous exposure of the polymer. After 15s of immersion, the specimen is removed 

from the beaker using a hook system, cleaned with absorbent paper and weighed on an 

analytical balance, before being placed back in the beaker. At 190°C, diffusion for this 

solvent-polymer system is rapid and saturation is achieved in less than 5 minutes. Solvent 

diffusion is accompanied by PS dissolution into the solvent. In order to assess 

measurements reliability, some samples were immersed for longer time periods and for 

all cases, the experimental error based on 9 different samples was less than 3%.   
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Figure 3.3. Schematic illustration of the mass uptake measuring system. 
 

3.4. RESULTS AND DISCUSSION 

3.4.1. Linear Viscoelastic Characterization: Homogeneous Systems 

The dynamic moduli (Figure 3.4) show typical behavior with a cross-over frequency at 

4.5s-1 and a clear rubbery plateau. The relaxation spectrum H (λ) is calculated from this 

oscillatory storage and loss modulus data at 190°C, using a nonlinear Tikhonov 

regularization method and a software developed by the Freiburg Materials Research 

Center [58]. The weighted relaxation spectrum, λ·H(λ), is plotted against relaxation times 

λ in Figure 3.4.(b), and a characteristic peak at 1.8s is observed.  

 

Figure 3.4. A frequency sweep test with a shear amplitude γ = 4% at 190°C. (a) Storage 

modulus (G’) and loss modulus (G”) as a function of frequency for neat PS; (b) weighted 

relaxation spectrum of neat PS. Error bars represent the standard deviation of 9 measurements. 
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In the Appendices, the complex viscosity of homogeneous polymer solutions at several 

concentrations are shown, from which the concentration shift factors (aC and bC) are 

determined (Figure A3.1). The applicability of the free volume theory to these results is 

shown in Figure 3.4., from which free volume parameters are determined. According to 

eq. (5), a plot of 1 / ln [(aC (C) 
. bC (C)] versus [1 / C] should be a straight line with slope 

B and intercept A (Figure 3.5). It is clear that the free volume theory and the Fujita-

Kishimoto free volume model [49], can describe the effect of solvent concentration on 

the complex viscosity of PS - TCB solutions in the concentration range of interest. 

 

Figure 3.5. Applicability of the free volume theory at 190°C. The free volume parameters, were 

determined to be A = 0.2717 and B = 0.0178, for solutions ranging from 60wt% to 93.75wt% 

polymer (See Figure A3.1). 

3.4.2. Sorption Measurements 

Figure 3.5 shows experimental sorption results as a function of time, as well as the best 

fit of eq. (11) with the corresponding diffusion coefficient. The main challenge in 

studying diffusion is to evaluate the diffusion coefficient [37]. In sorption experiments, 

the gain in weight of a rectangular PS film is measured as a function of time. Eq. (11) 

well describes this process, provided the film does not dissolve [46]. Dissolution of PS at 

190°C may be one of the limiting factors in the accuracy of the sorption method for 

determining the diffusion coefficient. However, the high temperature also results in a 

high diffusion rate meaning that reliable measurements are still possible at short times 

where the impact of dissolution is minimized. Eq. (11) represents the mass uptake for 
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sorption in a thin film, where M∞ is the equilibrium solubility, which may be practically 

impossible to measure due to dissolution of the polymer.  

A least-squared-error fitting of eq. (11) is applied to experimental sorption data and the 

diffusion coefficient is determined as single fitting parameter. Our fitting approach is 

applied to sequential subsets of the original data (Figure 3.6(a)), to determine an estimate 

for the diffusion coefficient which is least affected by polymer dissolution. In Figure 

3.6(a) we can see that data after 60s of immersion are somewhat affected by polymer 

dissolution, at an even longer time dissolution overcomes sorption and a weight loss is 

observed (see Figure A3.2 in the Appendices).  We therefore apply the fit to all data up to 

60s and obtain an average value of D = 2.167 ∙ 10-4 mm2/s. This result is used to validate 

diffusion coefficients from rheological measurements.  

 

Figure 3.6. Mass uptake measurements at 190°C. (a) Sensitivity of the inferred diffusion 

coefficient to the experimental sorption time; (b) Sorption plot for the TCB|PS system. Symbols 

represent average of 9 experiments. Curve represents eq. (11) with a diffusion coefficient of 

2.167 ∙ 10-4 mm2/s. 

 

3.4.3. Diffusion Measurements in SAOS  

Figure 3.7 shows plots of the torque, T(ω0, t), at five different frequencies ω0, for 

specimens of geometry k = 4 (Figure 3.7(a)) and k = 2 (Figure 3.7(b)). The solvent which 

is initially confined within the polymer ring, diffuses outwards, resulting in a decreasing 

torque over time. The effect of diffusion is more pronounced in the early stages of the 
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time. The key feature of this plot is the time required for the torque to become constant to 

±2%. This time, 16 hours (~ 60 000s) for a ring with outer-to-inner radius ratio k = 4, and 

8hours (~ 30 000s) for k = 2, is characteristic of the diffusion time scale.  

  
Figure 3.7. Experimental diffusion measurements at 190°C for 5 frequency decades from 0.01s-1 

to 100s-1: torque T (ω0, t) as a function of frequency for (a) k = 4; (b) k = 2. Error bars represent 

the standard deviation of 6 measurements. 

In Figure 3.7, measured torque is normalized by the torque at time t = 0, as T (ω0, t) / T 

(ω0, 0). This torque T (ω0, 0) reflects the response of pure PS before solvent diffusion. 

The normalized data in Figure 3.8 are used to determine the diffusion coefficient for this 

TCB-PS system at 190°C, from both geometries (k = 4 and k = 2). In this figure we can 

see that except for ω0=100 s-1, diffusion appears to be unaffected by frequency. Shearing 

at 100s-1 results in a higher dissipation rate then shearing at lower frequencies of 1 s-1, 

which implies that the diffusion system may have been affected by viscous heating for 

ω0=100 s-1, so it is not possible to make a clear determination at this frequency. Using 

velocity, shear area and perimeter, density and viscosity of polystyrene at 190°C, we can 

estimate the Reynolds number (10-3 for 100 s-1, 10-5 for 1 s-1) Using an SAOS velocity of 

0.05 m/s (determined from strain amplitude 5%, frequency 100 s-1 and plate gap 0.001m), 

density (1040 kg/m3), thermal conductivity (0.1 W/m.K) and viscosity (1kPa.s) of 

polystyrene at 190°C [55], we can estimate viscous dissipation and obtain a maximum 

temperature rise of 1K [55]. 
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Figure 3.8. Normalized Torque at 190°C, measured as a function of time, for (a) k = 4; (b) k = 2. 

In order to explore the effect of SAOS on the diffusion rate reported in literature [12, 

52], we study diffusion under intermittent oscillations. As shown in Figure 3.9 (a)-(d), 

samples continuously sheared produce the steepest decrease in measured torque, 

compared with samples undergoing only short intermittent oscillation and long rest 

periods.  

 

Figure 3.9. Normalized Torque at 190°C, for samples continuously sheared, compared with 

samples undergoing periods of intermittent oscillations and long rest periods, for k = 4, at 190°C 

and ω0 = (a) 0.01 s-1; (b) 0.1 s-1; (c) 1 s-1; (d) 10 s-1.  
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3.4.4. Inferring Diffusion Coefficients From Rheological Data  

Using eq. 10, a least-squared-error fitting of eq. 7 is applied to experimental torque 

data.  A gradient-based iterative search method is used [59], with the diffusion coefficient 

as single adjustable parameter, where the inner radius, a, is given by eq. 12. This equation 

incorporates the effects of initial sample squeezing. The free volume parameters (A and 

B) in eq. 7 are determined from a separate experiment (See Figure 3.5). The fit is applied 

to torque data in the early experimental times; up to half the time it takes for the torque to 

become constant. In Figure 3.10 for k = 4, we see that the torque is constant after 40000s 

and we therefore apply the fit to all data up to 20000s, to obtain a value of D in the range 

of ~3 x 10-4 mm2/s. We have done the fitting in this way because the concentration profile 

from eq. (10) is less accurate at long times as the boundary condition applied at the outer 

rim is no longer valid. Continuous-type oscillation diffusion data for k = 4 (for 1s-1 and 

100s-1) and their corresponding fits are shown in Figure 3.10. Equivalent data for k = 2 

are presented in the supporting information.  

 

Figure 3.10. Measured torque during diffusion for k = 4, at 190°C. Lines represent the best fit 

with the dashed lines illustrating the extrapolation of the fit. (a) ω0 = 1s-1, D = 3.32 ± 0.012 (10⁻⁴ 

mm² / s); (b) 100 s-1, D = 3.019 ± 0.025 (10⁻⁴ mm² / s).  

For each frequency, diffusion coefficients are determined from the non-linear model-
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size of the PS samples (2g - 3g) as is the case with our diffusion studies. In our 

experiments the least effect of swelling is expected when k = 4. In order to estimate the 

effect of swelling, we perform a set of simulations where we fit diffusion coefficients to 

our experimental data with smaller values of inner radius as shown in Figure 3.11. We 

see that even in the case of a reduction in the inner radius by 20% for k = 2, which would 

represent significant swell, the estimated diffusion coefficient is only increased by 11%. 

We therefore neglect swell in our estimates of the diffusion coefficient and instead assign 

this to uncertainty.  

                                                  

 

Figure 3.11. Effect of swelling on the uncertainty in diffusion coefficient for k = 4 and k = 2, at 

190°C under continuous oscillation at ω0=1s-1. 

At this point we take a look at simulated concentration profiles using eq. (10) with the 

diffusion coefficient set to D = 3.3 10⁻⁴ mm² / s. In Figure 3.12, concentration profiles 

(for k = 4) are plotted at various times throughout the experimental window. At long 

times, t ≥ 40000s we can see that concentration gradients still exist but the torque is 

quasi-constant; further indicating that SAOS measurements in this regime are not 

sensitive to the diffusion process. Additionally we note that our boundary condition at the 

outer rim becomes inaccurate when a finite concentration gradient at r = b appears at 

times after 20000s (for k = 4). This time constant can be estimated from data in Figure 

3.10, as [ 40000s / (1+1/k)2 ] which gives 25000s. 
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Figure 3.12. Normalized concentration profiles for k = 4, using eq. (10) with D = 3.3 10⁻⁴ mm²/s 

Diffusion coefficients determined from the continuous-type oscillation experiments are 

shown in Figure 3.13 where we can see that D is independent of sample geometry, and in 

most cases oscillation frequency. We do see a small change in D at ω0 = 100s-1 although it 

is unclear that this observation is physically meaningful. Shearing at 100s-1 causes the 

diffusion coefficient to decrease, which implies that the diffusion system may have been 

affected by the fast shearing but it is not possible to make a clear determination with 

these data.  

                                  

Figure 3.13. Effect of frequency on the diffusion coefficient for k = 4 and k =2, at 190°C under 

continuous oscillation. 
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Figure 3.13 shows diffusion coefficients plotted as function of frequency from 0.01s-1 

to 100s-1 for (i) continuous oscillatory measurements, (ii) intermittent oscillatory 

measurements with a rest time of 4000s for k = 4 (and 2000s for k = 2), (ii) intermittent 

oscillatory measurements with a rest time of 10000s (for both k = 4 and k = 2), and (iv) 

sorption measurements. In Figure 3.14, we see the effect of continuous shearing which 

accelerates diffusion, relative to the case of intermittent oscillation. The diffusion 

coefficient under continuous oscillation is ~3.3 x 10-4 mm2/s, while that under 

intermittent oscillation for rest periods of 10000s is ~2.5 x 10-4 mm2/s. As expected, 

shorter rest periods of 4000s for k = 4 and 2000s for k = 2, result in a higher diffusion 

coefficient but is still lower than for the case of continuous oscillation. We note that the 

sorption experiments provide a diffusion coefficient value of ~2.2 x 10-4 mm2/s. Recall 

that the sorption D value represents a lower bound of the actual material property due to 

polymer dissolution as explained previously. From these data we conclude that rheometry 

can be used to measure the diffusion coefficient for this TCB|PS system at 190°C and in 

this way we can explore the effect of SAOS on diffusion.  

 

Figure 3.14. Effect of SAOS on the diffusion coefficient at 190°C under continuous oscillation, 

intermittent oscillation, and from static sorption measurements. Note that the sorption data are 

presented as a band to illustrate the likely uncertainty due to polymer dissolution. 
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    From results in Figure 3.14, we can the following observations: relative to quiescent 

diffusion, diffusion under SAOS is always faster, regardless of frequency and resting 

periods (at least within our experimental window). This occurs even though the flow is 

oscillatory and there is no net transport of material in one direction. Additionally we note 

that by definition, the strain amplitude is very small and that the polymer chains are 

disturbed from their equilibrium state by an infinitesimal amount. We postulate that when 

reptation occurs in response to this infinitesimal deformation, it provides the opportunity 

for chains at the interface to convect the smaller TCB molecules in the radial direction. 

This means that the solvent convection happens over a length scale that is smaller than 

the size of the polymer chain while the polymer chain remains (approximately) in its 

original location.  We can compare this to the case of mechanical stirring where the entire 

fluid is convected macroscopically in a single direction: both the solvent molecules and 

the polymer chains are moved from their original locations by the flow. 

3.5. CONCLUSIONS 

An experimental technique for determining the diffusion coefficient of solvents in 

polymer melts from SAOS measurements is developed here. SAOS measurements under 

intermittent-type oscillations provide values of the diffusion coefficients that are 

consistent with quiescent diffusion. We found that SAOS accelerates the diffusion of 

TCB in molten PS at 190°C and that longer rest periods decrease this acceleration effect.  

Diffusion coefficients measured under continuous oscillation are about 45% higher than 

those under quiescent diffusion. Additionally, high frequency results indicate that 

oscillations within the polymer’s elastic regime have less impact on diffusion than in the 

viscous or viscoelastic regimes. This study provides insight into the dynamics of solvent 

diffusion through amorphous polystyrene in the melt state.  
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CHAPTER 4 

A General Method for Obtaining Diffusion Coefficients by Inversion 

of Measured Torque From Diffusion Experiments Under Small 

Amplitude Oscillatory Shear 

 

 

ABSTRACT 

A numerical approach based on Tikhonov regularization is developed to invert torque 

curves from time dependent SAOS experiments in which diffusion occurs to determine 

the diffusion coefficient. Diffusion of a solvent into a polymer melt for example causes 

the measured torque to decrease over time and is thus dependent on diffusion kinetics and 

the concentration profile. Our numerical approach provides a general method for 

retrieving local viscosity profiles during diffusion with reasonable accuracy, depending 

only on the linear viscoelastic constitutive equation and a general power law dependency 

of the diffusion process on time. This approach also allows us to identify the type of 

diffusion (Fickian, pseudo-Fickian, anomalous and glassy) and estimate the diffusion 

coefficient without the a priori identification of a specific diffusion model. Retrieving 

local viscosity profiles from torque measurements in the presence of a concentration 

gradient is an ill-posed problem of the second type and requires Tikhonov regularization. 

The robustness of our approach is demonstrated using a number of virtual experiments, 

with data sets from Fickian and Non-Fickian theoretical concentration and torque profiles 

as well as real experimental data.  
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4.1. INTRODUCTION 

The measured torque from parallel plate rheometry in SAOS can simply and directly 

be converted into shear stress and complex viscosity functions, but only when 

composition is uniform throughout the sample [65]. This is done using the linear 

viscoelastic constitutive equation with SAOS kinematics [65, 66]. When a binary sample 

containing a radial concentration gradient is subjected to SAOS flow, composition is a 

function of time and geometry [65, 66] and the situation is quite different:[65] complex 

viscosity varies with radial position. In this work we provide a validated numerical 

method based on Tikhonov regularization for recovering radial viscosity profiles from the 

measured torque during diffusion under SAOS, and for estimating the diffusion 

coefficient [67, 68, 69] with reasonable accuracy. 

