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Abstract 

Multi-Criteria Decision Making under Uncertain Evaluations 

 

Hesham Fahad A. Maghrabie, Ph.D. 

Concordia University, 2018 

 

 

Multi-Criteria Decision Making (MCDM) is a branch of operation research that aims to 

empower decision makers (DMs) in complex decision problems, where merely depending on DMs 

judgment is insufficient. Conventional MCDM approaches assume that precise information is 

available to analyze decision problems. However, decision problems in many applications involve 

uncertain, imprecise, and subjective data. 

This manuscripts-based thesis aims to address a number of challenges within the context of 

MCDM under uncertain evaluations, where the available data is relatively small and information 

is poor. The first manuscript is intended to handle decision problems, where interdependencies 

exist among evaluation criteria, while subjective and objective uncertainty are involved. To this 

end, a new hybrid MCDM methodology is introduced, in which grey systems theory is integrated 

with a distinctive combination of MCDM approaches. The emergent ability of the new 

methodology should improve the evaluation space in such a complex decision problem. 

The overall evaluation of a MCDM problem is based on alternatives evaluations over the 

different criteria and the associated weights of each criterion. However, information on criteria 

weights might be unknown. In the second manuscripts, MCDM problems with completely 

unknown weight information is investigated, where evaluations are uncertain. At first, to estimate 

the unknown criteria weights a new optimization model is proposed, which combines the 

maximizing deviation method and the principles of grey systems theory. To evaluate potential 

alternatives under uncertain evaluations, the Preference Ranking Organization METHod for 

Enrichment Evaluations approach is extended using degrees of possibility.  
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In many decision areas, information is collected at different periods. Conventional MCDM 

approaches are not suitable to handle such a dynamic decision problem. Accordingly, the third 

manuscript aims to address dynamic MCDM (DMCDM) problems with uncertain evaluations over 

different periods, while information on criteria weights and the influence of different time periods 

are unknown. A new DMCDM is developed in which three phases are involved: (1) establish 

priorities among evaluation criteria over different periods; (2) estimate the weight of vectors of 

different time periods, where the variabilities in the influence of evaluation criteria over the 

different periods are considered; (3) assess potential alternatives. 
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Chapter 1 

Introduction 

1.1 Multi Criteria Decision Making  

 Decision making is an inherent character of human nature. The ultimate goal of any decision 

maker is to make the right decision. Sometimes the process of undertaking the right decision 

becomes a challenging task, especially when they encounter large amount of complex information. 

Therefore, tremendous efforts have been dedicated to enrich the decision making process by 

introducing multi-criteria analysis (MCA) approaches. The main role of MCA is to handle the 

associated difficulties with decision problems where the ability of decision makers (DMs) are 

deemed insufficient by itself to address the decision problems (Dodgson, Spackman, Pearman, & 

Phillips, 2009). MCA can be defined as structured approaches for DMs to have a thorough analysis 

over decision problems by analyzing and evaluating potential alternatives over a set of criteria 

(Antunes & Henriques, 2016; Kurka & Blackwood, 2013).  

 Many approaches of MCA are available in the literature. However, different reasons justify the 

existing of the different approaches (Dodgson et al., 2009): 

• the dissimilarity among decisions in nature and purpose 

• the available time for making a decision  

• the nature of the data and its availability  

• the analytical skills of the DMs 

• the various type of administrative culture. 

 Among the popular approaches of MCA is the multi-criteria decision making (MCDM), also 

known as multi-criteria decision analysis (MCDA) and multi-attribute decision analysis (MADA) 

(Dodgson et al., 2009). The main role of MCDM is to aid DMs in establishing a coherent picture 

about complex decision problems, e.g. decision problems that incorporate monetary and non-

monetary criteria (Kurka & Blackwood, 2013; Malczewski & Rinner, 2015; Roy, 2016; Wątróbski 

& Jankowski, 2016). Moreover, it simplifies the analysis of a decision problem by disaggregating 
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the original problem into more manageable elements (Dodgson et al., 2009; Kurka & Blackwood, 

2013). 

 A defined decision making problem can be categorized based on the problematic nature as 

follows (Greco, Ehrgott, & Figueira, 2016; Wątróbski & Jankowski, 2016): 

1. Choice problematic: Finding the best alternative 

2. Sorting problematic: Sorting alternatives into defined categories  

3. Ranking problematic: Ranking alternatives from the best to the worst. 

 Despite the diversity of MCDM approaches, at the most primitive level, MCDM can be 

demonstrated by a set of alternatives, at least two evaluation criteria, and minimally one decision 

maker (Greco et al., 2016).  

1.2 Uncertainty in MCDM 

Conventional MCDM approaches presume that the required information for analyzing a 

decision problem is available and accurate. However, in many real life applications available 

information is subject to uncertainty, imprecision, and subjectivity; which would limit the 

applicability of conventional MCDM approaches (Banaeian, Mobli, Fahimnia, & Nielsen, 2018; 

Karsak & Dursun, 2015; Guangxu Li, Kou, & Peng, 2015; Małachowski, 2016). Consequently, 

different theories have been introduced to approximate ranges of evaluations using the related 

knowledge and the available information of the decision problem under consideration (Lin, Lee, 

& Ting, 2008). 

The different approaches to address uncertainty have different use, which involves the way of 

establishing preferences within a decision problem and the way of representing possible outcomes 

(Durbach & Stewart, 2012). Therefore, differentiating among two types of uncertainty would be 

useful to properly handle the associated uncertainty in a decision problem. The two types of 

uncertainty are: (i) uncertainty associated with limited objective information, e.g., quantitative 

(interval scales) and stochastic (probability distribution) data, and (ii) uncertainty associated with 

subjective expert knowledge (i.e., ambiguous concepts and semantic meanings) (Malczewski & 

Rinner, 2015; Moretti, Öztürk, & Tsoukiàs, 2016). 
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1.3 MCDM with unknown weight information 

Solving a MCDM requires information on alternatives evaluations over the different criteria 

and the associated weight of each criterion. Within the context of uncertain MCDM problems, 

decision makers may encounter decision problems with unknown criteria weights, as a result of 

different reasons such as time pressure, limited expertise, incomplete knowledge, and lack of 

information (Das, Dutta, & Guha, 2016; S. Zhang, Liu, & Zhai, 2011). Accordingly, the overall 

evaluations cannot be derived (Xu, 2015). 

1.4 Dynamic multi-criteria decision problems 

Conventional MCDM approaches have an implicit assumption in which decision problems are 

static overtime (single period) (Pruyt, 2007). However, in many real-life applications this 

assumption becomes inappropriate as decision information is provided at different periods such as 

multi-period investment and medical diagnosis (Eren & Kaynak, 2017; G. Wei, 2011). In such 

decision areas, the complexity of decision making process increases and requires the consideration 

of different evaluations over the different periods. 

1.5 Research Motivation 

The associated uncertainty with many real-life applications of MCDM problems complicates 

the decision-making process, in which it renders conventional MCDM approaches to be incapable 

of addressing the multi-criteria decision problems (Banaeian et al., 2018; Karsak & Dursun, 2015; 

Guangxu Li et al., 2015; Małachowski, 2016). Consequently, different hybrid methodologies have 

been introduced, in which MCDM approaches have been supplemented by different methods to 

handle the different types of uncertainty; such as probabilistic models, fuzzy set theory, and grey 

systems theory. However, the existing methodologies are limited when it comes to handle MCDM 

problems with a relatively small amount of data and poor information, where evaluation criteria 

are of different nature and interdependencies exist among them. 

As mentioned earlier, information on criteria weights is critical to solve MCDM problems (Xu, 

2015). However, in many decision problems criteria weights are unknown (Das et al., 2016; S. 

Zhang et al., 2011). Therefore, different approaches have been introduced to establish the unknown 
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criteria weights, which are listed in Chapter 3. Nevertheless, the applicability of these approaches 

would be influenced when it comes to handle MCDM problems with small amount of data and 

poor information. 

In many decision areas information at different periods should be considered, such as multi-

period investment and medical diagnosis (G. Wei, 2011). Conventional MCDM approaches are 

static and cannot handle dynamic decision problems. Different hybrid approaches have been 

developed to overcome the shortcoming of the conventional approaches, which are mentioned in 

Chapter 4. However, the developed approaches lack of a proper procedure to address one or both 

of the following concerns: (1) Criteria weights establishment, where weight information is 

unknown; (2) Establishing priorities of different periods, where the influence on a decision 

problem of different evaluation criteria are changing over time. 

In view of the aforementioned limitations, it is important to establish a decision model that 

consider the interdependencies among evaluation criteria within the context of MCDM problems 

with a relatively small amount of data and poor information. For decision problems with unknown 

criteria weights a better method is needed to establish unknown criteria weights, where information 

is poor and the available data is relatively small. In a multi-period MCDM where priority 

information of different periods is unknown, the changing in the influence of the different 

evaluation criteria over different periods should be considered in solving the dynamic decision 

problems. 

1.6 Research Objectives 

This manuscript-based thesis consists of three journal papers, each of which will be discussed 

in a separate chapter. The objectives of each paper are as follows:  

➢ Paper 1: Grey-based Multi-Criteria Decision Analysis Approach: Addressing Uncertainty at 

Complex Decision Problems 

The ultimate goal of this research is to optimize the evaluation space in complex MCDM that 

are subject to subjective and objective uncertainty over different types of interrelated criteria. To 

this end, the main objective of this paper are as follows: prioritize interrelated criteria of different 
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nature, while uncertainty related aspects are present; evaluate different alternatives over complex 

MCDM problems under subjective and objective uncertainty. 

➢ Paper 2: Multi-Criteria Decision-Making Problems with Unknown Weight Information under 

Uncertain Evaluations 

The aim of this paper is to handle MCDM problems with small amount of data and poor 

information, where information of criteria weights is unknown. Therefore, the objectives of this 

paper are as follows: establish a new optimization model to estimate priorities among the 

evaluation criteria under such a decision problem; evaluate and rank potential alternatives, where 

uncertain information with respect to alternatives evaluations is provided. 

➢ Paper 3: A New Approach to Address Uncertain Dynamic Multi-Criteria Decision Problems 

with Unknown Weight Information 

This paper aims to address a dynamic MCDM, where evaluations are given over different 

periods, while information on criteria weights and the influence of different time periods are 

unknown. Consequently, the objectives of this paper are as follows: prioritize criteria weights over 

the different periods; establish weight vectors of different periods while considering the 

variabilities in the influence of different criteria over different periods. 

1.7 Organization of the thesis 

This manuscript-based thesis is divided into five chapters. Chapter 1 provides a brief 

background on related subject matters to introduce the motivations and objectives of this thesis. 

The objectives of this thesis have been carried-out through Chapters 2 to 4, as outlined below: 

Chapter 2: Grey-based Multi-Criteria Decision Analysis Approach: Addressing Uncertainty at 

Complex Decision Problem. In this chapter, a new hybrid MCDM model is developed to better 

address complex decision problems with relatively small amount of data and poor information. 

The proposed methodology considers the interdependencies among the evaluation criteria of 

different clusters while establishing criteria weights. Moreover, it extends the approach of 

Preference Ranking Organization METHod for Enrichment Evaluation II (PROMETHEE II), in 
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which it would be utilized to define optimal ranking among potential alternatives in complex 

decision problem under subjective and objective uncertainty.  

Chapter 3: Multi-Criteria Decision-Making Problems with Unknown Weight Information 

under Uncertain Evaluations. This chapter introduces a new methodology to carry out the overall 

evaluation for MCDM problems with small amount of data and poor information, where 

information on criteria weight is unknown completely. A new optimization model is developed to 

establish criteria weights, while different scenarios are considered to generalize the model. 

Chapter 4: A New Approach to Address Uncertain Dynamic Multi-Criteria Decision Problems 

with Unknown Weight Information. A new methodology is proposed in this chapter to account for 

the dynamic aspect of a MCDM, where evaluations from different periods are provided, while 

information on criteria weights and the influence of the different periods are unknown completely. 

The new approach pays attention to the variabilities in the influence of different evaluation criteria 

on a MCDM problem over different periods. 

