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Abstract 

The launch phase is the harshest mechanical environment a spacecraft experiences through its 

lifetime. The severity of the vibrations during the launch phase poses a serious challenge for the 

design of the spacecraft which generally contains many sensitive electronic components. The 

need to guarantee the launch survival of the spacecraft has instigated a significant amount of 

research in the field of vibration isolation of the whole spacecraft, which resulted in development 

of various passive vibration isolation systems and their widespread use since two decades ago. 

The present study is aimed to analyze the feasibility of implementation of semi-active vibration 

isolation system instead of a passive one and to compare its potential benefits in attenuating the 

vibrations transmitted to the sensitive components of the spacecraft during the launch phase. 

First, the passive system has been studied and a methodology for design optimization of the 

multi-degree of freedom system in frequency and time domain has been formulated. The 

optimized passive system is then used as a baseline to compare the performance of the optimal 

passive isolator with that of a semi-active system. Semi-active control strategies based on 

Skyhook (SH) and combined Skyhook and Acceleration Driven Damping (SH-ADD) have been 

utilized to control the damping of the isolator between spacecraft and launch vehicle to attenuate 

vibration. The results showed that while semi-active system has a significant advantage over 

passive system to attenuate vibrations when the excitations are harmonic or narrow band, the 

results are not as promising when broadband random excitation, which is a realistic model of the 

excitations that the spacecraft experiences during launch, is considered. This calls into question 

the practical effectiveness of the semi-active system to be used in whole spacecraft vibration 

isolation system. Further research work with experimental tests are required to verify if semi-

active systems can have a practical application in whole spacecraft isolation system.  
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 CHAPTER1: Introduction, Literature Review and Objectives 

1.1 Introduction  

A spacecraft is subject to different dynamic mechanical loads during its lifetime, starting from its 

transportation, to its placement in the orbit and to its final disposal. The launch stage, which lasts 

only a few minutes, is the most severe stage during the life cycle of the satellite. Surviving the 

launch phase is the main consideration behind the structural design of satellites [1]. The severity 

of the launch stage has caused the designs of satellites to be very stiff or to locally isolate 

sensitive components. These methods, however, add weight to the spacecraft without any added 

functionality.  

The whole spacecraft vibration isolation system is intended to add a soft connection between the 

spacecraft and the Launch Vehicle (LV) to reduce the load transferred to the whole spacecraft.  

Therefore, it adds reliability to the system while allowing for lighter components to be used on 

the spacecraft, and makes room for the weight of the payload to be used more efficiently. 

The design and implementation of whole spacecraft vibration isolation is, however, challenging. 

This is mainly due to the severity of the launch environment and the complexity of the structures 

on both sides of the isolator. Since the isolator changes the dynamic response of the spacecraft, a 

full coupled load analysis is necessary. It should be guaranteed that there are no modes 

introduced with very low frequencies which can interfere with the altitude control system of the 

LV. There is also a limitation on the allowable relative displacement between the payload and 

the LV since the payload generally has a very limited space to move inside the fairing of the LV. 
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1.2 Literature review 

1.2.1 Description of the mechanical loads during launch 

During the launch spacecraft experiences the highest dynamic load[2]. The mechanical 

environment during launch is generally categorized as follows [3]: 

1. The quasi-static accelerations generated by constant (or slowly changing) external 

forces. These forces include gravity, the thrust of the engine(s), and the drag force. Since 

these forces are static or quasi-static, they do not generate a significant dynamic response 

in the spacecraft. 

2. The low frequency dynamic response occurs because of interaction between the 

LV/payload modes.  These loads are typically considered to have a frequency range from 

5-100Hz, depending on the type of structure.  

3. High frequency random vibration having significant energy in the 20-2000Hz 

frequency range. Acoustic loads which include the noise of the launch vehicle engines, 

the separation of the airflow along the launch vehicle, and the aerodynamic noise, is the 

main source of these loads.  

4. Pyrotechnic shock loads with an energy spectrum measured at 100-10000Hz.  

The primary objective of the whole spacecraft vibration isolation system is to attenuate the low 

frequency dynamic response for the primary structures. However, it also has a positive effect in 

reducing the load transmitted to the satellite during the high frequency random vibrations and 

shock events, which is the secondary goal of the isolation system.  
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1.2.2 Passive whole spacecraft vibration isolation  

The practical implementation of a whole spacecraft vibration isolation system has been studied 

since 1993 [4]. The major problem was that the GFO (a US navy earth observation satellite) had 

an unacceptably low stress margin around the resonant burn
1
 frequency of the solid rocket motor 

Castor 120, which is around 45-60Hz. Therefore, the need arose to reduce the dynamic response 

of the payload around that frequency range, which became the primary goal. The secondary goal 

was the reduction of loads transferred to the satellite at other frequencies while guaranteeing low 

relative displacement between the satellite and the fairing. The result was the Soft Ride system, 

which had its first successful launch with Orbital’s Taurus launch vehicle in 1998. Since then, 

the whole spacecraft vibration isolation system has been used many times for different launches. 

Some LV providers, such as Taurus and Minotaur, are already providing the payload isolation 

system as an optional service. 

Since the successful launch of satellites with passive isolation systems, more researchers have 

taken an interest in the field of passive vibration isolation of a whole spacecraft. There have been 

significant developments in the practical design and testing of new passive isolator ideas [5, 6] as 

well as theoretical developments, in particular in the field of coupled load analysis (CLA) [7-9] 

which is the most challenging part of the design of an isolation system[10]. 

                                                 
1
 Resonant burn is a phenomena observed in solid fueled rockets with cavity. It happens when the pressure 

oscillations couples with the natural frequency of the combustion cavity and can cause significant vibration in the 

system. 
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1.2.3 Shortcomings of passive vibration isolation systems 

Despite the advantages that passive vibration isolation of a whole spacecraft system offers, there 

are some fundamental limitations inherent to any passive vibration isolator. These limitations 

are: 

1. Higher vibration attenuation requires larger static deflection of the isolator which may 

interfere with the available space. 

2. Effective for narrow band frequency ranges due to lack of adaptability. High damping is 

desirable for low frequency region (specially near the resonance frequency) while 

increasing damping increases the vibration transmission at higher frequencies.    

3. The contradictory behavior between the relative displacement and the absolute 

acceleration of the isolated mass. This means that any attempts to reduce the acceleration 

of the isolated mass should take into account the relative displacement and available 

stroke.  

To fundamentally investigate these limitations, here the steady state behavior of a viscously 

damped single degree of freedom system subject to harmonic base excitation as shown in 

Figure ‎0.1.is analyzed.  

 

Figure ‎0.1: Passively isolated SDoF system subject to base excitation 
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The static deflection  , for the system, can be evaluated as: 

        
  

 
 
 

   
 

(‎0-1) 

where    (   √
 

 
 ) is the undamped natural frequency of the system. Eq. (‎0-1) shows that the 

static deflection is inversely proportional to the square root of the natural frequency of the 

system. To reduce the vibration transmitted from the base to the isolated mass, the isolator’s 

natural frequency should be as low as possible. This is due to the fact that the attenuation starts 

from frequencies above √   . Therefore, the lower the natural frequency, the wider the range of 

the frequencies that the isolator can attenuate, thus having better performance, however low 

isolation frequency will cause larger static deflection as given in Eq. (1-1) which may interfere 

with available space.  It is also important to note that for a Launch Vehicle/ Spacecraft (LV/SC) 

system, in addition to 1g (the weight of the payload) the SC generally goes through additional 

quasi-static acceleration which can go  up to about 6g in the axial direction due to the thrust of 

the motor(s) [11]. This means that the static deflection can become a significant limitation for the 

design of passive whole spacecraft vibration isolation system.  

The second limitation addressing inability of passive isolators to provide different damping 

levels; is well-known and mentioned in many texts on vibration. To examine this, let us write the 

governing equation of motion for the SDoF system shown in Figure ‎0.1 as 

  ̈   ( ̇   ̇)   (   )    (‎0-2) 



6 

 

or, dividing the equation by mass m, as 

 ̈      ( ̇   ̇)    
 (   )    (‎0-3) 

where   is the damping ratio (  
 

 √  
).  Now consider the base motion,   to be harmonic with 

an amplitude of  , represented as 

      (  ) (‎0-4) 

Then, since the system is linear, the steady state part of the solution contains the same frequency 

as the excitation frequency with difference only in the phase and amplitude. That is to say the 

particular, or steady state, solution is expressed as 

        (    ) (‎0-5) 

where        .
    

