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Abstract

Bayesian Learning of Asymmetric Gaussian-Based Statistical Models using Markov

Chain Monte Carlo Techniques

Shuai Fu

A novel unsupervised Bayesian learning framework based on asymmetric Gaussian mixture

(AGM) statistical model is proposed since AGM is shown to be more effective compared to the

classic Gaussian mixture. The Bayesian learning framework is developed by adopting sampling-

based Markov chain Monte Carlo (MCMC) methodology. More precisely, the fundamental learning

algorithm is a hybrid Metropolis-Hastings within Gibbs sampling solution which is integrated within

a reversible jump MCMC (RJMCMC) learning framework, a self-adapted sampling-based MCMC

implementation, that enables model transfer throughout the mixture parameters learning process,

therefore, automatically converges to the optimal number of data groups. Furthermore, a feature

selection technique is included to tackle the irrelevant and unneeded information from datasets. The

performance comparison between AGM and other popular solutions is given and both synthetic and

real data sets extracted from challenging applications such as intrusion detection, spam filtering and

image categorization are evaluated to show the merits of the proposed approach.
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Chapter 1

Introduction

1.1 Introduction

Over past decades, many statistical data mining approaches have been proposed to address chal-

lenging data modeling analysis problems given the fact that the volume of data is dramatically

increasing due to the usage of Internet. Meanwhile, modern machine-learning-based techniques

perform in both generative and discriminative ways which can be divided into two main streams,

classification-based supervised and clustering-based unsupervised ones. Compared to supervised

solutions, unsupervised approach has no assumption on the number of groups, therefore, friendly

to newly added data and patterns which makes it more suitable for increasing database analysis.

Moreover, it also immunizes against learning biases and overfitting problems that commonly exist

in most supervised approaches if model training is inappropriate. Consequently, there has been an

increasing trend of applying finite mixtures into different domains involving statistical modeling of

data, such as astronomy, ecology, bioinformatics, pattern recognition, computer vision and machine

learning [1]. Our work is based on asymmetric Gaussian mixture (AGM) model [2] and reversible

jump Markov chain Monte Carlo (RJMCMC) learning algorithm [3]. Previous efforts reveal the

fact that AGM outperforms classic Gaussian mixture model (GMM) by taking asymmetric datasets

into consideration which provides more flexibility [4]. Our RJMCMC implementation is based on

a hybrid sampling-based approach which takes advantages of both Metropolis-Hastings (MH) and

Gibbs sampling methods [5], therefore, simplifies mathematical complexity and extends adaptabil-

ity of the model. Moreover, without giving a fixed components number in advance, RJMCMC
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applies a dynamic data-based strategy to identify the optimal components number throughout iter-

ations which makes the model learning a self-adaptive process. To achieve better fitting outcomes,

feature selection process is involved to handle high-dimensional vectors of features and the analysis

and discussion of deploying AGM to both synthetic datasets and real applications is given in the

later chapters.

1.1.1 Finite Mixture Models

As upgrade of single-mathematical-model-based methodologies, mixture models [6, 7, 8] can

be seen as a superimposition of certain mixture components sharing dependencies with each other,

therefore, lead to outstanding performance especially for high-dimensional and multi-cluster datasets.

Finite mixture models can be described by

p(X|Θ) =
M
∑

j=1

pjp(X|Θj) (1)

where X reprensents a vector in a given dataset and Θ defines the mixture parameters set (for

each mixture compoent, the sub-parameter set is described by Θj , j = 1, . . . ,M ) as well as com-

ponent weight pj (0 < pj ≤ 1 and
∑M

j=1 pj = 1).

1.1.2 Probability Density Function Selection

Probability density function (PDF) selection has an important role in finite mixture model be-

cause it significantly affects the capability of representing the data. Improper PDF selection will

cause incorrect outcomes such as wrong components number and poor data fitting. Gaussian mix-

ture model (GMM) [3] demonstrated satisfactory fitting abilities on most real applications whose

datasets are Gaussian-like. However, under more general circumstances regarding to non-Gaussian

or asymmetric datasets, asymmetric Gaussian mixture (AGM) model [2] leads to a better accu-

racy by introducing two variance parameters for both left and right parts of asymmetric Gaussian

distribution, providing more flexibility for variant real applications. Therefore, the justification of

choosing AGM model and its merits will be discussed in the following chapters.
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1.1.3 Bayesian Learning Framework

Estimating the parameters of mixture models could be a challenging task. The maximum-

likelihood-based expectation maximization (EM) [9] algorithm is one of the most popular parameter

learning approaches. However, the disadvantages of EM algorithm are also obvious. Given the fact

that EM approximates values of mixture parameters in a deterministic way this could cause slow

convergence and compromise the usability of the algorithm. Furthermore, bad initialization and

overfitting problems [10, 11] will also significantly affect its accuracy. Therefore, fully Bayesian

learning algorithms, such as Markov Chain Monte Carlo (MCMC) based implementations, are

found to be useful to eliminate overfitting problems in mixture parameter learning by introduc-

ing prior and posterior distributions for mixture parameters. In our work, the learning process is

accomplished by a hybrid MCMC algorithm, which is well known as Metropolis-Hastings within

Gibbs sampling [10, 12], based on both Metropolis-Hastings [13] and Gibbs sampling [14] methods

because the main difficulty of classic MCMC method is that, under some circumstances, direct sam-

pling is not always straightforward. Moreover, we reinforce the learning algorithm by introducing

reversible jump MCMC (RJMCMC) [3] methodology to increase the flexibility of AGM model by

allowing model transfer throughout iterations via increasing (component birth/split step) and de-

creasing (component death/merge step) mixture components. Because of the stochastic sampling-

based learning process, learning iterations could end up with different number of components so

we choose marginal likelihood [10] to perform model selection in order to evaluate fitting results

between models.