This class of mathematical problems, type II ill-posed [69], is ill-conditioned, the noise 

in the experimental data may lead to unreliable results [71, 72]. Given the ill-conditioning 

of the system, regularization is required in order to select an acceptable solution and 

provide a reasonable fit to the measured data. By recognizing the ill-posed nature of this 

recovery problem, Tikhonov regularization is used to reconstruct the solution of a one-

dimensional diffusion problem in the radial direction. Tikhonov regularization with an 

appropriate choice of regularization parameter (λ), is an effective method for solving this 

class of problems [73]. The effectiveness of Tikhonov regularization as a method of 

solution, lies in its ability to stabilize the solution and to prevent it from growing 

unboundedly [72, 73, 74]. A large value of the regularization parameter, leads to smooth 

material functions at the expense of accurate representation of experimental data, and a 

small value of the regularization parameter leads to a close match with experimental data 

but the resulting functions may exhibit excessive fluctuations [75].  

This method requires a rigorous route for determining the regularization parameter, 

which avoids over-regularized or under-regularized solutions. The choice of λ is critical, 

and a good λ value should minimize errors, and at the same time, give a regularized 

solution that is as close as possible to the exact solution [75, 76]. Here we adopt the 

flattest slope method to locate the optimal range [76, 77] for λ. Some of the regularized 
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solutions of our ill-conditioned problem are less sensitive than others to the choice of λ, 

and the flattest slope method [75] is used to identify the sensitive and insensitive regions, 

and to determine the range of optimal λ values.  

In the LVE region, the properties of homogeneous samples are only dependent on 

frequency [65, 72], and the torque integral equation [65] in SAOS can be explicitly 

solved. In the presence of a composition gradient, the torque integral cannot be resolved 

(Eq. 1).  When diffusion occurs (Figure 4.1), the complex viscosity becomes dependent 

on the kinematic parameters of diffusion as well. 

𝐓𝐂(𝐭) = 𝛃 ∙ ∫ [| 𝛈∗(𝐫, 𝐭)| ∙ 𝐫𝟑]𝐝𝐫
𝐛

𝐚
= 𝐟(𝐭)                                           (1) 

𝛃 =  
𝟐𝛑𝛚𝟎𝛉𝟎

𝐇
                                             (2) 

Eq. 1 then relates the torque and the variable radial complex viscosity. In Eq. 1, TC (t) is 

the computed time-dependent torque amplitude, η*(r, t) is the concentration-dependent 

complex viscosity, b is the outer radius, and a is the inner radius that refers to the radial 

position of the diffusion interface. In Eq. 2, H is the gap size, θ0 is the angular 

displacement, and ω0 is the oscillation frequency.  

The experimental technique [65] involves SAOS torque measurements in a concentric 

binary specimen as in Figure 4.1 (one material in the center and the second in the outer 

ring). In practice, we dispense of the solvent at the center of the polystyrene ring after it 

has been heated to the experimental temperature, which is followed by setting up of the 

experimental gap and then measurement. This ensures that the solvent is trapped between 

the two plates of the rheometer. In this way, the interface is as sharp as possible in the 

experimental start-up, but we recognize that in the short time (less than 5 min.) between 

dispensing the solvent and beginning the measurement there will already be diffusion. 

 

 

 

Figure 4.1. Schematic of binary sample geometry considered here in SAOS diffusion 

measurements, with k as ratio of outer-to-inner radius. 
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4.2. MATHEMATICAL FORMULATION 

Parallel plate rheometry data in SAOS are in the form of a set of measured torque Ti
M 

at each time i. The superscript M is used to denote the experimentally measured torque, 

and the superscript C in Eq.1 is used to distinguish the computed torque Ti
C from its 

experimentally measured counterpart Ti
M. In discretized form, Eq. 1 becomes: 

𝐓𝐢
𝐂 = 𝛃 ∙ ∑ 𝛈∗(𝐫𝐣, 𝐭𝐢) ∙ 𝐫𝐣

𝟑 ∙ 𝛂𝐣 ∙ ∆𝐫𝐛
𝐣=𝐚                                                                 (3) 

Here αj are discretization coefficients for the radial position j, which depend on the choice 

of discretization method, and η*(rj, ti) is the set of unknown complex viscosity profiles to 

be recovered from Ti
M. 

Inverse problems are well-conditioned when the noise is identically distributed 

between time intervals [78]. Reconstructing local viscosity profiles from torque 

measurements is ill-conditioned, since small variability in the measured torque leads to 

large perturbations in local viscosity profiles. While well-conditioned inverse problems 

are formulated as a classical least squares minimization, ill-conditioned problems are 

instead solved using robust regularization methods that stabilize the solution [72, 73]. 

Tikhonov regularization minimizes a weighted least squares and uses a regularization 

parameter to weight the residual and solution norm (Eq. 4). The radial direction is 

discretized into N uniformly spaced points, and a weighted minimization of the sum of 

squared differences between Ti
M and Ti

C is applied. Tikhonov regularization finds a 

weighted least squares solution to an augmented system, using the regularization 

parameter λ and the regularized torque Ti
R (Eq. 5). 

𝐌𝐢𝐧  |∑ {𝐓𝐢
𝐌 − 𝐓𝐢

𝐂 − 𝑻𝒊
𝑹}𝐭

𝐢=𝟎 |
𝟐
               (4) 

𝐌𝐢𝐧  |∑ {𝐓𝐢
𝐌 − 𝛃 ∙ [∑ 𝛈∗(𝐫𝐣, 𝐭𝐢) ∙ 𝐫𝐣

𝟑 ∙ 𝛂𝐣 ∙ ∆𝐫𝐛
𝐣=𝐚 ] − 𝝀 ∙ [∑ 𝜼∗(𝒓𝒋, 𝒕𝒊)

𝒃
𝒋=𝒂 ]}𝐭

𝐢=𝟎 |
𝟐
        (5) 

In Eq. 5 the measured, computed and regularized torques (TM, TC, TR) all have units of 

torque. TC is the computed torque and has torque units by definition. The regularization 

parameter plays the role of a Lagrange multiplier implicitly adding an additional 

constraint: 
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|𝛈𝐢,𝐣
∗ | > 𝟎                                                                    (6) 

The Lagrange multiplier is generally the rate of change of the quantity being 

minimized, as a function of the constraint parameter. This means that the regularization 

parameter here has units of torque/viscosity, which results in 3rd term in Equation 5 

having torque units. Non-negativity and boundedness [73] provide higher quality 

solutions. After this, the upper and lower bounds of 0 and 1 (no diffusant) are applied by 

normalizing the viscosity with respect to the initial viscosity.  

 

4.3. TIKHONOV REGULARIZATION 

The success of Tikhonov regularization depends on making a good choice of λ, and 

suffers from a drawback that the the optimal λ is usually not obvious [75, 76]. The 

optimal value of λ should result in the smallest computed relative error: | xλ – xexact | when 

the exact solution is known, where x is the set of unknown complex viscosity profiles. In 

general, this best solution is unknown a priori, thus the flattest slope method is used. The 

flattest slope [75] provides a mathematically rigorous method to determine the optimal 

range for λ. A plot of (λ, xλ) exhibits two flat portions, which are insensitive to the value 

of λ (Figure 4.2). An optimal range for λ is expected to fall in the region separating the 

left and right flat portions of the (λ, xλ) curve. We study the behavior of this curve using 

simulated data sets from Fickian and Non-Fickian profiles as well as experimental data. 

 

Figure 4.2. Sample plot of (λ, xλ) for the Fickian case (Refer to Fig. 4.3). Diffusion parameters: 

D = 3.1 ∙ 10⁻⁴ mm² / s, A = 0.037 and B = 0.24. Simulation parameters: t = 1000 s, r = 

0.05mm, and k = 2. The solid black points represent the sensitive region where the range of 

optimal λ values lie. 
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Virtual Experiments 

A finite amount of diffusant is initially distributed uniformly through a thin cylinder 

of radius a, and there is no flow of diffusant leaving the system through the outer rim.  

The following boundary and initial conditions apply (Eq. 7): 

𝐂 =  𝐂𝟎               𝐚𝐭                 𝟎 <  𝐫 < 𝐚,                         𝐭 = 𝟎  

𝐂 =  𝟎                 𝐚𝐭                  𝐚 <  𝐫 < ∞,                       𝐭 =  𝟎  

𝐂 =  𝟎                  𝐚𝐭                       𝐫 =  ∞,                           𝐭 ≥  𝟎                    (7) 

Fickian and non-Fickian diffusion equations are then solved to determine theoretical 

concentration profiles for one-dimensional radial diffusion [79]. Diffusion is of Fickian 

type [78] when the interface quickly spreads according to the free-diffusion exponent of 

½. Fickian diffusion is often observed well above the glass transition temperature. The 

polymer relaxation rate is faster than the solvent diffusion rate, its concentration 

decreases exponentially and a large penetration gradient is observed [79]. In solvent-

polymer diffusion well above the glass transition, the concentration profile is obtained by 

solving a Fickian diffusion equation: 

𝛛𝛙𝐀

𝛛𝐭
= 𝛁 𝐉𝐀 = −𝛁𝟐(𝐃 ∙ 𝛙𝐀)              (8)  

For Non-Fickian diffusion, typical of polymer-polymer interdiffusion, the materials do 

not interdiffuse freely, and an interface zone separates them [80]. In this case, the 

interdiffusion exponent is considerably smaller than the Fickian type exponent, the two 

polymers partially mix and the initial sharp interface slowly broadens [81]. The type of 

diffusion behavior is strongly dependent on both host polymer and diffusing species [82, 

83].  

Polymer-polymer diffusion is usually described using the mean-field theory and a free 

energy mixing function [80]. The volume of the system does not change during 

interdiffusion, and this free energy function describes chain interaction and entropy, 

based on a Flory-Huggins approach. Each polymer rearranges and repels unfamiliar 

chains across the interface, the two polymers do not freely and completely mix, and the 

diffusion mechanism is different from free (or Fickian) diffusion [81]. In the case of Non-

Fickian solvent-polymer diffusion and polymer-polymer interdiffusion, the diffusion flux 
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is a non-linear function of the chemical potential [80], and the concentration profile is 

obtained by solving a non-Fickian diffusion equation: 

𝛛𝛙𝐀

𝛛𝐭
= 𝛁 𝐉𝐀 = −𝛁(𝚲𝝍 ∙ 𝛁𝛍)                                                                (9)  

Here, Λ𝜓 is a mutual mobility coefficient that depends on composition, and μ is the 

chemical potential, which represents local changes in the free energy of this closed 

system, with respect to changes in composition. 

In the first case, we start with Fick’s 2nd law (Eq. 10) in a semi-infinite medium, the 

Fickian concentration profile [20] satisfying Fick’s 2nd law and the boundary conditions 

above is given by Eq. 11:  

𝟏

𝐫
∙

𝛛

𝛛𝐫
(𝐫 ∙

𝛛𝐂

𝛛𝐫
)  =

𝟏

𝐃
∙
𝛛𝐂

𝛛𝐭
                                      (10) 

𝐂(𝐫,𝐭)

𝐂𝟎
=

𝟏

𝟐𝐃𝐭
∙ 𝐞−

𝐫𝟐

𝟒𝐃𝐭 ∙ ∫ 𝐞−
𝐫́𝟐

𝟒𝐃𝐭
𝐚

𝟎
∙ 𝐈𝟎 (

𝐫𝐫́

𝟐𝐃𝐭
) ∙ 𝐫́𝐝𝐫́                                                        (11) 

 

where D is the diffusion coefficient, and I0 is the modified Bessel function of 1st kind 

and of order 0. 

In the second case, the composition profile for a two-phase polymer system of similar 

chemical structure with different molecular weights [84], satisfying conservation of mass 

and chemical potential [79, 80, 83], as well as the specified boundary conditions is given 

by Eq. 12:  

𝝏𝝍𝑨

𝝏𝒕
=

𝝏

𝝏𝒙
{(

𝟐

𝟏+𝑹+(𝑹−𝟏)𝝍𝑨
) ∙ [⟨𝟏 +

𝟏

𝑹
− 𝝌𝑨𝑩 + (

𝟏

𝑹
− 𝟏) ∙ 𝝍𝑨 + 𝝌𝑨𝑩 ∙ 𝝍𝑨

𝟐⟩ ∙
𝝏𝝍𝑨

𝝏𝒙
−

𝝏𝟑𝝍𝑨

𝝏𝒙𝟑 ]}          (12) 

Here χAB is the interaction parameter, R is the molecular weight ratio NB / NA,  is the 

composition profile, and the factor in front of /x is equivalent to the diffusion 

coefficient [79]. The second term involving /x3 accounts for an incompatible 

interface separating two polymers by reducing the gradient steepness [79].  

The next step is to relate the concentration profile to the torque.  For the Fickian case, 

this is done by incorporating the Fujita-Kishimoto [84] free volume model (Eq. 13) which 

describes well the effect of solvent concentration on the viscosity of solutions, provided 

the polymer is not saturated, and if the volume of the mixture is additive [85]. Free 
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volume parameters A and B reflect the fractional free volume in the pure polymer, and 

the contribution of the diffusant to the increase in free volume [84, 86]. 

|𝛈∗(𝐫,   𝐭)| = |𝛈𝟎
∗ (𝐭𝟎)| ∙ 𝐞 

− 
𝟏

[𝐀]+[𝐁] ∙ 
𝟏

𝐂(𝐫,𝐭)                 (13) 

Here η0
*(t0) is the initial pure polymer’s viscosity, and C(r,t) is the concentration profile 

obtained from the Fickian case (Eq. 11).  

For the non-Fickian case, a non-linear mixing rule [87] is used to describe the effect of 

composition on the overall viscosity during polymer-polymer interdiffusion (Eq. 12). 

|𝛈∗(𝐫,   𝐭)| = {𝐰𝟏(𝐫,   𝐭) ∙ |𝛈𝟏
∗ |(𝟏 𝟑.𝟒)⁄ + [𝟏 − 𝐰𝟏(𝐫,   𝐭)] ∙ |𝛈𝟐

∗ |(𝟏 𝟑.𝟒)⁄ }
𝟑.𝟒

                        (14) 

Here η1
* and η2

* are the pure polymers viscosities, and w1(r, t) is the weight fraction of the 

inner polymer, which is related using Eq. 14, to the composition profile for the non-

Fickian case in Eq. 11.  

𝐰𝟏(𝐫,   𝐭) =
𝐂𝟏(𝐫,   𝐭)

𝐂𝟏(𝐫,   𝐭) + 𝐂𝟐(𝐫,   𝐭)
                                                                             (15) 

A relationship between the concentration profile and the torque (Eq. 16), can 

essentially be obtained from the free-volume theory by substituting Eq. 11 for the Fickian 

case, or from the mixing rule by substituting Eq. 12 for the non-Fickian case, in the 

SAOS flow integral (Eq. 1).  

|𝐓𝐓𝐡𝐞𝐨(𝐭)| =  𝛃 ∙  [∫ |𝛈∗(𝐫,   𝐭)|
𝐛

𝐚
∙ 𝐫𝟑 ∙ 𝐝𝐫]                                                                       (16) 

This relationship is used to simulate experimental torque data, the set of measured torque 

Ti
M is replaced with Ti

Theo, and the numerical procedure explained previously is applied.  