    (     )
/ is the phase angle, representing the phase difference between the 

excitation and the response, and   is the displacement amplitude of the steady state oscillation of 

the isolated mass which can be expressed as 

 

 
 

√  (   ) 

√(    )  (   ) 
 
 ̈

 ̈
 (‎0-6) 

in which r 
 

  
  represents the normalized excitation frequency. 

Figure ‎0.2 shows the results for the normalized absolute amplitude of the response with respect 

to the normalized frequency for different values of damping ratio,  . It is noted that since the 
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response is harmonic, the ratio of displacement amplitude is equivalent to the acceleration 

amplitude (
 

 
 
   

   
 
 ̈

 ̈
). 

 

Figure ‎0.2: Frequency response of isolated mass displacement (acceleration) for an SDoF 

system 

  

The trade-off between the amplification of the response at resonant frequency and the attenuation 

of the response at higher frequencies can be readily seen in Figure ‎0.2. It should also be noted 

that above frequency √   , increasing damping yields higher response as discussed before. 

To address the third limitation of passive systems mentioned before, let us write the equation of 

motion, now in terms of relative displacement       , as 

 ̈       ̇    
     ̈           (‎0-7) 
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The particular (or steady-state) response for the relative displacement between the base and the 

isolated mass is represented as 

        (    ) (‎0-8) 

where        .
   

    
/ is the phase angle between the deriving excitation and relative 

displacement.  The amplitude of the steady sate relative displacement,   over the amplitude of 

the base displacement,    can be expressed as 

 

 
 

  

√(    )  (   ) 
 (‎0-9) 

Now considering Eqs. (1-6) and (1-9), the ratio of amplitude of steady state acceleration of the 

sprung mass,  ̈ over the amplitude of the steady state relative displacement,   can be expressed 

as 

  |
 ̈

 
|  

   

 
   [

√  (   ) 

  
]    √    (   )  (‎0-10) 

It is clear from Eq. ((‎0-10) that the ratio |
 ̈

 
| monotonically increases as a function of natural 

frequency,    and the damping ratio  , at any excitation frequency,  . 

Let us consider the case in which the magnitude of the steady state acceleration,  ̈  is required to 

be constant ( ̈    ), thus we can write 

  
 ̈

 
 
  
 
   √    (   )    

  

  √    (   ) 
 (‎0-11) 
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Eq. ((‎0-11) states that the amplitude of the steady state relative displacement,   decreases with 

the increase of    or   at any excitation frequency  . Now when    is assume to be constant 

(    )  we have 

  
 ̈

  
 
 ̈

  
   √    (   )   ̈      √    (   )  (‎0-12) 

Eq. ((‎0-12) shows that  ̈ behaves exactly opposite to  . That is to say that the amplitude of 

steady state absolute acceleration of the isolated mass,  ̈ increases as either    or   increase, at 

any excitation frequency. This observation is also shown in [12], where an optimization is 

conducted for steady state response of the system for different choices of objective function.  

Another problem regarding the practical implementation of a passive vibration isolation system 

is that compliance in one axis often results in compliance in another axis. Therefore, it is 

generally not possible to control the stiffness in different axes independently [11]. 

To alleviate these shortcomings of the passive systems, active isolators, shown schematically in 

Figure ‎0.3, can be used. In [11], an active isolation system for payload is designed and tested. 

The results show that by using a hybrid (active-passive) system, the resonant peak can be 

reduced without deteriorating the isolation performance at higher frequencies. The same article, 

however, suggests semi-active isolator design to be developed for future works as it can have a 

performance similar to the active design without many of its drawbacks. 
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Figure ‎0.3: Schematic representation of active vibration isolation system 

The drawbacks of the active system are increased cost, complexity, and weight to the system. 

Active isolation systems are also subject to problems such as the possibility of destabilizing the 

system since the isolator is adding energy to the system, and the total loss of isolation 

performance in case of failure of the control (in other words, they are not fail-safe).  

Semi-active vibration isolators, shown schematically in Figure ‎0.4, are filling the gap between 

passive and active isolation systems. They are less complex, lighter, and less costly than active 

isolation systems while having a performance close to active isolators [13]. In the case of failure 

of the control, they act as a passive isolator (they are fail-safe). And since they do not add any 

energy to the system, but rather just dissipate energy at a variable rate, they cannot cause 

destabilization of the system. 
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Figure ‎0.4: Schematic representation of semi-active vibration isolation system 

 

1.2.4 Semi-active and active isolation systems for whole spacecraft vibration isolation 

Following the successful design and widespread use of semi-active dampers in other applications 

including car suspension systems, the idea of using semi-active dampers in whole spacecraft 

vibration isolation has been developed [15]. 

In [16, 17],  a semi-active system based on variable damping using MR dampers, is designed and 

tested with a single degree of freedom payload, in axial direction. The results showed substantial 

improvement of the isolation performance when a semi-active damper is used instead of a 

passive one. The limitation of that work is that the design and test is carried out for an SDoF 

payoad in a single axial direction, and the flexibility of both LV and satellite are not taken into 

consideration. 

1.2.5 Modeling of the system 

When modeling the LV/SC system, it should be noted that both structures are flexible with many 

natural frequencies and mode shapes in the axial as well as in the lateral direction, although 

higher modes may not be considerably excited.  
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One of the main objectives of the present study is to develop a design optimization methodology 

for an MDoF system representing launch vehicle (LV) stages, payload and subcomponents 

(constituting the model of the satellite) subjected to base harmonic and impulse excitations. The 

lumped masses (subcomponent, payload and LV stages) are connected to one another via an 

isolation system. The challenge is that there is no control over the mechanical characteristics of 

either side of the connection, both the LV and the satellite, which are generally provided by 

different companies, each have dynamic characteristics which are generally not subject to 

variation unless they are being re-designed, which is a costly and time-consuming process. Only 

the dynamic characteristics of the isolation system (stiffness and damping) can adjusted to 

attenuate vibration transmission to sensitive components. This concept is shown schematically in 

Error! Reference source not found., where a typical global damping or stiffness matrix is 

shown for a whole spacecraft vibration isolation system.  

 

Figure ‎0.5: General form of stiffness/damping matrix for LV/payload passive isolator 
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In recent years there have been several attempts to derive a method to analytically measure the 

isolation performance between a pair of flexible structures. Zheng [18] considers the above-

mentioned problem and develops analytical formulation to address the coupling between multi-

stage launch vehicle and satellite for the case where the system is undamped. It is noted that the 

modal matrix will be real when the system is undamped or proportionally damped (proportional 

and un-proportional damping is discussed in Chapter 2). Here, in the present work, the case 

where the damping is not proportional and therefore the modal matrix is complex has been 

investigated.  

For the complete design of the whole spacecraft vibration isolation system, a full finite element 

model of the LV and the payload (satellite) and other subcomponents is generally needed. 

However, in the preliminary stages of design the system can be reduced to few degrees of 

freedom using lumped mass approaches to demonstrate the effect of isolator parameters on 

response of the system as well as the performance analysis and comparison of different control 

strategies when a semi-active isolator is used instead of a passive one. 

In the present thesis, similar to [19], [20] and [8], a benchmark four DoF lumped mass system 

representing the coupling between the LV and the spacecraft as shown in Error! Reference 

source not found.  has been considered   
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Figure ‎0.6: Simplified model of the LV/spacecraft 

The launch vehicle is assumed to be consist of three stages. However, since the mass of the first 

stage is considerably more than the other stages of the LV, it is assumed to be the “base”.  Using 

Newton’s second law and free body diagram for each component, governing equations of the 

motion of the system can be derived and then cast into the matrix format as 

[
 
 
 
  

  
  

  ]
 
 
 

{

 ̈ 
 ̈ 
 ̈ 
 ̈ 

}   

[
 
 
 
        
           

           
     ]

 
 
 

 {

 ̇ 
 ̇ 
 ̇ 
 ̇ 

}

  

[
 
 
 
        
           

           
     ]

 
 
 

{

  
  
  
  

}  {

   ̇     
 
 
 

} 

(‎0-13) 
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In Eq. (‎0-13), as discussed before, the only design parameters prone to variation are the isolator’s 

dynamic parameters (stiffness,    and damping constant   ). Other stiffness and damping 

constants are pre-determined by the structure of the LV and SC as mentioned before. The effect 

of these design parameters on the system stiffness and damping matrices is clearly shown in 

Error! Reference source not found.. 