Finally, Chapter 5 provides a summary of this thesis including the concluding remarks, 

contributions and ideas for future research. The analytical framework of the thesis is illustrated in 

Figure 1.1. 
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Chapter 2 

Grey-based Multi-Criteria Decision Analysis Approach: 

Addressing Uncertainty at Complex Decision Problems 

Abstract 

 In complex systems, decision makers encounter uncertainty from various sources. Grey 

systems theory is recommended to address uncertainty for decision problems with a relatively 

small amount of data (i.e., small samples) and poor information, which cannot be described by a 

probability distribution. However, the existing approaches do not consider the influence among 

criteria of different clusters. Accordingly, a new hybrid grey-based Multi-Criteria Decision 

Analysis (MCDA) approach is proposed to optimize the evaluation space in decision problems 

that are subject to subjective and objective uncertainty over different types of interrelated criteria. 

The four-phased methodology begins with the formulation of a decision problem through the 

analysis of the system of concern, its functionality, and substantial connections among criteria. 

The second phase involves the development of grey linguistic scales to handle uncertainty of 

human judgments. The third phase integrates the grey linguistic scale, concepts of grey systems 

theory, and principles of Analytical Network Process to prioritize the evaluation criteria. Finally, 

to evaluate and rank alternatives in such a complex setting, the Preference Ranking Organization 

METHod for Enrichment Evaluation II approach is extended using a grey linguistic scale to 

articulate subjective measures over qualitative criteria, grey numbers to account for objective 

uncertainty over quantitative criteria, grey operating rules to normalize evaluation measures, and 

the proposed approach of prioritizing the criteria to establish relative preferences. To demonstrate 

the viability of the methodology, a case study is presented, in which a strategic decision is made 

within the context of innovation. To validate the methodology, a comparative analysis is provided.  
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2.1 Introduction 

Decision makers usually encounter large amount of complex information. The complexity of 

decision problems increases when different evaluation criteria of different nature (e.g., qualitative 

and quantitative), different scales, and different values (e.g., continuous, discrete, and linguistic) 

are involved. 

Multi-Criteria Decision Analysis (MCDA) is therefore considered one of the most fruitful sub-

disciplines of operations research. The main role of MCDA is to aid Decision Makers (DMs) in 

establishing a coherent picture about complex decision problems (Kurka & Blackwood, 2013). 

However, in many cases uncertainty-related aspects (i.e., uncertainty associated with limited 

objective information and uncertainty associated with subjective expert knowledge) are present. 

This adds to the complexity of analyzing the decision problems as the conventional MCDA 

approaches presume the availability of precise information (Kuang, Kilgour, & Hipel, 2015; Guo-

dong Li, Yamaguchi, & Nagai, 2007). 

Various methods have been proposed to deal with different types of uncertainty-related 

aspects. Grey systems theory is recommended for decision problems with a relatively small 

amount of data (i.e., small samples) and poor information, which cannot be described by a 

probability distribution (C. Li & Yuan, 2017; D.-C. Li, Chang, Chen, & Chen, 2012; S. Liu & Lin, 

2006). Accordingly, different researchers have considered the grey systems theory to address 

uncertainty in decision problems, as presented in the next section. The existing approaches 

assumed that DMs are able to assign the weights of the evaluation criteria precisely, did not 

consider the interrelationships among evaluation criteria, or did not consider the relations among 

the criteria of different clusters, hence a better method is needed to address the existing research 

gaps. 

The ultimate goal of this research is to enhance DMs abilities of handling multi-criteria 

decision problems under uncertainty. To this end, the main objective of this manuscript is to 

establish a structured methodology, which are able to carry on MCDA under uncertainty, by 

integrating the grey systems theory with a distinctive combination of MCDA techniques (i.e., 

Analytical Network Process (ANP) and Preference Ranking Organization METHod for 
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Enrichment Evaluation II (PROMETHEE II)). The hybrid methodology uses the grey systems 

theory as the key element for tackling uncertainty aspects; the principles of ANP to handle the 

complexity of the decision structure; the extended PROMETHEE II approach to evaluate feasible 

alternatives. 

The contributions of this manuscript over other existing research works within the same 

context of MCDM problems can be summarized in the following points: (1) Establishing priorities 

among sub-criteria within a complex structure under uncertain subjective judgments using the 

combination of linguistic expression, grey systems theory, and the principles of ANP; (2) 

Extending PROMETHEE II, such that potential alternatives can be evaluated and ranked in such 

a complicated decision structure; (3) Improving the evaluation space in a complex decision 

problems under uncertainty by utilizing the emergent strengths of the integrated approach, which 

would enhance the evaluation of a DM. 

This manuscript is organized as follows: first, a brief background on related subject matters is 

provided to identify the research problems and to establish the direction of the current research; 

next, the proposed methodology is discussed and explained; afterwards, a case study is presented 

to demonstrate the viability of the methodology; then, a comparative analysis with an existing 

approach is performed for the validation purpose; finally, the conclusion is put forward. 

2.2 Background 

2.2.1 Multi-criteria decision analysis 

Despite the diversity of MCDA approaches, at the most primitive level, MCDA can be 

demonstrated by a set of alternatives, at least two evaluation criteria, and minimally one decision 

maker (Greco et al., 2016). Accordingly, MCDA can be described as a systematic methodology 

that helps in making decisions by evaluating a number of alternatives over a set of criteria 

according to the preferences of the involved decision maker(s). 

There is no optimal MCDA’s approach that would fit perfectly with every decision problem. 

Therefore, understanding a decision problem’s nature is a critical step to identify the suitable 
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approach for it (Jaini & Utyuzhnikov, 2017; Wątróbski & Jankowski, 2016). The various 

approaches of MCDA can be classified into three main categories (Belton & Stewart, 2002): 

• Value measurement models: Approaches that belong to this category are value-focused, 

where the utility value of each alternative is being recognized based on its overall performance 

over the evaluation criteria. Among the most common approaches within this category are 

Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Multi-Attribute Value 

Theory (MAVT), Multi-Attribute Utility Theory (MAUT), Simple Multi-Attribute Rating 

Technique (SMART), Stochastic Multi-criteria Acceptability Analysis (SMAA), and 

Weighted Sum Method (WSM). 

• Goal, aspiration, or reference-level models: In this set of approaches, alternatives are 

evaluated with respect to a targeted level of performance over a particular goal, aspiration, or 

reference levels, e.g., goal programming and heuristic algorithms. An example of this category 

is Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Vlsekriterijumska 

Optimizacijia I Kompromisno Resenje (VIKOR), and Linear Programming Technique for 

Multidimensional Analysis of Preference (LINMAP). 

• Outranking methods: A typical outranking approach performs pairwise comparisons between 

alternatives across a specified set of evaluation criteria. Subsequently, the resulting 

comparisons are aggregated and analyzed in accordance with the designated approach to favor 

one alternative over another. Outranking methods include ELimination and Choice Expressing 

REality (ELECTRE), and Preference Ranking Organization METHod for Enrichment 

Evaluations (PROMETHEE) family of methods. 

These conventional approaches of MCDA have an implicit assumption, which presumes the 

availability and accuracy of information that is required for analyzing decision problems. 

However, in real world applications, DMs encounter uncertainty from various sources, such as 

limited human cognition, lack of understanding for interrelationships among decision criteria, and 

limited input data (Belton & Stewart, 2002; Małachowski, 2016). 
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2.2.2 Handling uncertainty in MCDA 

While the presence of uncertainty would limit the utilization of the MCDA approaches, several 

research works have proposed different hybrid approaches, in which MCDA techniques have been 

supplemented by uncertainty approaches. However, different uncertainty approaches have 

different use, which involves the way of establishing preferences within a decision problem and 

the way of representing possible outcomes (Durbach & Stewart, 2012). Therefore, differentiating 

among two types of uncertainty would be useful to properly address the associated uncertainty in 

a decision problem: (i) uncertainty associated with limited objective information, e.g., quantitative 

(interval scales) and stochastic (probability distribution) data, and (ii) uncertainty associated with 

subjective expert knowledge (i.e., ambiguous concepts and semantic meanings) (Malczewski & 

Rinner, 2015; Moretti et al., 2016). Different approaches have been proposed to handle different 

types of uncertainty: 

Probabilistic models: A DM can assign probability distribution based on a relative experiences, 

beliefs, and available data to describe uncertain values (i.e., imperfect information) of a decision 

parameters (Mazarr, 2016). Consequently, comparisons can be established among feasible 

alternatives and probabilistic statements can be made to describe the probability of occurrence for 

each outcome, which can be achieved through different means (e.g., Monte Carlo simulation) 

(Malczewski & Rinner, 2015; Zhou, Wang, & Zhang, 2017). 

Fuzzy set theory: Zadeh (1965) introduced this theory to handle the associated vagueness and 

imprecision with human judgments (i.e., ambiguous concepts and semantic meanings). Within the 

context of MCDA, fuzzy numbers are utilized to map linguistic expressions that would express 

human opinions using the concept of the membership function, such that by assigning a value 

between 0 and 1 the linguistic term can be stated more precisely, where 0 indicates no membership 

and 1 indicates full membership (Dincer, Hacioglu, Tatoglu, & Delen, 2016). 

Grey systems theory: Ju-long (1982) introduced the grey systems theory as a methodology to 

handle data imprecision or insufficiency in a system. It is intended for problems that involve a 

relatively small amount of data and poor information, which cannot be described by a probability 

distribution. Thus, a better understanding for such a system can be achieved through partially 
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known information using grey systems theory (S. Liu, Forrest, & Yang, 2015). Similar to fuzzy 

set theory, grey systems theory can handle associated vagueness with verbal statements (linguistic 

expressions) using grey numbers (Broekhuizen, Groothuis-Oudshoorn, Til, Hummel, & IJzerman, 

2015), which is denoted by ⊗ (S. Liu & Lin, 2006). 

As mentioned earlier, conventional MCDA approaches do not mimic the functional reality of 

the human cognitive system in decision problems. Therefore, various hybrid approaches have been 

proposed, in which uncertainty related aspects in MCDA are captured and represented using 

probabilistic models, fuzzy set theory, and grey systems theory. 

Fuzzy set theory is widely utilized with MCDA under uncertainty (Broekhuizen et al., 2015). 

For instance, fuzzy AHP was used extensively in the literature: environmental impact assessment 

(Ruiz-Padillo, Ruiz, Torija, & Ramos-Ridao, 2016), investment decisions (Dincer et al., 2016), 

knowledge management (K.Patil & Kant, 2014); fuzzy ANP has been utilized to determine the 

most important factors for a hospital information system (Mehrbakhsh, Ahmadi, Ahani, 

Ravangard, & Ibrahim, 2016); fuzzy TOPSIS has been employed for the selection of renewable 

energy supply system (Şengül, Eren, Shiraz, Gezderd, & Şengül, 2015); fuzzy VIKOR has been 

used for evaluating and selecting green supplier development programs (Awasthi & Kannan, 

2016); fuzzy PROMETHEE has been utilized to select the best waste treatment solution (Lolli et 

al., 2016). However, the Probabilistic approach is commonly used with SMAA to provide the 

specification of distributions (Groothuis-Oudshoorn, Broekhuizen, & van Til, 2017). 

Although probabilistic models and fuzzy set theory are intended to investigate uncertain 

systems, grey systems theory is preferred when it comes to problems with a relatively small amount 

of data and poor information, which cannot be described by a probability distribution (C. Li & 

Yuan, 2017; D.-C. Li et al., 2012; S. Liu & Lin, 2006), due to its less restricted procedure that 

neither requires any robust membership function, nor a probability distribution (Memon, Lee, & 

Mari, 2015). Consequently, several research papers have proposed grey systems theory to 

supplement the deficiencies that exist in MCDA as a result of poor information. The rest of this 

section deliberates on existing methods to solve multi-criteria decision problems under uncertainty 

using grey systems theory, and the reasoning behind the proposed methodology. 
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Grey systems theory has been integrated with PROMETHEE II to evaluate performance of 

available alternatives on certain criteria where uncertainty aspects are involved (Kuang et al., 

2015). However, the weights of evaluation criteria are assumed to be given by DMs precisely, 

which is hardly the case in complex decision problems under uncertainty. Some other works have 

tried to address this issue by integrating the grey systems theory with Analytic Hierarchy Process 

(AHP) to prioritize evaluation criteria and to evaluate potential alternatives under uncertainty 

(Jianbo, Suihuai, & Wen, 2016; Thakur & Ramesh, 2017). Also, Grey Relational Analysis (GRA), 

which is a branch of grey systems theory, has been combined with the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) approach to better rank feasible alternatives, 

using fuzzy analytic hierarchy process (FAHP) to evaluate the criteria weights  (Celik, Erdogan, 

& Gumus, 2016; Sakthivel et al., 2014). Nevertheless, one of the underlying assumptions of AHP 

is the independency (Ishizaka & Labib, 2011), which implies that elements of a hierarchal structure 

are independent but in reality a complex system usually involves interactions and dependencies 

among the system’s elements. 