We next look at simulated Fickian concentration profiles using Eq. 11 with the 

diffusion coefficient set to D = 3.1 ∙ 10⁻⁴ mm² / s. In Figure 4.3(a), concentration profiles 

(for k = b / a = 2, with b = 12.5mm) are plotted using a time step of 1000s with a radial 

step size of 0.05mm. A random additive noise [71, 77] ranging from 1% to 4% is applied 

to all concentration profiles. Figure 4.3(b) shows viscosity profiles obtained using 

concentration profiles in Figure 4.3(a), and the free volume theory Eq. 13, with A = 0.037 

and B = 0.24. We have chosen these values as they are appropriate for trichlorobenzene 
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diffusing in molten polystyrene at 190°C which we have previously studied 

experimentally [60].  We can also see in Figure 4.3(c), the resulting theoretical torque, 

using viscosity profiles in Figure 4.3(b) and Eq. 16. The inversion procedure is applied 

on this set of theoretical torque data, which provides means to evaluate our approach, 

since the exact solution is known in this case. In the Appendices, we present a second 

simulated Fickian case with the diffusion coefficient set to D = 1.1 ∙ 10⁻3 mm² / s. A plot 

of (λ, xλ) and (λ, er
λ) for this case is shown in Figure A4.1. Regularized and exact 

viscosity profiles are shown in Figure A4.2, and the corresponding normalized interface 

width is plotted as a function of time in Figure A4.3.  

 

   

Figure 4.3. Simulated Fickian data with D = 3.1 ∙ 10-4 mm² / s, t = 1000s, r = 0.05mm, and k 

= 2. (a) Concentration profile (Eq. 11); (b) Viscosity profile (Eq. 13); (c) Torque Profile (Eq. 16).  
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Next we consider the non-Fickian case where the factor in front of /x in Eq. (12) 

describes the diffusion coefficient, with an N-2 dependence in accordance with the 

reputation [86] model (Eq. 17): 

𝑫 ≅ 
𝑹

𝑵𝑩
𝟐

𝒎𝟎
⁄

                                      (17) 

Here R is the molecular weight ratio NB / NA, and m0 is the monomer molecular 

weight [85]. In Figure 4.3(a), non-Fickian concentration profiles using Eq. 12 (with k = b 

/ a = 2, R = 4, and χAB = 1) are plotted for a time step of 20000s. Figure 4.3(b) shows 

viscosity profiles obtained using the composition profiles and the non-linear mixing rule 

[87] (Eq. 14) with η1
*=500 Pa.s and η2

*=50 000 Pa.s. Figure 4.3(c) shows the resulting 

theoretical torque as a function of time using Eq. 16, for this non-Fickian case. 

 

 
Figure 4.4. Simulated non-Fickian data with R = 4, χAB = 1, η1

*=500 Pa.s and η2
*=50 000 Pa.s, 

t = 20 000s, r = 0.05 mm, and k = 2. (a) Concentration profile (Eq. 12); (b) Viscosity profile 

(Eq. 14); (c) Torque Profile (Eq. 16). 
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Experimental techniques to study diffusion are often limited to a particular choice of 

system [66] and experimental conditions [67]. Some of these techniques may be 

restricted to solvent-polymer [71] or polymer-polymer [66] systems, and are likely to be 

constrained by a narrow range of experimental temperatures. Diffusion data at elevated 

temperatures are often extrapolated from limited data at low temperatures, which can 

result in orders of magnitudes of errors. Our experimental technique [65] to measure 

diffusion is versatile, and is based on rheological measurements under SAOS flow. Such 

measurements present an advantage over other experimental techniques, they are reliable 

and repeatable for a wide range of diffusion systems and experimental conditions. 

Various aspects of diffusion and interdiffusion may be experimentally studied, and data 

from a wide range of solvent-polymer and polymer-polymer systems can be obtained, 

and at various experimental temperatures and frequencies. Our numerical procedure can 

then be applied to a wide range of experimental data, and is thus useful in determining 

diffusion properties for a variety of diffusion systems and experimental conditions. 

 

4.4. NUMERICAL RESULTS 

4.4.1. The Flattest Slope Method 

The graphs in Figure 4.5. are plots of (λ, xλ) and (λ, er
λ), for the Fickian case (Figure 

4.5(a)) and the non-Fickian case (Figure 4.5(b)). Both are the result of solving Eq. 5 for a 

wide range of λ values, and the solution norm xλ and relative errors er
λ are recorded at 

each iteration. We show on the same plot, the average relative error (λ, | xi
λ – xi

exact |) as a 

percent of xexact. We observe that in both problems, the range of λ shown as solid black 

points on the (λ, xλ) curve, coincides with the range where relative errors are smallest on 

the (λ, er
λ) curve. This observation is made by comparing regularized and exact solutions, 

and confirms the robustness of the flattest slope method in determining the optimal λ 

range, without a priori knowledge of the exact solution [75]. This region represents the 

optimal λ range where the most accurate viscosity profiles can be retrieved from the 

torque data. From Figure 4.5, the optimal range for λ is 0.001 - 0.002 for both Fickian 
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and non-Fickian cases. The performance of our approach is next discussed, and in all 

cases regularized and exact solutions are a close match. 

 

Figure 4.5. Plot of (λ, xλ) and (λ, er
λ): (a) Fickian case with D = 3.1 ∙ 10-4 mm² / s, A = 0.037 and 

B = 0.24.  (b) Non-Fickian case with R = 4, χAB = 1, η1
*=500 Pa.s and η2

*=50 000 Pa.s. Black 

solid points represent the trust region with the range of optimal λ values lying towards the right 

insensitive region. 

4.4.2. The Regularized Solutions 

Given torque-time data, the numerical solution of this inverse problem represents the 

local radial viscosity profiles as a function of time, which best match simulated torque 

data. The flattest slope method and regularized solutions [75] are applied using 

MATLAB [89] and its optimization toolbox [87, 90]. Constrained minimization as 

previously explained is applied using the Sequential Quadratic Programming algorithm, 

with an optimality tolerance of 10-9. The number of spatial points per time step is 125, 

with 6 time steps for both Fickian and non-Fickian (a total of 750 unknown variables). 

Regularized solutions obtained within the optimal region for λ are smoothed using a 

smoothing parameter α, which is directly related to the slope of the torque dT/dt. The 

lower and upper bounds of regularized solutions are 0 and 100% (no diffusant), and 

complex viscosity profiles are expected to decrease from an initial Heaviside step 

condition [78].  

Table 4.1 gives radial errors per time step (relative errors with respect to xexact) for this 

optimal range of λ and for both diffusion cases, as well as the overall residual error for 
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the 6 time steps explored in each case. Table 4.1 confirms that our numerical procedure 

allows for an accurate determination of radial complex viscosity profiles across a thin 

polymeric ring, undergoing diffusion (or interdiffusion) under SAOS flow with constant 

flow parameters. 

Table 4.1. Radial relative errors for the optimal range of regularization parameter λ. An 

overall error of less than 1.5% is observed for both Fickian and non-Fickian cases. 

Time - s Fickian Case Time - s Non-Fickian Case 

0 0% 0 0% 

1000 0.80% 20 000 0.50% 

2000 0.90% 40 000 0.75% 

3000 1.50% 60 000 0.79% 

4000 2.50% 80 000 0.76% 

5000 1.80% 100 000 0.91% 

Average 1.25% Average 0.61% 

Figures 4.6 and 4.7 show the robustness of our procedure in effectively recovering 

radial viscosity profiles from torque data. Viscosity profiles can be used to determine the 

interface spread rate as a function of time [91], which ultimately contains the information 

on the diffusion type and coefficient [80, 83]. In all cases reported, radial viscosity 

profiles recovered from the regularization method are a very close match with the exact 

solution indicating the effectiveness of Tikonov regularization combined with the flattest 

slope method [75] and the smoothing procedure.  
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Figure 4.6. Simulated data and regularized viscosity profiles for Fickian diffusion. (a) 

Concentration profile (Discrete points are the regularized solutions and the continuous curve is 

the exact solution). (a) t = 2000s; (b) t = 3000s; (c) t = 4000s; (d) t  = 5000s. Diffusion 

parameters: D = 3.1 ∙ 10⁻⁴ mm² / s, A = 0.037 and B = 0.24, with r = 0.05mm and k = 2. 
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Figure 4.7. Simulated data and regularized viscosity profiles for non-Fickian diffusion. Discrete 

points are the regularized data and the continuous curve is the exact solution. (a) t = 20 000s; (b) 

t = 40 000s; (c) t = 60 000s; (d) t  = 80 000s. Diffusion parameters: R = 4, χAB = 1, η1
*=500 Pa.s 

and η2
*=50 000 Pa.s, with r = 0.05mm, and k = 2. 

 

4.5. RESULTS AND DISCUSSION 

4.5.1. The Interface Width 

We define the interface width, W(t), as the distance separating the pure polymer region 

from the pure diffusant region [79, 83, 89]. The diffusion type can be characterized using 

the time dependency of the interface width [80], and an estimate of the diffusion type and 

coefficient for each case can then be obtained. Figure 4.8 shows the normalized interface 

width as a function of time, obtained from the regularized viscosity profiles, for both the 

Fickian and non-Fickian cases. The interface width increases slower for the non-Fickian 

case than for the Fickian process. In the case of non-Fickian diffusion, Figure 4.8 shows 
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that the interface width increases faster at short time and levels off at sufficiently long 

times. In both cases, W(t) is well represented by a power model, W(t) (b − a)⁄  =  D0  ∙

 tn. Fitted values of n are 0.5092 and 0.3162 and the values of D0 are 0.0116 1/ s0.509 and 

0.00148 1/ s0.316 for the Fickian and non-Fickian case respectively. 

 

Figure 4.8. Normalized interface width obtained from regularized viscosity profiles of Fickian 

and non-Fickian diffusion. Points are values determined from the regularized viscosity profiles. 

Dashed lines are power law fits. Fickian parameters: D = 3.1 ∙ 10-4 mm² / s, A = 0.037 and B = 

0.24, with r = 0.05mm and k = 2.Non-Fickian parameters: R = 4, χAB = 1, η1
*=500 Pa.s and 

η2
*=50 000 Pa.s, with r = 0.05mm, and k = 2. 

 

4.5.2. The Diffusion Coefficient: 

For some miscible polymer-polymer systems and many solvent-polymer systems, the 

interface width increases with time according to the free or Fickian diffusion exponent 

as W (t)  ∝  t0.5. Partially miscible systems do not follow Fickian transport [79], and an 

interface zone of finite width separates them at equilibrium [80]. The interface width, 

W(t) characterizes well the entire transport process [79, 80, 83, 89],  and is most sensitive 

to the local structure of the interface, the temperature, and the molecular weight ratio R. 

W(t) provides a characterization of asymmetric non-Fickian polymer-polymer 

interdiffusion (R >>1), as well as for the symmetric Fickian case (R = 1) and solvent-
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polymer Fickian diffusion cases. From the power law fit to the W(t) data in Figure 4.8, 

the diffusion coefficient D can then be estimated using Eq. (18): 

𝐖(𝐭) ≅ 𝐃 ∙  𝐭𝐧 ≅ 
𝐃𝟎

𝟐𝛑 ∙ (𝐛 − 𝐚)𝟐
 ∙  𝐭𝐧                                                                                   (18) 

    Similar approaches to the calculation of diffusion coefficients have been extensively 

used in the literature [82, 78, 92]. Values of D are determined from regularized solutions, 

and the resulting interface width using the approach explained above. Values of D are 

listed in Table 4.2 and are compared with Dexact. A very small difference is observed and 

the diffusion coefficient is in agreement with the exact value, for each of the three cases 

studies (two Fickian and one non-Fickian).  

Table 4.2. Comparison of exact diffusion coefficients and coefficients from the interface 

width of regularized solutions. The relative error is less than 5% for both Fickian and 

non-Fickian coefficients. 

 Fickian Non-Fickian Fickian ( S.I ) 

D0  (1/sn) 0.0116  0.00148 0.2827 

D (mm2/s) 2.95 ∙ 10-4 3.77 ∙ 10-5 1.15 ∙ 10-3 

Dexact (mm2/s) 3.1 ∙ 10-4 3.65 ∙ 10-5 1.10 ∙ 10-3 

 

4.5.3. Applicability to Experimental Data: 

Previously [65] we have studied the diffusion of 1, 2, 4-trichlorobenzene (TCB) in a 

commercial grade of polystyrene (MW = 350 kg/mol, MW / MN = 2).  SAOS 

measurements were done at 190°C under nitrogen atmosphere, using an Anton-Paar 

MCR500 rheometer, equipped with parallel plate geometry (25mm diameter). As 

considered in our simulated experiments, we used polymer specimens in the shape of flat 

rings, with the solvent in the center hole. The diffusion of TCB through molten 

polystyrene was studied under SAOS at constant strain amplitude and angular frequency. 

The experimental data from ref. 1, with k = 2 and  = 1s-1 is repeated in Figure 4.9. 

The effect of diffusion is more pronounced in the early stages of the experiment, and in 
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this case, the diffusion of TCB well above the polymer’s glass transition temperature is 

Fickian. Using Eq. 11, a least-squared-error forward fitting of Eq. 16 described 

previously [65] was applied to the experimental torque data.  A gradient-based iterative 

search method [76] was used, with the diffusion coefficient as single adjustable 

parameter. The diffusion coefficient determined from this forward-fitting procedure is 

3.312 ± 0.015 10-4 mm²/s.  

 

Figure 4.9. Experimental diffusion measurements at 190°C. Normalized torque as a function of 

time for k = 2, and 0 = 1s-1. Error bars are the standard deviation of 6 measurements. Full lines 

are the fits using Eq. (11) and Eq. (12), with D = 3.312 ± 0.015 (10-4 mm² / s), A = 0.037 and B = 

0.24. 

Next we apply the inverse method developed in this work to our experimental torque 

data in Figure 4.9. Figure 4.10 shows a plot of (λ, xλ) and (λ, er
λ) determined from the 

experimental data. Here, the relative error (λ, er
λ), is evaluated using the forward fitting 

results (using Eq. (11) and Eq. (12), with D = 3.312 ± 0.015 (10-4 mm² / s), A = 0.037 and 

B = 0.24) as a percent of xTheo (λ, | xi
λ – xi

Theo |). We observe again, that the optimal range 

or value of λ coincides with the range where relative errors are smallest. Figure 4.10 

confirms that our numerical procedure can be successfully applied to experimental data 

for a polymer ring during solvent diffusion under SAOS, without prior knowledge of 

exact profiles. The overall error observed in Figure 4.10 within the optimal range of λ 

values, is between 0.8% and 1.5%.  
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Figure 4.10. Plot of (λ, xλ) and (λ, er
λ) for the experimental torque data at 190°C, for TCB 

diffusion in molten polystyrene, with k = 2 and ω0 = 1s-1.  

The value of D is determined from regularized solutions using the plot of W(t) in Figure 

4.11 and the power model Eq. 18. Discrete points in Figure 4.11 are determined from the 

regularized solution, and dashed lines are the power model fit that yields the exponent n 

and pre-exponent D0. Values of n and D0 are 0.5086 and 0.01205 respectively, 

confirming the Fickian nature of the diffusion and yielding an estimate of the diffusion 

coefficient of D = 3.183 ∙ 10-4 mm² / s. This produces a very small difference relative to 

the diffusion coefficient [63] obtained from the forward analytical approach (D = 3.312 ± 

0.015 10-4 mm² / s). The robustness of our approach has thus been demonstrated on 

experimentally measured torque data, as well as virtual experiments with simulated data 

sets from Fickian and Non-Fickian torque profiles.  
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Figure 4.11. Normalized interface width obtained from regularized solutions of experimental 

diffusion of TCB in PS for k = 2 and ω0 = 1s-1, at 190°C. The dashed line is the power law fit. 