 

Figure ‎0.7: General form of stiffness/damping matrix for LV/payload passive isolator 

 

1.2.6 Time and frequency analysis 

The main concern in the present study is the damage and failure of sensitive components of the 

payload. Failure may occur by excessive force transmitted during transient events, by instability 

during a particular operation condition, or by fatigue [21]. The design of the isolation system 

needs to guarantee against all types of failure.  

To design against excessive force first the magnitude of peak force transmitted to the payload 

needs to be determined, which is proportional to the absolute acceleration of the isolated mass. 

When the system is excited, the maximum acceleration of the isolated mass happens at the first 
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few oscillations of the isolated mass, before the transient part of the response damps out. 

Therefore, the analysis of the system should take the transient part of the response into account 

to find the maximum response of the system. It should be noted that using classical frequency 

analysis does not provide such information. Therefore, the analysis should be done in the time 

domain.  

To design against fatigue failure, the steady state solution is of more importance than the 

transient solution. The reason for this is that the transient solution, although important in 

determining the peak of the response, dies out quickly as a result of damping. Thus, its 

contribution is not major in fatigue failure of the components. The steady state solution can be 

analyzed by transferring the governing equations of the system to frequency domain using 

Fourier transform and deriving the frequency response function (FRF) of the system. 

A frequency analysis can also provide the information needed to guarantee the stability of the 

system in the frequency range of interest. For example, for a LV/SC system it is necessary to 

guarantee that the system does not have very low frequency modes with high amplitude as they 

may interfere with altitude control system of the LV. Another concern is around the resonant 

burn frequency where the system undergoes significant excitation. The isolation design needs to 

guarantee that the response of the system is stable under these conditions. In the present study, an 

analysis of both time and frequency domains have been performed on the system.  

1.2.6 Performance indices 

Because in the present thesis both linear passive systems and nonlinear semi-active systems will 

be analyzed and compared, it is necessary to use approprate performance indices that is aplicable 

to both these systems for fair comparision. The performance indices will also be used as 
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objective functions in the design optimization formulation to optimize the design variables for 

the isolation system in both time and frequnecy domains. 

Since the main objective is to protect sensitive payload equipment from base excitation, the 

primary goal would be to reduce the absolute acceleration of the isolated mass while there is 

limitation on the relative displacement between the payload and the launch vehicle due to the 

available stroke. 

For linear systems, valuable information can be obtained with regard to system performance by 

taking the Fourier transform of the equations of motion of the system and finding the transfer 

function (TF) and frequency response function (FRF) of the system. The significance of TF and 

FRF lies in the fact that for a linear system, the steady state response of the system contains only 

the same frequencies as the driving frequency, with difference only in phase and amplitude. This 

is, however, not the case for nonlinear systems. Therefore, the concepts of FRF and TF are not 

restrictedly applicable to a semi-active system which is highly nonlinear. 

An equivalent frequency response (approximate FRF) for nonlinear semi-active systems can be 

used based on the concept of variance gain. This concept is used in the design of semi-active 

(nonlinear) car suspension systems [12]. The variance gain can be decribed as 

 ̂    √

 
 ∫ ( ( ))

   
 

 

 
 ∫ ( ( ))

   
 

 

 

(‎0-14) 
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where  ( ) represents the input signal and  ( ) is the output signal. This is equal to the RMS 

value of the output signal over the input signal. 

For nonlinear systems, the approximate variance gain can be calculated by subjecting the system 

to different tonal vibration (      (   )) and taking the RMS of the steady state response of 

the output signal (the acceleration of the isolated mass in this case) at discrete frequnecies 

divided by the RMS of the input signal. It should also be noted that since the input signal is a 

harmonic with amplitude A, the RMS value will always be equal to 
 √ 

 
       , given that the 

signal is taken over a long enough duration. Then, the variance gain can be calculated as [12] 

 ̂    √

 
 ∫ (  ( ))

   
 

 

 
 ∫ (  ( ))

   
 

 

 
   (  ( ))

   (  ( ))
                       

(‎0-15) 

It should noted that for linear systems, Eq. (‎0-15) simply becomes the magnitude of the transfer 

function of the system. However, in order to gurantee that the result of Eq. ((‎0-15) (that is to say 

the RMS ratio of output over input) is accurate and represents the frequncy response function of 

the system, it is neccesary to first allow the transient part of the rsponse to damp out since the 

transient portion of the response of the system contains frequencies that are different from 

excitation frequency (even when the system is linear) and therefor considering them will reduce 

the accuracy of the results. 

The RMS value of a signal can also be calculated in frequency domain, using Parseval’s 

theorem. Parseval’s theorem states that the sum of the squares of a function in the time domain 

equals the sum of the squares in the frequency domain. In other words, the theorem states that 

the total energy of a signal in time domain is equal to that in frequency domain, which is 

expressed as 



19 

 

∫  ( )   
 

  

 
 

  
∫  ̂( )   
 

  

 
(‎0-16) 

 

where  ̂( ) represents the Fourier transform of the time domain signal  ( ). 

Therefore, the RMS of a signal, X, within a certain frequency range [     ] can be defined as 

[12]: 

   ( )  √
 

     
∫  ( )   
  

  

 

(‎0-17) 

Using Eq. (1-17),  the perfomance index or objective function for the optimization problem in 

the frequency domain may be written as 

 ̂    
   ( )

   ( )
 √

∫  ( )   
  
  

∫  ( )   
  
  

 

(‎0-18) 

For the time domain optimization, the maximum of the output over the maximum of the input 

signal should be used as the performance index (peak to peak ratio in time domain). The 

transient effect is also taken into accout. This may be represented as  

   
   (|  ( )|)

   (|  ( )|)
                        (‎0-19) 

In the present thesis, optimization based on both time and frequency has been carried out and the 

results are compared. 

Finally to compare the response of the system to random excitation the Power Spectral Density 

(PSD) of the signal is used. The PSD of a signal is a measure of the energy that a signal contains 

at different frequencies and is typically used to compare the random vibration data.  
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1.3 Objectives and Motivation 

In the past two decades a significant amount of work has been devoted to the problem of 

vibration isolation between a pair of flexible structures using passive, semi-active, and active 

isolator designs. The issue has been extensively researched and documented in the literature. 

However, despite the design and test of semi-active or active systems, these systems have not 

been thoroughly studied for whole spacecraft isolation. 

This thesis presents the analysis and optimization procedure of a passive isolator, and then 

compares the best results which can be achieved by a passive isolator with a semi-active 

isolation system. Vibration isolation between a pair of flexible structures using passive isolator 

and semi-active isolator with variable damper using different control strategies is analyzed and 

the results are compared. 

1.4 The organization of the thesis 

Chapter 1 presents the relevant literature and some fundamental concepts as well as the objective 

of the thesis. Chapter 2 starts with a simplified model of the LV-payload provided in Chapter 1 

with the goal of achieving an optimized design of passive vibration isolator for a whole 

spacecraft. The optimization problems for a vibration isolation system between a pair of flexible 

structures in time and frequency domain have been formulated and the limitations of the passive 

isolation system are shown. The optimized passive system is then used as the base-line to 

compare the performance of semi-active vibration isolation designs. In Chapter 3 a semi-active 

isolator is designed and different control strategies are then compared. In Chapter 4 the results 

from different isolation systems are compared and the contributions and the limitations of these 
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findings are discussed, and future research on the topic of vibration isolation of the whole 

spacecraft is recommended. 
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CHAPTER 2: Analysis and Optimization of Passive Isolation System  

2.1 Introduction 

As discussed before, the inherent contradiction of the passive isolator limits its performance in 

wide range of frequencies. It should be noted, however, that despite its limitations, the reliability, 

simplicity and low cost of passive isolators have made them the most common method of 

vibration isolation in industry, particularly when the goal of isolation is protection of the payload 

from a harsh mechanical environment. 