To tackle the problem of dependencies in a complex system, grey systems theory has been 

used with ANP. This combination has been proposed in different areas such as, green supplier 

development programs (Dou, Zhu, & Sarkis, 2014), R&D system development for a home 

appliances company (Tuzkaya & Yolver, 2015), and early evaluation model for storm tide risk 

(W. Zhang, Zhang, Fu, & Liu, 2009). However, the relations between sub-criteria of different 

clusters have not been considered. Accordingly, a better method is needed to bridge the existing 

research gaps. 

In this manuscript, a new hybrid grey-based MCDA approach is proposed to enhance DMs 

abilities of handling multi-criteria decision problems under uncertainty. The proposed approach 

integrates the grey systems theory with a distinctive combination of MCDA (i.e., ANP and 

PROMETHEE II). The combination of the proposed methodology has been considered for the 

following reasons: 

 When it comes to performance evaluation of feasible alternatives, outranking approaches 

outperform other MCDA methodologies, as other methodologies are designed to enrich the 

dominance graph by reducing the number of incomparability and allocating an absolute utility to 
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each alternative. Consequently, the original structure of a multi-criteria decision problem would 

be reduced to a single criterion problem for which an optimal solution exists (Maity & 

Chakraborty, 2015). In contrast, outranking methods preserve the structure of multi-criteria 

decision problems by considering the deviation between the evaluations of feasible alternatives 

over each criterion (Andreopoulou, Koliouska, Galariotis, & Zopounidis, 2017; Maity & 

Chakraborty, 2015; Segura & Maroto, 2017). Moreover, this category of MCDA can handle 

quantitative and qualitative criteria. Furthermore, it requires a relatively small amount of 

information from DMs (Malczewski & Rinner, 2015). Among the outranking methods, 

PROMETHEE is preferred due to its mathematical properties and simplicity (Brans & De Smet, 

2016; Kilic, Zaim, & Delen, 2015; Malczewski & Rinner, 2015). Among the PROMETHEE 

family of methods, PROMETHEE II is preferred due to its ability of providing a complete ranking 

for available alternatives based on outranking relations (Sen, Datta, Patel, & Mahapatra, 2015). 

However, PROMETHEE II requires the weights of the evaluation criteria (Brans & De Smet, 

2016; Segura & Maroto, 2017). 

 To estimate criteria weights, ANP is preferred over other MCDA approaches due to its 

superiority in addressing different types of interrelationships (e.g., interactions and 

interdependencies) within and between different evaluation clusters of a complex system (Hsu, 

2015; Tuzkaya & Yolver, 2015).  

 While the presence of uncertainty would limit the utilization of the conventional approaches 

of MCDA, grey systems theory would perfectly bridge this limitation (Dou et al., 2014; Kuang et 

al., 2015). In particular, when it comes to address decision problems with a relatively small amount 

of data and poor information, which cannot be described by a probability distribution (D.-C. Li et 

al., 2012; S. Liu & Lin, 2006). 

2.3 Grey-based MCDA methodology (G-ANP-PROMETHEE II) 

The proposed decision analysis process (G-ANP-PROMETHEE II) is consisted of four phases: (1) 

structure and model the decision problem, (2) establish grey linguistic scales, (3) determine the 

weights of evaluation criteria, and (4) evaluate and rank feasible alternatives. The framework of 

the proposed methodology is illustrated in Figure 2.1. The procedural steps of G-ANP-
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PROMETHEE II are explained in the following subsections. 

DM(S)CriteriaAlternatives

Phase 3: Determine criteria weights

Step 3.2

Interdependencies 

(Sub criteria)

Step 3.1

Inner-dependencies 

(Main criteria)

Step 3.3

Global weights

Phase 1

Structure & model 

decision problem

Phase 2

Establish Grey-

linguistic scale

Phase 4: Evaluate & rank alternatives

Step 4.1

Performance Matrix

Step 4.2

Normalized Grey 

Performance Matrix

Step 4.4

Relative Preference 

Matrix 

Step 4.3

Preference Matrix 

Alternatives Ranking

Negative Outranking 

Flows 

Positive Outranking 

Flows 

Net Outranking 

Flows 

 

Figure 2.1: Analytic framework of G-ANP-PROMETHEE II. 
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2.3.1 Structure and model the decision problem 

The first phase of the methodology is formulating the problem, which requires analysis for the 

system of concern, its functionality, and substantial connections (i.e., connections within and 

between various elements of the system; or between the system, relevant factors, and its 

environment). Accordingly, the network structure can be used to model the decision problem, as 

represented by Figure 2.2. 

GOAL

Cluster 1

X1, X2, …, Xm

Cluster 2

X1, X2, …, Xm

Cluster 3

X1, X2, …, Xm

Alternatives

Inner-dependence 

Outer-dependence 

Feedback 

 

Figure 2.2: Network structure model (Görener, 2012). 

2.3.2 Establish grey linguistic scales 

Multi-criteria decision problems involve some uncertainty because they are unlikely to fully 

satisfy decision criteria. Also, it is difficult for DMs to precisely express preferences due to 

information limitations and the uncertainty of human judgment. Therefore, linguistic expressions 

are more often used in MCDA to articulate DMs’ preferences between evaluation criteria, and to 

evaluate available alternatives over qualitative criteria (Kuang et al., 2015; Merigó, Palacios-

Marqués, & Zeng, 2016).  
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In this research, the concepts of grey systems theory and linguistic expressions provide the 

basis for the proposed approach, in which linguistic expressions (e.g., low, medium, and high) are 

used to express DMs judgments and the grey systems theory is used to handle the associated 

vagueness with verbal statements through the operating rules of grey numbers.  

To express preferences of DMs between evaluation criteria with respect to the system of 

concern, a grey linguistic scale of six levels is proposed, as illustrated in Table 2.1. The proposed 

scale has been established in accordance with the research of Ertay, Büyüközkan, Kahraman, and 

Ruan (2005). 

Table 2.1: Pairwise preference scale. 

Pairwise linguistic scale Grey preference scale Reciprocal grey preference scale 

Just equal [1,1] [1,1] 

Equally important [1/2,3/2] [2/3,2] 

Weakly more important [1,2] [1/2,1] 

Moderately more important [3/2,5/2] [2/5,2/3] 

Strongly more important [2,3] [1/3,1/2] 

Extremely more important [5/2,7/2] [2/7,2/5] 

When it comes to the assessment of feasible alternatives over qualitative criteria, it is also 

expressed in linguistic values using a five-level scale as shown in Table 2.2. 

2.3.3 Determine the weights of evaluation criteria 

For a complex multi-criteria decision problem (i.e., decision problems that involves 

interrelationships between evaluation criteria), ANP provides a structured procedure to analyze 

such complexity in decision problems (Zaim et al., 2014). However, ANP cannot effectively 

address uncertainty-related issues (Nguyen, Dawal, Nukman, & Aoyama, 2014), which are usually 

present in real world applications. To overcome this limitation, linguistic expressions and concepts  
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Table 2.2: Performance evaluation scale over qualitative criteria. 

Performance evaluation linguistic scale Grey evaluation scale 

Low (L) [0,0.2] 

Less than moderate (LM) [0.2,0.4] 

Moderate (M) [0.4,0.6] 

More than moderate (MM) [0.6,0.8] 

High (H) [0.8,1.0] 

of grey systems theory are integrated with ANP to establish the set of weights for evaluation 

criteria. The procedural steps are as follows: (1) determine inner-dependencies among main 

criteria, (2) examine interdependencies among sub-criteria, and (3) Estimate global weights for 

sub-criteria using the outputs of steps a and b. 

2.3.3.1 Determine inner-dependencies among main criteria 

The purpose of inner-dependencies evaluation is to detect the relative importance among 

various elements of the same level or cluster. This could be achieved by analyzing the influence 

of an evaluation criterion over other elements of the same level/cluster using linguistic expressions 

and relative grey numbers, as in Table 2.3, to articulate DMs’ preferences between evaluation 

criteria. 

2.3.3.1.1 Establish grey-based pairwise comparison matrices for main criteria 

Definition 2.1 Let a set of criteria within a cluster be represented by 𝐶 =  {𝐶1, 𝐶2 , … , 𝐶𝑚}, where 

m is the number of criteria. Let 𝑎𝑖𝑗 indicate the existence of an influence relation of criterion 𝐶𝑖 

over 𝐶𝑗, where  

 𝑎𝑖𝑗 = {
1 ↔ 𝐶𝑖 influences 𝐶𝑗 ∨ (i = j)

 
0 ↔ 𝐶𝑖 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 influence 𝐶𝑗

, 𝑖, 𝑗 = 1, 2, …𝑚  (2.1) 
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Definition 2.2 Let 𝐼𝑘 represent a set of evaluation criteria that influence a criterion 𝐶𝑘, where 𝐼𝑘 ⊂

𝐶 and 𝐶𝑘 ∉ 𝐼𝑘. Let 𝑅[⊗] represent the set of grey numbers and 𝑇𝑘⊗ denote a grey description 

function that describes the grey-based pairwise comparisons between elements of 𝐼𝑘 with respect 

to 𝐶𝑘, such that 

 𝑇𝑘⊗ ∶ (𝐼𝑘 ×  𝐼𝑘) → 𝑅[⊗], ∀𝑘 = 1, 2, …𝑚              (2.2) 

Definition 2.3 Let 𝑘𝑖𝑗(⨂) ∈  𝑇𝑘⊗ denote a grey number that articulates DMs’ verbal preference 

of  𝐶𝑖  over  𝐶𝑗  with respect to a control criterion 𝐶𝑘, where both 𝐶𝑖 and 𝐶𝑗 influence 𝐶𝑘 and 𝑘 ≠ 𝑖, 𝑗. 

Thus, 

∃ 𝑘𝑖𝑗(⨂) ↔ (𝑎𝑖𝑘, 𝑎𝑗𝑘 = 1), ∀ 𝑇𝑘⊗ (𝐶𝑖,  𝐶𝑗), 𝑤ℎ𝑒𝑟𝑒            (2.3)  

𝑘𝑖𝑗(⨂) = {
𝑘𝑗𝑖(⨂)

−1 ↔  𝑖 ≠ 𝑗

[1,1], otherwise    
, 𝑖, 𝑗, 𝑘 = 1, 2… ,𝑚 

2.3.3.1.2 Estimate inner-dependence weights 

To estimate the inner-dependence weights among evaluation criteria, the grey numbers at the 

grey-based pairwise comparisons matrices need to be transformed to white numbers (i.e., single 

values). To do this, the whitenization process should be performed. 

The weight function of the whitenization process is decided based on the available information 

of the relative grey numbers (e.g., distribution information), knowledge, and experience of 

decision makers (S. Liu & Lin, 2006). 

Definition 2.4 Assume that a whitenization function for a relative grey number 𝑥(⨂) is 𝑓(𝑥𝑖), then 

the whitenization value 𝑥𝑖(⨂̃) can be defined as (Shi, Liu, & Sun, 2013): 

 𝑥(⨂̃) = 𝑥 . 𝑓(𝑥) (2.4) 

In many practical applications, the weight function of the whitenization process is unknown 

(S. Liu & Lin, 2006), which adds complexity to decision problems. Therefore, Liu and Lin (2006) 

proposed the equal weight mean whitenization function to establish the associated white values of 
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interval grey numbers. In this research, the interval grey numbers are used and it is assumed that 

the weight function of the whitenization process is unknown due to the lack of information. 