 

4.6. CONCLUSIONS 

    A numerical technique for recovering radial viscosity profiles from SAOS torque data 

is developed. This inverse problem is solved using Tikhonov regularization, which 

depends on making a good choice of the regularization parameter λ. The flattest slope 

method is used to locate the optimal value by detecting regions of the solution that are 

sensitive and insensitive to the choice of λ. We then determine the diffusion coefficient 

and type from the interface width of recovered profiles, using the linear viscoelastic 

constitutive equation and a general power law dependency of the diffusion process on 

time. In all cases studied, we found that the interface width and radial viscosities from 

regularized solutions are a close match to those of the exact or theoretical solutions, 

provided λ is rigorously chosen. Additionally, the interface width provides an estimate of 

the diffusion type and coefficient that are consistent with the exact or theoretical values 

within 5%. Our results indicate that this numerical technique is effective in determining 

the diffusion type and coefficient from torque data in SAOS, and provides significant 

insight into the dynamics of diffusion in molten polymers. 
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CHAPTER 5 

Effect of Temperature on Solvent Diffusion in Molten Polystyrene 

Under Small Amplitude Oscillatory Shear 

 

 

ABSTRACT 

Diffusion of 1, 2, 4-trichlorobenzene through molten polystyrene is studied under small 

amplitude oscillatory shear (SAOS) at various temperatures. The torque (or the sum of 

circumferential stresses) is measured during radial diffusion of the solvent from the 

center of the sample into a polymeric ring, at constant temperature and frequency. The 

radial concentration profile can be inferred from experiments by monitoring the torque as 

a function of time. It is necessary to first determine the concentration-viscosity 

relationship. This relationship is obtained experimentally from the frequency response of 

solvent concentrated polymer solutions. The free volume model is then applied to 

describe the effect of solvent concentration on the polymer complex viscosity. We have 

previously confirmed that our rheological technique can be used to measure radial 

diffusion in molten polymers, and obtain a good estimate of the diffusion coefficient. We 

also found that small amplitude oscillatory shear significantly accelerates the diffusion 

process. This study investigates this accelerated diffusion kinetics due to SAOS flow as a 

function of temperature, and confirms that the diffusion rate is increased by oscillatory 

motion. Temperature has a significant impact on the magnitude of this effect, and the 

combined temperature-oscillation effect on diffusion is characterized. 
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5.1. INTRODUCTION 

The transport of solvents through molten polymer is a determining factor in several 

industrial polymer processes [93, 94]. Current challenges in this field include establishing 

a relationship between diffusion dynamics and polymer structure [95]. In particular, 

diffusion of solvents in molten polymers remains difficult to measure experimentally [96] 

although it is relevant in several processing operations [93, 94, 97]. Diffusion coefficients 

at elevated temperatures are often extrapolated from limited data obtained at low 

temperatures, which results in orders of magnitudes of errors. Polymer-solvent diffusion 

data over a wide temperature range is rare, and limited experimental data at elevated 

temperatures have been published [98, 99], despite its importance in industrial 

applications.  

The free volume theory [100] serves as a method for describing polymer–solvent 

systems, it is commonly used to correlate the effect of solvent concentration on 

viscoelastic behavior, and it has been shown to produce good predictions for melt, 

rubbery and glassy polymer-solvent systems [100] as well as being convenient for use in 

understanding diffusion [101]. Due to thermal fluctuations, free volume is continuously 

being redistributed, causing fluctuations in the local density, and allowing for the 

diffusion of solvent molecules. Fujita and Kishimoto [100] derived an equation analogous 

to the WLF [24] and Arrhenius equations [101], to determine the concentration-viscosity 

relationship. In this paper, we use the Fujita-Kishimoto model to describe the viscosity-

concentration relationship, and the WLF [24] and Arrhenius models [101] to develop the 

viscosity-temperature relationship. The combined effects of solvent concentration and 

temperature must also be determined, using superposition at various temperatures and 

concentrations. 

The effect of temperature on the viscoelasticity of polymer melts is commonly 

described using the WLF [24] approach rather than the Arrhenius approach, when the 

temperature is close to the glass transition [101]. The WLF [24] approach also remains 

applicable to a large number of materials, and is derived directly from the assumption 

that the free volume is a linearly increasing function of temperature [101]. A comparison 
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between the two models is not always experimentally possible, and in some cases only 

slight differences may be observed [101].  

Polymers can exhibit pseudo-Fickian, Fickian, anomalous, and case II diffusion, and 

the type of diffusion behavior observed is strongly dependent on the experimental 

temperature [102]. In the case of solvent diffusing in a polymer well above its glass 

transition temperature, the polymer’s relaxation rate is fast compared to the solvent, and 

the behavior is predominantly Fickian [98, 102].  

It is of special interest [96, 103] to study the effect of SAOS and frequency on solvent-

polymer diffusion, and to determine the diffusion coefficient over a wide temperature 

range. We have previously shown [96] that small amplitude oscillatory shear accelerates 

the diffusion of trichlorobenzene in polystyrene at 190°C. Polymer chains assume an 

equilibrium configuration under SAOS [104], and our goal is to explain how did SAOS 

alter the diffusion process, and what are the physical factors that lead to a faster diffusion 

[103, 105]. The diffusion coefficient of solvents in polymers strongly depend on 

temperature [106], and the primary focus is to determine the diffusion coefficient, and the 

extent to which SAOS accelerates diffusion when the temperature is varied. The focus is 

on detecting changes in the diffusion coefficient due to SAOS, and on examining this 

effect at various temperatures.  

We provide a validated method for rheological studies of diffusion in molten 

polymers, focusing on the characterization of solvent diffusion [96]. This method 

combines experimental torque measurements in SAOS, a Fickian diffusion model [102], 

the free volume theory [100] and the theory of linear viscoelasticity [102]. We also 

provide a numerical method based on Tikhonov regularization [107, 108] for estimating 

the diffusion coefficient from the measured torque during diffusion, with reasonable 

accuracy. 
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5.2. EXPERIMENTAL METHODS 

5.2.1. Materials and Sample Preparation 

A commercial grade polystyrene (Mw = 350 kg/mol, Mw / Mn = 2) was purchased from 

Sigma - Aldrich (product 441147). The solvent, 1, 2, 4-trichlorobenzene (Acros Organics 

product 296104) was used as diffusant because of its high boiling point (214ºC). Polymer 

disks (1.2mm thick and 25mm diameter) for free volume measurements, flat rings 

(1.2mm thick with an outer diameter of 25mm and an inner diameter of 6.25 or 12.5mm) 

for diffusion measurements, and square specimens for sorption tests (45 x 45mm x 

1.2mm) are all prepared by compression molding [96]. 

 

5.2.2. The Sorption Method 

Several techniques are commonly used to determine diffusion coefficients in polymer–

solvent systems [109, 110]. In this work, diffusion is studied using rheological 

measurements, as well as direct sorption measurements. Direct sorption involves 

weighing the uptake of the solvent using a high accuracy electronic balance [111]; this 

technique has been the source of the great majority of solvent-polymer diffusion data 

[112, 113]. The polymer is immersed in a solvent bath at a constant temperature, the 

change in mass of the polymer sample is measured with time and Fick’s second law is 

applied to determine the diffusion coefficient [112]. The use of one dimensional Fick’s 

second law in sorption measurements requires a thin sample, and a temperature below the 

solvent boiling point to avoid evaporation [112, 113].  

A rectangular PS sheet of thickness 2L is immersed in a solvent bath, which diffuses 

through the faces between -L < x < L. The gain in weight of the PS sample is measured 

as a function of time, and the amount of solvent which has diffused at time t is given by 

Eq. (1), where M∞ is the equilibrium solubility, which may be practically impossible to 

measure due to polymer dissolution. 

𝐌(𝐭)

𝐌∞
= 𝟏 −

𝟖

𝛑𝟐
∑ {

𝟏

(𝟐𝐧+𝟏)𝟐
} ∙ 𝐞

[−
𝐃𝐭

𝟒𝐋𝟐
]∙𝛑𝟐∙(𝟐𝐧+𝟏)𝟐∞

𝐧=𝟎                          (1) 
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Values of D for temperatures ranging from 130°C to 190°C are determined from 

fitting eq. (1) to the experimental sorption data, with the diffusion coefficient as single 

fitting parameter. Eq. (1) well describes the sorption process, provided the film does not 

dissolve. For our system at temperatures above 190°C, dissolution may be a limiting 

factor in the accuracy of this method. 

5.2.3. The Rheological Method 

Key rheological studies [96, 103, 105] show that SAOS accelerates diffusion, which 

defines new research directions in diffusion studies using rheological tools. Such 

measurements are sensitive to changes in composition [104], and we have previously 

shown that they can be used to capture the diffusion process in molten polymers [96]. 

SAOS measurements can also explain, why subjecting polymer melts to an oscillatory 

flow impacts their diffusion mechanism. Relatively few papers have been published on 

this topic [103, 105]. The focus is on the experimental characterization of diffusion using 

a parallel disk rheometer in SAOS, which measures the response of a circular sample in 

terms of torque. This response for a pure polymer is time-independent and the measured 

torque amplitude is constant. Our rheological technique [96] to measure diffusion 

experimentally, involves SAOS measurements carried out on a concentric binary 

specimen as shown in Figure 5.1 (the solvent in the center and the polymer in the outer 

ring). In this case, the measured torque is time-dependent and reflects the diffusion 

process. 

 

 

 

 

Figure 5.1. Schematic of the binary sample geometry considered in SAOS diffusion 

measurements. The solvent is dispensed at the center of a polymer ring. 

𝐭𝟎 = 𝟎 𝒕𝟏 𝒕𝟐 

 

 

𝐤 = 𝐛 / 𝐚 

𝐒𝐨𝐥𝐯𝐞𝐧𝐭 

   𝐏𝐨𝐥𝐲𝐦𝐞𝐫 
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Concentration is uniform in homogeneous solvent-polymer solutions, and the 

measured torque at constant frequency retains a constant value as a function of time 

[104]. When carried out on the binary solvent-polymer sample composed of a concentric 

PS ring with the solvent at the center (as shown in Figure 5.1), torque measurements 

become dependent on the concentration gradient and profile [96]. In this case, the torque 

measured at a constant frequency is a function of time and reflects the radial diffusion of 

the solvent (Eq. 2): 

𝐓(𝐭) = 𝛃 ∙ ∫ [| 𝛈∗(𝐫, 𝐭)| ∙ 𝐫𝟑]𝐝𝐫
𝐛

𝐚
= 𝐟(𝐭)                                 (2) 

𝛃 =  
𝟐𝛑𝛚𝟎𝛉𝟎

𝐇
                         (3) 

In Eq. 2, T (t) is the time-dependent torque, η*(r, t) is the concentration-dependent 

complex viscosity, b is the outer radius, and a is the inner radius that refers to the radial 

position of the diffusion interface. In Eq. 3, H is the gap size, θ0 is the angular 

displacement, and ω0 is the oscillation frequency. 

 

5.3. DATA INTERPRETATION TECHNIQUES 

5.3.1. Numerical Approach: Tikhonov Regularization 

A numerical method [108, 114] based on Tikhonov regularization [115] can be 

applied, to recover radial viscosity profiles from the measured torque during diffusion 

under SAOS [116], and to estimate the diffusion coefficient with good accuracy. This 

inverse problem [115] can be solved using Tikhonov regularization [116], and the flattest 

slope method [108] is used to locate the optimal value of the regularization parameter λ. 

We show [114] that radial viscosities recovered from the numerical and theoretical 

approach are a close match, provided λ is rigorously chosen. Tikhonov regularization 

finds a weighted least squares solution using the regularization parameter λ and the 

regularized torque Ti
R (Eq. 4). 

𝐌𝐢𝐧  |∑ {𝐓𝐢
𝐌 − 𝐓𝐢

𝐂 − 𝐓𝐢
𝐑}𝐭

𝐢=𝟎 |
𝟐
                                    (4) 
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The superscript M in Eq. 4 is used to denote the experimentally measured torque, and the 

superscript C is used to distinguish the computed torque Ti
C from its experimentally 

measured counterpart. In discretized form, Ti
C is given by Eq.5, and Ti

R by Eq. 6: 

𝐓𝐢
𝐂 = 𝛃 ∙ ∑ 𝛈∗(𝐫𝐣, 𝐭𝐢) ∙ 𝐫𝐣

𝟑 ∙ 𝛂𝐣 ∙ ∆𝐫𝐛
𝐣=𝐚                                             (5) 

𝐓𝐢
𝐑 = 𝛌 ∙ ∑ 𝛈∗(𝐫𝐣, 𝐭𝐢)

𝐛
𝐣=𝐚                                                                   (6) 

In Eq. 5, αj are radial integration coefficients, which depend on the choice of 

discretization method, and η*(rj, ti) is the set of unknown complex viscosity profiles to be 

recovered from Ti
M. 

 

5.3.2. Theoretical Approach: Free Volume Theory 

The free volume theory [100] accounts for the contribution of solvent to the increase in 

free volume, and describes the effect of solvent concentration on the complex viscosity of 

a molten polymer. In combination with eq. (2), the free volume theory allows us to define 

a relationship between concentration, and measured torque eq. (7).  

𝐓(𝐭)

𝐓(𝟎)
= 

𝟒

𝐑𝟒
 ∙ ∫ [𝐞 

− 
𝟏

𝐀+ 𝐁 ∙ 
𝟏

𝐂(𝐫,𝐭)]
𝐛

𝐚
∙ 𝐫𝟑 ∙ 𝐝𝐫             (7) 

where A, B are the free volume parameters, which are determined from a separate 

experiment. The complex viscosity of homogeneous solvent polymer solutions at 

different concentrations are obtained experimentally, from which concentration shift 

factors (aC and bC) are determined. The free volume theory is applied to these results, and 

is used to identify the free volume parameters A and B. A Fickian profile [102] 

determined by solving the diffusion equation with the appropriate boundary and initial 

conditions [94], is used for concentration (Eq.8): 

𝐂(𝐫,𝐭)

𝐂𝟎
=

𝟏

𝟐𝐃𝐭
∙ 𝐞−

𝐫𝟐

𝟒𝐃𝐭 ∙ ∫ 𝐞−
𝐫́𝟐

𝟒𝐃𝐭
𝐚

𝟎
∙ 𝐈𝟎 (

𝐫𝐫́

𝟐𝐃𝐭
) ∙ 𝐫́𝐝𝐫́                        (8)  

where D is the diffusion coefficient, and I0 is the modified Bessel function of 1st kind and 

of order 0. 
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PS rings contain a small volume of solvent relative to the sample volume. In other 

words, the concentration tends to zero at the outer rim at all times [102]. This boundary 

condition is such as no concentration changes reach the outer rim during the time of the 

experiment. In some instances, small concentration changes do reach the outer rim [96], 

and this boundary condition fails, which limits the accuracy of the analytical solution at 

long times. Our results confirm that both the numerical and theoretical approach are 

effective in determining the diffusion coefficient from torque data at various 

temperatures, which provides insight into the observed effect of SAOS on diffusion [96].  

To clarify this effect, continuous and intermittent experiments are performed [96] at 

temperatures from 130°C to 210°C. In continuous experiments shown in Figure 5.2, the 

sample is subjected to oscillations during the entire diffusion test.  In intermittent 

experiments, oscillations are applied for short cycles intermittently with long rest periods, 

where no flow is applied. We have previously shown [96] that SAOS accelerates 

diffusion of TCB in molten PS at 190°C and that longer rest periods decrease this 

acceleration effect. The focus is thus on examining the effect of SAOS and frequency at 

various temperatures. 

 

Figure 5.2. Schematic illustration of strain histories in intermittent-type oscillation experiments 

compared with continuous-type oscillation experiments. Intermittent oscillations are applied for 

100s followed by rest stages of 1000s and 10000s. 