1.1.4 Dimensionality Reduction

One of the most important tasks in data mining, pattern recognition, computer vision and ma-

chine learning applications is that, the existence of outliers and irrelevant features severely compro-

mises the clustering outcomes. Therefore, many dimensionality reduction methodologies have been

proposed [15, 16] such as feature extraction and selection which try to remove these unneeded fea-

tures in order to improve the performance of the modeling [17, 18] while feature extraction is based

on transformations or combinations of the original features [19]. Indeed, feature selection meth-

ods identify relevant features in the original representation space. Recently, a volume of literature
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[20, 21] has shown that selecting relevant features leads to more accurate modeling results. How-

ever, this problem is not trivial especially in the unsupervised context dealing with labelless data

sets. For this reason, previous researches [22, 4, 23] were devoted to extend unsupervised feature

selection to mixture-based clustering. In this thesis, we extended the RJMCMC-based simultaneous

Bayesian clustering and feature selection approach proposed in [4] to asymmetric Gaussian mix-

ture model in order to improve the modeling performance on a challenging image categorization

application.

1.2 Contributions

The contributions of this thesis are as follows:

+ A Novel Bayesian Framework for Asymmetric Gaussian Mixture via Markov Chain

Monte Carlo Method: We chose an advanced MCMC implementation called reversible jump

MCMC (RJMCMC) [11] which is based on a hybrid Metropolis-Hastings within Gibbs sam-

pling [10] solution, combining both Metropolis-Hastings [13] and Gibbs sampling [14] meth-

ods because the main difficulty of applying traditional MCMC method is that, under some

circumstances, direct sampling is not always straightforward that distributions of mixture pa-

rameters are latent and dependencies between parameters are unknown. By integrating the

merits of both methods, mixture parameters will be evaluated iteratively and, eventually, the

optimal parameter values will be identified after convergence. Furthermore the self-adapted

learning process [11] treats components number as an extra parameter and adjusts it through-

out iterations by automatically increasing (component birth/death step) and decreasing (com-

ponent merge/split step) according to current status, therefore, enables model transfer which

significantly improves the learning performance. This contribution has been published in

[24].

+ Intrusion Detection and Spam Filtering by Applying Proposed Approach via Reversible

Jump MCMC: We apply and adapt the proposed Bayesian learning framework to two chal-

lenging applications namely intrusion detection and spam filtering ([25] and [26]).

+ Feature Selection for Image Categorization: While deploying the proposed approach for

image categorization, in order to better identify visual features from the challenging UIUC
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sport events dataset, the image representative data is generated by adopting scale-invariant

feature transform (SIFT), bag-of-visual-words (BOVW) and probabilistic latent semantic

analysis (pLSA) techniques. However, previous approaches assume all the features of ob-

servations have the same weight of importance and carry pertinent information which is not

always the case and many of those features can be irrelevant for clustering purpose. In or-

der to tackle this problem and define relevance and importance of features, feature selection

techniques [4, 23] should be taken into consideration. Eventually, irrelevant and unneeded

information will be filtered by feature selection.

1.3 Thesis Overview

The rest of this thesis is organized as follows:

o Chapter 2 introduces the Asymmetric Gaussian mixture model and its sampling based Bayesian

learning framework. In particular, a self-adapted reversible jump MCMC implementation

which has no assumption concerning the number of components and, therefore, the AGM

model itself could be transferred between iterations. Furthermore the self-adapted learn-

ing process treats components number as an extra parameter and adjusts it throughout iter-

ations by automatically increasing (component birth/death step) and decreasing (component

merge/split step) according to current status, therefore, enables model transfer which signifi-

cantly improves the learning performance.

o Chapter 3 is devoted to feature selection since the AGM model assumes that all the features

of observations have the same weight of importance and carry pertinent information which is

not always the case and many of those features can be irrelevant for clustering purpose. In

order to tackle this problem and define relevance and importance of features, feature selection

techniques should be taken into consideration. A challenging UIUC sports event database is

selected for validation of the proposed approach.

o Chapter 4 concludes and summarizes the thesis and points out future research directions.

5



Chapter 2

Asymmetric Gaussian Mixtures with

Reversible Jump MCMC and

Applications

This chapter presents a novel intrusion detection classifier based on asymmetric Gaussian mix-

ture (AGM) model and reversible jump Markov chain Monte Carlo (RJMCMC) learning algorithm.

Previous efforts reveal the fact that AGM outperforms classic Gaussian mixture model (GMM)

by taking asymmetric datasets into consideration which provides more flexibility. Our RJMCMC

implementation is based on a hybrid sampling-based approach which takes advantages of both

Metropolis-Hastings (MH) and Gibbs sampling methods, therefore, simplifies mathematical com-

plexity and extends adaptability of the model. Moreover, without giving a fixed components num-

ber in advance, RJMCMC applies a dynamic data-based strategy to identify the optimal compo-

nents number throughout iterations which makes the model learning a self-adaptive process. Since

the model is nondeterministic, Laplace approximation based marginal likelihood is calculated for

multiple runs as model selection procedure to improve the correctness and fitting accuracy. Both

synthetic and real datasets are applied to our model to discover its merits and the test results will be

evaluated and compared with other popular solutions.
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2.1 Asymmetric Gaussian Mixture Model

The likelihood function of AGM model [2] with M mixture components can be illustrated as

follows:

p(X|Θ) =

N
∏

i=1

M
∑

j=1

pjp(Xi|ξj) (2)

where X = (X1, ..., XN ) reprensents the dataset withN observations, Θ = {p1, ..., pM , ξ1, ..., ξM}

defines the mixture parameters set of AGM mixture model including component weight pj (0

< pj ≤ 1 and
∑M

j=1 pj = 1) and asymmetric Gaussian distribution (AGD) parameters set ξj for

mixture component j. Assuming the dataset X is d-dimensional, for each observation Xn =

(xn1, ..., xnd) ∈ X , the probability density function [2] for j-th component of the model can be

defined as follows:

p(X|ξj) ∝
d
∏

k=1

1

(σljk + σrjk)
×















exp

[

−
(xk−µjk)

2

2(σljk
)2

]

if xk < µjk

exp

[

−
(xk−µjk)

2

2(σrjk
)2

]

if xk > µjk

(3)

parameters set of component j is ξj = (µj , σlj , σrj) where µj = (µj1, ..., µjd) is the mean,

σlj = (σlj1, ..., σljd) and σrj = (σrj1, ..., σrjd) represents the left and right standard deviation

vectors of AGD .