Therefore, the equal weight mean whitenization function is considered for the whitenization 

process as follows:  

Definition 2.5 Let 𝑥(⨂) ∈ [𝑎, 𝑏] be a general interval grey number, where 𝑎 < 𝑏 and the 

distribution information for the grey number is unknown. Let 𝛼 denote the weight coefficient. The 

whitenization value 𝑥(⨂̃) can be obtained using the equal weight mean whitenization, such that 

                                           𝑥(⨂̃) = 𝛼𝑎 + (1 − 𝛼)𝑏, where 𝛼 =
1

2
                                              (2.5) 

Once the inner-dependence grey matrices have been transformed to fixed number matrices 

through the whitenization process, the inner-dependence weighs of the evaluation criteria can be 

estimated using the computation of the eigenvector method (R. Saaty, 2013). However, the 

resultant weights should be consistent relatively. In other words, if a criterion 𝐶𝑎 ≻ 𝐶𝑏 , and 𝐶𝑏 ≻

𝐶𝑑, the following can be inferred 𝐶𝑎 ≻ 𝐶𝑑; this is called “transitive law”. To this end consistence 

test should be applied as follows: 

Definition 2.6 Suppose the number of compared elements is 𝑚. Let 𝑎𝑖𝑗 denote the preference of 

𝐶𝑖 over 𝐶𝑗 , 𝑖, 𝑗 = (1, 2… ,𝑚). Let 𝑠𝑗 denote the sum of the corresponding column element 𝑎𝑖𝑗. Let 

𝑤 = (𝑤1, 𝑤2, …𝑤𝑚) represent the eigenvector (priority vector). Let 𝜆𝑚𝑎𝑥 represent the largest 

eigenvalue. Let 𝐶𝐼 denote consistency index of a pairwise comparison matrix and 𝑅𝐼 represent the 

consistency index of a random-like matrix using the scale of T. L. Saaty (1996) (Table 2.3), in 

which 𝑅𝐼 represents the average of consistency indices of 500 randomly filled matrices of a similar 

size (Mu & Pereyra-Rojas, 2017). Let 𝐶𝑅 reflect a consistency ratio that compare 𝐶𝐼 versus 𝑅𝐼, 

such that 

           𝐶𝑅 =
𝐶𝐼

𝑅𝐼
, where               (2.6) 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑚

𝑚−1
, 

𝜆𝑚𝑎𝑥 = ∑ ∑
𝑎𝑖𝑗𝑤𝑗

𝑠𝑗

𝑚
𝑖=1

𝑚
𝑗=1 , 𝑖, 𝑗 = (1, 2… ,𝑚) 
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Table 2.3: Consistency indices for a randomly generated matrix. 

𝑚 1 2 3 4 5 6 7 8 9 10 

𝑅𝐼 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

Using the values in Table 2.3, the estimated weight (priority) vector is considered acceptable 

for a consistency ratio of 0.10 or less (Mu & Pereyra-Rojas, 2017). 

2.3.3.2 Examine interdependencies among sub-criteria 

 Different types of interdependencies exist in complex decision problems, as depicted in Figure 

2.2. Therefore, these interdependencies should be considered for making better decisions. 

 To identify the relative importance among sub-criteria with respect to the system of concern, 

different types of interdependencies (i.e., inner-dependencies within each cluster and outer-

dependencies between different clusters) should be identified using the network structure (Figure 

2.2) or the influence matrix (Table 2.4), which is explained by Definition 2.7. 

Definition 2.7 Let the set of sub-criteria for a criterion 𝐶𝑖 be represented by {𝑠𝑐𝑖1, 𝑠𝑐𝑖2 , … , 𝑠𝑐𝑖𝑟} 

and the set of sub-criteria for criterion 𝐶𝑗  denoted by {𝑠𝑐𝑗1, 𝑠𝑐𝑗2 , … , 𝑠𝑐𝑗𝑧}, where 𝑖, 𝑗 = 1, 2… ,𝑚, 

and 𝑚 is the number of the evaluation criteria. Let 𝑟 represent the number of sub-criteria for 𝐶𝑖, 

such that 𝑓 = 1, 2… , 𝑟; and 𝑧 denote the number of sub-criteria for 𝐶𝑗, where ℎ = 1, 2… , 𝑧. 

Let 𝐶𝑖 × 𝐶𝑗  denote the Cartesian product of two sets of evaluation criteria; and let B represent a 

collection of influence relations between the elements of the two sets, where 𝑎𝑖𝑓,𝑗ℎ ∈ B represent 

the influence of 𝑠𝑐𝑖𝑓 ∈ 𝐶𝑖 over 𝑠𝑐𝑗ℎ ∈ 𝐶𝑗. Accordingly, an influence relation from 𝐶𝑖 𝑡𝑜 𝐶𝑗 is 

written as 

 ∃B(𝑠𝑐𝑖𝑓 , 𝑠𝑐𝑗ℎ) =  𝑎𝑖𝑓,𝑗ℎ, ∀(𝐶𝑖 × 𝐶𝑗) → 𝐵, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (2.7) 

𝑎𝑖𝑓,𝑗ℎ = {
1 ↔ 𝑠𝑐𝑖𝑓 influences 𝑠𝑐𝑗ℎ                                                        

0  if  𝑠𝑐𝑖𝑓 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 influence 𝑠𝑐𝑗ℎ ∨ [(i = j) ∧ (f = h)]
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Table 2.4: Influence matrix. 

  𝑪𝒋 

  𝒔𝒄𝒋𝟏  𝒔𝒄𝒋𝟐 … 𝒔𝒄𝒋𝒛 

 

𝑪𝒊 

𝒔𝒄𝒊𝟏 𝑎𝑖1,𝑗1 𝑎𝑖1,𝑗2 … 𝑎𝑖1,𝑗𝑧 

𝒔𝒄𝒊𝟐 𝑎𝑖2,𝑗1 𝑎𝑖2,𝑗2 … 𝑎𝑖2,𝑗𝑧 

… … … … … 

𝒔𝒄𝒊𝒓 𝑎𝑖𝑟,𝑗1 𝑎𝑖1,𝑗2 … 𝑎𝑖𝑟,𝑗𝑧 

Once all interdependencies among the sub-criteria have been identified, the grey-based 

pairwise comparisons should be utilized to examine the influences among sub-criteria. To examine 

the inner-dependence relations among sub-criteria of the same cluster, the same procedures for 

determining the inner-dependence weights among the main criteria (i.e., Definitions 2.2 and 2.3) 

are used. However, for the outer-dependence weights estimation, the following subsection 

describes the associated procedures. 

2.3.3.2.1 Estimate outer-dependence weights 

Definition 2.8 Let  𝑓𝑗ℎ⊗ denote a grey description function that describes grey preference relations 

between elements of a criterion 𝐶𝑖 over a sub-criterion 𝑠𝑐𝑗ℎ ∈ 𝐶𝑗, where 𝑖 ≠ 𝑗; and let ⊗ 𝑗ℎ𝑖𝑓,𝑖𝑓∗ ∈

  𝑓𝑗ℎ⊗ represent a relative grey number that articulates DMs’ verbal preference of 𝑠𝑐𝑖𝑓 ∈ 𝐶𝑖 in 

comparison to 𝑠𝑐𝑖𝑓∗ ∈ 𝐶𝑖 with respect to 𝑠𝑐𝑗ℎ. Accordingly, the grey description function 𝑓𝑗ℎ⊗ is 

  𝑓𝑗ℎ⊗ ∶ (𝐶𝑖 ×  𝐶𝑖) → 𝑅[⊗], 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (2.8) 

 ∃𝑗ℎ𝑖𝑓,𝑖𝑓∗(⨂) ↔ (𝑎𝑖𝑓,𝑗ℎ, 𝑎𝑖𝑓∗,𝑗ℎ = 1), ∀𝑓𝑗ℎ⊗(𝑠𝑐𝑖𝑓 , 𝑠𝑐𝑖𝑓∗), 𝑤ℎ𝑒𝑟𝑒 

𝑗ℎ𝑖𝑓,𝑖𝑓∗(⨂) = {
𝑗ℎ𝑖𝑓∗,𝑖𝑓(⨂)

−1 ↔ 𝑓 ≠ 𝑓 ∗

[1,1], otherwise        
 

 Once the levels of outer-dependence influences over the identified sub-criteria have been 

estimated using the grey-based pairwise comparisons approach, the outer-dependence weights 

over each sub-criterion can be established by applying eigenvector computations on the qualifying 

whitened values of the resultant grey numbers using Eq. (2.5). However, the consistence test 
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should be applied using Eq. (2.6) to assure the consistency among the resultant weights. 

Consequently, the resultant interdependence matrices are the compositions of the unweighted 

supermatrix. 

2.3.3.3 Estimate global weights of sub-criteria 

The first step to estimate global weights of sub-criteria is to evaluate the relative importance 

among sub-criteria with respect to a final decision goal. To this end, the determined unweighted 

supermatrix is weighted using the computed inner-dependence weights of the main criteria.  

Note: it is assumed that the self-influence of a main criterion is the highest, which represents 

one half of the total weight. 

Definition 2.9 Let 𝑊𝑐 denote inner-dependence weights matrix for main criteria, where 𝑊𝑖𝑗 ∈ 𝑊𝑐  

indicate the influence of 𝐶𝑖 over 𝐶𝑗; let 𝑤𝑠𝑐 represent the unweighted supermatrix, where [𝑤𝑖.,𝑗.] ⊂

𝑤𝑠𝑐  represent the interdependence unweighted matrix between the elements of 𝐶𝑖 over the elements 

of 𝐶𝑗; and let 𝑄𝑤 denote weighted supermatrix, where [𝑄𝑖.,𝑗.] ⊂ 𝑄𝑤 represent the relevant 

interdependence weighted matrix of [𝑤𝑖.,𝑗.]. The function of the weighted supermatrix is  

 𝑓: (𝑊𝑐 × 𝑤𝑠𝑐) → 𝑄𝑤 (2.9) 

∃[𝑄𝑖.,𝑗.] ∈ 𝑄𝑤,  ∀𝑓(𝑊𝑖𝑗 ∈ 𝑊𝑐 , [𝑤𝑖.,𝑗.] ∈ 𝑤𝑠𝑐) 

 Once the weighted supermatrix has been calculated, it should be normalized to obtain 

synthesized results for the elements of the weighted supermatrix. To establish the normalized 

supermatrix, the linear normalization approach is utilized: elements of each column are divided by 

the column sum.  

 Subsequently, global weights of sub-criteria can be established by obtaining the limited 

supermatrix. To this end, the normalized supermatrix should be raised to powers (i.e., 

exponentiation) until it converges into a stable matrix, where the elements of each row converge 

(Hosseini, Tavakkoli-Moghaddam, Vahdani, Mousavi, & Kia, 2013). Thus, the overall priority 
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across the identified sub-criteria can be established using the proposed Grey-based ANP (G-ANP) 

approach. 

2.3.4 Evaluate and rank feasible alternatives 

 When it comes to performance evaluations and alternatives ranking with respect to the system 

of concern, the following procedural steps are used: (1) Assess alternatives performance over the 

evaluation criteria and establish performance matrix; (2) Normalize relative performance measures 

of feasible alternatives to establish a comparison ground; (3) Evaluate preferences between 

alternatives over each criterion by measuring the deviation between the evaluations of the 

alternatives; (4) Calculate the relative preferences between alternatives across the evaluation 

criteria; (5) Estimate the global preference of each alternative using the net outranking flow 

computations, and rank available alternatives accordingly. 

2.3.4.1 Establish performance matrix 

 The system of concern involves different types of criteria (e.g., quantitative and qualitative), 

which require different assessment approaches. Moreover, the involvement of uncertainty adds to 

the complexity of the system. Accordingly, to establish the performance matrix for available 

alternatives within the context of the system at hand, each alternative should be evaluated over the 

sets of criteria. While the performance over quantitative criteria is represented in numerical values; 

the performance over qualitative criteria is articulated in linguistic expressions, in accordance with 

the judgments of the involved DMs. 