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 100 200 300 400 500

S
tr

a
in

 -
γ
(t

)

Time - t

    Intermittent     Continuous



70 
 

5.4. EXPERIMENTAL RESULTS 

5.4.1. Sorption Measurements: 

Sorption measurements [110] directly follow mass changes with time, they are 

commonly used [112] and yield valuable information about the diffusion process and its 

temperature dependence, without having to carry out difficult measurements [113]. 

Figure 5.3. shows the normalized mass uptake of 1,2,4-TCB diffusing in molten PS as a 

function of time, for temperatures ranging from 130°C to 190°C, and the values of D 

determined from the best fit of Eq. (1) to the data in Figure 5.3. Two factors limit the 

accuracy of this approach in determining the diffusion coefficient: the dissolution of PS 

at high temperatures (190°C and 210°C), and the determination of the equilibrium 

solubility M∞.  

The sorption method may capture the diffusion mechanism to reasonable extent, but 

diffusion coefficients can be determined with better accuracy from a number of other 

methods [99, 110], including the rheological approach [96, 103, 105]. Results in Figure 

5.3 are then used to validate diffusion coefficients obtained from rheological 

measurements. 

  

Figure 5.3. Mass uptake measurements at 130°C, 150°C, 170°C, 190°C. Sorption plots for the 

TCB|PS system. Error bars represent an average of 6 experiments, and the curve represents Eq. 

(1) with the diffusion coefficient as single fitting parameter. 

* Extrapolation from data at lower temperatures for 210 ℃, using the Arrhenius model and Figure 5. 
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The values of the diffusion coefficient are expected to have a strong temperature 

dependence, which can be expressed through an Arrhenius model (Eq. 9): 

𝐃(𝐓) =  𝐃𝟎 ∙ 𝐞[−
𝐄𝐀
𝐑𝐓

]
                        (9) 

where D0 is the diffusion coefficient at an infinitely high temperature, EA is the  

activation energy (kJ/mol), R is the universal gas constant (8.31 10-3 kJ/mol.K) and T is 

the temperature (K). In the Arrhenius plot (Figure 5.4), the activation energy EA and the 

pre-exponent D0 can be calculated from the slope and intercept. 

Figure 5.4 shows the Arrhenius plot (ln (D) vs. 1/T) for the sorption data from the 

diffusion of 1,2,4-TCB in molten PS. The diffusion activation energy from the Arrhenius 

fit to sorption measurements is EA≈127 kJ/mol.  

 

Figure 5.4. Effect of temperature on the diffusion coefficient from Sorption Measurements. 

Arrhenius plot of ln (D) vs. 1/T for TCB diffusion in PS, with EA≈127 kJ/mol. 
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5.4.2. Rheological Measurements: 

Characterization of Homogeneous Systems: 

Free volume parameters (A and B) in Eq. 7 are determined first from the linear 

viscoelastic frequency response of neat PS and homogeneous solvent-polymer solutions 

at different concentrations. In Figure A5.1 in the Appendices, the storage and loss moduli 

for neat PS are plotted against frequency for the five temperatures studied. The relaxation 

spectrum H (λ) and relaxation times λ are calculated from this oscillatory data for each 

temperature, using a nonlinear Tikhonov regularization method and a software developed 

by the Freiburg Materials Research Center [117]. Figure 5.5 shows the weighted 

relaxation spectra, λ·H(λ), normalized and plotted against relaxation times λ.  

 

Figure 5.5. Normalized LVE relaxation spectra of neat PS with a strain amplitude γ0 = 4% at 

130°C, 150°C, 170°C, 190°C,  and 210°C.  

In Figure A5.2 (a)-(e) in the Appendices, the complex viscosity of homogeneous 

solvent-polymer solutions at several concentrations are shown, from which the 

concentration shift factors (aC and bC) are determined rigorously [96] and at each 

temperature. In practice, shift factors are determined sequentially, first the concentration 

effect and second the temperature effect.  Combined we shift the complex viscosity curve 

vertically by ([aT . bT] ∙ [aC . bC]) and horizontally by ([aT . aC].  
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Figure 5.6(a) shows a master curve for each temperature using frequency-concentration 

superposition, and Figure 5.6(b) shows a single master curve using frequency-

temperature superposition as well as frequency-concentration superposition.  

 

Figure 5.6. Experimental Data is obtained for samples from homogeneous solutions with 60wt% 

to 93.75wt% polymer. (a) Frequency-concentration master curves at 130°C, 150°C, 170°C, 

190°C and 210°C; (b) Combined concentration-temperature master curve. 

The concentration modulus shift factor, bC, is verified using a constant density relation 

[96], whereas the temperature modulus shift factor, bT, is expected to slightly and 

monotonically [105] diverge from unity. The temperature modulus shift factor [118] is 

determined from the crossover modulus Gx using Eq. 10.  

𝐛(𝐓) =
 𝐆𝐱(𝐓)

𝐆𝐱(𝐓𝟎 = 𝟐𝟏𝟎 ℃)
                                             (10) 

The time scale shift factors (aC and aT) are determined using the ratio of the zero shear 

viscosities (Eq. 11) and the previously determined modulus shift factors [96]. 

Next we fit the Fujita-Kishimoto [100] free volume equation (Eq. 11). The free volume 

parameters A and B reflect the fractional free volume and the solvent contribution [100]. 

According to Eq. 11, a plot of 1 / ln [(aC (C) . bC (C)] versus [1 / C] should fall on a 

straight line with slope -B and intercept -A. 
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𝟏
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𝐂                                           (11) 

    As shown in Figure 5.7, it is clear that the free volume model, describes well the effect 

of solvent concentration on the complex viscosity of PS - TCB solutions in the 

concentration range of interest. The free volume parameters (A and B) in eq. 7 are shown 

as well in the table in Figure 5.7. The set of experiments on binary samples (as shown in 

Figure 5.1) is presented next.  

 
Figure 5.7. Free volume theory at 130°C, 150°C, 170°C, 190°C, and 210°C. Free volume 

parameters are determined from the line fit, for samples with 60wt% to 93.75wt% polymer. 

    Physical flow and diffusion are both transport processes, and the flow activation 

energy is thus comparable to the diffusion activation energy [105]. The effect of 

temperature on flow properties can be described by either the Arrhenius equation (Eq. 12) 

or the WLF [24] equation (Eq. 13).  
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Here, EA is the activation energy, C1 is related to the fractional free volume at T0 =210°C, 

and C2 to the thermal expansion coefficient. 

    In Figure 5.8, the Arrhenius and WLF [24] equations are applied to the temperature 

shift factor aT, and in Table 5.1 a summary of fitting parameters for WLF [24] and 

Arrhenius is shown. Both models fit similarly well although the correlation coefficient is 

slightly better for the WLF [24] equation. The flow activation energy from the Arrhenius 

fit to SAOS measurements for the homogeneous systems (EA≈154 kJ/mol), is consistent 

with the diffusion activation energy (EA≈127 kJ/mol) shown in Figure 5.4 (sorption 

measurements).   

 

Figure 5.8. Fitting of Arrhenius and WLF [24] equations to experimental temperature shift 

factor data applied with T0 = 210°C. 
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Table 5.1. Fitting parameters for Temperature Superposition: WLF [24] and 

Arrhenius models 

Parameter WLF Parameter Arrhenius 

C1 [ 1/oC ] 22 E [ kJ/mol ] 154 ± 1 

C2 [ oC ] 323 R2 [ % ] 98.6 

R2 [ % ] 99.96   
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Diffusion Measurements using SAOS: 

The solvent is initially at the center of a PS ring and diffuses outwards, which results in a 

decreasing torque over time. The torque measured during diffusion is normalized using 

the torque at time t = 0. Figure 5.9 shows plots of the normalized torque, T(ω0, t) / T(ω0, 

t0), as a function of time at 130°C, 150°C, 170°C, 190°C and 210°C, for k = 2  and ω0 = 

0.1 s-1. In Figure 5.9, the experimental diffusion time is dependent on the temperature, 

and varies from 20 hours (≈72 000s) at 130°C, to 3 hours (≈10 800s) at 210°C. Figure 

5.10 shows plots of the normalized torque during a time sweep at four different 

frequencies ω0, at 130°C (Figure 5.10(a)) and 210°C (Figure 5.10(b)). In this figure we 

can see that except for the case of ω0 = 100 s-1, diffusion appears to be unaffected by 

frequency. We believe that something other than simple diffusion is occurring at 100 s-1 

(for example a secondary flow) and are therefore excluding this curve from all 

subsequent analyses. Similar plots for the other temperatures are presented in the 

supporting information. With the free volume parameters A and B previously determined, 

Eq. 7 can be used to fit experimental data with the diffusion coefficient as the only fitting 

parameter. The normalized data in Figure 5.10 are then used to determine the diffusion 

coefficient as a function of temperature and frequency.  

 

Figure 5.9. Normalized Torque as a function of time at 130°C, 150°C, 170°C, 190°C and 210°C, 

for k = 2 , ω0 = 0.1 s-1. Error bars represent an average of 6 experiments.  
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Figure 5.10. Normalized Torque as a function of time, for k = 2 and for 4 frequency decades 

from 0.01s-1 to 100s-1 for (a) 130°C; (b) 210°C. Error bars represent an average of 6 experiments. 

The effect of SAOS on the diffusion rate, is studied experimentally by comparing 

diffusion in continuous and in intermittent SAOS tests. The sample during continuous 

SAOS tests is subjected to oscillatory flow during the entire test time.  In intermittent 

SAOS tests (as shown in Figure 5.2), oscillations are applied for 100 s followed by long 

rest stages (1000 s and 10000 s) where no flow is applied. We have previously shown 

[96] that SAOS accelerates diffusion of TCB in molten PS at 190°C using the same 

approach. In Figure 5.11 (a)-(d), the normalized torque at 130°C is shown for samples 

continuously and intermittently sheared. A characteristic dynamics is observed at this 

lowest temperature (130°C) where the polymer initially imparts significant resistance to 

the solvent diffusion, and there is an apparent induction time, which precedes solvent 

diffusion into the nearly glassy polymer [119]. These anomalous dynamics lie between 

Fickian diffusion well above Tg ≈ 100°C, and glassy diffusion below Tg, and can clearly 

be observed in Figure 5.11(a). 

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000

T
 (

ω
0
, 

t)
 /

 T
 (

ω
0
, 

0
)

Time - s

a)

ω₀ = 0.01 s⁻¹ 

ω₀ = 0.1 s⁻¹ 

ω₀ = 10 s⁻¹ 

ω₀ = 100 s⁻¹ 

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

T
 (

ω
0
, 

t)
 /

 T
 (

ω
0
, 

0
)

Time - s

b)

ω₀ =0.1 s⁻¹ 

ω₀ = 1 s⁻¹ 

ω₀ = 10 s⁻¹ 

ω₀ = 100 s⁻¹ 



78 
 

 

 
Figure 5.11. Normalized Torque at 130°C, for samples continuously sheared, compared with 

samples undergoing periods of intermittent oscillations and long rest periods, for k = 2, at 130°C 

and ω0 = (a) 0.01 s-1; (b) 0.1 s-1; (c) 10 s-1; (d) 100 s-1.  

In Figure 5.12 (a)-(c), the normalized torque (continuous and intermittent SAOS) at 

210°C is shown. Similar data can be found in the Appendices for 150°C (Fig. A5.5), and 

for 170°C (Fig. A5.6). This study provides insight into the effect of SAOS on solvent 

diffusion in molten polystyrene at different temperatures. Samples continuously sheared 

exhibit the steepest decrease in measured torque, compared with samples undergoing 

only short intermittent oscillation cycles and very long rest periods. This observation is 

consistent for all temperatures studied, and confirms that the diffusion rate is increased by 

SAOS.  
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Figure 5.12. Normalized Torque at 210°C, for samples continuously sheared, compared with 

samples undergoing periods of intermittent oscillations and long rest periods, for k = 2, at 210°C 

and ω0 = (a) 0.01 s-1; (b) 0.1 s-1; (c) 10 s-1.  
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5.5. RESULTS AND DISCUSSION 

5.5.1. Effect of SAOS: 

In Figures 5.11-5.12, we see that continuous shearing accelerates diffusion, relative to 

the case of intermittent oscillations. From these data, we conclude that intermittent SAOS 

measurements can be used to measure a diffusion coefficient for this TCB|PS system 

close to the quiescent value over a broad frequency and temperature. Additionally, using 

the continuous oscillation tests, we can explore the effect of SAOS on diffusion. From 

results in Figures 5.11-5.12, we can make the following observation: relative to diffusion 

under intermittent SAOS, diffusion under continuous SAOS is always faster, regardless 

of frequency and temperature. This occurs even though the flow is oscillatory and there is 

no net transport of material in one direction [104].  

 

5.5.2. Effect of Frequency and Temperature: 

A least-squared-error forward fitting of Eq. (7)-(8) is applied to the experimental 

SAOS torque data, using the linear viscoelastic constitutive equation, the free volume 

theory, and a Fickian concentration profile. In this case, diffusion coefficients are 

determined using a gradient-based search method with the diffusion coefficient as single 

fitting parameter [96]. 

The inversion technique in Eq. (4)-(6) is also applied using Tikhonov regularization to 

recover radial viscosity profiles [114] from SAOS torque data. We then determine the 

diffusion coefficient and type from the interface width of recovered profiles, using a 

power law dependency of the interface width on time [114].  Diffusion coefficients 

obtained for samples continuously sheared from (a) the interface width of regularized 

solutions using the numerical approach and from (b) a forward fitting of Eq. (7)-(8) using 

the theoretical approach, are shown in Table 5.1. Calculated diffusion coefficients from 

both numerical and analytical approaches, also show good agreement with our data from 

sorption experiments.  

We use rheological diffusion measurements in SAOS and apply both a theoretical and 

a numerical approach, to compare diffusion coefficients for various experimental 
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conditions. Diffusion coefficients determined from the continuous SAOS experiments 

shown in Table 5.1 and plotted in Figure 5.13 are independent of oscillation frequency 

for all temperatures studied. We see a small change in D at ω0 = 100s-1 although it is 

unclear whether this observation is physically meaningful. The diffusion exponent, n, 

reflects the characteristic anomalous dynamics observed at 130 °C, as well as the Fickian 

dynamics for all other temperatures. We can see in Table 5.2 for ω = 0.1 s-1 at 130 °C, 

that the diffusion exponent n increases by about 20% from the expected exponent of 0.5 

for Fickian diffusion. The relative error is computed with respect to DFickian, and also 

increases to 3% at 130 °C. Anomalous effects at 130 °C are related to the influence of 

temperature on polymer structure, and result in a decreased solubility and mobility. As 

shown in Figure 5.13, diffusion is enhanced by the presence of an oscillatory flow, which 

allows polymer chains to push the solvent along. When SAOS is removed, diffusion 

occurs while the sample is kept at rest for almost the entire test, a slower diffusion is 

observed and a higher diffusion activation energy is required. For diffusion to occur, the 

system has to have sufficient energy to overcome the activation barrier energy. 

Table 5.2. Comparison of the diffusion coefficient for samples continuously sheared, obtained 

from (a) the numerical interface width of regularized solutions and (b) by fitting D using a Fickian 

profile. 

 130 °C 170 °C 190 °C 

 ( s− ) 0.1 1 10 0.1 1 10 0.1 1 10 

n  0.62 0.58 0.55 0.52 0.49 0.51 0.51 0.49 0.51 

DNumerical  

 10-5 (mm2/s) 

0.897 0.967 1.021 2.237 2.449 2.428 9.899 10.08 10.07 

DFickian  

10-5 (mm2/s) 

0.934 1.009 1.057 2.261 2.465 2.4654 9.927 10.033 9.978 

Er % 3.96 4.16 3.41 1.06 0.65 1.52 0.28 0.47 0.92 
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Figure 5.13 confirms that oscillation effectively reduces the energy barrier, with the 

lowest activation energy occurring under continuous oscillation followed by intermittent 

oscillation with a higher activation energy and quiescent diffusion with the highest of all. 