In this section, the model described in section 1.2.5 to represent the LV/Spacecraft is considered 

as the benchmark for further development. First modal analysis has been conducted to 

investigate the effect of variation of isolator parameters (damping and stiffness constants) on all 

the modes of the system. Then a design optimization problem has been formulated to identify the 

optimum parameters of the passive isolator that minimizes the absolute acceleration of the 

payload while guaranteeing minimum relative displacement between the payload and the LV. 

The optimization is first conducted in frequency domain and then in time domain. The results 

obtained from this chapter, is used as a baseline to compare the performance of different semi-

active systems in the fallowing chapter. 

2.2 Derivation of FRF and modal analysis 

Here the model of the LV/spacecraft and its equations of motion are reproduced from Chapter 1 

for the sake of clarity. 
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Figure 2.1Figure ‎0.6: Simplified model of the LV/spacecraft  
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In order to conduct the optimization, it is required to obtain FRF relating the acceleration of the 

subcomponent to the input acceleration at the base. 

Here first eigenvalues (frequencies) and the corresponding eigenvectors (mode shapes) of the 

system have been identified using free vibration analysis. The governing equation for the free 

vibration can be stated in matrix form as 
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,     -   ⃗  (‎0-2) 

in which diagonal matrix (   [     
  ] ) contains the squared of natural frequencies and 

each column of the mode shape matrix ( ) represents the associated mode shapes.  

Transforming equations of motion, Eq. (2-1) to the frequency domain, one can write: 

 ̂ ,          -   ̂ ( ) (‎0-3) 

where   ̂  (       ) ̂  . Then introducing the transfer function as  

 (  )  ,          -   (‎0-1) 

we can write the output resposne in frequnecy domain as: 

 ̂   (  )  ̂ (  ) (‎0-2) 

where the frequency response function, H, here relates the displacement vector in frequency 

domain to the forcing function. The direct approach is, however, an inefficient method for 

system, with many DoFs as the determination of the response of the system at each frequency, 

requires evaluation of a matrix inverse of       matrix. Although using conventional modal 

analysis approach, it is possible to uncouple the governing equations using orthogonality 

properties of the mode shapes and thus evaluate the response based on the few dominate initial 

modes it requires the damping  matrix to be proportional.  

The state-space approach is another alternative which can not only simplify the formulation but 

is also suitable for the implementation of control strategies in semi-active systems to be 

explained later in next chapter. The state vector can be written as: 

  {
  

 ̇ 
} (‎0-3) 
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Now using Eq. (2-7), the governing equations of motion in Eq. (2-1) can be written using the 

following first-order differential equations: 

0
  
  

1  ̇  0
  
   

1   { 
 

 
} (‎0-4) 

where matrices A and B are defined as: 

  0
  
  

1        0
  
   

1 (‎0-5) 

The eigenvalue problem (free vibration) can then be written as 

  ̇      * + (‎0-6) 

Since the array    has 2n elements, the solution to the above eigenvalue problem is a 2n complex 

eigenvalues    in a complex conjugate pairs and a 2n complex eigenvectors * +  (also complex 

conjugate pairs) [22]. For harmonic response, the eigenvalue problem in Eq. ((‎0-6) can be 

written as: 

(     )* +  * +                (‎0-7) 

Since the state matrix   {
  

 ̇ 
} represents the displacement and velocity vectors, the complex 

eigen vectors * +  can be written as two vectors:  

* +  {
 ⃗  

 ⃗  
}
 

 (‎0-8) 

where { ⃗  }  reperesents the r
th

 displacement mode shape and { ⃗  }  the r
th

 velocity mode shape. 

Substituting * +  back into to the eigenvalue equation, Eq. ((‎0-7), results in: 

    
    

 
      
→    * +  {

 
  
}
 

 (‎0-9) 
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Eq. ((‎0-9) provides the relation between velocity and displacement mode shapes.  

From the solution of the eigenvalue problem, Eq. ((‎0-7),  the values of modal damping ratios and 

natural frequencies can be calculated as [23]: 

     |  |                   
     (  )

|  |
 (‎0-10) 

It is noted that the matrix of complex eigenvectors θ is orthogonal with respect to matrices A and 

B which can be mathematically described as: 

     ,    - 

     ,    - (‎0-11) 

Since the rank of matrix θ is 2n, it can be used as a base of 2n-dimensional space describing state 

vector    The sate vector y can be transformed form physical to “generalized coordinates” 

defined by {q} using the following relation: 

* +  {
  

 ̇ 
}  , -* + (‎0-12) 

Substituting Eq. (2-16), in the equation of the motion of the system in the state space form, Eq. 

((‎0-4) and then pre-multiplying it from left side by   , we can write the governing equation in 

the state space form with respect to generalized coordinates as: 

    * ̇+      * +    { 
 

 
} (‎0-13) 

Since mode shape matrix θ is orthogonal with respect to matrices A and B, both terms on the left 

hand sides of Eq. (2-17) are uncoupled which provides a set of 2n uncoupled first order 

equations as: 
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   ̇                                   (‎0-14) 

where     
 { 
 

 
} 

 

The derived uncoupled equations can now be transformed into the frequency domain using 

Fourier transform which yields: 

 ̂ (  )  
 ̂ (  ) 

(       )
                     (‎0-15) 

Reorganizing Eq. ((‎0-15) in a matrix form it can be expressed as 

{ ̂(  )}    (  ){ ̂(  )}  (‎0-16) 

where    is the frequency response function in the state space generalized coordinate as: 

  (  )      [
 

(       )
]
     

 

By pre-multiplying Eq ((‎0-16) by, -, one can bring back the transformed matrix from 

generalized coordinates to the physical coordinates as:  

 { ̂(  )}      
 * (  )+ (‎0-17) 

Defining    as 

  (  )      
  (‎0-18) 

Thus we can finally write: 

{ ̂(  )}    (  ){ ̂} (‎0-19) 

As it can be realized using this approach, we can evaluate the FRF matrix,    without evaluation 

of the inverse of an     matrix at each frequency. However, it should be noted that the 

matrix     here is a 2n×2n matrix since the velocity mode shapes are also included in the matrix. 
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They can, however, simply be omitted when plotting the FRF graphs, since all the necessary 

information that is needed is already contained in the first     elements of the matrix [24]: 

{ ̂(  )}    (  )   { ̂(  )} (‎0-20) 

Each element      in the matrix    represent the FRF of DoF   when a unit force is applied to 

the DoF k. Note that the matrix is also symmetric i.e.           . [25] 

 Error! Reference source not found. shows FRF for the fourth degree of freedom 

(subcomponent response) when the system is subject to unit impulse base excitation and the 

damping is un-proportional.  

The values for masses and stiffness are taken from [8] and are considered to be: 
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Figure 2.2: FRF of the 4th DoF for un-proportionally damped systems. 

 

2.3 Frequency domain optimization 

In the present work the main goal is to protect sensitive payload equipment from the base 

excitation. Therefore, the goal in the frequency domain can be defined as minimizing the 

absolute acceleration of the subcomponent ( ̂̈ ) (see Figure 2.1) within the frequency range of 

interest [     ]. This is generally normalized with respect to the base acceleration ( ̂̈ ). The 

design needs to gurantee a certain working space, which is determined by the relative 

displacement between m2 (reperesenting the 2
nd

 stage of the LV) and m3 (representing the 

payload).  

Moreover, the frequency range of interest should be determined and the optimization in 

frequency domain needs to be conducted within the desired frequency range. As mentioned in 

the first chapter, generally for the design of the whole spacecraft vibration isolator, the main 
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concern is around the resonant burn frequency. The resonant burn for many launch vehicles for 

small payloads is around 50Hz [4], it is therefore a reasonable assumption to focus primarily on 

isolating the subcomponent for the frequencies within the range [40-60Hz]. 