Definition 2.10 Let the set of alternatives be represented by 𝐴 =  {𝐴1, 𝐴2 , … , 𝐴𝑛}, where 𝑛 is the 

number of the feasible alternatives and 𝑡 = 1, 2… , 𝑛. Let 𝑆𝐶 =  {𝑠𝑐1, 𝑠𝑐2 , … , 𝑠𝑐𝑖𝑚} denote the set 

of evaluation criteria, where "𝑖𝑚" is the number of evaluation criteria, and 𝑔 = 1, 2… , 𝑖𝑚. Let 

𝐴 × 𝑆𝐶 be the Cartesian product of the set of alternatives and the set of criteria, and let 𝑅 [⊗] 

denote the set of grey numbers. Let 𝑦𝑡𝑔(⨂) represent the relative grey number that reflect the 

performance of an alternative 𝐴𝑡 over an evaluation criterion 𝑠𝑐𝑔; where 𝑠𝑐𝑔 is a qualitative 

criterion, or a quantitative criterion with uncertain data. Thus, the grey description function for the 

performance matrix based on the definition of  Kuang et al. (2015) would be 
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 𝑓⊗: 𝐴 ×  𝑆𝐶 → 𝑅[⊗], 𝑡ℎ𝑢𝑠 (2.10) 

∀𝑓⊗(𝐴𝑡 ∈ 𝐴, 𝑠𝑐𝑔 ∈ 𝑆𝐶): 𝑦𝑡𝑔(⨂) ∈ 𝑅[⨂] 

 Note that for performance assessment over qualitative criteria, 𝑦𝑡𝑔(⨂) articulates DMs’ verbal 

statements (i.e., linguistic expression) regarding the performance of 𝐴𝑡 over the criterion 𝑠𝑐𝑔; in 

this manuscript, the maps between linguistic expressions and grey numbers are identified in Table 

2.2. However, to measure alternatives performance over quantitative criteria where uncertainty 

exists (e.g., imperfect numerical information), 𝑦𝑡𝑔(⨂) would take its values from either a discrete 

set of values or an interval. 

2.3.4.2 Normalize performance matrix 

 Once the performance matrix has been determined, consistency among performance measures 

should be established to draw proper comparisons. To this end, a normalization process is applied 

to adjust the performance matrix, wherein the following condition should be valid (Bai, Sarkis, 

Wei, & Koh, 2012) 

 [0,0] ≤ 𝑦𝑡𝑔(⊗) ≤ [1,1] (2.11) 

 The normalization process is done in two steps: first, transform all non-grey values in the 

performance matrix into general grey numbers; second, normalize all the values. 

Definition 2.11 Let 𝑦𝑡𝑔 denote a white number that represents the performance of alternative 𝐴𝑡 on 

a quantitative criterion 𝑠𝑐𝑔, the relative grey number of the white number (𝑦𝑡𝑔) is 

                                        𝑦𝑡𝑔(⊗) = [𝑦𝑡𝑔, 𝑦𝑡𝑔] , 𝑤ℎ𝑒𝑟𝑒 𝑦𝑡𝑔 = 𝑦𝑡𝑔 = 𝑦𝑡𝑔                                      (2.12) 

 Note that although some evaluations would be expressed by interval grey numbers, a 

normalized scale over the criteria is not guaranteed. To establish a normalized scale for the 

evaluations of feasible alternatives over different types of criteria, Algorithm 2.1, which is 

explained by Definition 2.12, is proposed. 
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|

|

|

|

|

|

|

|

|

𝑖𝑓𝑔 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                              

|

|

|
𝑦𝑡𝑔(⨂̃) =

[𝑦𝑡𝑔(⊗)−𝑚𝑖𝑛(𝑦𝑘𝑔)]

[𝑚𝑎𝑥(𝑦𝑘𝑔) − 𝑚𝑖𝑛(𝑦𝑘𝑔)]

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑔 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                              

|

|
𝑦𝑡𝑔(⨂̃) =

[𝑚𝑎𝑥(𝑦𝑘𝑔) − 𝑦𝑡𝑔(⊗)]

[𝑚𝑎𝑥(𝑦𝑘𝑔) − 𝑚𝑖𝑛(𝑦𝑘𝑔)]

𝑒𝑙𝑠𝑒 𝑔 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                       

|𝑦𝑡𝑔(⨂̃) = 1 −
|𝑦𝑡𝑔(⊗)−𝑦𝑔

∗|

𝑀𝑎𝑥{𝑚𝑎𝑥(𝑦𝑘𝑔), 𝑦𝑔∗}  −  𝑀𝑖𝑛 {𝑚𝑖𝑛(𝑦𝑘𝑔), 𝑦𝑔∗}

 

Algorithm 2.1: Normalize alternatives performance based on grey systems theory. 

Definition 2.12 Let 𝑦𝑡𝑔(⊗) represent a general grey number that reflects the performance of 

alternative 𝐴𝑡 over a criterion 𝑠𝑐𝑔; let min(𝑦𝑘𝑔) and max(𝑦𝑘𝑔) denote the lower and upper bounds 

of 𝑦𝑡𝑔(⊗), respectively. Let 𝑦𝑔
∗ represent a given optimal performance value over a targeted 

criterion 𝑠𝑐𝑔. Let ⊗ �̃�𝑡𝑔 denote the relative normalized value of the general grey number 𝑦𝑡𝑔(⊗), 

such that 𝑦𝑡𝑔(⨂̃) is determined based on criteria type, i.e., increasing, decreasing, and targeted. 

2.3.4.3 Establish preference matrix 

 The differences of performance measures explain the preferences between feasible 

alternatives. Thus, the larger the difference, the larger the preference is. In order to establish the 

preference matrix, the deviation between the evaluations of the feasible alternatives on each 

criterion should be determined, based on the definition of Xu and Da (2002). 

Definition 2.13 Let 𝑦𝑎𝑔(⨂̃) = [�̃�𝑎𝑔, �̃�𝑎𝑔] and 𝑦𝑏𝑔(⨂̃) = [�̃�𝑏𝑔, �̃�𝑏𝑔] represent general grey 

numbers that reflect the normalized performance values of alternatives 𝐴𝑎 and 𝐴𝑏 over 𝑠𝑐𝑔, 

respectively. Let 𝑙𝑎𝑔 and 𝑙𝑏𝑔 denote the difference between the upper and lower limits of 𝑦𝑎𝑔(⨂̃) 

and 𝑦𝑏𝑔(⨂̃) , respectively, such that  

              𝑙𝑎𝑔 = �̃�𝑎𝑔 − �̃�𝑎𝑔                                                             (2.13) 

         𝑙𝑏𝑔 = �̃�
𝑏𝑔
− �̃�𝑏𝑔 
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Definition 2.14 Let �̃�𝑔(𝐴𝑎, 𝐴𝑏) denote the deviation between the performance of alternative 𝐴𝑎 

with respect to the performance of alternative 𝐴𝑏 over sub-criterion 𝑠𝑐𝑔, in which the function to 

obtain the deviation can be defined as 

           �̃�𝑔(𝐴𝑎, 𝐴𝑏) =
�̃�𝑎𝑔−�̃�𝑏𝑔

𝑙𝑎𝑔+𝑙𝑏𝑔
                                             (2.14) 

 Once the deviation between the evaluations of feasible alternatives over each of the evaluation 

criteria have been determined, preference degrees can be established as follows. 

Definition 2.15 Let �̃�𝑔(𝐴𝑎, 𝐴𝑏) represent the preference degree of alternative 𝐴𝑎 over 𝐴𝑏 with 

respect to 𝑠𝑐𝑔. Let the degree of preference vary between 0 and 1, where 0 indicates no preference 

and 1 indicates full preference, such that (Kuang et al., 2015) 

 �̃�𝑔(𝐴𝑎, 𝐴𝑏) = {

0,                           �̃�𝑔(𝐴𝑎, 𝐴𝑏) ≤ 0

�̃�𝑔(𝐴𝑎, 𝐴𝑏), 0 < �̃�𝑔(𝐴𝑎, 𝐴𝑏) < 1

1,                            �̃�𝑔(𝐴𝑎, 𝐴𝑏) ≥ 1

 (2.15) 

2.3.4.4 Determine relative preference matrix 

 To determine the overall preferences between alternatives with respect to the given system, the 

overall priority across the identified sets of the evaluation criteria (i.e., global weights) should be 

considered. 

Definition 2.16 Let �̃�(𝐴𝑎, 𝐴𝑏) denote the relative preference of alternative 𝐴𝑎 over 𝐴𝑏 across the 

set of evaluation criteria 𝑆𝐶, where 𝑆𝐶 =  {𝑠𝑐1, 𝑠𝑐2 , … , 𝑠𝑐𝑖𝑚}. Let the global weight of each 

criterion be represented by 𝑤𝑔, where ∑ 𝑤𝑔 = 1𝑖𝑚
𝑔=1 , 𝑔 = 1, 2… , 𝑖𝑚, and 𝑖𝑚 is the number of 

evaluation criteria. Accordingly, the relative preference of 𝐴𝑎 over 𝐴𝑏 can be calculated using the 

following function (Kuang et al., 2015). 

 �̃�(𝐴𝑎, 𝐴𝑏) =∑ 𝑤𝑔 �̃�𝑔(𝐴𝑎, 𝐴𝑏)
𝑖𝑚

𝑔=1
, 𝑤ℎ𝑒𝑟𝑒 𝑔 = (1, 2, … , 𝑖𝑚)  (2.16) 
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2.3.4.5 Estimate global preferences and rank available alternatives 

 Once the relative preferences have been determined for each pair of alternatives, the global 

preference among feasible alternatives can be estimated. To this end, the net outranking flow 

should be calculated using the outranking flows measures, which determine the superiority (i.e., 

positive outranking flow) and inferiority (i.e., negative outranking flow) levels of a given 

alternative over others. 

Definition 2.17 Let �̃�+(𝐴𝑎) denote the positive outranking flow of alterative 𝐴𝑎, which indicates 

the preference of 𝐴𝑎 over all other alternatives. Let �̃� (𝐴𝑎, 𝐴𝑏) represent the extent to which 

alternative 𝐴𝑎 is preferred over 𝐴𝑏. The positive outranking flow can be defined as (Kuang et al., 

2015) 

 �̃�+(𝐴𝑎) =  
1

𝑛−1
∑ �̃�(𝐴𝑎, 𝐴𝑏), 𝑎 ≠ 𝑏 
𝑛
𝑏=1   (2.17) 

Definition 2.18 Let �̃�−(𝐴𝑎) represent the negative outranking flow of alterative 𝐴𝑎, which 

indicates the preference of other alternatives over 𝐴𝑎. Let �̃�(𝐴𝑏 , 𝐴𝑎) represent the extent to which 

alternative 𝐴𝑎 is outranked by 𝐴𝑏. The function to obtain �̃�−(𝐴𝑎) can be written as (Kuang et al., 

2015) 

 �̃�−(𝐴𝑎) =  
1

𝑛−1
∑ �̃�(𝐴𝑏 , 𝐴𝑎), 𝑎 ≠ 𝑏 
𝑛
𝑏=1  (2.18) 

Definition 2.19 Let �̃� (𝐴𝑎) denote the global preference (i.e., net outranking flow) of 

alternative 𝐴𝑎, which can be obtained by measuring the difference between �̃�+(𝐴𝑎) and �̃�−(𝐴𝑎). 

Thus, �̃� (𝐴𝑎) can be determined as follows (Kuang et al., 2015): 

 �̃� (𝐴𝑎) =  �̃�
+ (𝐴𝑎) − �̃�

− (𝐴𝑎) (2.19) 

 Once the net outranking flow has been estimated for all feasible alternatives, a complete 

ranking index can be established based on the values of global preferences, wherein the higher the 

value of �̃� (𝐴𝑎), the better is the alternative. Thus, the best alternative is the one with the highest 

global preference value. 
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2.4 Case illustration of strategic decision making at the front end innovation for a small to 

medium-sized enterprise within the Canadian quaternary sector 

 The given company is suffering from a low level of formalization, when it comes to making 

strategic decisions with respect to innovation activities, which would jeopardize innovation 

success. Consequently, the company is looking for a more systematic approach to identify, 

characterize, evaluate, and respond better to potential opportunities for innovation. The proposed 

methodology would be implemented on the framework of the case to bridge deficiencies of the 

current process, thereby enhancing DMs’ abilities in making strategic decisions. 

 In this case study, three different innovation projects have been reported for study. Abductive 

reasoning has been utilized to provide reasonable explanations about the different components of 

the problem at hand, and the existing interrelationships among evaluation criteria. 

 In order to establish a coherent understanding about the current practice of the Front End 

Innovation (FEI) within the firm, a triangulation technique has been used, which increases the 

validity of the data (Schweizer, 2015). The three different techniques for data collection process 

were semi-structured interviews (e.g., senior managers, systems engineers, and marketing 

personnel); on site observations to gain first-hand knowledge on innovation activities for the 

company; and reviewing the available archival data, including internal norms and strategies 

relevant to the innovation process. 