Diffusion coefficients are a function of temperature and are clearly affected by SAOS. 

The temperature dependence of the diffusion coefficient in Figure 5.13 is further 

evidence for the change in the diffusion mechanism due to SAOS. A characteristic 

approach to glassy dynamics is observed at the lowest temperature (130 °C), and the 

magnitude of the diffusion acceleration due to SAOS increases at this temperature. This 

increase becomes smaller at higher temperatures, which suggests that diffusion is 

accelerated due to SAOS by a relatively lower amount at higher temperatures. It is thus 

possible to infer the diffusion coefficients from SAOS measurements, and extrapolate to 

static sorption conditions. The slopes for diffusion during SAOS in Figure 5.13, or the 

activation energies required, can be readily used to predict diffusion properties in static 

sorption conditions. 

 

Figure 5.13. Effect of SAOS and frequency on the diffusion coefficient determined by fitting the 

Fickian profile under continuous oscillation, intermittent oscillation and from static sorption 

measurements.  
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5.6. CONCLUSION 

Our rheological technique is used to determine the temperature dependence of the 

diffusion coefficient of 1,2,4-TCB diffusing in molten PS using SAOS measurements. A 

Fickian model and the free volume theory as well as a numerical regularization technique 

are applied to experimental data to determine the diffusion coefficient. Accelerated 

diffusion dynamics due to SAOS is observed experimentally at all temperatures. 

Temperature has a significant impact on the magnitude of this effect. At constant 

temperature, the diffusion coefficient is independent of the oscillation frequency, and at 

temperatures closer to the glass transition temperature, applying SAOS further 

accelerates the diffusion. A characteristic glassy type diffusion dynamics is observed at 

the lowest temperature (130 °C). We observe the highest activation energy for diffusion 

(127 kJ/mol) under quiescent conditions, with a lower activation energy (103 kJ/mol) 

under intermittent oscillation and the lowest activation energy (91 kJ/mol) under 

continuous oscillation. 
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CHAPTER 6 

Interdiffusion Dynamics at The Interface Between Two Polystyrenes 

With Different Molecular Weight Probed by a Rheological Tool 

 

 

ABSTRACT:  

    Interdiffusion at 190°C between two polystyrenes is studied under small amplitude 

oscillatory shear (SAOS) at various frequencies. Our rheological technique exploits 

differences in molecular weights and thus in viscosity to investigate interdiffusion 

dynamics. Interdiffusion between identical polymers, with identical chemical structures, 

are expected to form ideal solutions. However, several experimental observations 

indirectly question this ideal-solution assumption. We measure the torque during radial 

interdiffusion in a concentric binary sample, with a lower molecular weight polystyrene 

at the center and an outer ring with a higher molecular weight, at constant temperature 

and frequency. The radial concentration profile can be inferred from experiments by 

monitoring the torque as a function of time. We have previously confirmed that our 

rheological technique can be used to measure radial diffusion in molten polymers, and 

obtain a good estimate of the diffusion coefficient. We have also shown that our 

numerical approach based on Tikhonov regularization can be used to invert torque curves 

from time dependent SAOS experiments in which diffusion occurs to determine the 

diffusion coefficient. This study investigates interdiffusion kinetics due to SAOS flow as 

a function of frequency, and confirms that the interdiffusion rate is significantly increased 

by oscillatory motion at higher frequencies. We have inferred the time dependence of the 

interface between two polystyrenes and have found that the width of the interface 

increases with time considerably faster at higher frequencies. 
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6.1. INTRODUCTION 

    Polymer/Polymer interdiffusion have been studied using two similar polystyrenes with 

similar physical properties, but the literature on this topic remains limited [120-123]. 

Experimental observations for binary protonated and deuterated polystyrene and 

polybutadiene melts have indirectly questioned the ideal-solution assumption, which is 

expected to form during interdiffusion between identical polymers, with identical 

chemical structures [121]. They found that the interface width and mass uptake follow a 

power law quite different from the Fickian relation, and that at long times the interface is 

characterized by a non-Fickian equilibrium composition, with a power law with an 

exponent significantly lower than 0.5 for free diffusion [122, 124]. Interdiffusion across 

the interface of a binary polymeric assembly determines its mechanical and interface 

properties, and has attracted significant attention because of its designable structure. 

Interdiffusion determines the final properties of the interface, and may be used to modify 

the final structure. Interdiffusion applications include composites, welding, adhesion, and 

coating. Understanding this process may be a key factor in improving polymer products 

and polymer processing operations in industry. Polymeric interdiffusion is thus a problem 

of considerable interest for basic knowledge and industrial applications, and from 

theoretical and experimental standpoints.  

    We study interdiffusion between chemically identical polystyrenes but with different 

molecular weights under SAOS at 190°C. It is of special interest to study the effect of 

SAOS and frequency on polymer-polymer interdiffusion [127]. Our rheological method 

may essentially be used to measure and control the interdiffusion rate. Experimental 

torque-time curves produced by this rheological method [128] are used to characterize the 

interdiffusion behavior, over a broad frequency range. We have previously shown that 

SAOS accelerates solvent diffusion in polystyrene over wide ranges of temperature. One 

objective is to determine if this observation extends to polymer-polymer interdiffusion. 

The main objective is to determine the diffusion coefficient from time-dependent 

rheological measurements of interdiffusion in a binary polymeric sample. 
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6.2. THEORETICAL CONSIDERATIONS 

    During interdiffusion, polymer chains experience structural changes. Mixing depends 

on interactions between polymer chains, but Fick’s laws do not account for these 

interactions, and are only valid when diffusing molecules are sufficiently small [129]. 

Non-Fickian diffusion is best explained in terms of chemical thermodynamics [130, 131], 

in which the chemical potential gradient of each component in the system is the driving 

force. The Flory-Huggins and mean field theories describe the thermodynamics of 

polymer melts, and the competition between entropy and enthalpy of mixing (See Eq. 1). 

The Flory-Huggins model and the Gibbs free energy are almost always used to describe 

the evolution of an initial sharp interface separating two polymers [124-127].  

    Mixing of two identical (chemically and physically) polymers is expected to be 

spontaneous, and the Gibbs free energy Eq.1, is always negative. For two chemically 

identical polymers that differ in molecular weight and for two dissimilar polymers, the 

Gibbs free energy determines the degree of miscibility (Eq. 2).  

f[ϕA(r, t)] = ∆G = ∆H − T∆S                                                                                         (1) 

∆G = [χAB ∙ ϕA ∙ (1 − ϕA)] + [
ϕA

NA
ln(ϕA) +  

1−ϕA

NB
ln(ϕA)]                                                  (2) 

    In Eq. 1, G is Gibbs free energy, H enthalpy, T temperature and S entropy. In Eq. 2, χ 

is the Flory-Huggins interaction parameter, ϕA is the composition of component A, and 

NA (and NB) is the molecular weight of component A.  

    The chemical potential in a closed system reflects the change in the Gibbs free energy 

(See Eq. 3). For systems with two different polymers of unequal molecular weights, 

chains move with unequal fluxes from higher chemical potential to lower chemical 

potential regions [124-127]. For systems with two identical polymers having equal 

molecular weights, the flux in both directions is the same, and chains move from a high 

concentration to a low concentration region (Eq. 4).  

F = ∫ {f[ϕA(r, t)] +
κ

4
[∇ϕA(r, t)]2} dV                                                                            (3) 
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∂ϕA

∂t
= −∇ ∙ (JA)                            JA = −D ∙ ∇μ               ,              μ =

∂F

∂ϕ
                              (4) 

    In Eq. 3, f is the Gibbs free energy (See Eq. 1), and κ is a control parameter for the 

interface formation. In Eq. 4, JA is the flux of component A, µ is the chemical potential, 

and D is the diffusion coefficient.  

For the latter case, diffusion is of Fickian type and the initial sharp interface quickly 

spreads out according to the free-diffusion exponent [133, 134]. For the former case, the 

two polymers do not interdiffuse freely, and an interfacial zone separates them at 

equilibrium [133]. In this case, the interdiffusion exponent is considerably smaller than 

the Fickian type exponent, the two polymers partially mix and the initial sharp interface 

slowly broadens. Composition profiles are such that the thickness of the interface 

increases with time slower than that of a symmetric Fickian-type diffusion. Thus, 

interdiffusion strongly depends on molecular weight, and interaction between polymers. 

A diffusion model based on the Flory-Huggins theory has been applied to a binary 

polystyrene system [124] of similar chemical structure with different molecular weights 

(Eq. 5). The composition profile predicted agrees very well with experimental results 

obtained by Klein and co-workers using an ion-beam technique. 

∂ψA

∂t
=

∂

∂x
{(

2

1+R+(R−1)ψA
) ∙ [⟨1 +

1

R
− χAB + (

1

R
− 1) ∙ ψA + χAB ∙ ψA

2⟩ ∙
∂ψA

∂x
−

∂3ψA

∂x3
]}   (5) 

    Here, ψ is the concentration, and R is the ratio of molecular weights (NB/NA). The 

factor in front of the first concentration gradient term describes a diffusion coefficient, 

and the second term involving the third concentration gradient accounts for interactions 

and moderates the interface formation. 

    The interaction between two polymers and the change in free energy associated with 

their mixing is modeled in two steps: compression or expansion of each component, and 

mixing of the components at constant volume. The size and molecular weights of chain 

molecules is an important model parameter as well, which affects the combinatorial 

enthalpy and entropy of mixing. 
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6.3. RHEOLOGICAL MEASUREMENTS 

6.3.1. Materials 

A commercial grade polystyrene (Mw = 350 kg/mol, Mw / Mn = 2) was purchased from 

Sigma - Aldrich (product 441147). Three research grades polystyrenes were purchased 

from polymer source, and their properties are listed in Table 6.1. Two high molecular 

weight polystyrenes (Mw ≈ 350 kg/mol), one polydispersed of commercial grade and one 

monodispersed of research grade, used as test material for the outer ring and are denoted 

with subscript 1,A and 1,B. Two low molecular weight polystyrenes, one exceeding the 

critical molecular weight for entanglement, are used as test material for the inner disk and 

are denoted with subscript 2,A and 2,B. 

 

Table 6.1. Polymers’ molecular characteristics 

Materials Supplier 
𝐌𝐰 

(
𝐤𝐠

𝐦𝐨𝐥
⁄ ) 

𝐌𝐰
𝐌𝐧

⁄  

𝐏𝐒𝟏,𝐀 PolymerSource 345 1.07 

𝐏𝐒𝟏,𝐁 SigmaAldrich 350 2 

𝐏𝐒𝟐,𝐀 PolymerSource 4.5 1.06 

𝐏𝐒𝟐,𝐁 PolymerSource 43.5 1.03 

 

6.3.2. Experimental Method 

    The experimental characterization of interdiffusion using a parallel disk rheometer in 

SAOS, is carried out on a concentric binary specimen as shown in Figure 6.1 (Polymer A 

in the center and polymer B in the outer ring). In this case, the measured torque is time-

dependent as in Eq. 6: 

T(ω0, t) = [
2πω0θ0

H
]  ∫ [| η∗(ω0, C)| ∙ r3]dr

b

a
= f(t)                                                   (6) 
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Here T (ω0, t) is the time-dependent torque amplitude, a is the inner radius, b is the outer 

radius, and η*(ω0, C) is the concentration-dependent complex viscosity. 

 

 

 

 

 

Figure 6.1. Schematic of the binary sample geometry considered in SAOS interdiffusion 

measurements. The center disk is a low molecular weight polystyrene and the outer ring is a high 

molecular weight polystyrene.  

 

6.3.3. Numerical Method 

A numerical method based on Tikhonov regularization [135, 138] can be applied, to 

recover radial viscosity profiles from the measured torque during interdiffusion under 

SAOS, and to estimate the diffusion coefficient. This inverse problem can be solved 

using the flattest slope [136] method to locate the optimal value of the regularization 

parameter λ. Tikhonov regularization finds a weighted least squares solution using the 

regularization parameter λ and the regularized torque Ti
R (Eq. 7). 

Min  |∑ {Ti
M − Ti

C − Ti
R}t

i=0 |
2
                                                                 (7) 

    The superscript M in Eq. 4 is used to denote the experimentally measured torque, and 

the superscript C is used to distinguish the computed torque Ti
C from its experimentally 

measured counterpart. In discretized form, Ti
C is given by Eq.8, and Ti

R by Eq. 9: 

Ti
C = β ∙ ∑ η∗(rj, ti) ∙ rj

3 ∙ αj ∙ ∆rb
j=a                                             (8) 

Ti
R = λ ∙ ∑ η∗(rj, ti)

b
j=a                                                                   (9) 

    In Eq. 5, αj are radial integration coefficients, which depend on the choice of 

discretization method, and η*(rj, ti) is the set of unknown complex viscosity profiles to be 

recovered from Ti
M. 

𝐭𝟎 = 𝟎 𝒕𝟏 𝒕𝟐 

 

 

𝐤 = 𝐛 / 𝐚 

𝐏𝐒 − 𝐌𝐰 = 𝟒. 𝟓 𝐊𝐠/𝐦𝐨𝐥 

   𝐏𝐒 − 𝐌𝐰 = 𝟑𝟓𝟎 𝐊𝐠/𝐦𝐨𝐥 
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6.3.4. Analytical Method 

    We use rheological interdiffusion measurements under SAOS and apply both an 

analytical and a numerical approach, to determine the concentration profile and the 

diffusion coefficient under various experimental conditions, and for a wide range of 

oscillation frequencies. 

    The interdiffusion model based on the mean-field theory and a free energy mixing 

function is used to describe the composition profile (Eq. 5), and a non-linear mixing rule 

[142] in Eq. 10 is used to describe the effect of composition on the complex viscosity, 

where η1
* and η2

* are the pure polymers viscosities.  

|η∗(r,   t)| = {ψA(r,   t) ∙ |ηA
∗ |(1 3.4)⁄ + [1 − ψA(r,   t)] ∙ |ηB

∗ |(1 3.4)⁄ }
3.4

                              (10) 

A relationship between composition (Eq. 5), complex viscosity (Eq. 10), and measured 

torque (Eq. 6), can essentially be obtained from the mixing rule by substituting Eq. 5 for 

composition and Eq. 10 for complex viscosity, in the SAOS flow integral (Eq. 6) for 

torque. 

    The radial composition profile and the interface width can be inferred from 

experiments by monitoring the torque as a function of time. This approach can be applied 

to experimental torque-time curves during radial interdiffusion in a concentric binary 

sample to determine a diffusion coefficient as well. A least-squared-error fitting of Eq. 6 

is applied to experimental torque data, and a gradient-based iterative search method is 

used with a single adjustable coefficient. Tikhonov regularization, with an appropriate 

choice of regularization parameter, can also be used to reconstruct the solution of a one-

dimensional diffusion problem in the radial direction and recover viscosity and interface 

width profiles.  
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6.3.5. Effect of SAOS & Frequency 

To clarify the effect of SAOS and oscillation frequency [139, 140], continuous and 

intermittent experiments are performed, as shown in Figure 6.2. In continuous 

experiments in Figure 6.2, the binary PS-PS sample is subjected to oscillations at 

constant frequency during the entire diffusion test [128].  In intermittent experiments, 

oscillations are only applied for short cycles intermittently with long rest periods, where 

no flow is applied. The focus is on examining the effect of SAOS and frequency on 

interdiffusion interdiffusion dynamics at the Interface between two polystyrenes with 

different molecular weight. 

 

Figure 6.2. Schematic illustration of strain histories in intermittent-type oscillation experiments 

compared with continuous-type oscillation experiments. Intermittent oscillations are applied for 

100s followed by rest stages of 1000s and 10000s. 