In the modeling of the system, the dynamic characteristics of the isolator is generally reduced to 

two parameters, namely damping constant (c3) and stiffness (k3). With the above specifications, 

the optimization problem for passive isolation system in frequency domain can be formally 

formulated as follows: 

Identify the optimal damping and stiffness parameters (c3 and k3) of the isolator separating the 

payload from the second stage of the launch vehicle to minimize the RMS value of the frequency 

response of the acceleration of the subcomponent ( ̂̈ ) normalized with respect to acceleration of 

the base ( ̂̈ ) within the frequency range [     ], The objective function as discussed in 

Chapter 1, can be mathematically defined as 

     √
∫  ̂̈ ( )   
  
  

∫  ̂̈ ( )   
  
  

 (‎0-21) 

The equality constraint is the equation of motion of the system transferred to frequency domain 

and written here in the matrix form as 

           2 ̂̈3   2 ̂̇3   { ̂}   2 ̂̇ 3   { ̂ } (‎0-22) 

where  ̂ 
⃗⃗ ⃗⃗  { ̂       }

 
, and M, C and K matrices are described in Eq. (2-1). 

The limits on the design are: 1-static deflection, which determines the lower limit of the isolator 

stiffness according to Eq. (1-1). Here the static deflection of   under the static load of the 
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payload and the subcomponent, assuming the system under goes 6g quasi-static acceleration in 

the vertical launch direction, can be described as 

                 
(     )  

  
   (‎0-23) 

Where B is the allowable static deflection limit.  

The RMS of the relative displacement between the LV and the payload in frequency domain can 

expressed as 

            √
 

     
∫ ( ̂   ̂ )

 
  

  

  

   (‎0-24) 

where A is the upper limit for the RMS of the relative displacement, which is considered 

acceptable for design against fatigue failure of the components. 

The design variables for designing the passive isolation system are c3 and k3. The rest of the 

stiffness and damping values are constant parameters determined by the structures of the LV and 

the payload. With this information the optimization problem can now be solved. 

2.3.1 Optimization procedure 

Having obtained the matrix   (  ) in the section 2.2 which relates the displacement vector to 

the excitation vector in frequency domain, it is now possible to solve the optimization problem 

formulated in previous section. 

Here a method similar to the one recommended in [12] for optimization of an SDoF system is 

used and expanded to the present MDoF system. The acceleration of the 4
th

 DoF can be written 

in terms of base acceleration, using the FRF matrix   (  ). 
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Recall from section 2.2, a forcing function,  ̂ ( ) can be defined as 

 ̂ ( )   2 ̇̂ 3   { ̂ }  {
   ̂̇     ̂ 

* +
} (‎0-25) 

Therefore the displacement amplitude of the 4
th

 DoF in the frequency domain is related to the 

base excitation as 

 ̂ (  )  0               1   
 ( )      (   ̇      ) (‎0-26) 

And the frequency response function from the base displacement to the subcomponent 

displacement is obtained as 

 ̂ (  )

 ̂ (  )
     

(       ) (‎0-27) 

Using Eq. (‎0-27), the objective function in frequency domain as provided in Eq. ((‎0-21) can be 

expressed in terms of the FRF from the base to the subcomponenet displacement     . Note that 

for linear system the displacement and acceleration ratios are identical (since for a linear system 

the acceleration signal can be expressed as  ̈ (  )    
  ̂ (  )). Therefore, the objective 

function in frequency domain can be expressed as 

     √
∫  ̈ ( )   
  
  

∫  ̈ ( )   
  
  

 √
∫ .      

(       ) ̂ /
 

  
  
  

∫ .   ̂ (  )/
 

  
  
  

 (‎0-28) 

From Eq. ((‎0-28), different cases of excitations can be readily analyzed. For the case of unit 

impulse acceleration of the base, ( ̈ ( )   
   ( )   )) the objective function simplifies to  

     √
 

     
∫ (    

(       ))
 

  
  

  

 (‎0-29) 
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Similarly, for the unit impulse displacement of the base, (  ( )   ) the objective function in 

frequency domain becomes 

     √
 

  
    

 ∫ (      
(       ))

 

  
  

  

 (‎0-30) 

With the same procedure used for the derivation of the objective function based on the FRF 

matrix, it is possible to calculate the RMS value for the relative displacement between the 

payload and the LV within the same frequency range, represented as 

 ̂   | ̂   ̂ |  |         |  ̂ 
(       ) (‎0-31) 

So, the constraint function on relative displacement limit in frequency domain, described in Eq. 

(‎0-24), can be re-written as a function of base displacement  ̂  and the FRF matrix components 

as 

           √
 

     
∫ ( ̂ .         /

(       ))
 

  
  

  

   (‎0-32) 

Again the constraint    can be calculated for the case of unit impulse acceleration and 

displacement of the base.  

As it can be realized transfer function component      has been used for the objective function 

while      and      are utilized for the evaluation of the constraint function. It is noted that 

elements of the matrix    are characteristics of the system and are independent of the excitation. 

Therefore, the frequency domain optimization of the isolator parameters is independent of the 

excitation to the system.  
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With the objective and constraint functions determined as a function of design variables, the 

optimization can be now carried out. As there are two design variables, here we can simply plot 

the contour of the objective function in the feasible design space specified by the constraint 

functions. Figure 2.3 shows the objective function contours and also the constraint functions. It is 

noted that for the contours are drawn with respect to the logarithm of design parameters,    (  ) 

and    (  ). 

 

Figure 2.3: Contour of the objective function and the constraint equations in frequency domain 

 

Examination of Error! Reference source not found. reveals that the objective function has the 

highest value around    (  )     . The value of the relative displacement is also maximum 

around that point. The reason is that for 10
8.1 

< k3 <10
8.4

 the system will have two natural 
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frequencies within the frequency band where the objective function should be minimized [40-60 

Hz]. To further clarify this, the four natural frequencies of the system are plotted vs variation of 

the isolator’s stiffness in Error! Reference source not found.. As it can be seen, near    (  )  

   , the third and fourth natural frequencies occur within the desired frequency band.  

 

Figure 2.4: Variation of system natural frequencies with isolators' stiffness 

 

It is noted that the optimal values for the objective function occurs when the contour of objective 

function coincides with relative displacement constraint function (a-b-c-d curve in Figure 2.3) 

further reducing the objective function will result in landing into the infeasible region. Thus all 

points on curve b-c-d represents the optimum solution as they minimize the objective function 

while satisfying all constraints. This again is due to the fact that the relative displacement and 

absolute acceleration are inversely proportional to each other in frequency domain.  
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Although same performance can be achieved with different values of isolator stiffness, from a 

practical point of view, the highest value on the optimum curve should be selected for the 

isolator stiffness as well as damping. The reason is that high stiffness and damping introduces 

less dynamics at low frequencies and offer a stronger connection between the two bodies. Here 

the value of   
         and   

       is selected (point c in Figure 2.3) 

Note that, even though a unique solution to the optimization problem of the passive system in the 

frequency domain does not exist, there exists a unique minimum for the objective function. This 

value can be used as the performance index to compare the performance of the semi-active 

isolator in frequency domain.  

2.4 Time domain optimization 

Although useful information regarding the dynamic characteristics of the system can be obtained 

through frequency analysis, it does not provide the maximum response. As it was discussed 

before the maximum response of the system which is of crucial importance for the isolator 

design, occurs before the transient part of the response damps out.  

 In Chapter 1, it was shown that for a single degree of freedom system, in frequency domain, the 

relative displacement between the base and the isolated mass is a monotonically decreasing 

function of stiffness and damping while the absolute acceleration of the isolated mass 

monotonically increases with the increase of stiffness and damping. However, the behavior of 

the system will be different when the analysis is done in time domain. To demonstrate this, 

consider the single degree of freedom system disused in section 1 as shown in Figure 2.5.  
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Figure 2.5:Passivley isolated SDoF system subject to base excitation 

The governing equation of motion can be written as 

 ̈      ( ̇   ̇)    
 (   )    (‎0-33) 

Let us consider a case where the base excitation is described by velocity shock as 

 ̇  {
                 
                 

 (‎0-34) 

It is noted that a sudden change in the velocity of the base as described above, is equivalent to an 

impulse acceleration at    , thus “acceleration impulse” and “velocity shock” can be used 

interchangeably.  