2.4.1 Structure and model the decision problem 

 The first step of the proposed methodology is to formulate the decision problem. To this end, 

the different components of the decision problem (i.e., alternatives, criteria, and sub-criteria) 

should be identified. Afterwards, essential connections among the evaluation criteria would be 

modeled. 

2.4.1.1 Identify feasible alternatives 

 As mentioned earlier, three innovation projects have been reported for the study, each of which 

aims to create a competitive advantage for the company. However, each project has different set 

of characteristics, which would make a difference in the evaluation process. 
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 To differentiate between the potential alternatives, the type of the relative innovation strategy 

would be considered. Thus, the potential alternatives are alternative 1 (A1): Radical 

Diversification; alternative 2 (A2): Market Development; and alternative 3 (A3): Product / Service 

Development. 

2.4.1.2 Establish evaluation criteria  

 In this study, the evaluation aspects for the decision problem at hand have been established 

based on the knowledge acquired from the case study and by building on the literature of the 

relevant subject matter. Four main sets of criteria are proposed to evaluate feasible alternatives 

from different perspectives. Table 2.5 shows the main criteria and the associated sub-criteria with 

a brief description for each sub-criterion. 

2.4.1.3 Establish various types of links and model the problem 

 To illustrate the different types of connections within the system of concern, a network 

structure model has been utilized to demonstrate the general framework of the existing 

interrelationships within and between the different evaluation clusters, as shown in Figure 2.3. 

However, the influence matrix has been used to give the detailed view of the interdependencies 

between the sub-criteria, as shown in Table 2.6; where 1 indicates the presence of influence 

relation between the associated pair of sub-criteria. 

2.4.2 Establish grey linguistic scales 

 The system at hand is regarded as a complex system under uncertainty. The complexity of the 

decision problem could be handled by conventional MCDA approaches. However, the involved 

uncertainty, due to the nature of FEI (e.g., limited input data), would limit the outcomes of using 

MCDA solely. Therefore, the proposed methodology integrates grey systems theory with ANP 

and PROMETHEE II to overcome the uncertainty-related aspects as follows: firstly, grey systems 

theory would be utilized along with the principles of ANP to establish the set of weights for 

evaluation criteria with respect to the system of concern; secondly, grey systems theory would be 

integrated with PROMETHEE II to help measuring the performance of the alternatives over the 

evaluation criteria that involve uncertain evaluations. 



32 
 

Table 2.5: Evaluation criteria. 

Evaluation Criteria Description Reference 

Market (C1) 

Market insight (M1) 

(sc11) 

Market related knowledge (e.g., ability to 

discover unfulfilled needs). 
(Reid & Brentani, 2015) 

Growth rate (M2) 

(sc12) 

Potential increases in a market size (i.e., 

demand growth). 

(Baker, Grinstein, & 

Harmancioglu, 2016) 

Competitive degree 

(M3) (sc13) 

Competition level indicator in a given 

market. 

(Mendi & Costamagna, 

2017) 

Technology (C2) 

Sustainable competitive 

advantage (T1) (sc21) 

Ability to sustain advantage(s) over 

competitors. 

(Saeidi, Sofian, Saeidi, 

Saeidi, & Saaeidi, 2015) 

Specification fuzziness 

(T2) (sc22) 

Lack of clarity with respect to process 

functions, technical specifications, or 

technical requirements. 

(Moos, Beimborn, 

Wagner, & Weitzel, 

2013) 

Financial (C3) 

Revenue stream (F1) 

(sc31) 

Potential earning from a given 

investment. 

(Gebauer, Worch, & 

Truffer, 2012) 

Cost structure (F2) 

(sc32) 
Delivery cost estimation. 

(Onetti, Zucchella, 

Jones, & McDougall-

Covin, 2012) Potential sources of 

funding (F3) (sc33) 

Potential sources of funding (e.g., R&D 

subsidy). 

(Bronzini & Piselli, 

2016) 

Organizational (C4) 

Familiarity with 

targeted market (O1) 

(sc41) 

Level of familiarity with a targeted 

market: new market, adjacent, or existing 

market. 

(Tzokas, Ah, Akbar, & 

Al-dajani, 2015) 

Current development 

capability (O2) (sc42) 

e.g., technological capability, whether the 

targeted innovation project is fully 

applicable, require significant adaptation, 

or not applicable. 

(Martín-de Castro, 

2015) 
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Figure 2.3: Network structure of the evaluation criteria within the context of FEI. 

Table 2.6: Interdependencies between sub-criteria. 

Sub criteria M1 M2 M3 T1 T2 F1 F2 F3 O1 O2 

M1 0 1 1 1 1 1 1 1 1 1 

M2 1 0 1 1 1 1 1 1 1 1 

M3 1 1 0 1 1 1 1 1 1 1 

T1 0 1 1 0 1 1 1 1 1 1 

T2 1 1 1 1 0 1 1 1 1 1 

F1 1 1 1 1 1 0 1 1 1 1 

F2 1 1 1 1 1 1 0 1 1 1 

F3 1 1 1 1 1 1 1 0 1 1 

O1 1 1 1 1 1 1 1 1 0 1 

O2 1 1 1 1 1 1 1 1 1 0 
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 In this case study, the type of the decision problem is considered as single participant-multiple 

criteria, which is the general case for MCDA. To express preferences of the involved DMs 

regarding the evaluation criteria, Table 2.1 has been utilized. When it comes to the performance 

evaluation stage, Table 2.2 has been applied to assess the performance of prospective projects over 

qualitative measures. 

2.4.3 Establish the priority level across criteria 

 After identifying the different components of the system of concern and modeling substantial 

connections within the FEI, the next step is to establish the level of importance among the 

evaluation criteria by estimating the weights of each criterion. To this end, different types of 

interdependencies among evaluation criteria would be considered and analyzed using the proposed 

G-ANP approach. 

2.4.3.1 Determine inner-dependence weights among main criteria 

 Interdependence weights among the main criteria (i.e., market, technology, financial, and 

organizational) are estimated by analyzing the influence of each criterion on other criteria, using 

the linguistic expressions and the relative grey numbers in Table 2.1 in accordance with Eq. (2.3) 

of the proposed methodology. Table 2.7 shows the grey-based pairwise comparison matrix 

between the main criteria with respect to Market factor, which represents the control criterion of 

this matrix. 

Table 2.7: Inner-dependencies among main criteria with respect to Market. 

Market Technical Financial Organizational 

Technical [1, 1] [1, 2] [3/2, 5/2] 

Financial [1/2, 1] [1, 1] [1, 2] 

Organizational [2/5, 2/3] [1/2, 1] [1, 1] 

 Once all the inner-dependence relations among criteria have been established, the grey values 

would be transformed into fixed numbers (Table 2.8), using the whitenization process, Eq. (2.5), 

to estimate relative inner-dependencies through eigenvector computations. 
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Table 2.8: Inner-dependence weights matrix of the main criteria. 

Main Criteria Market Technical Financial Organizational 

Market 1 0.2268 0.5111 0.3527 

Technical 0.4480 1 0.3067 0.4442 

Financial 0.3232 0.4872 1 0.2031 

Organizational 0.2289 0.2860 0.1821 1 

2.4.3.2 Examine interdependence weights among sub-criteria 

 The complex interdependencies (i.e., inner-dependencies and outer-dependencies) among the 

identified sub-criteria have been examined according to section 2.3.3.2 of the proposed 

methodology. Note that Table 2.1 has been used to articulate DMs’ preferences between the sub-

criteria. 

 As mentioned in section 2.3.3.2, the estimated priority matrices, which demonstrate the level 

of influence among the identified sub-criteria, are the compositions of the unweighted supermatrix 

(Table 2.9). Note that the shaded areas of Table 2.9 represent the inner-dependence weights among 

sub-criteria of the same cluster. 

2.4.3.3 Estimate global weights of sub-criteria 

 To estimate the relative importance of each sub-criterion with respect to the decision problem 

at hand, the constructed unweighted supermatrix has been weighted, as shown in Table 2.10, in 

accordance with Eq. (2.9) using the computed inner-dependence weights matrix of the main 

criteria (Table 2.8). 

Accordingly, each element of the unweighted supermatrix (Table 2.9) is multiplied with the 

associated element in Table 2.8. For example, the influence of “competitive degree” (M3), which 

is a sub-criterion of “Market” (C1) cluster; on “sustainable competitive advantage” (F1), which is 

a sub-criterion of “Technology” (C2) cluster, is 0.2268. However, the associated inner-dependence 

weight in Table 2.8 is 0.4833. Consequently, the relevant value within the weighted supermatrix 

would be 0.1096.  
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Table 2.9: Supermatrix. 

Sub 

criteria 
M1 M2 M3 T1 T2 F1 F2 F3 O1 O2 

M1 0 0.5857 0.3406 0.2289 0.2289 0.4442 0.2289 0.2860 0.3232 0.2860 

M2 0.6594 0 0.6594 0.4480 0.4480 0.3527 0.4480 0.4872 0.4480 0.4872 

M3 0.3406 0.4143 0 0.3232 0.3232 0.2031 0.3232 0.2268 0.2289 0.2268 

T1 0 0.4143 0.3406 0 1 0.5857 0.3406 0.5857 0.3406 0.3406 

T2 1 0.5857 0.6594 1 0 0.4143 0.6594 0.4143 0.6594 0.6594 

F1 0.4442 0.4480 0.4872 0.4872 0.4872 0 0.5857 0.6594 0.4872 0.4872 

F2 0.3527 0.3232 0.2860 0.2860 0.2860 0.4143 0 0.3406 0.2268 0.2860 

F3 0.2031 0.2289 0.2268 0.2268 0.2268 0.5857 0.4143 0 0.2860 0.2268 

O1 0.4143 0.4143 0.3810 0.4143 0.2899 0.3406 0.3406 0.4143 0 1 

O2 0.5857 0.5857 0.6190 0.5857 0.7101 0.6594 0.6594 0.5857 1 0 

  

In order to determine the global weights, the elements of the weighted supermatrix results 

(Table 2.10) have been normalized to obtain synthesized results. Subsequently, the global weights 

of the sub-criteria can be obtained by raising the normalized supermatrix to powers until it 

converges into a stable matrix (i.e., the limited supermatrix). In this study, the limited supermatrix 

has been achieved at [�̃�𝑤 ]
15

. As a result, the global weights of the sub-criteria are: M1 (0.0842), 

M2 (0.1095), M3 (0.0714), T1 (0.1282), T2 (0.1551), F1 (0.11), F2 (0.0745), F3 (0.0776), O1 

(0.0865), and O2 (0.103). 

2.4.4 Evaluate and rank feasible alternatives 

 Once the evaluation criteria have been analyzed, feasible alternatives can be ranked. The 

detailed procedure is explained in the following subsections. 
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Table 2.10: Weighted supermatrix. 

Sub 

criteria 
M1 M2 M3 T1 T2 F1 F2 F3 O1 O2 

M1 0 0.5857 0.3406 0.0519 0.0519 0.2270 0.1170 0.1462 0.1140 0.1009 

M2 0.6594 0 0.6594 0.1016 0.1016 0.1803 0.2290 0.2490 0.1580 0.1718 

M3 0.3406 0.4143 0 0.0733 0.0733 0.1038 0.1652 0.1159 0.0807 0.0800 

T1 0 0.1856 0.1526 0 1 0.1797 0.1045 0.1797 0.1513 0.1513 

T2 0.4480 0.2624 0.2954 1 0 0.1271 0.2023 0.1271 0.2929 0.2929 

F1 0.1435 0.1448 0.1575 0.2374 0.2374 0 0.5857 0.6594 0.0990 0.0990 

F2 0.1140 0.1044 0.0924 0.1394 0.1394 0.4143 0 0.3406 0.0461 0.0581 

F3 0.0656 0.0740 0.0733 0.1105 0.1105 0.5857 0.4143 0 0.0581 0.0461 

O1 0.0948 0.0948 0.0872 0.1185 0.0829 0.0620 0.0620 0.0755 0 1 

O2 0.1340 0.1340 0.1417 0.1675 0.2031 0.1201 0.1201 0.1067 1 0 

2.4.4.1 Establish performance matrix 

 To evaluate feasible alternatives, the performance of each alternative should be assessed across 

the evaluation criteria. Different types of criteria are involved in the decision problem at hand, i.e., 

quantitative and qualitative criteria, in which the sub-elements of the financial cluster (i.e., revenue 

stream, cost structure, and potential sources of funding) are quantitative, while all others are 

qualitative.  