We bring aM -dimensional membership vectorZ to each observationXi ∈ X , Zi = (Zi1, ..., ZiM ),

indicating which specific component Xi belongs to [1], such that:

Zij =







1 if Xi belongs to component j

0 otherwise
(4)

that being said, Zij = 1 only when observation Xi has the highest probability of belonging to

component j and accordingly, for other components, Zij = 0.

Hence, the complete likelihood function can be obtained by combining Eq. (2) and Eq. (4) as
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follows:

p(X , Z|Θ) =

N
∏

i=1

M
∏

j=1

(pjp(Xi|ξj))
Zij (5)

2.2 Bayesian Learning Algorithm

Before describing MH-within-Gibbs learning steps, the priors and posteriors need to be speci-

fied. First, we denote the postorior probability of membership vector Z as π(Z|Θ,X ) [5]:

Z(t) ∼ π(Z|Θ(t−1),X ) (6)

the number of observations belonging to a specific component j can be calculated using Z(t) as

follows:

n
(t)
j =

N
∑

i=1

Zij (j = 1, ...,M) (7)

thus n(t) = (n
(t)
1 , ..., n

(t)
M ) represents the number of observations belonging to each mixture compo-

nent.

Since the mixture weight pj satisfies the following conditions (0 < pj ≤ 1 and
∑M

j=1 pj = 1), a

natural choice of the prior is Dirichlet distribution as follows [27, 28]

π(p1, . . . , pM ) ∼ D(γ1, ..., γM ) (8)

where γj is known hyperparameter. Consequently, the posterior of the mixture weight pj is:

p(p1, . . . , pM |Z(t)) ∼ D(γ1 + n
(t)
1 , ..., γM + n

(t)
M ) (9)

Direct sampling of mixture parameters ξ ∼ p(ξ|Z,X ) could be difficult so Metropolis-Hastings

method should be deployed using proposal distributions for ξ(t) ∼ q(ξ|ξ(t−1)). To be more specific,

for parameters of AGM model which are µ , σl and σr, we choose proposal distributions as follows:

µ
(t)
j ∼ Nd(µ

(t−1)
j ,Σ) (10)

8



σ
(t)
lj ∼ Nd(σ

(t−1)
lj ,Σ) (11)

σ
(t)
rj ∼ Nd(σ

(t−1)
rj ,Σ) (12)

the proposal distributions are d-dimensional Gaussian distributions with Σ as d x d identity matrix

which makes the sampling a random walk MCMC process.

As the most important part of Metropolis-Hastings method, at the end of each iteration, for new

generated mixture parameter set Θ(t), an acceptance ratio r needs to be calculated in order to make

a decision whether they should be accepted or discarded for the next iteration. The acceptance ratio

r is given by:

r =
p(X|Θ(t))π(Θ(t))q(Θ(t−1)|Θ(t))

p(X|Θ(t−1))π(Θ(t−1))q(Θ(t)|Θ(t−1))
(13)

where π(Θ) is the proposed prior distribution which can be decomposed to d-dimensional Gaus-

sian distributions such that µ ∼ Nd(η,Σ) and σl, σr ∼ Nd(τ,Σ) given known hyperparameters η

and τ . The derivation of acceptance ratio r is based on the assumption that mixture parameters are

independent from each other which means that:

π(Θ) = π(p, ξ) = π(ξ)

=

M
∏

j=1

π(µj)π(σlj)π(σrj)

=
M
∏

j=1

Nd(µj |η,Σ)Nd(σlj |τ,Σ)Nd(σrj |τ,Σ) (14)

9



in Eq. (14), since the mixture weigh p is generated following Gibbs sampling method whose accep-

tance ratio is always 1, it should be excluded from Metropolis-Hastings estimation step. Accord-

ingly, apply the same rule to the proposal distribution as well:

q(Θ(t)|Θ(t−1)) = q(ξ(t)|ξ(t−1))

=
M
∏

j=1

Nd(µ
(t)
j |µ

(t−1)
j ,Σ)Nd(σ

(t)
lj |σ

(t−1)
lj ,Σ)Nd(σ

(t)
rj |σ

(t−1)
rj ,Σ) (15)

by combining Eqs. (3) (5) (10) (11) (12) (14) and (15), equation (13) can be written as follows:

r =
p(X|Θ(t))π(Θ(t))q(Θ(t−1)|Θ(t))

p(X|Θ(t−1))π(Θ(t−1))q(Θ(t)|Θ(t−1))

=

N
∏

i=i

M
∏

j=1

(
p(Xi|µ

(t)
j , σ

(t)
lj , σ

(t)
rj )

p(Xi|µ
(t−1)
j , σ

(t−1)
lj , σ

(t−1)
rj )

×
Nd(µ

(t)
j |η,Σ)Nd(σ

(t)
lj |τ,Σ)Nd(σ

(t)
rj |τ,Σ)

Nd(µ
(t−1)
j |η,Σ)Nd(σ

(t−1)
lj |τ,Σ)Nd(σ

(t−1)
rj |τ,Σ)

×
Nd(µ

(t−1)
j |µ

(t)
j ,Σ)Nd(σ

(t−1)
lj |σ

(t)
lj ,Σ)Nd(σ

(t−1)
rj |σ

(t)
rj ,Σ)

Nd(µ
(t)
j |µ

(t−1)
j ,Σ)Nd(σ

(t)
lj |σ

(t−1)
lj ,Σ)Nd(σ

(t)
rj |σ

(t−1)
rj ,Σ)

(16)

Once acceptance ratio r is derived by Eq. (16), we compute acceptance probability α =

min[1, r] [29]. Then u ∼ U[0,1] is supposed to be generated randomly. If α < u, the proposed

move should be accepted and parameters should be updated by p(t) and ξ(t) for next iteration. Oth-

erwise, we discard p(t), ξ(t) and set p(t) = p(t−1), ξ(t) = ξ(t−1).