We have previously shown [128] that continuous shearing accelerates diffusion, 

relative to the case of intermittent oscillations for solvent-polymer system. We have also 

shown that intermittent SAOS measurements can be used to measure a diffusion 

coefficient for this TCB|PS system close to the quiescent value over a broad frequency 

range. We have made the following observation: relative to diffusion under intermittent 

SAOS, diffusion under continuous SAOS is always faster, even though the flow is 

oscillatory and there is no net transport of material in one direction.  
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6.4. EXPERIMENTAL RESULTS 

6.4.1. Characterization of Neat Polystyrenes 

Neat polymer pellets are first dried in a vacuum oven, and are then prepared by 

compression molding, using a 1.2mm thick mold with 25mm diameter cavities. Dried 

pellets are confined in the mold’s cavities between thin Mylar films, to avoid 

contamination and obtain a smooth surface. Circular disks 1.2mm thick and 25mm in 

diameter are produced under identical molding conditions that reduce sample-to-sample 

variability. For strains with sufficiently small amplitude, deformation occurs within the 

linear viscoelastic limit, and rheological properties become independent of the size of the 

deformation. A strain sweep is performed first, to determine the critical strain below 

which material functions become independent of the strain amplitude. A strain sweep at 

190°C, and ω=10 rad/s, is used to identify this region, and the critical strain amplitude for 

the LVE region is determined in Figure 6.3. Then, a frequency sweep in the LVE region 

at 190°C, with ω ϵ [0.001-100] 1/s is used to determine LVE properties of neat polymers. 

Storage/Loss Moduli as a function of frequency are shown in Figure 6.3.  

 

Figure 6.3. Storage and loss modulus data with a typical cross-over frequency for neat 

polystyrene samples (1,A) and (1, B) at 190°C. Curves are averages of three experiments. 
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6.4.2. Interdiffusion Measurements using SAOS 

The binary sample in Figure 6.1 is produced by pressing together a smooth disk and a 

flat ring each composed of a polystyrene with a different molecular weight (See Table 

6.1). Interdiffusion is studied at 190°C using a rotational rheometer under small 

amplitude oscillatory shear (SAOS), and the diffusion coefficient is determined at each 

frequency. The main objectives are to measure polymeric interdiffusion experimentally, 

to assess the effect of SAOS and frequency, and to determine the diffusion coefficient in 

a molten binary polystyrene system from SAOS measurements.  

Under SAOS, polymer chains are in quasi-equilibrium, and the torque remains 

constant with time for neat polystyrene, in the LVE region at constant frequency, strain 

amplitude and temperature. The torque obtained from concentric binary samples in 

Figure 6.1, is time and composition dependent and reflects the interdiffusion dynamics. 

The inner polystyrene is of lower molecular weight and diffuses deeper in the radial 

direction than the outer polystyrene ring, which overall results in a decreasing torque over 

time. Although these measurements lie in the LVE region, there are indications that 

SAOS may still affect interdiffusion. For (1, A-B; 2, A) systems in Table 6.1, Figure 6.4 

shows plots of the torque, T(ω0, t), as a function of time at 190°C, for a sample geometry 

k = 2, and at different frequencies ω0.  

   
Figure 6.4. Interdiffusion measurements at 190°C for 4 frequencies: torque T (ω0, t) as a 

function of frequency for samples with inner disk PS2, A and outer ring (a) PS1, A; (b) PS1, B. 

Curves are averages of three experiments. 
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At higher frequencies for ω0 ≥ 10 s-1, interdiffusion is more pronounced and the system 

reaches a state where the torque becomes independent of time, significantly faster than 

for ω0 ≤ 2 s-1. The key feature of this plot for ω0 = 100 s-1 (and ω0 = 10 s-1), is the time 

required for the torque to become constant to ±2%. This time, 4hours (~ 15 000s) for ω0 = 

100 s-1, is characteristic of the interdiffusion time scale and of the interface behavior 

between two identical polystyrenes with large differences in molecular weights.  

In Figure 6.5, the measured torque is normalized by the torque at time t = 0, as T (ω0, 

t) / T (ω0, 0). The initial torque T (ω0, 0) reflects the response of the system before 

interdiffusion, and before the broadening of the initial sharp interface. The normalized 

data in Figure 6.5 is useful to understand interdiffusion dynamics at different frequencies 

and for different molecular weights, and to determine the diffusion coefficient for these 

systems as a function of frequency. In this figure we can see that interdiffusion is very 

much affected by increasing frequency. From Figure 6.5 we can see that increasing the 

frequency significantly accelerates the interdiffusion process. Interdiffusion appears to be 

unaffected by frequencies lower than 2s-1.  

 

Figure 6.5. Normalized Torque from experimental interdiffusion measurements at 190°C: T (ω0, 

t) as a function of frequency for samples with inner disk PS2, A and outer ring (a) PS1, A; (b) PS1, 

B. 
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To explore the effect of SAOS on the interdiffusion rate, we study interdiffusion under 

intermittent oscillations, as shown in Figure 6.2. In Figure 6.6, samples continuously 

sheared produce a steep decrease in measured torque, compared with samples undergoing 

only short intermittent oscillation and long rest periods. Intermittent measurements, 

including at high frequencies, show a relatively constant torque, which indicates a 

significantly slower interdiffusion and broadening of the initial sharp interface. The effect 

of SAOS on the diffusion rate is studied experimentally by comparing diffusion in 

continuous and in intermittent SAOS tests. In Figure 6.6, oscillations are applied for 100s 

in intermittent SAOS tests, followed by long rest stages, where no flow is applied: 5000s 

for ω0 =100s-1 and 10000s for ω0 =10s-1. A characteristic dynamics is observed when 

SAOS is applied continuously; the torque decreases significantly, whereas there is little 

apparent interdiffusion when SAOS is applied intermittently. This dynamics can clearly 

be observed in Figure 6.6 and is consistent for all PS/PS systems studied. This 

observation confirms that the interdiffusion rate is drastically by SAOS, and provides 

insight into the effect of SAOS on interdiffusion in molten polystyrene with different 

molecular weights.  

  

Figure 6.6. Interdiffusion measurements at 190°C for samples continuously sheared, compared 

with samples continuously sheared with long rest periods: T (ω0, t) as a function of frequency for 

samples with inner disk PS2, A and outer ring (a) PS1, A; (b) PS1, B. (● ω0 =10 s-1; ♦ ω0 =100 s-1) 

Curves are averages of three experiments. 
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6.4.3. Effect of Polydispersity on Interdiffusion 

    In Figures 6.4(a) and 6.5(a), the outer ring is a monodispersed polystyrene (System 1, 

A; Table 6.1), and in Figures 6.4(b) and 6.5(b) the outer ring is a broad commercial grade 

polystyrene (System 1, B; Table 6.1), of about the same weight average molecular 

weight. Experimental torque-time curves produced by this rheological method is used to 

determine the effect of polydispersity [141], by comparing the response of the above two 

systems. Interdiffusion torque measurements for ω0 =10 s-1 and ω0 =100 s-1 are plotted in 

Figure 6.7(a) and 6.7(b). We see a significantly steeper slope for the monodispersed 

polystyrene, and this observation extends to lower frequencies. As shown in Figure 6.7, 

interdiffusion is faster when both system components, inner disk and outer ring, are 

mono-dispersed. When the outer ring is a broad distribution polystyrene, interdiffusion is 

slowed by the presence of physical chain length differences. Interdiffusion is clearly 

affected by polydispersity. The polydispersity dependence of interdiffusion can be seen in 

Figure 6.7, which is evidence for the change in interdiffusion rate due to polydispersity. 

A characteristic faster interdiffusion is observed for monodispersed polystyrene rings, 

and the steepness of the measured torque increases, compared to broad molecular weight 

distribution polystyrene rings.  

 

Figure 6.7. Normalized Torque from interdiffusion measurements at 190°C: T (ω0, t) as a 

function of frequency (a) ω0 =10 s-1; (b) 100 s-1, for samples with inner disk. (● ♦ PS1, A; ○ ◊ PS1, 

B). 
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6.5. CONCLUSION 

    We have introduced a new rheological technique to study interdiffusion in identical 

polystyrenes utilizing differences in viscosities. A closer view on the kinetics of 

interdiffusion and on the evolution of a sharp interface between two identical 

polystyrenes with different molecular weights is provided. We have performed 

experiments in SAOS and we have been able to observe a shift in diffusion behavior at 

higher frequencies, at and above 10s-1. There is strong evidence that higher frequencies 

induced faster chain migration and interface spread. In the near future, we will explore 

the role of entanglements and present a study on the effect of molecular weights above 

the critical entanglement molecular weight. We have shown that an equilibrium interface 

exists in low frequency interdiffusion, but not at higher frequencies, where interdiffusion 

is more likely to be of Fickian and form an ideal solution. In the presence of high 

frequency continuous SAOS, the interdiffusion model for binary polystyrene with similar 

(not same) chemical structure fails to describe the dynamics. Remarkably, high frequency 

interdiffusion results are well described by a symmetric Fickian composition profile, 

which illustrates the strong impact of SAOS at frequencies at or above 10s-1 on 

interdiffusion. This further shows the necessity of developing this field to give access to 

the full spectrum of knowledge, a portion of which we present here. The proposed 

rheological method is convenient and practical compared with energy spectrum 

techniques. This rheological technique opens a new path to a more in-depth study of 

interdiffusion dynamics. 
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CHAPTER 7 

7.1. SUMMARY OF CONCLUSIONS 

    We have shown that SAOS accelerates diffusion of TCB in molten PS at 190°C. We 

have also introduced a new straightforward rheological technique to study solvent 

diffusion in molten polystyrene and interdiffusion in identical polystyrenes utilizing 

differences in viscosities. The free volume theory was applied to experimental data from 

homogeneous mixtures and compared to the neat polystyrene’s response. The diffusion 

coefficient was determined as a function of frequency and temperature, and for 

intermittent and continuous oscillation conditions. The interface width was also 

determined, and its validity was verified using a refined Tikhonov regulation technique.  

Diffusion coefficients for the TCB-PS solvent-polymer system as a function of frequency 

show a very slight dependence on oscillation frequency, but the presence of SAOS flow 

continuously resulted in larger diffusion coefficients compared with intermittent SAOS 

results. From our solvent diffusion results at low temperatures (130 °C) close to the glass 

transition for polystyrene, the diffusion coefficient was significantly higher when SAOS 

flow is applied continuously. As the temperature is increased above 170 °C, the 

accelerated kinetics due to oscillatory flow becomes less obvious.  From our results, 

diffusion under continuous SAOS is always faster relative to diffusion under intermittent 

SAOS, regardless of frequency and temperature.  

This occurs even though the flow is oscillatory and there is no net transport of material in 

one direction. For interdiffusion systems with two polystyrenes, applying SAOS 

accelerates interdiffusion by orders of magnitude, but only when high frequencies are 

used. We provide strong evidence that higher frequencies induce faster chain migration 

and interface spread. We have also shown that a sharp interface persists in low frequency 

interdiffusion, but not at higher frequencies, where interdiffusion is more likely to be of 

Fickian type and form an ideal solution. Remarkably, high frequency interdiffusion 

results, are well described by a symmetric Fickian composition profile, which illustrates 

the strong impact of SAOS at frequencies at or above 10s-1 on interdiffusion. 
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7.2. CONTRIBUTIONS 

I. A rotational rheometry-based technique is developed to study diffusion through in 

molten polystyrene. This technique relies on equilibrium flow and LVE properties in 

SAOS, to measure the diffusion coefficient. We provide a validated rheological method 

based on viscosity differences between diffusant and host, to study solvent-polymer and 

polymer-polymer diffusion for a wide range of experimental conditions.  

II. Inversion of torque-time SAOS data is applied using Tikhonov regularization and 

the flattest slope method to resolve the torque-viscosity integral. The flattest slope 

minimizes the residual error and the solution norm versus the regularization parameter 

and locates the optimal regularization parameter. Local viscosity profiles are recovered 

from SAOS torque data during diffusion, and the diffusion coefficient is determined for a 

wide range of diffusion systems. 

III.   Novel data on the diffusion of TCB in molten polystyrene and the interdiffusion 

of polystyrene are produced. We have also shown that the diffusion rate is increased by 

oscillatory motion and that this effect is increased at lower temperatures. We further 

show the necessity of developing the field of diffusion and interdiffusion to give access to 

the full spectrum of knowledge, a portion of which we presented here. 
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7.3. RECOMMENDATIONS FOR FUTURE WORK 

Some suggestions for future work to expand this study are summarized in the following: 

➢ Further experimental efforts in standardizing the molding of binary samples (ring 

and disk) using injection molding, which offers advantages over compression molding. It 

would be worth improving the experimental procedure, which would result in even more 

accurate diffusion results. The results of such improvements would help in increasing the 

resolution and accuracy in capturing diffusion processes.  

➢ It would be interesting to examine the post-diffusion concentration profile from 

atomic force microscopes and nano-indenters. The results of such study could be used to 

confirm rheological measurements and the long-time diffusion behavior. The 

interconnectivity between our rheological measurements and the post-shearing nano-

indentation results should be explored. 

➢ Further investigation on the effect of shearing and the strain amplitude. Diffusion 

in the solvent-polymer system and interdiffusion in the polymer-polymer system may 

have a dependency on the strain amplitude. Further experiments with a wider range of 

systems, including interdiffusion between chemically dissimilar polymers, and diffusion 

in molten nano-filled polymers. Further investigation on the interdiffusion dynamics is 

recommended, since limited literature on the topic exists.  

➢ Research is needed to understand the diffusion dynamics of complex systems. 