 Due to the presence of uncertainty within the context of FEI, grey numbers have been used to 

express the performance of feasible alternatives in which the performance over the quantitative 

sub-criteria has been estimated using intervals, while the performance over the qualitative sub-

criteria has been evaluated based on DMs’ verbal judgments using the linguistic expressions and 

the grey numbers in Table 2.2. Alternatives’ performances over the qualitative and quantitative 

criteria are presented in Table 2.11 and Table 2.12, respectively. Note that the performance 

estimations over the quantitative criteria are in thousands. 
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Table 2.11: Evaluation of potential innovation projects on qualitative criteria. 

Performance matrix Alternatives 

Qualitative criteria A1 A2 A3 

Market insight (M1) L MM M 

Growth rate (M2) H LM MM 

Competitive degree (M3) L LM M 

Sustainable competitive advantage (T1) H M MM 

Specification fuzziness (T2) MM LM M 

Familiarity with targeted market (O1) L MM LM 

Current development capability (O2) L H LM 

Table 2.12: Evaluation of potential innovation projects on quantitative criteria. 

Performance matrix Alternatives 

Quantitative criteria A1 A2 A3 

Revenue stream (F1) [150, 350] [70, 200] [85, 250] 

Cost structure (F2) [45, 60] [15, 25] [35, 50] 

Potential sources of funding (F3) [20, 40] [5, 10] [10, 25] 

2.4.4.2 Normalized performance matrix 

 To assure consistency over the preference evaluation process, the resultant performance 

matrices have been normalized using Algorithm 2.1. The normalized performance matrix is shown 

in Table 2.13. 
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Table 2.13: Normalized Performance matrix.  

Performance matrix Alternatives 

Qualitative criteria A1 A2 A3 

Market insight (M1) [0, 0.25] [0.75, 1] [0.5, 0.75] 

Growth rate (M2) [0.75, 1] [0, 0.25] [0.5, 0.75] 

Competitive degree (M3) [0.67, 1] [0.33, 0.67] [0, 0.33] 

Sustainable competitive advantage (T1) [0.67, 1] [0, 0.33] [0.33, 0.67] 

Specification fuzziness (T2) [0, 0.33] [0.67, 1] [0.33, 0.67] 

Familiarity with targeted market (O1) [0, 25] [0.75, 1] [0.25, 0.5] 

Current development capability (O2) [0, 2] [0.8, 1] [0.2, 0.4] 

Revenue stream (F1) [0.286, 1] [0, 0.464] [0.054, 0.643] 

Cost structure (F2) [0, 0.333] [0.778, 1] [0.222, 0.556] 

Potential sources of funding (F3) [0.429, 1] [0, 0.143] [0.143, 0.571] 

2.4.4.3 Establish preference matrix 

 To establish the preference degree between the prospective projects, the deviation between the 

evaluations of potential alternatives over each criterion has been evaluated using Eq. (2.14). 

Afterwards, the preference degree between the projects over each criterion has been estimated in 

accordance with Eq. (2.15). Accordingly, the resultant preferences of A1 over other alternatives 

are shown in Table 2.14. 

2.4.4.4 Determine relative preference matrix 

 To determine the overall preferences between the prospective projects, the relative preferences 

between the projects should be determined by weighting the resultant preference measures (Table 

2.14) using the global weights of the evaluation criteria in accordance with Eq. (2.16). 

Accordingly, the relative preference measures between alternatives are depicted in Table 2.15. 
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Table 2.14: Multi-criteria preference matrix of A1. 

Multi-criteria preference matrix Alternatives 

Alternative Criteria A1 A2 A3 

 

 

 

A1 

 

 

 

 

Market insight (M1) 0.5 0 0 

Growth rate (M2) 0.5 1 1 

Competitive degree (M3) 0.5 1 1 

Sustainable competitive advantage (T1) 0.5 1 1 

Specification fuzziness (T2) 0.5 0 0 

Familiarity with targeted market (O1) 0.5 0 0 

Current development capability (O2) 0.5 0 0 

Revenue stream (F1) 0.5 0.8485 0.726 

Cost structure (F2) 0.5 0 0.1667 

Potential sources of funding (F3) 0.5 1 0.8571 

Table 2.15: Relative preference matrix. 

Alternatives A1 A2 A3 

A1 0.5 0.48 0.4679 

A2 0.52 0.5 0.6176 

A3 0.5321 0.3824 0.5 

2.4.4.5 Estimate global preferences and rank feasible alternatives 

 To prioritize the prospective projects, the global preference measures should be established in 

accordance with Eqs. (2.17), (2.18), and (2.19). Table 2.16 presents: outflows (positive outranking 

flow), inflows (negative outranking flow), and the net-flows (global preferences). Consequently, 

the three projects have been ranked based on the resultant net outranking flows, wherein the higher 
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the value of the net-flow, the better is the alternative. Thus, A2 is the most preferred project and 

the ranking order of the prospective innovation projects according to the proposed methodology is 

A2 ≻ A1 ≻ A3. 

Table 2.16: Global preference matrix - Outranking flows computations. 

Outranking flows 

Alternatives 

A1 A2 A3 

Outflow 0.7240 0.8188 0.7073 

Inflow 0.7760 0.6812 0.7927 

Net flow -0.0521 0.1375 -0.0855 

2.5 Comparative Analysis 

 To validate the proposed methodology, an existing case study in the literature is used. The case 

study is taken from the work of Kuo, Hsu, and Chen (2015), where a framework has been 

developed, by integrating fuzzy ANP and fuzzy TOPSIS approaches, to evaluate carbon 

performance of suppliers. Table 2.17 shows the grey paired comparison matrix between criteria 

(dimensions), and the estimated weights. The main criteria are: Organizational management (C1); 

Process management (C2); Procurement management (C3); R&D management (C4). Table 2.18 

illustrates the estimated criteria weights using both methodologies, by looking at the results, the 

proposed methodology reflects similar priority order among the criteria. 

Table 2.17: Grey paired comparison matrix between dimensions. 

Main Criteria C1 C2 C3 C4 

C1 [1,1] [1,3] [3,5] [6,8] 

C2 [4,6] [1,1] [1,3] [4,6] 

C3 [0.2,0.333] [0.333,1] [1,1] [2,4] 

C4 [0.125,0.167] [0.167,0.25] [0.25,0.5] [1,1] 
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Table 2.18: Criteria weights of the proposed methodology and the existing methodology. 

Criteria 

Proposed methodology 

Grey ANP – Grey 

PROMETHEEII 

Kuo et al., (2015) 

Fuzzy ANP - Fuzzy 

TOPSIS 

Organizational management (c1) 0.413 0.494 

Process management (c2) 0.405 0.272 

Procurement management (c3) 0.134 0.141 

R&D management (c4) 0.047 0.099 

 Due to the shortage of provided data with respect to sub-criteria in the case study, the final 

weights of the sub-criteria, which is provided in the existing research, will be considered for 

evaluating the performance of potential suppliers (Sn, where n=1, 2, ...7) using the extended grey 

PROMETHEE II methodology. Table 2.19 demonstrates the sub-criteria and the associated 

weights. The grey decision matrix for suppliers’ performance evaluations over the sub-criteria is 

demonstrated in Table 2.20. 

 By utilizing alternatives evaluation procedures of the proposed methodology and the sub-

criteria weights in Table 2.19, the overall preferences between alternatives are reflected in Table 

2.21. Accordingly, the global preferences among alternatives are demonstrated in Table 2.22, in 

which S1 is the most preferred supplier, and the ranking order of the potential suppliers is S1 ≻ S4 

≻ S2 ≻ S3 ≻ S7 ≻ S6 ≻ S5, which is similar to the ranking order of the exiting methodology. 

Although both methodologies provide the same conclusion in this example, yet grey systems 

theory is more suitable for decision problems with a relatively small amount of data and poor 

information, which cannot be described by a probability distribution; as it offers simpler procedure, 

which does not require a robust membership function as in fuzzy theory (Memon et al., 2015). 

Moreover, PROMETHEE II is considered simple and easily comprehensible approach in 

comparison to other MCDM approaches, including TOPSIS (Maity & Chakraborty, 2015). 

Furthermore, it has been mentioned that the use of Euclidean distance in TOPSIS does not account 

for the correlation of attributes (Velasquez & Hester, 2013; P. Wang, Li, Wang, & Zhu, 2015), 
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which influences the evaluation process of decision problems where correlations among criteria 

(attributes) exist. 

Table 2.19: Sub-criteria weights. 

Sub-criteria Weights 

Carbon governance (sc1) 0.229 

Carbon policy (sc2) 0.188 

Carbon reduction targets (sc3) 0.174 

GHG verification (ISO 14064) (sc4) 0.003 

Risk assessment for low carbon requirement (sc5) 0.125 

Training-related carbon management (sc6) 0.073 

Availability and use of low carbon technologies (sc7) 0.015 

Energy efficiency (sc8) 0.014 

Measures of carbon reduction (sc9) 0.018 

Availability of a carbon supplier selection system (sc10) 0.070 

Requirement of low carbon purchasing (sc11) 0.052 

Capability of low carbon design of product (sc12) 0.029 

Inventory of carbon footprint of product (sc13) 0.009 
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Table 2.20: Grey decision matrix of supplier selection. 

Sub 

criteria 
S1 S2 S3 S4 S5 S6 S7 

sc1 
[6.35, 

8.36] 

[4.98, 

7.03] 

[4.70, 

6.87] 

[6.20, 

8.25] 

[3.56, 

5.72] 

[4.09, 

6.35] 

[3.56, 

8.36] 

sc2 
[6.73, 

8.74] 

[5.72, 

7.79] 

[5.10, 

7.13] 

[5.86, 

7.89] 

[3.56, 

5.72] 

[3.77, 

5.86] 

[4.44, 

6.57] 

sc3 
[5.10, 

7.28] 

[4.70, 

6.87] 

[4.98, 

7.03] 

[5.86, 

7.89] 

[3.56, 

5.72] 

[3.77, 

5.86] 

[5.72, 

7.79] 

sc4 
[6.20, 

8.25] 

[6.20, 

8.25] 

[5.86, 

7.89] 

[6.73, 

8.74] 

[4.98, 

7.03] 

[4.7, 

6.73] 

[5.27, 

7.36] 

sc5 
[6.00, 

8.00] 

[4.33, 

6.35] 

[4.09, 

6.20] 

[5.10, 

7.13] 

[3.28, 

5.40] 

[2.49, 

4.59] 

[3.10, 

5.27] 

sc6 
[4.09, 

6.20] 

[4.33, 

6.49] 

[3.28, 

5.40] 

[4.70, 

6.87] 

[3.28, 

5.40] 

[2.49, 

4.59] 

[3.10, 

5.27] 

sc7 
[6.00, 

8.00] 

[5.40, 

7.45] 

[4.44, 

6.57] 

[5.53, 

7.55] 

[3.56, 

5.72] 

[4.09, 

6.20] 

[4.70, 

6.73] 

sc8 
[6.20, 

8.25] 

[4.70, 

6.73] 

[6.00, 

8.00] 

[5.40, 

7.45] 

[3.28, 

5.40] 

[3.28, 

4.44] 

[4.33, 

6.49] 

sc9 
[6.20, 

8.25] 

[5.10, 

7.13] 

[5.53, 

7.55] 

[5.86, 

7.89] 

[4.33, 

6.35] 

[4.09, 

6.20] 

[5.53, 

7.55] 

sc10 
[4.09, 

6.20] 

[3.48, 

5.53] 

[3.10, 

5.27] 

[3.56, 

5.72] 

[2.00, 

3.28] 

[2.29, 

3.56] 

[2.63, 

4.70] 

sc11 
[4.33, 

6.35] 

[4.98, 

7.03] 

[3.48, 

5.53] 

[4.70, 

6.73] 

[3.03, 

5.10] 

[3.48, 

5.53] 

[4.00, 

4.00] 

sc12 
[5.10, 

7.13] 

[4.70, 

6.87] 

[5.53, 

7.55] 

[5.56, 

7.89] 

[3.56, 

5.72] 

[3.03, 

5.10] 

[5.53, 

7.55] 

sc13 
[6.57, 

8.63] 

[4.98, 

7.18] 

[5.53, 

7.55] 

[6.35, 

8.36] 

[3.56, 

5.72] 

[4.09, 

6.20] 

[5.10, 

7.13] 
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Table 2.21: Relative preference matrix. 