Error! Reference source not found. shows the normalized maximum absolute acceleration of 

the isolated mass as well as its maximum relative displacement, for different damping ratio,   

under velocity shock described in Eq. (2-38). 
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Figure 2.6: Acceleration and relative displacement response maxima for isolation system subject 

to velocity shock 

As it can be seen, the absolute acceleration ratio (ratio of damped over undamped absolute 

acceleration of the isolated mass) decreases as damping ratio increases until it reaches to its 

minimum value of nearly 0.8 at the damping ratio of about 0.27 and then monotonically 

increases as damping ratio increases. It is noted that the absolute acceleration for the damped 

system is lower than that for the undamped system for the damping ratio less than 50%. 

Increasing damping ratio beyond 50% will cause the damped absolute acceleration to be actually 

greater than that of the undamped one.  Maximum relative displacement however monotonically 

decreases as the damping ratio is increased.  

Recall that in frequency domain, both relative displacement and absolute acceleration were 

varying monotonically and therefore there was no optimum for either function. The different 
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behavior of the system in time and frequency domain therefore necessitates the optimization to 

be carried out in both domains. 

2.4.1 Formulation of the optimization problem in time domain: 

Similar to section 2.3 the objective function can be defined as “minimizing the absolute 

acceleration of the payload, normalized with respect to acceleration of the base”. In time domain 

the maximum response should be considered instead of the steady state part only. Therefore, the 

objective function in time domain can be defined as 

     
   *| ̈ ( )|+

   *| ̈ ( )|+
 (‎0-35) 

Similarly the equality constraint can be defined as the equation of motion of the system (in time 

domain) 

           ̈    ̇        ̇ ⃗⃗⃗⃗     ⃗⃗⃗⃗  (‎0-36) 

The relative displacement between the LV and the payload in time domain can expressed as 

behavior constraint 

               *|  ( )    ( )|+    (‎0-37) 

It is noted that the inequality constraint     in Eq. (2-27) for the frequency optimization remains 

the same for time domain optimization as well since it is a static limit.  

2.4.2 Optimization procedure in time domain 

In this section the result of time domain optimization when the system is subjected to unit 

impulse base acceleration excitation is investigated.  
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Error! Reference source not found. shows the peak value of absolute acceleration plotted vs 

maximum relative displacement for different value of stiffness and damping ratios.  

 

Figure 2.7: Peak value of absolute acceleration versus peak value of relative displacement when 

the system is subjected to unit impulse base acceleration 

 

It is noted that for            
    the lines of constant stiffness are coincident (shown by the 

curve     in Figure 2.7). It indicates that for this range, the variation of    has negligible effect 

on dynamics of the system. It can be seen from Figure 2.7, optimum solutions lie on the same 

curve    . It is noted that at point b on the curve, the value of absolute acceleration of the 

subcomponent is minimum while the relative displacement constraint is also satisfied and thus it 

is the optimum point. Point b however corresponds to range of            
   . The value of 
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the objective function on this design point can be used as the limit of time domain passive 

vibration isolation system to be compared with the semi-active ones. 

Figure 2.8 also demonstrates contours of the objective function in the design space.  

 

Figure 2.8: Peak value of absolute acceleration versus peak value of relative displacement when 

the system is subjected to unit impulse base acceleration 

 

Similar to frequency domain optimization, there is no unique solution to the design optimization 

problem but there is an optimum design line       where the value of the objective function 

will be minimum and the constraints are satisfied. This line corresponds to the same range of 

           
    that was observed in Figure 2.7. 

In Figure 2.8 point    representing higher damping and stiffness have been selected as the 

optimum design point, thus   
         and   

       . This is also comparable with optimal 
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value identified in Figure 2.7. As it can be realized the optimization in time domain has resulted 

in different optimum values compared with those in the frequency domain which found to be of 

  
         and   

       . 

2.5 Summery 

In this chapter the characteristics of passive isolation system for the whole spacecraft was 

analyzed. Starting from the governing equation of motion of the system, a frequency response 

function (FRF) was found relating the base excitation to the displacement of the subcomponent. 

An optimization problem has been formulated in both time and frequency domain to minimize 

the absolute acceleration of the payload under relative displacement constraint. The isolator 

parameters were optimized in the frequency domain using the FRF matrix. The optimization 

procedure was then repeated in the time domain where the peak value of relative displacement 

between the LV and payload was used as the design constraint and the absolute acceleration of 

the subcomponent was used as objective function. The optimization did not yield a unique 

solution neither in time nor in frequency domain and there was a series of solutions (represented 

by an optimum curve rather than an optimum point) that would minimize the objective function 

and satisfy the constraint function in time and frequency domain. These values will be compared 

with results achieved in the next chapter, where the semi-active system based on variable 

damping constant is investigated. 
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CHAPTER 3: Semi-Active Isolator and its Effects on the Dynamics of 

the System 

3.1 Introduction: 

It was elaborated in detail in Chapter 1, that the passive isolation system cannot efficiently 

attenuate the acceleration response of the payload at the resonant peak without reduction in 

vibration isolation efficiency at higher frequencies. It was mentioned that this behavior of the 

passive isolation system is due to non-adaptability of the damping constant c for passive system. 

However, varying the damping constant, using adaptive devices can alleviate this shortcoming. 

Adaptive devices can be categorized into two main groups of fully active and semi-active 

systems. While fully active systems have shown superior performance in wide range of 

frequencies compared with passive systems, they have practical limitation due to complex 

control hardware and large power requirements. On the other hand semi-active systems have 

received growing interest recently as they provide the adaptability of the active systems while 

having fail-safe feature and reliability of the passive systems with low power requirements. 

Active dampers can effectively suppress the peak response at resonant frequency without the 

tradeoff of reduction in isolation performance at higher frequencies. 

Semi-active dampers have proven to be efficient in attenuating the vibration transmitted to the 

isolated mass when the disturbances are harmonic or narrow-band (e.g. washing machine [27]) 

or when all dampers in system can be controlled (e.g. train isolation system [28]). This is not the 

case for the vibration isolation of the spacecraft however. Recall from section 1.2.5, the 

challenge when the goal is vibration isolation between two flexible bodies: the only variable is 
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the mechanical characteristics of the isolator and therefore the controllability over the system is 

limited. 

In this chapter semi-active vibration isolation between a pair of flexible bodies representing the 

Launch Vehicle and the satellite will be examined. The main purpose of this chapter is to explore 

the feasibility of implementation of semi-active isolation system for LV/SC vibration isolation.  

In the first part of this chapter an optimal control strategy is described followed by underlying 

assumptions. Then, the optimal control strategy has been implemented for the LV/SC model and 

results are obtained. These results are finally compared with those obtained for passive systems 

in Chapter 2, first in frequency domain and then in time domain. 

3.2 Variable damping system 

Although the idea of using variable damper to control the vibration goes back to almost a century 

ago, its practical implementation has a shorter history dating back to 1960s. In earlier types of 

variable dampers, hydraulic control was used to generate the controlled force, but since almost 

two decades ago, with the development of smart materials such as MR fluids, as well as accurate 

and inexpensive sensors and processors, the use of variable dampers became more widespread. 

This is mainly due to superior performance of MR base dampers and fast response (suitable for 

real-time control applications). Moreover these dampers do not have any movable parts (less 

wear).  

Through this section the system is idealized to focus on the control algorithm with the 

assumption that regardless of the type of material that is used, the semi-active damper reacts 

immediately to the control signal (through changing its equivalent damping constant parameter) 

and therefore the system is not subject to any time delay. The second assumption is that the 
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damper is always capable of producing the required force. Thus, the results in this section can be 

understood as the best performance achievable with semi-active isolation system when compared 

to the passive case presented in the last chapter. 

3.2.1 Skyhook control algorithm: 

The Skyhook control algorithm is based on varying the damping constant, c in such way to 

replicate the effect of a damper that is located between the isolated mass and a fixed frame of 

reference (Sky). The problem is that a fixed frame of reference is generally not available and a 

semi-active damper is capable of exerting force only in the direction opposite to the relative 

motion between the base and the isolated mass and therefore the performance will never be as 

high as an ideal skyhook damper (which can only be achieved by an active system). 