We summarize the MH-within-Gibbs learning process for AGM model in the following steps:

Input: Data observations X and components number M

Output: AGM mixture parameter set Θ

(1) Initialization

(2) Step t: For t = 1, . . .

Gibbs sampling part

10



(a) Generate Z(t) from Eq. (6)

(b) Compute n
(t)
j from Eq. (7)

(c) Generate p
(t)
j from Eq. (9)

Metropolis-Hastings part

(d) Sample ξ
(t)
j (µ

(t)
j , σ

(t)
lj , σ

(t)
rj ) from Eqs. (10) (11) (12)

(e) Compute acceptance ratio r from Eq. (13)

(f) Generate α = min[1, r] and u ∼ U[0,1]

(g) If u ≥ α then ξ(t) = ξ(t−1)

2.3 Reversible Jump Markov Chain Monte Carlo

We reinforce the learning algorithm by introducing reversible jump MCMC (RJMCMC) [11]

methodology to increase the flexibility of AGM model because traditional MH-within-Gibbs al-

gorithm assumes that the component number M is given and persistent throughout the learning

process. However, because of bad initialization or just information leakage, M could be inaccurate

or unknown. Under these circumstances, RJMCMC algorithm presents its merits by providing extra

four independent steps (birth/death steps and merge/split steps) into learning process which could

change component number M , therefore, brings more generalities.

In practice, within every RJMCMC learning iteration, the current component number m is con-

sidered as an extra parameter which has a proposed Poisson prior P(λ) with λ = 4 particularly

in our case [3]. Accordingly, let Mmin and Mmax denote the minimum and maximum number

of components M , and assume the probabilities of performing birth/split and death/merge steps

are bm and dm = 1 − bm for m = Mmin, . . . ,Mmax respectively. Obviously, bMmax = 0 and

dMmin
= 0. Correspondingly, dMmax = 1 − bMmax = 1 and bMmin

= 1 − dMmin
= 1. For

m = Mmin + 1, . . . ,Mmax − 1, for simplification purpose, we choose the same value for both

bm and dm as bm = dm = 0.5. Within every iteration, we generate a random value u′ ∼ U[0,1]

respectively for the four RJMCMC steps. If bm >= u′ or dm >= u′, birth/split or death/merge

steps should be performed correspondingly [3].
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Merge and Split Steps: Randomly choose two components (j1, j2) satisfying that µj1 < µj2

with no other µj in the interval [µj1 , µj2 ]. The newly merged component j′ will contain the obser-

vations that previously belonged to both component j1 and j2. Meanwhile, reduce current value of

component number m to m− 1, then calculate mixture weight and parameters for j′ as follows:

pj′ = pj1 + pj2

pj′µj′ = pj1µj1 + pj2µj2

pj′(µ
2
j′ + σ2j′l) = pj1(µ

2
j1
+ σ2j1l) + pj1(µ

2
j1
+ σ2j1l)

pj′(µ
2
j′ + σ2j′r) = pj1(µ

2
j1
+ σ2j1r) + pj1(µ

2
j1
+ σ2j1r) (17)

As a reverse of merge step, we split component j′ into two (j1 and j2) with 3 degrees of freedom

(u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2), u3 ∼ Beta(1, 1)) and, accordingly, increase m to m + 1.

Therefore, mixture parameters for split components can be calculated as follows:

pj1 = pj′u1, pj2 = pj′u2

µj1 = µj′ −
u2(σj′l + σj′r)

2

√

pj2
pj1

µj2 = µj′ +
u2(σj′l + σj′r)

2

√

pj1
pj2

σ2j1l = u3(1− u22)σ
2
j′l

pj′

pj1

σ2j1r = u3(1− u22)σ
2
j′r

pj′

pj1

σ2j2l = (1− u3)(1− u22)σ
2
j′l

pj′

pj2

σ2j2r = (1− u3)(1− u22)σ
2
j′r

pj′

pj2
(18)

In order to decide whether the merge and split steps should be accepted or not, the acceptance

probability [3] can be derived as follows:

12



A =
p(X , Z|Θ′)

p(X , Z|Θ)

m′P(m′|λ)

P(m|λ)

p
γ−1+n1

j1
p
γ−1+n2

j2

p
γ−1+n1+n2

j′ Beta(γ,mγ)

×

√

κ

2π
exp[−

1

2
κ(µj1 − ξ) + (µj2 − ξ) + (µj′ − ξ)]

×
βα

Γ(α)
(
σ2j1lσ

2
j1r
σ2j2lσ

2
j2r

σ2j′lσ
2
j′r

)−α−1

× exp[−β(σ2j1l + σ2j1r + σ2j2l + σ2j2r − σ2j′l − σ2j′r)]

×
dm′

bmPalloc

[Beta(µ1|2, 2)Beta(µ2|2, 2)Beta(µ3|1, 1)]
−1

×
pj′ |µj1 − µj2 |σ

2
j1l
σ2j1rσ

2
j2l
σ2j2r

µ2(1− µ22)µ3(1− µ3)σ2j′lσ
2
j′r

(19)

where Θ′ and m′ = m + 1 denote the mixture parameters set and the component number respec-

tively before merge or after split steps. κ is a known hyperparameter and ξ is the midpoint of the

variation interval of the involved data observations. Besides, Palloc is the probability of which this

particular allocation is made. Therefore, the acceptance probability for merge step is min(1,A)

and, correspondingly, for split step is min(1,A−1).

Birth and Death Steps: Compared to merge and split steps, birth and death steps are relatively

straightforward because the newborn and dead components are empty ones which means parameter

re-calculation is not needed. Mixture weight pnew in birth step can be obtained by sampling from

Beta distribution pnew ∼ Beta(1,m) and mixture parameters can be derived from the priors as

follows [30]:

µ ∼ N (ξ, κ−1), σ−2
l , σ−2

r ∼ Γ(α, β), β ∼ Γ(g, h) (20)

where hyperparameters κ, α, g and h are chosen according to the data. For death step, an empty

component should be randomly selected and deleted among the existing components if there is any.