Theoretical frameworks on the topic of diffusion in complex polymeric systems exist, but 

have only been explored intermittently with very few approaches validated 

experimentally. It is also only recently that rheological analyses of diffusion have been 

carried out, with very limited literature. 
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APPENDICES 

Appendix-A2.1.: SAOS – Material Functions & Torque 

Appendix A2.1.1: SAOS – Material Functions for Parallel-Disk Apparatus 

γ21(t) = ∫ γ̇21(t′)dt′ =
t

0

 
γ̇0

ω
sinωt = γ0 sinωt = ℜ (−iγ0e
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Appendix A2.1.2: Relationship between Torque & Material Functions - Pure Polymer 

T(t) =   T0 ∗  Re {ei(δ+ωt) } = T0 ∗  Re {eiδ ∗  eiωt } =  T0 ∗  Re {(cos δ + i sin δ) ∗  eiωt } 

T(t) =  2π ∗ ∫[τ(r, t) ∗ r] rdr = [
2πωθ0

H
] ∗ [∫ [r3]

R

0

dr] ∗ 

R

0

Re {i η∗(ω) eiωt } 
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R4

4
] ∗  Re {{i η′(ω) +  η′′(ω)} ∗  eiωt } 

T0 ∗  Re {(cos δ + i sin δ) ∗  eiωt } =  [
πωθ0R

4

2H
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4
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2HT0 cos δ

πωθ0R
4
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𝛑𝛚𝛉𝟎𝐑
𝟒
                                                                                                      

Appendix A2.1.3: Relationship between Torque & Material Functions – Diffusion 

T(t) =  2π ∗ ∫[τ(r, t) ∗ r] rdr = [
2πωθ0

H
] ∗ [∫ [ η∗(C,ω) ∙ r3]

R

0
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Re {i eiωt } 
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] ∗ [∫ [ η′(C,ω) ∗ r3]

R

0

dr]        

 T0 cos δ =  [
2πωθ0

H
] ∗  [∫ [ η′′(C,ω) ∗ r3]

R

0

dr] 

𝐓𝟎(𝐂,𝛚) =  [
𝟐𝛑𝛚𝛉𝟎

𝐇
] ∗ [∫ [| 𝛈∗(𝐂,𝛚)| ∗ 𝐫𝟑]

𝐑

𝟎

𝐝𝐫]                                                
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Appendix-A2.2.: SAOS – Flow Kinematics 

Appendix A2.2.1: Assumptions 

Unidirectional Flow: 

v⃗ =  (
0
vθ

0
) 

Axisymmetric Flow: 

δ

δθ

( ) =   0 

Incompressible Fluid 

ρ =   cste 

Linear Velocity Gradient in z-direction: 

δ

δz
vθ(r, z, t) =   f(r, t)            →             vθ(r, z, t)  = z ∗ f(r, t) + g(r, t)  

Appendix A2.2.2: Boundary Conditions 

1. z =  0 →   vθ(r, 0, t)   =   0  →   g(r, t) = 0 

2. z =  H →   vθ(r, H, t)  =   H ∗ f(r, t)  =   r ∗  
dθ(t)

dt
 

θ(t) =   θ0 ∗  Re {eiωt } →    
dθ(t)

dt
 =  ω ∗  θ0 ∗  Re {ieiωt } 

vθ(r, H, t)  =   H ∗ f(r, t)  =   r ∗  
dθ(t)

dt
=  r ∗ ω ∗ θ0 ∗  Re {ieiωt } 

f(r, t) =  
ω ∗  θ0

H
∗ r ∗ Re {ieiωt } 

𝐯𝛉(𝐫, 𝐳, 𝐭) =  [
𝛚 ∗  𝛉𝟎

𝐇
∙ 𝐫 ∙ 𝐳] ∗ 𝐑𝐞 {𝐢𝐞𝐢𝛚𝐭 } = 𝐯𝟎 (𝐫, 𝐳) ∗   𝐑𝐞 {𝐢𝐞𝐢𝛚𝐭 }                              
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Appendix A2.2.3: Velocity Gradient 

∇v⃗ =  

[
 
 
 
 
 

δvr

δr

δvθ

δr

δvz

δr
1

r

δvr

δθ
−

vθ

r
     

1

r

δvθ

δθ
+

vr

r
     

1

r

δvz

δθ
δvr

δz

δvθ

δz

δvz

δz ]
 
 
 
 
 

 

∇v⃗ =  

[
 
 
 
 
 0

δvθ

δr
0

−
vθ

r
     0 0

0
δvθ

δz
0]
 
 
 
 
 

                      ,                ∇v⃗ T =

[
 
 
 
 0 −

vθ

r
0

δvθ

δr
0

δvθ

δz
0 0 0 ]

 
 
 
 

 

Appendix A2.2.4: Shear Rate & Shear Stress - SAOS 

γ̇ = ∇v⃗ + ∇v⃗ T 

γ̇ =

[
 
 
 
 
0 0 0

0 0
δvθ

δz

0
δvθ

δz
0 ]

 
 
 
 

 

𝛄̇(𝐫, 𝐭) =  
𝛅𝐯𝛉

𝛅𝐳
=  [

𝛚 ∗  𝛉𝟎

𝐇
∗ 𝐫] ∗ 𝐑𝐞 {𝐢𝐞𝐢𝛚𝐭 } =  𝛄̇𝟎 (𝐫) ∗   𝐑𝐞 {𝐢𝐞𝐢𝛚𝐭 }                           

𝛕(𝐫, 𝐭) =  𝛈∗(𝛚) ∗  𝛄̇(𝐫, 𝐭) =  𝛄̇𝟎 (𝐫) ∗   𝐑𝐞 {𝐢 𝛈∗(𝛚) 𝐞𝐢𝛚𝐭 }                                                

Appendix A2.2.5: Equation of Motion – Incompressible Flow 

𝛒 ∗ [ 
𝛛𝐯⃗ 

𝛛𝐭
+ 𝐯⃗ . 𝛁𝐯⃗  ] =  −𝛁 𝛕 +  𝛒𝐠⃗                                                                                               
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Appendix-A2.3.: SAOS – Free Volume Theory 

Appendix-A2.3.1.: Free Volume Theory - Diffusion 

Total Free Volume = Free Volume in Pure Polymer + Free Volume Produced by Diffusing 

Substance  

VFree = VF1 + VF2 

𝐚𝐂(𝐂) ∙ 𝐛𝐂(𝐂) =
η(C)

η(C∗)
=

e
 

1
VF2

e
 

1
VF2

∗

= e 
[

1
VF2

 − 
1

VF2
∗]
  

VF2 = α + β ∙ VF2
∗  

𝐚𝐂(𝐂) ∙ 𝐛𝐂(𝐂) = 𝐞 

− 
𝟏

𝛂+[
𝛂𝟐

𝛃
]
𝟏
𝐂  =  𝐞 

− 
𝟏

𝟏
𝐀
+[

𝐁
𝐀
]
𝟏
𝐂                                                                           

- α: Fractional free volume 

- β: Contribution of diffusant to the increase of free volume 

- C: Normalized concentration in amount of diffusant/amount of host  

Appendix-A2.3.2: Free Volume Theory – SAOS 

𝛈∗(𝐂,𝛚) = 𝛈∗(𝟎,𝛚) ∙ 𝐚𝐂(𝐂) ∙ 𝐛𝐂(𝐂) = 𝛈∗(𝟎,𝛚) ∙ 𝐞 

− 
𝟏

𝟏
𝐀
+[

𝐁
𝐀
]
𝟏
𝐂                             

- aC(C) and bC(C): Horizontal and Vertical Concentration Shift Factor 

- η∗(0, ω): Pure Polymer Complex Viscosity 

Appendix-A2.3.3: Relationship between Torque & Complex Viscosity – Diffusion 

T0(C,ω) =  [
2πωθ0

H
] ∙  [∫ [|η∗(C,ω)| ∙ r3]

R

0

dr] 

𝐓𝟎(𝐂,𝛚)

𝐓𝟎(𝟎,𝛚)
=  

𝟒

𝐑𝟒
 [∫ [𝐞 

− 
𝟏

𝟏
𝐀
+[

𝐁
𝐀
]
𝟏
𝐂]

𝐑

𝟎

∙ 𝐫𝟑 ∙ 𝐝𝐫]                                                          
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Appendix-A2.4.: Flory-Huggins – Solution Theory 

Appendix-A2.4.1.: Gibbs Free Energy – Constant Temperature/Pressure 

f[ϕA(r, t)] = ∆G = ∆H − T∆S 

Free Energy = Interaction Energy − Mixing Energy 

∆𝐆 = [𝛘𝐀𝐁 ∙ 𝛟𝐀 ∙ (𝟏 − 𝛟𝐀)] + [
𝛟𝐀

𝐍𝐀
𝐥𝐧(𝛟𝐀) +  

𝟏 − 𝛟𝐀

𝐍𝐁
𝐥𝐧(𝛟𝐀)]                                                   

Appendix-A2.4.2.: Closed Volume – Conservation of Energy 

𝐅 = ∫{𝐟[𝛟𝐀(𝐫, 𝐭)] +
𝛋

𝟒
[𝛁𝛟𝐀(𝐫, 𝐭)]𝟐} 𝐝𝐕                                                                                            

- f[ϕA(r, t)] = ∆G = Energy due to Chemical Potential (mixing) 

- 
κ

4
[∇ϕA(r, t)]2 =   Energy due to Concentration Gradient 

Appendix-A2.4.3.: Closed Volume – Conservation of Mass 

∂ϕA

∂t
= −∇ ∙ (JA)                                                                                                                                         

JA = −D ∙ ∇μ               ,              μ =
∂F

∂ϕ
 

∂ψA

∂t
=

∂

∂x
{(

2

1 + R + (R − 1)ψA
) ∙ [⟨1 +

1

R
− χAB + (

1

R
− 1) ∙ ψA + χAB ∙ ψA

2⟩ ∙
∂ψA

∂x
−

∂3ψA

∂x3
]}     

ψA = 2 ∙ (ϕA −
1

2
)            |           R =

NB

NA
 

χAB ∶  Flory − Huggins Interaction Parameter 
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Appendix-A3: The Role of Small Amplitude Oscillatory Shear in Solvent-

Diffusion through Amorphous Polystyrene in the Melt State. 

Wissam Nakhle and Paula Wood-Adams 

Department of Mechanical & Industrial Engineering, Concordia University, Canada 

 

Appendix-A3.1.: Figure A3.1.(a) shows the complex viscosity of homogeneous polymer 

solutions at several polymer concentrations ranging from 60wt% to 100wt% polymer.  In Figure 

A3.1.(b), the complex viscosity is normalized by the shift factor product (aC ∙ bC) and the 

frequency is normalized by the horizontal shift factor aC. 

 

Fig. A3.1. Characterization of homogeneous solvent polymer mixtures with γ0 = 4% at 190°C. 

(a) Complex viscosity η* (C, ) as a function of frequency ; (b) Master curve: shifted data 

using frequency-concentration superposition:  

Appendix-A3.2.: In Figure A3.2, we can see that sorption data after 60s of immersion are 

somewhat affected by polymer dissolution and at an even longer times (after 120s) dissolution 

overcomes sorption and a weight loss is observed.  
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Fig. A3.2. Mass uptake measurements at 190°C 

 

Appendix-A3.3.: As shown in Figure A3.3, samples continuously sheared produce a steeper 

decrease in measured torque, compared with samples undergoing long rest periods. Diffusion 

data presented in Figure A3.3 are obtained at 190°C for k = 2, and supports the conclusion that 

SAOS accelerates diffusion.  

 

Fig. A3.3. Normalized Torque at 190°C, for samples continuously sheared, compared with 

samples undergoing periods of intermittent oscillations and long rest periods, for k = 2, at 190°C 

and 0 = (a) 0.01 s-1; (b) 100 s-1.  
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Appendix-A3.4.: Continuous SAOS data for k = 2 (for 1s-1 and 100s-1) and their fits are shown 

in Figure A3.4. The effect of frequency on diffusion can be deduced by comparing diffusion 

coefficients obtained at different frequencies. 

 

Fig. A3.4. Normalized torque during diffusion for k = 4, at 190°C. Full lines are the fits using eq. 

(4), (a) 0=1s-1, D = 3.312 ± 0.015 (10-4 mm ² / sec); (b) 100 s-1, D = 3.032 ± 0.005 (10-4 mm ² / 

sec).  
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Appendix-A4: general method for obtaining diffusion coefficients by inversion 

of measured torque from diffusion experiments under small amplitude 

oscillatory shear. 

Wissam Nakhle and Paula Wood-Adams 

Department of Mechanical & Industrial Engineering, Concordia University, Canada 

Appendix-A4.1.: Figure A4.1. is a plot of (λ, xλ) and (λ, er
λ), for a simulated Fickian case with D 

= 1.1 ∙ 10⁻3 mm² /s, and t = 100s. We observe again that the range of optimal λ on the (λ, xλ) 

curve, coincides with the range where relative errors are smallest on the (λ, er
λ) curve.  This trust 

region (0.01 - 0.02) is the optimal λ range where the most accurate viscosity profiles can be 

retrieved from the simulated torque data.  

 
Fig. A4.1. Plot of (λ, xλ) and (λ, er

λ) for a Fickian case with D = 1.1 ∙ 10-3 mm² /s, A = 0.027, B = 

0.017 and t = 100s. The range of optimal λ values falls towards the right insensitive region. 

Appendix-A4.2.: In Figure A4.2. we see radial viscosity profiles recovered from the 

regularization method, which are a very close match with the exact solution. Figure A4.2. 

confirms that our numerical procedure allows for an accurate determination of radial complex 

viscosity profiles during diffusion, for a wider range of diffusion rates or coefficients. Diffusion 

coefficients determined from the interface width are presented in Figure A4.3.  
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Fig. A4.2. Simulated and regularized viscosity profiles, for Fickian diffusion with D = 1.1 ∙ 10-3 

mm² /s, A = 0.027 and B = 0.017, and k = 2. (Discrete points are the regularized solutions and 

the continuous curve is the exact solution). (a) t = 200s; (b) t = 300s; (c) t = 400s; (d) t  = 500s.  

  
Fig. A4.3. Comparison of normalized interface width from numerical and exact viscosity profiles 

for the Fickian diffusion case in Figures A4.1-A4.2. Comparison of exact diffusion coefficients 

and coefficients from the interface width of regularized solutions.  
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Appendix-A5: Effect of Temperature on Solvent Diffusion in Molten 

Polystyrene under Small Amplitude Oscillatory Shear 

Wissam Nakhle and Paula Wood-Adams 

Department of Mechanical & Industrial Engineering, Concordia University, Canada 

Appendix-A5.1.: Figure A5.1 shows storage and loss modulus data with a typical cross-over 

frequency, at the five temperatures studied. Figure A5.2 shows the complex viscosity of 

homogeneous polymer solutions at several polymer concentrations ranging from 60wt% to 

100wt% polymer.  

 

Fig. A5.1. A frequency sweep test with a shear amplitude γ = 4% at 130°C, 150°C, 170°C, 

190°C,  and 210°C. Storage modulus (G’) and loss modulus (G”) as a function of frequency for 

neat PS. 

 

Appendix-A5.2.: Figure A5.2 shows complex viscosity of homogeneous solvent-polymer 

solutions from 60wt% to 100wt% at each temperature studied. From results in Figure A5.2, 

concentration shift factors (aC and bC) are determined at each of the five temperatures. 
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Fig. A5.2. Complex viscosity η* (C, ) as a function of frequency  of homogeneous solvent 

polymer mixtures with γ0 = 4% at 130°C, 150°C, 170°C, and 210°C.  

 

Carreau-Yasuda fit for η0* (Pa.s) at different concentrations with R2 > 0.95 

C 130°C 150°C 170°C 210°C 

100% 5.32E+11 5.40E+09 3.83E+08 7.56E+07 

90% 3.04E+09 4.15E+08 1.05E+08 3.88E+07 

85% 3.24E+08 2.22E+08 7.51E+07 9.31E+06 

80% 1.71E+08 9.67E+07 3.08E+07 6.10E+06 

75% 1.15E+08 4.39E+07 2.44E+07 6.00E+06 
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Fig. A5.3. Normalized Torque as a function of time, for k = 2 and for ω0 from 0.01s-1 to 100s-1: 

torque T (ω0, t) as a function of frequency for (a) 150°C; (b) 170°C. Error bars represent the standard 

deviation of 6 measurements.  

 

Appendix-A5.3.: In intermittent SAOS tests shown in Figures A5.4-A5.5, oscillations are 

applied for 100s followed by long rest stages of 10000s where no flow is applied. In Figures 

A5.4-A5.5, the normalized torque at 150°C and 170°C is shown for samples intermittently 

sheared and are compared with the normalized torque from samples continuously sheared. 
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Fig. A5.4. Normalized Torque during diffusion in binary samples at 150°C. Samples 

continuously sheared, are compared with samples undergoing periods of intermittent oscillations, 

for k = 2, and 0 = (a) 0.01 s-1; (b) 0.1 s-1; (c) 1 s-1; (d) 100 s-1.  

 

Appendix-A5.4.: In Figures A5.4-A5.5, we can see the effect of continuous shearing which also 

accelerates diffusion relative to the case of intermittent oscillation at 150°C and 170°C. We 

found that SAOS accelerates diffusion of TCB in molten PS at all five temperatures studied 

(130°C to 210°C), and that longer rest periods within the experiment decrease this effect. This 

effect also decreases at higher temperatures, which suggests that the accelerated diffusion due to 

SAOS is more effective at lower temperatures. 
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Fig. A5.5. Normalized Torque during diffusion in binary samples at 170°C. Samples 

continuously sheared, are compared with samples undergoing periods of intermittent oscillations, 

for k = 2, and 0 = (a) 0.01 s-1; (b) 0.1 s-1; (c) 10 s-1; (d) 100 s-1.  
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