 

Figure ‎0.1: Skyhook damper ideal and semi-active   

Karnopp [13] developed a strategy known as the Skyhook (SH) damping strategy to replicate the 

behavior similar to that of a skyhook damper. SH is the most commonly used strategy for semi-

active damper isolation systems due to its simplicity and ease of practical implementation [31]. 

In its simplest form, it is based on a two state switching logic of the damping constant, c. The 

damping constant switches between two values,      and      (ideally equal to zero). The 
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switching logic is based on the absolute velocity of the isolated mass and the relative velocity 

between the isolated mass and the base. The SH damping strategy can be stated as [13] 

    {
                  ̇( ̇   ̇)   

                  ̇( ̇   ̇)   
 (‎0-1) 

The governing equation of motion of the SDoF system shown in Figure ‎0.1 can be described as 

  ̈     ( )( ̇   ̇)   (   )    (‎0-2) 

It is noted that Eq. ((‎0-2) is nonlinear and therefore Fourier or Laplace transform cannot be used 

to transfer it to frequency domain. Here the concept of variance gain, introduced in section 1.2.6 

should be used instead. As was shown in Chapter 1, the FRF and variance gain are identical for 

linear systems, like passive isolation system. Recall from section 1.2.6 that the approximate FRF 

for nonlinear systems can be calculated by subjecting the system to harmonic excitation    

    (   ) then finding the RMS value of the response,    (  ) (the response can be acceleration, 

velocity, and displacement), and normalizing it by the RMS value of the excitation. 

Figure ‎0.2 shows the approximate FRF for semi-active Skyhook system when the damping 

constant, ζ switches between the on state (     ) and the off state (        ) based on 

skyhook strategy stated in Eq. (3-1). 
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Figure ‎0.2: Approximate FRF of semi-active damper with SH control algorithm 

 

It is clear from the Figure 3.2 that, the semi-active isolator with SH control is not subjected to the 

damping trade-off that the passive isolator typically experiences. That is to say it is able to 

reduce the peak at the resonance without any deterioration of the vibration isolation at higher 

frequencies.  

3.2.2 ADD and SH-ADD control algorithm: 

Savaresi [30] developed a control algorithm for a 2DoF system with semi-active dampers called 

Acceleration Driven Damper (ADD) control. Later, he combined the SH and ADD control 

algorithms to develop a semi-optimum control algorithm known as SH-ADD [31]. By semi-

optimum it is meant that there is no better performance achievable with any damper working 

between      and     . 
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Savaresi  [31] demonstrated that the acceleration response of the system at frequencies above the 

first resonance frequency of the system, can be attenuated more efficiently with ADD control 

when compared to SH control, while the SH control provides higher attenuation around the first 

resonant frequency. The idea of SH-ADD control is to combine the benefits of both control 

strategies. This control algorithm is briefly explained below using a 2DoF system used for car 

suspension system [30, 31] subjected to base excitation as shown in Figure ‎0.3. 

 

Figure ‎0.3: Schematic representation of 2DoF car suspension system 

 

In ADD algorithm the switching logic is based on the absolute acceleration of the sprung mass 

(M) and the relative velocity between the sprung and the unsprung mass (m) as 

    {
                  ̈ ( ̇   ̇ )   

                  ̈ ( ̇   ̇ )   
 (‎0-3) 

In [31] it is shown that the semi-optimum damping can be achieved by combining the SH and 

ADD damping strategies.  

Since SH control algorithm is more efficient at lower frequencies while ADD is better at higher 

frequencies, this method can be viewed as a switching mechanism between ADD algorithm and 

SH algorithm at different frequencies so that the most efficient strategy at each frequency range 
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is applied. It is first necessary to find the cross-over frequency denoted by α and then switch 

between the two strategies at the cross-over frequency. This can be expressed as [31]: 

{
                  ( ̈ 

     ̇ 
 )    

               ( ̈ 
     ̇ 

 )   
 (‎0-4) 

where   is the cross-over frequency. 

In Figure ‎0.4 and Figure ‎0.5, the performance of SH-ADD control algorithm is shown and 

compared with SH and ADD algorithms individually as well as passive system. The higher 

performance of SH control strategy around the first resonant frequency and the benefits of ADD 

control strategy around the second frequency is evident. As it can be realized SH-ADD strategy 

combines the advantages of both control strategies and is capable of attenuating vibration in wide 

range of frequencies  

  

Figure ‎0.4: The acceleration response of SH, ADD and SH-ADD controls 
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Figure ‎0.5: The relative displacement when SH, ADD and SH-ADD control is used 

 

3.3 Implementation of semi-active damper design to LV/SC system:  

Here the passive damper    in the LV/SC system is replaced with a semi-active damper,        

and a procedure similar to that described in chapter 2 is followed to derive the value of the 

performance index. Figure ‎0.6 shows the model of the system when the passive isolator is 

replaced with a semi-active one. The equation of motion of the system with semi-active damper 

is provided in Eq. ((‎0-5).  
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Figure ‎0.6: Schematic of LV/SC system when semi-active isolator is used 

 

  ̈   

[
 
 
 
 
        
                 

                 
     ]

 
 
 
 

 {

 ̇ 
 ̇ 
 ̇ 
 ̇ 

}       {

   ̇     
 
 
 

} 

  ̈      ̇         

(‎0-5) 

 

Recall from chapter 2 that the value of the objective function in frequency domain was 

calculated by: first deriving the FRF of the subcomponent when the system is subjected to base 

excitation,      , then calculating the RMS of the acceleration signal of the subcomponent based 

on the frequency response function,       within the frequency range of interest of [40-60] Hz. 
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Here, the same procedure will be fallowed for the semi-active system, the difference is that for 

the nonlinear semi-active system described by Eq. ((‎0-5) the frequency response function is not 

defined and therefore the approximate FRF (based on variance gain) has to be used. 

3.3.1 Implementation of semi-optimal control 

Here the concept of SH-ADD damping introduced in section 3.2.2 is used as the control strategy 

to vary the value of       damper. The procedure to use SH-ADD control is first to plot the 

approximate FRF of the isolated mass (here m4) when the SH strategy is used, then repeat the 

procedure using ADD control strategy. Then the cross-over frequency, α can be determined to 

use in the final control law described in Eq. ((‎0-4). 

 

Figure ‎0.7: Approximate FRF of the 4th DoF for ADD and SH control. 
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Figure ‎0.7 show that the crossover occurs at a frequency about 70 Hz. Thus, the cross-over 

frequency is beyond the frequency range of interest of 40 to 60Hz, within which the SH strategy 

has a better performance in reducing the absolute acceleration of the subcomponent. 

 In Figure ‎0.8 the RMS value of the relative displacement between the 2
nd

 and 3
th

 DoF is plotted 

when SH and ADD control algorithms are used. It can be seen that SH has also a better effect on 

reducing the relative displacement compared to ADD within frequency range of interest  

 

Figure ‎0.8: RMS of relative displacement, x23 when ADD and SH control is used 
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3.4 Comparison of optimum passive with semi-active isolator design in frequency 

domain 

As shown in previous section SH semi-active control strategy has shown better performance 

compared to SH-ADD control strategy in the frequency range of interest. Here the performance 

of the SH semi-active control strategy has been compared with those of optimal passive systems 

in Chapter 2. Figure ‎0.9 shows the results for the RMS absolute acceleration of the 4
th

 DoF using 

semi-active and optimum passive isolators.  

 

Figure ‎0.9: Acceleration response of the 4
th 

DoF with passive and semi-active isolators 

 

Figure ‎0.10 also shows the relative displacement between the LV and the payload in frequency 

domain using SH semi-active and optimum passive isolators. 
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Figure ‎0.10: Relative displacement x23 rms, when passive and semi-active system are used 

 

As it is clear from Figures 3.9 and 3.10, the semi-active system has a better performance 

compared with passive system in the whole frequency range. This can be quantified by returning 

to the objective function and constraint functions introduced in Eq. ((‎0-21) and Eq. ((‎0-24) 

respectively. 

Recall that the objective function in Eq ((‎0-21) represents the RMS value of the steady state 

acceleration response of the 4
th

 DoF, normalized with respect to RMS of the base acceleration. 

Figure 3.11 shows the RMS absolute acceleration of the 4
th

 DoF normalized with respect to that 

for the base in the frequency range of 40-60 Hz for both SH semi-active and optimal passive 

systems.   