Otherwise, this step will be skipped. After birth and death steps, mixture weights pj should be re-

scaled so that all weights sum to 1. Acceptance probability for birth and death steps is also required

as the one for merge and split steps whose definition is as follows:
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A′ =
P(m′|λ)

P(m|λ)

1

Beta(mγ, γ)
p
γ−1
j′ (1−pj′)

N+mγ−mm′
dm′

(m0 + 1)bm

1

Beta(pj′ |1,m)
(1−pj′)

m

(21)

where m0 is the amount of empty components. Thus, the probabilities of occurrence of birth and

death steps are min(1,A′) and min(1,A′−1) [3].

Finally, Figure 2.1 describes the dependencies between constants and variables involved in the

Bayesian network of RJMCMC mixture parameter learning, and then, a typical learning procedure

of AGM can be summarized as follows:

Input: Data observations X and component number M

Output: AGM mixture parameter set Θ

(1) Initialization

(2) Step t: For t = 1, . . .

Gibbs sampling part

(a) Generate Z(t) from Eq. (4)

(b) Compute n
(t)
j from Eq. (7)

(c) Generate p
(t)
j from Eq. (9)

Metropolis-Hastings part

(d) Sample ξ
(t)
j (µ

(t)
j , σ

(t)
lj , σ

(t)
rj ) from Eqs. (10) (11) (12)

(e) Compute acceptance ratio r from Eq. (13)

(f) Generate α = min[1, r] and u ∼ U[0,1]

(g) If u ≥ α then ξ(t) = ξ(t−1)

RJMCMC part

(h) Generate u′ ∼ U[0,1]. If bm >= u′, perform split or birth step, then calculate acceptance

probability A. If the step is accepted, set m = m+ 1.

(i) Generate u′ ∼ U[0,1]. If dm >= u′, perform merge or death step, then calculate accep-

tance probability A′. If the step is accepted, set m = m− 1.
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Figure 2.1: DAG of RJMCMC parameter learning Bayesian network

2.3.1 Model Selection

Theoretically, RJMCMC learning process should always be able to derive the optimal compo-

nents number M . However, because of the stochastic sampling, improper proposal distributions or

bad initialization parameters, learning result based on a single estimation run is not always satis-

factory. In order to establish a robust parameter estimation algorithm, we evaluate the estimation

outputs derived from multiple RJMCMC runs with different initial values of components number

by calculating their marginal likelihood with the Laplace approximation [10] on the logarithm scale

which is defined as follows:

log(p(X|M)) = log(p(X|Θ̂,M)) + log(π(Θ̂|M)) +
Np

2
log(2π) +

1

2
log(|H(Θ̂)|) (22)

where Θ̂ denotes the proposed optimal parameter set derived from a specific learning process and

π(Θ̂|M) is the prior density of mixture parameters as well as its Hessian matrix H(Θ̂) which is

asymptotically equal to the posterior covariance matrix.
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Figure 2.2: Original synthetic data grouping and learning results

2.4 Experimental Results

2.4.1 Design of Experiments

Firstly, we apply the AGM model to both synthetic data and intrusion detection. For synthetic

data validation, testing observations will be generated from AGM with known components number

M and experimental results will be evaluated by comparing the estimated and actual mixture pa-

rameters. In intrusion detection application, we select NSL-KDD dataset [31] as testing database.

K-means algorithm is used for initialization and the results analysis will be based on statistics de-

rived from confusion matrix. Then, the proposed approach will be deployed to the Spambase spam

filtering database contains multiple spam textual features including spam word/character dictionar-

ies and profiles of uninterrupted capital letter sequences.

2.4.2 Synthetic Data

The main goals of this section are feasibility analysis and efficiency evaluation of the AGM

learning algorithm. The number of observations is set to 300 grouped into two clusters (M = 2).

Hyperparameters are set to γj = 1 [32] for sampling mixture weight pj from Eq. (9). η and τ are

considered as d-dimensional zero vectors in prior distributions of mixture parameter ξ.

Different proposed component numbers (M ′ = 1, . . . , 5) are tested during the AGM learning

process and the statistics are summarized in Table 2.1. In order to select the best number of com-

ponents, we consider marginal likelihood as described in [10]. The probability density functions

are plotted for both original and estimated AGM components and the polylines show the trace of

16



Figure 2.3: (a) Original synthetic data grouping; (b) AGM clustering results

accepted moves for each component.

In terms of the best fit result, the accuracy is evaluated by calculating the Euclidean distance

between original and estimated mixture parameter sets ξ and ξ̂ (Table 2.2). In summary, the estima-

tion of mean is accurate because the Euclidean distance between µj and µ̂j is small but the distance

between standard deviation σlj , σrj and σ̂lj , σ̂rj is slightly significant. However, this difference has

not affected the clustering result.

2.4.3 Intrusion Detection

Along with the rapid growth of information technologies, personal and commercial behaviors

tend to rely on computer network and Internet environments. However, based on the character-

istics of networking, exposing sensitive privacy and valuable business secret online is extremely

dangerous because accessibility and anonymity make network intrusions hard to be detected and
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Table 2.1: AGM Learning Statistics

Component

number M ′

Moves

accepted

Acceptance

ratio

Marginal

likelihood

1 22 7.33% -1596.143

2 11 3.67% -1500.370

3 14 4.67% -1684.518

4 63 21.00% -1522.148

5 39 13.00% -1517.533

Table 2.2: Accuracy Analysis (M ′ =M = 2)

Component

number j = 1
Mean

(µj)

Left standard

deviation (σlj)

Right standard

deviation (σrj)

ξ [-15.00, 0.00] [10.00, 1.00] [1.00, 1.00]

ξ̂ [-14.99, 0.25] [4.77, 1.13] [2.31, 1.88]

Euclidean Distance 0.246 5.236 1.581

Component

number j = 2
Mean

(µj)

Left standard

deviation (σlj)

Right standard

deviation (σrj)

ξ [15.00, 0.00] [1.00, 1.00] [10.00, 1.00]

ξ̂ [14.02, -0.24] [2.04, 1.04] [5.70, 1.59]

Euclidean Distance 1.010 1.036 4.338
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traced, therefore, compromise network security. Cisco 2017 Annual Cybersecurity Report (ACR)

[33] pointed out a crucial fact that more than one-third of organizations that experienced a breach in

2016 reported more than 20 percent of customer, opportunity and revenue loss. As a consequence,

more than 90 percent of these organizations are improving threat defense technologies and processes

by enhancing IT and security functions, increasing security training of employees and implementing

risk mitigation techniques. Recently, machine learning-based intrusion detection solutions [34, 35]

are drawing more attention because of their efficiency and flexibility.

Earlier intrusion prevention approaches, such as authentication, avoiding programming errors

and encryption, were proven as insufficient because along with the increasing of the complexity of

network-based software systems, exploitable weaknesses are inevitable due to programming issues.

Moreover, authentication and encryption are not always reliable since credentials could be leaked

and encryption algorithm could also be compromised by applying powerful hacking techniques to

make the attack feasible. In consequence, once intrusion happens, detection will be harder than

prevention and sometimes victims could not be even aware of it. Therefore, many supervised data

mining solutions were proposed in terms of misuse and anomaly detection systems by establishing

known intrusion scenarios, normal usage patterns and the sequential interrelations between user op-

erations to identify intrusion behaviors [36]. However, the disadvantages of supervised intrusion

detection systems are significant since predefined patterns and interrelations are inconsistent con-

cerning the system upgrades and newly-founded intrusions which could lead to incessant intrusion

detection system adjustment and affect its performance. Furthermore, inductive bias and overfitting

problems caused by poor training datasets will also affect the accuracy of the systems. Therefore,

researchers are paying more attention to unsupervised solution [37, 38] for seeking flexibility and

robustness.

Therefore, we select NSL-KDD [31] (Table 2.3), an improved KDDCUP’99 intrusion-detection

data-set, as the testing target since redundant records have been removed from original dataset to

avoid potential learning bias. Before applying the testing models onto the dataset, the data pre-

processing is needed since discrete enumerated values must be translated to numerical ones and be

normalized properly to lead an accurate result. Therefore, we substitute enumerated values with

their numbers of occurrences which could reflect the density distribution of discrete values. Having

all numerical data in hand, we apply feature scaling method to normalize numerical values between

0 to 1 as follows:
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Table 2.3: Original NSL-KDD data records

No Value

1 0,tcp,ftp data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,150,25,0.17,0.03,0.17,0.00,0.00,0.00,0.05,0.00,normal

2 0,udp,other,SF,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,1,0.00,0.00,0.00,0.00,0.08,0.15,0.00,255,1,0.00,0.60,0.88,0.00,0.00,0.00,0.00,0.00,normal

3 0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123,6,1.00,1.00,0.00,0.00,0.05,0.07,0.00,255,26,0.10,0.05,0.00,0.00,1.00,1.00,0.00,0.00,neptune

4 0,tcp,http,SF,232,8153,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,5,5,0.20,0.20,0.00,0.00,1.00,0.00,0.00,30,255,1.00,0.00,0.03,0.04,0.03,0.01,0.00,0.01,normal

5 0,tcp,http,SF,199,420,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,30,32,0.00,0.00,0.00,0.00,1.00,0.00,0.09,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal

6 0,icmp,eco i,SF,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,16,1.00,0.00,1.00,1.00,0.00,0.00,0.00,0.00,ipsweep

x′ =
x−min(x)

max(x)−min(x)
(23)

where x and x′ denote original and normalized values. In this way we could use unified proposal

distribution for every dimension with the same value of hyperparameter Σ during random walk

MCMC sampling step (Table 2.4).

K-means clustering algorithm [39] is chosen for the comparison of accuracy. Testing data

records with total amount of 25192 (20% of NSL-KDD dataset) are clustered into two groups with

11743 intrusions and 13449 normal behaviors indicating components number M ′ = 2. In order to

better evaluate the pros and cons of models, results derived from Gaussian mixture model (GMM)

will also be taken into consideration. The comparison based on confusion matrices resulted from K-

means, GMM and AGM model (Table 2.5) reveals the fact that based on a less accurate initialization

given by K-means (60.85%), GMM performs almost the same way as K-means and the difference

between these two models is trivial. In contrast, AGM model makes a significant improvement with

much higher accuracy rate (80.47%) and precision percentage (96.86%), while much lower false

positive rate (4.26%) illustrating AGM model is capable of effectively detecting intrusions from

background noises. Compared with K-means and GMM, AGM model has a higher false negative

rate (28.58%) which means it tends to strictly identify normal behaviors as intrusions which could

be mitigated by reducing dimensions of dataset using feature selection methodologies.

20



Table 2.4: Translation and Normalization of Internet Protocols (Enumerated Values)

Internet

Protocols

Number of

Occur-

rences

Normalized

Values

ICMP 1655 0

UDP 3011 0.071867

TCP 20526 1

Table 2.5: Confusion Matrices and Statistics of K-means, GMM and AGM Models

K-means
NF a F b

NF 2445 9298

F 565 12884

GMM
NF F

NF 2464 9279

F 584 12865

AGM
NF F

NF 11484 259

F 5621 7828

K-means GMM AGM

Accuracy 60.85% 60.85% 76.66%

Precision 20.82% 20.98% 97.79%

False Positive Rate 41.92% 41.90% 3.20%

False Negative Rate 18.77% 19.16% 32.86%
aNon fault-prone, bFault-prone.
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Table 2.6: AGM Statistics

Init. Comp.

Number m

Accuracy Integrated

Likelihood

m = 1 55.64% 5.7074e5
m = 2 51.21% 4.0543e5
m = 3 58.99% 8.4238e5

2.4.4 Spam Filtering

Statistics reveal a crucial fact that more than 59% of worldwide e-mail traffic is considered

as unsolicited messages, also well known as spams, in 2017 [40]. Most spams are irritating and

resource-consuming, and some of them are extremely dangerous in terms of phishing scam, fee

fraud, job offer scam, etc,. Since the damages of spam are persistent and significant not only for in-

dividuals but also for governments, companies and organizations, many spam filtering technologies

have been proposed to address this issue and eliminate unwanted e-mails automatically over recent

decades.