56 

 

 

Figure ‎0.11: The area under each curve represents the value of the objective function 

 

Figure ‎0.12: The area under each curve represents the value of relative displacement constraint 

function 

It is noted that the area under the red curve in Figure 3.11 is the value of the objective function 

for semi-active system and the area under the blue curve is the value of the objective function for 

the optimized passive system. Using semi-active control, the performance is improved by 32% 
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within the frequency range of [40-60Hz] while the relative displacement is reduced by 11.7% 

within the same frequency range.  

It can therefore be concluded that, using semi-active damper can significantly increase the 

performance of the isolator, while simultaneously reduces the relative displacement between the 

payload and the lunch vehicle in the desired frequency range. However, these results are valid 

when the excitation is assumed to be narrow band or harmonic signal. The performance of 

isolators under random broadband excitation is discussed latter in this chapter. 

3.5 Time domain comparison of passive and semi-active isolation systems 

To compare the performance of the semi-active with passive isolation system in the time domain, 

the optimized design of the passive isolator in the time domain, presented in section 2.4.2, is 

used as the base line for this section. Similar to the passive system, the semi-active system is 

subjected to a unit impulse base acceleration and the absolute acceleration of the subcomponent 

(  ( )) and relative displacement between the LV and the payload (   ( )) are obtained.  

Figure ‎0.13 Figure ‎0.14 show the results for the absolute acceleration and relative displacement 

for the passive and semi-active systems, respectively.  

The results show that in time domain the semi-active system does not decrease the peak value of 

the absolute acceleration or relative displacement. The peak values remain essentially 

unchanged. It is noted that a higher frequency component appears in the acceleration response of 

the sub component when semi-active system is used. These higher frequency components are 

mainly due to the nonlinearities induced by using semi-active damper. As mentioned in section 

3.2, the damping constant       is switching between two values based on the control strategy 

stated in Eq. (3-4) which introduces an additional component to the acceleration response signal 
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of the 4
th

 DoF (  ) [29]. Examination of results reveal that for cases in which the system is 

under impact the semi-active control strategy does not provide advantage in reducing the peak 

response compared with optimal passive system.  

 

Figure ‎0.13: Absolute acceleration of the 4
th

 DoF when semi-active and passive isolator is used  

 

Figure ‎0.14: Relative displacement between the 2
nd

 and the 3
rd

 DoF when semi-active and 

passive isolator is used 
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3.6 Comparison of passive and semi-active isolators when the system is subjected to 

random broadband excitation 

So far the analysis of the system was limited to the cases where the base excitation was harmonic 

or unit impulse. In this section both semi-active and passive system will be subjected to 

broadband random excitation to compare their performance when subjected to a realistic model 

of the launch environment. Broadband random excitation is modeled here by white noise
2
.  

As mention in Chapter 1, the Power Spectral Density (PSD) will be used to compare the 

performance of passive and semi-active system when the excitation is in the form of stationary 

random. Figure ‎0.15 shows the PSD of the acceleration of the 4
th

 DoF (subcomponent) for both 

cases of optimal passive and semi-active isolators. 

                                                 
2
 White noise is defined as a signal with equal energy at all frequencies, therefore its PSD representation will be a 

straight line.  
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Figure ‎0.15: PSD of absolute acceleration of the subcomponent (a4) for passive and semi-active 

system 

 

It can be seen that although the semi-active damper improves the response around the resonant 

frequencies, but at higher frequencies its performance is deteriorated compared to passive 

isolator.  

3.7 Some remarks regarding semi-active damping of MDoF system  

Here it is worth taking a closer look at Figure ‎0.2, which shows the improvement that can be 

achieved when semi-active isolator is used to protect an SDoF payload, and compare it with 

Figure ‎0.9, which shows the performance of semi-active isolator when used in an MDoF system 

representing the LV/SC under harmonic excitation. These figures are reproduced below in Figure 

3.16 for the sake of clarity.  
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Figure ‎0.166: Comparison of passive and semi-active isolator when the system is: (a) SDoF and 

(b) MDoF representing LV/SC 

 

 Figures 3.16 (a) and (b) show that semi-active system is more effective to isolate vibration for 

an SDoF system compared with that of MDoF system. This can be attributed to the fact that in 

SDoF modal damping ratio is directly proportional to the damping coefficient (  
 

 √  
), thus 

control strategy has the full authority to vary the damping ratio over broad range, however in the 

MDoF system varying the damping coefficient between the payload and the launch vehicle 

would affect all modal damping ratios and not just the damping ratio associated with that 

damping coefficient. This subsequently reduces the authority of the semi-active control strategy 

for the MDoF systems.  
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3.8 Summery 

In this chapter semi-active damping strategy for vibration isolation of the subcomponent in 

payload/ launch system was analyzed, first in frequency and then in time domain and the results 

were then compared with optimum passive design developed in the previous chapter.  

The analysis showed that the benefit of using the semi-active system in frequency domain is 

significant. It however, showed that in time domain the effects are not as promising since the 

peak value of relative displacement and absolute acceleration is used as performance index, and 

both these values remain fundamentally unchanged when semi-active system is used. Later the 

semi-active and passive isolator performances were compared when the excitation is random and 

broadband. PSD of the absolute acceleration of the isolated mass was used to compare the 

performance and the results showed that the benefit that semi-active system brings around 

resonant frequencies are compromised by the reduction in isolator’s performance at higher 

frequencies. Finally, the fundamental reason behind the fact that the semi-active system produces 

less promising results when the system is a more complicated MDoF compared to a simpler 

SDoF system are discussed and it was shown that this behavior is due to the fact that in a MDoF 

system, even with the assumption of full control over damping constants, it is impossible to 

control the damping ratios fully and independently. 
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CHAPTER 4: Conclusion 

4.1 Major contributions: 

The main focus of the present research study was to fundamentally study the vibration response 

of a coupled launch vehicle (LV) and spacecraft (SC) system modeled as a pair of flexible 

structures each with multiple natural frequencies and vibration modes, connected to each other 

via an isolator. Both passive and semi-active systems have been investigated and their 

performance in frequency and time domain has been compared. Moreover, an investigation was 

conducted to identify the optimal passive isolation systems with respect to its stiffness and 

damping properties. The major contributions of this research study can be summarized as: 

 Development of a methodology for design optimization of passive vibration isolation 

system between pair of flexible bodies in both frequency and time domain. 

 Modifying an optimal control strategy for the MDoF system representing the LV/SC. 

4.2 Major conclusions 

The main conclusions of the present work are enumerated bellow: 

 Semi-active isolation systems can significantly reduce the vibration transmitted to the 

payload when harmonic or narrow band base excitation is considered.  

 When considering the peak value of the absolute acceleration of the payload and the peak 

value of the relative displacement between the isolated body and the base (time domain 

analysis), the results showed that the semi-active system does not improve the 

performance of the system when compared to an optimally designed passive isolation 

system. 
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 The response to random excitation showed that while the semi-active damper can 

improve the performance of the isolator around resonant peaks, passive isolator is better 

at attenuating the vibrations at higher frequencies. This was due to nonlinearities that the 

semi-active isolator introduces to the system. 

 The results suggests that, unlike systems with high degree of controllability over its 

dynamic characteristics, the use of semi-active damper is not as promising when the 

system is more complicated with multiple degrees of freedom and the mechanical 

environment is random and broadband, even when the semi-active system is idealized by 

neglecting the time delay and force limitation inherent in semi-active systems. 

4.3 Recommendation for future work 

Limited studies have been conducted on vibration and shock isolation of the space payload 

(spacecraft) and subcomponents under launch environment. This study attempted to do some 

fundamental study on this topic in order to better understand the effect of isolation system 

between the payload and launch vehicle on the response of the subcomponents. Some of the 

areas that can be further investigated in future work are: 

 An experimental test to compare the results of passive and semi-active vibration isolation 

of the payload when the system is flexible on both sides of the isolator. 

 Further investigation into vibration isolation of MDoF systems with un-proportional 

damping to develop more accurate models to mathematically model the un-proportionally 

damped systems. 

 Investigate other options such as semi-active with variable damping and stiffness or fully 

active systems to attenuate the vibration transmission to the payload. 
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