Consequently, a well organized Spambase dataset [41] is selected with attributes related to mul-

tiple spam textual features including spam word/character dictionaries and profiles of uninterrupted

capital letter sequences. Data pre-processing includes Scaling-based data normalization which re-

scales numerical values within the range between 0 and 1 and label extraction for generating confu-

sion matrix. To better evaluate the performance and accuracy of AGM model under different initial

number of components, the integrated likelihood [10] values are given in Table 2.6 to identify the

best-fit result. Obviously, the result with initial component number m = 3 has the largest integrated

likelihood value (8.4238e5). Therefore, we select it as the best-fit result and make horizontal com-

parison with GMM. Statistics in Table 2.7 reveal the fact that comparing to GMM, AGM provides

higher accuracy and precision, additionally, lower false positive rate and false negative rate indi-

cate that AGM outperforms GMM. However, because of the nature of spambase, the performance

of both mixture models is not satisfactory since most of spams cannot be identified. Therefore,

data-based adjustment of the model might lead to a better result in the future.
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Table 2.7: Confusion Matrices and Statistics of GMM and AGM

GMM
NF a F b

NF 35 1778

F 295 2493

AGM
NF F

NF 249 1564

F 323 2465

GMM AGM

Accuracy 54.94% 58.99%

Precision 1.93% 13.81%

False Positive Rate 41.63% 38.81%

False Negative Rate 89.39% 56.46%
aNon fault-prone, bFault-prone.

2.4.5 Conclusion

This chapter firstly illustrated a new intrusion detection approach by applying asymmetric Gaus-

sian mixtures with a fully Bayesian learning process which is achieved by applying a hybrid sampling-

based MH-within-Gibbs learning algorithm. According to the experiment results, the AGM model

is proved as an effective approach for clustering. In spite of the advantages of AGM we mentioned

above, some improvements are still needed to promote the accuracy and flexibility and mitigate the

drawbacks. Therefore, we shall extend the Bayesian learning process and introduce model selection

and feature selection methodologies to improve the performance in the case of high-dimensional

datasets.
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Chapter 3

Unsupervised Learning with Feature

Selection: Application to Image

Categorization

3.1 Introduction

Recently, as the consequence of frequent usage of mobile phone, social media and cloud stor-

age, digitalized visual data such as photos and pictures brings difficulties for management and anal-

ysis. Unlike those within text-based documents, indexing and comparison among images could

be challenging. Therefore, image categorization is becoming one of the most interesting research

topics in computer vision community. Indeed, finding relevant images from a rapidly growing

unannotated image database is challenging which makes the previous time-consuming manual cat-

egorization methods infeasible. Automated methods such as machine-learning-based approaches

[42] introduce image representation methodologies for visual feature extraction and both generative

and discriminative classifiers for categorization. Meanwhile, modern machine-learning-based so-

lutions can be divided into two main streams, classification-based supervised and clustering-based

unsupervised ones. Compared to supervised solutions, unsupervised approach has no assumption on

the number of groups, therefore, friendly to new added images and categories which makes it more

suitable for increasing datasets. Moreover, it also immunizes against learning biases and overfitting

problems that commonly exist in most supervised approaches if model training is inappropriate.
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Consequently, unsupervised categorization of images or image parts [43, 37, 38] has an important

role for image and video summarization, human action recognition, and image search etc,. It can

also be seen as a pre-processing step for supervised methodologies for classification or segmen-

tation. As upgrade of single-mathematical-model-based methodologies, mixture models [6, 7, 8]

can be seen as a superimposition of certain mixture components sharing dependencies with each

other, therefore, lead to outstanding performance especially for high-dimensional and multi-cluster

datasets.

Before deploying UIUC sports event database [44] to validate AGM framework, image process-

ing is needed because images should be represented as visual features and, eventually, be translated

into numerical data. As we discussed in Chapter 2, parameter estimation could be challenging and

highly affects the performance of mixture models especially for high-dimensional data sets. For this

reason, we decided to adopt scale-invariant feature transform (SIFT) [45] to detect and describe im-

age features even under changes in image scale, noise and illumination. However, generated SIFT

features have to be categorized and features that belong to each image should be considered as his-

tograms to be the input of AGM model. Therefore, bag-of-visual-words [46] and probabilistic latent

semantic analysis (pLSA) [47] are responsible for the generation of features histogram. Meanwhile,

high-dimensionality will also bring difficulties to classifiers since previous approaches assume all

the features of observations have the same weight of importance and carry pertinent information

which is not always the case and many of those features can be irrelevant for clustering purpose. In

order to tackle this problem and define relevance and importance of features, feature selection tech-

niques [4, 23] should be taken into consideration. Eventually, irrelevant and unneeded information

will be filtered by feature selection.

3.2 Dimensionality Reduction for AGM

The AGM model defined in Eq. (2) assumes that all the d features of observations have the

same weight of importance and carry pertinent information which is not always the case and many

of those features can be irrelevant for clustering purpose. In order to tackle this problem and de-

fine relevance and importance of features, feature selection techniques [4, 23] should be taken into

consideration. By denoting background Gaussian distributions for all the d features with parameter

set Ψ = {µ′1, ..., µ
′

d, σ
′

1, ..., σ
′

d}, where µ′ and σ′ represent the mean and standard deviation of the
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Gaussian distribution, respectively. Then, Eq. (2) can be reformulated with the feature relevancy

approach suggested in [22] as follows:

p(X|Θ,Ψ,Φ) =
N
∏

i=1

M
∑

j=1

pj

d
∏

k=1

p(Xik|ξjk)
φkN (Xik|ψk)

1−φk (24)

where N (Xik|ψk) denotes the likelihood that k-th feature of i-th observation is irrelevant where

ψk = (µ′k, σ
′

k) is the parameters set of background Gaussian distribution. Φ = (φ1, . . . , φd) is a

binary relevancy vector where φk = 1 if k-th feature is relevant or φk = 0 otherwise. If we consider

the relevancy vector Φ as a latent variable, the complete likelihood function of AGM model with

full parameter set will be given as follows:

p(X|Θ′) =
N
∏

i=1

M
∑

j=1

pj

d
∏

k=1

[ωkp(Xik|ξjk) + (1− ωk)N (Xik|ψk)] (25)

where Θ′ = (Θ,Ψ,Ω) and Ω = (ω1, . . . , ωd) is the relevancy weight with value range of

0 ≤ ωd ≤ 1 which represents the probability that k-th feature is relevant. Finally, the calculation of

relevancy weight ωk is given as follows:

ωk =

∏N
i=1

∑M
j=1 pjp(Xik|ξjk)

∏N
i=1

∑M
j=1 pjp(Xik|ξjk) +

∏N
i=1N (Xik|ψk)

(26)

Therefore, irrelevant features only have small contribution for the clustering process, thus the us-

ability of AGM model is extended to more common and complicated cases such as high-dimensional

noisy applications. The parameter learning algorithm with feature selection can be described as fol-

lows:

Input: Data observations X and component number M

Output: AGM mixture parameter set Θ

(1) Initialization

(2) Step t: For t = 1, . . .

Gibbs sampling part
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(a) Generate Z(t) from Eq. (6) and (25)

(b) Compute n
(t)
j from Eq. (7)

(c) Generate p
(t)
j from Eq. (9)

Metropolis-Hastings part

(d) Sample ξ
(t)
j (µ

(t)
j , σ

(t)
lj , σ

(t)
rj ) from Eqs. (10) (11) (12)

(e) Calculate relevancy weight ω
(t)
k from Eq. (26)

(f) Generate background Gaussian parameters ψ
(t)
k by random walk

(g) Compute acceptance ratio r from Eq. (13)

(h) Generate α = min[1, r] and u ∼ U[0,1]

(i) If u ≥ α then ξ(t) = ξ(t−1), ψ
(t)
k = ψ

(t−1)
k , ω

(t)
k = ω

(t−1)
k

RJMCMC part

(j) Generate u′ ∼ U[0,1]. If bm >= u′, perform split or birth step, then calculate acceptance

probability A. If the step is accepted, set m = m+ 1.

(k) Generate u′ ∼ U[0,1]. If dm >= u′, perform merge or death step, then calculate accep-

tance probability A′. If the step is accepted, set m = m− 1.

Figure 3.1 illustrates updated DAG parameter dependency figure with feature selection related

parameters added.

3.3 Image Categorization

A challenging UIUC sports event database [44] is selected for our target application which has

been evaluated by previous researches [48, 43]. It has 1579 images in total and consists of 8 sports

event categories: rowing (250 images), badminton (200 images), polo (182 images), bocce (137

images), snowboarding (190 images), croquet (236 images), sailing (190 images), and rock climbing

(194 images). The first step of image pre-processing is applying scale-invariant feature transform

(SIFT) on the original image files using difference of Gaussian (DoG) [45] (Figure 3.2) as interest

point detector and then, visual feature will be translated into 128-dimensional feature descriptor

vectors. Next, bag-of-visual-words (BOVW) [49] approach is used to cluster feature vectors into

a visual vocabulary W with variant vocabulary size using K-means algorithm. Consequently, each
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Figure 3.1: DAG of AGM Bayesian learning network with feature selection

image will be represented by a frequency histogram of occurrence of visual words in W . Since the

vocabulary size in our test is between 200 to 1000, we also adopted probabilistic latent semantic

analysis (pLSA) to describe each image as several latent topics (aspect) and therefore, reduce the

dimension of image representation. Before applying AGM model for clustering, normalization

based on feature scaling method is added to restrain the range of numerical attributes which will

improve the Bayesian learning performance. Finally, we deploy the proposed AGM model as an

unsupervised classifier to categorize the whole database. The proposed model is tested against

image representation generated with different vocabulary sizes between 200 to 1000 with an interval

of 100 and latent aspect number between 15 to 50 with an interval of 5 in order to identify the best

accuracy.

According to a comparison between K-means, Gaussian mixture model (GMM) and proposed

AGM model reveals the fact that applying AGM to the sports event database leads to a significant

clustering accuracy boost due to the best accuracy numbers of all the 3 classifiers illustrated in figure

3.3(a) (K-means: 22.17%, GMM: 29.26% and AGM: 46.04%). Moreover, the impact of accuracy

from different latent aspect numbers can be found in figure 3.3(b). Finally, the detailed clustering

confusion matrix of AGM under the optimal vocabulary size (1000) and latent aspect number (30)

is described in figure 3.4.
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Figure 3.4: Confusion matrix of AGM model (Vocabulary size is 1000 and latent aspect number is

30)

adjustments and improvements to tackle high-dimensional datasets to achieve higher clustering ac-

curacy.
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Chapter 4

Conclusion

Our work is based on asymmetric Gaussian mixture (AGM) model and reversible jump Markov

chain Monte Carlo (RJMCMC) learning algorithm. Previous efforts reveal the fact that AGM out-

performs classic Gaussian mixture model (GMM) by taking asymmetric datasets into consideration

which provides more flexibility. Our RJMCMC implementation is based on a hybrid sampling-

based approach which takes advantages of both Metropolis-Hastings (MH) and Gibbs sampling

methods, therefore, simplifies mathematical complexity and extends adaptability of the model.

Moreover, without giving a fixed components number in advance, RJMCMC applies a dynamic

data-based strategy to identify the optimal components number throughout iterations which makes

the model learning a self-adaptive process. Since the model is nondeterministic, Laplace approx-

imation based marginal likelihood is calculated for multiple runs as model selection procedure to

improve the correctness and fitting accuracy. Moreover, the proposed AGM model includes fea-

ture selection which can not only filters irrelevant and unneeded features but also weights relevant

features based on the pertinent information they carry.

In order to validate the performance and accuracy of the proposed approach, applications in-

cluding intrusion detection, spam filtering and image categorization have been conducted and the

results are analyzed and compared with popular machine learning models. Future research direc-

tions will focus on model adjustments and improvements to tackle high-dimensional datasets and

achieve high clustering accuracy. The proposed work could be applied to other applications such as

content-based images summarization [50], retrieval [51], and suggestion [52].
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