Alternatives S1 S2 S3 S4 S5 S6 S7 

S1 0.500 0.704 0.774 0.541 0.936 0.943 0.808 

S2 0.295 0.500 0.571 0.337 0.876 0.840 0.614 

S3 0.225 0.428 0.500 0.265 0.802 0.760 0.540 

S4 0.458 0.662 0.734 0.500 0.978 0.985 0.777 

S5 0.063 0.123 0.197 0.021 0.500 0.470 0.240 

S6 0.056 0.159 0.239 0.014 0.529 0.500 0.278 

S7 0.191 0.385 0.459 0.222 0.759 0.721 0.500 

Table 2.22: Global preference matrix - Outranking flows computations. 

Outranking 

flows 

Alternatives 

S1 S2 S3 S4 S5 S6 S7 

Outflow 0.868 0.672 0.587 0.849 0.269 0.296 0.540 

Inflow 0.298 0.494 0.579 0.317 0.897 0.870 0.626 

Net flow 0.569 0.179 0.008 0.532 -0.628 -0.574 -0.086 

2.6 Conclusion 

 Although different methods are used to handle uncertainty-related aspects (i.e., subjective and 

objective uncertainty), grey systems theory is preferred when it comes to decision problems with 

a relatively small amount of data and poor information, which cannot be described by a probability 

distribution. Different researchers proposed grey systems theory to deal with uncertainty in 

decision problems. However, a number of shortcomings has been observed in the existing 

approaches with respect to the influence of the interdependencies among the evaluation criteria of 

different clusters on the evaluation process. As a result, a new hybrid grey-based MCDA approach 

is developed to better handle complex decision problems that are subject to different types of 
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interrelated criteria (i.e., evaluation criteria with different nature, different scales, and different 

values) and different types of uncertainty-related aspects. The intended purpose of integrating the 

grey systems theory with a distinctive combinations of MCDA approaches (i.e., ANP and 

PROMETHEE II) is to optimize the evaluation space in such a complex system under uncertainty 

by utilizing the emergent strengths of the integrated approach: the mathematical ability and the 

associated simplicity of PROMETHEE II in providing a complete ranking of feasible alternatives 

over different types of criteria (i.e., quantitative and qualitative); the superiority of ANP in 

establishing priorities among evaluation criteria within complex systems; and the distinctive ability 

of the grey systems theory in handling problems with a relatively small amount of data and poor 

information, which cannot be described by a probability distribution. 

 The proposed methodology is capable of establishing priorities among complex interrelated 

criteria and account for the uncertainty of subjective judgments by combining linguistic 

expressions, grey systems theory, and principles of ANP. Furthermore, it extends the 

PROMETHEE II methodology to define optimal ranking among potential alternatives in such a 

complicated decision problem using a combination of linguistic expressions to articulate human 

judgments over subjective evaluations; grey systems theory to map linguistic expressions, to deal 

with subjective and objective uncertainty, and to normalize performance measures over different 

types of criteria; and the proposed G-ANP approach to establish relative preferences among 

alternatives over interrelated criteria. Future work is needed to extend the applicability of the 

proposed methodology for more complicated cases of MCDA; In particular, MCDA with multi-

participants where consensus cannot be reached. 

 The viability and the effectiveness of the proposed methodology have been proven through an 

illustrative case study, in which the process of strategic decision making with respect to innovation 

activities was the target to improve.  

 Finally, to validate the proposed methodology, an existing case study has been used, and a 

comparative analysis with an existing hybrid approach (i.e., fuzzy ANP and fuzzy TOPSIS) has 

been established. 
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Chapter 3 

Multi-Criteria Decision-Making Problems with Unknown 

Weight Information under Uncertain Evaluations 

Abstract 

Generally, the overall evaluation of a multi-criteria decision making (MCDM) problem is based 

on alternatives evaluations over a set of criteria and the weights of the criteria. However, in cases 

where the criteria weights are unknown, the overall evaluations cannot be derived. Therefore, 

several methods have been proposed to handle such MCDM problems. Nevertheless, there exist 

MCDM problems with small amount of data and poor information, which cannot be described by 

a probability distribution. In such MCDM problems, the applicability of existing approaches would 

be influenced. Accordingly, this manuscript investigates this type of MCDM problems with small 

amount of data and poor information, where information on criteria weights is unknown. To this 

end, a new hybrid MCDM is proposed; in which the unknown criteria weights are estimated using 

the maximizing deviation method with grey systems theory’s principles. Consequently, potential 

alternatives are evaluated and ranked by integrating degrees of possibility and PROMETHEE II. 

To show the feasibility and practicability of the proposed methodology an example is provided 

and to validate the methodology, a comparative analysis with an existing approach is performed. 
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3.1 Introduction 

Multi-Criteria Decision Making (MCDM) is widely recognized for dealing with the evaluation 

of alternatives with respect to multiple criteria. Different approaches of MCDM exist to handle 

different types of multi criteria decision problems. A critical step in the selection of the proper 

approach is to understand the nature of the decision problem (Wątróbski & Jankowski, 2016). 

Accordingly, these approaches can be classified into three main categories (Belton & Stewart, 

2002):  

(1) Value measurement models, where the utility value of each alternative is evaluated based on 

the overall performance over evaluation criteria. Examples of models within this category are: 

Analytic Hierarchy Process (AHP), Multi-Attribute Utility Theory (MAUT), and Weighted 

average approach. 

(2) Goal, aspiration, or reference-level models, where alternatives are evaluated with respect to 

a targeted level of performance over a particular goal, aspiration, or reference levels. Among 

these models are: Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

and Vlsekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR). 

(3) Outranking methods, where alternatives are ranked based on the aggregated comparisons 

results of their evaluations over a set of criteria. Outranking methods include ELimination and 

Choice Expressing REality (ELECTRE) and Preference Ranking Organization METHod for 

Enrichment Evaluations (PROMETHEE) family of methods. 

Despite the ability of conventional MCDM approaches in handling complex decision problems 

(i.e., decision problems that involve different alternatives and multi-criteria), these approaches 

assume the accuracy of information. In real life situations, many decision problems involve 

uncertainty, imprecision, and subjectivity, which all add to the complexity of the decision process 

(Banaeian et al., 2018; Karsak & Dursun, 2015; Guangxu Li et al., 2015; Małachowski, 2016). 

Under such a decision environment, decision makers would need to approximate ranges of 

evaluations using their knowledge, cognition, and available information (Lin et al., 2008). 

Different theories have been proposed to approximate ranges of evaluations. Among the proposed 

theories is the grey systems theory, which was introduced by Ju-long (1982) to handle data 

imprecision or insufficiency using grey numbers, in which an exact value for a grey number is 
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unknown but a range within which the value lies is known (Sifeng Liu & Lin, 2006). Grey systems 

theory is recommended to address uncertainty of decision problems with small amount of data and 

poor information, which cannot be described by a probability distribution (D.-C. Li et al., 2012; S. 

Liu & Lin, 2006). 

 Generally, the overall evaluation of a MCDM problem is based on alternatives evaluations 

over multi-criteria and the weights of the criteria. However, in cases where the criteria weights are 

completely unknown due to different reasons, e.g., time pressure, limited expertise, incomplete 

knowledge, and lack of information (Das et al., 2016; S. Zhang et al., 2011), the overall evaluations 

cannot be derived (Xu, 2015). Accordingly, the proper assessment of criteria weights is critical for 

MCDM problems and may influence the analysis of a decision problem (Das et al., 2016).  

 To handle decision problems with unknown criteria weights, the maximizing deviation method 

was introduced by Wang (1998). It  is considered the most popular method in establishing objective 

weights (Gao & Liu, 2016). In the maximizing deviation method, larger deviations are being 

emphasized more than smaller ones. Thus, criteria which make larger deviations should be 

assigned higher weights in comparison to criteria which make smaller deviations.  

3.2 Background 

 Several studies have integrated the maximizing deviation method to address MCDM problems 

with unknown weight information. For instance, Wei (2008) established an optimization model 

based on the maximizing deviation method and intuitionistic fuzzy set, which is an extension of 

fuzzy set that defines the degree of membership as well as the degree of non-membership for an 

element to a given set. To evaluate each alternative and provide a ranking index, the intuitionistic 

fuzzy weighted averaging operator was used. Zhang and Liu (2010) proposed a methodology to 

evaluate MCDM with unknown weight information, where evaluations are a mix of exact numbers, 

interval numbers, and linguistic fuzzy numbers. The proposed approach used Grey Relational 

Analysis approach (GRA), which is a branch of grey systems theory that can be used to rank 

alternatives by measuring the distance from a reference sequence (i.e., optimal sequence of the 

evaluations) (N. Li & Huiru, 2016; S. Zhang & Liu, 2011), based on the maximizing deviation 

method to solve such MCDM type of problems. Zhang et al. (2011) offered an extended approach 
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of the combination of fuzzy theory and GRA, where the maximizing deviation method has been 

adapted using the principles of conventional GRA method to establish criteria weights. Zhang and 

Liu (2015) adapted the maximizing deviation method to estimate criteria weights using interval 

pythagorean fuzzy set, which is an extension of intuitionistic fuzzy set where the square sum of 

the membership degree and the non-membership degree should be equal to or less than one. To 

aggregate the evaluations, the weighted averaging method is adapted using interval pythagorean 

fuzzy set. Xu and Zhang (2013) proposed an approach based on TOPSIS and the maximizing 

deviation method to address MCDM problems, where the evaluations are expressed in hesitant 

fuzzy set, which has been introduced by Torra (2010) as an extension of fuzzy set where the 

membership of an element to a given set can be denoted by interval in order to deal with uncertain 

information. To estimate criteria weights, an optimization model has been proposed based on the 

maximizing deviation method using hesitant fuzzy information; where the deviaitions degrees over 

evaluation criteria would be measured using the principles of Euclidean distance, which is one of 

the most widely used distance measures (Chen, 2018) and it represents the squared distance 

between two data points (Dokmanic, Parhizkar, Ranieri, & Vetterli, 2015). Xu (2015) established 

an optimization model to determine criteria weights by adapting the maximization deviation 

method using the principles of interval numbers to measure deviations over evaluation criteria; to 

calculate the overall evaluation for each alternative, uncertain weighted averaging operator has 

been used, in which the weighted average approach was used with interval evaluations rather than 

exact inputs. Consequently, different alternatives have been compared using the possibility degrees 

approach, which represents the degree to which one alternative is being better or worse than 

another. Şahin and Liu (2016) developed an optimization model to establish criteria weights using 

the maximizing deviation method with neutrosophic set and interval neutrosophic set, where 

neutrosophic set and interval neutrosophic set use three parameters: truth membership degree, 

indeterminacy/neutrality membership degree, and falsity membership degree; to aggregate the 

evaluations for each alternative, weighted averaging approach has been adapted. Broumi, Ye, and 

Smarandache (2015) calculated criteria weights by the maximizing deviation method using the 

interval neutrosophic set; to evaluate and rank alternatives, TOPSIS method has been adapted. Chi 

and Liu (2013) extended TOPSIS using interval neutrosophic set to evaluate MCDM with 

unknown weight information based on the maximizing deviation method to establish criteria 

weights.  
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 Although several research papers have tried to address MCDM problems with unknown weight 

information using different types of information (e.g., fuzzy set theory, intuitionistic fuzzy set, 

hesitant fuzzy set, interval fuzzy set, neutrosophic set), there exist decision problems with small 

amount of data and poor information, which cannot be described by a probability distribution. In 

such decision problems, grey systems theory is recommended (D.-C. Li et al., 2012; S. Liu & Lin, 

2006) due to its less restricted procedure that neither requires any robust membership function, nor 

a probability distribution (Memon et al., 2015). Therefore, the aim of this manuscript is to 

contribute to the current literature by addressing MCDM problems with small amount of data and 

poor information where criteria weights are unknown. To this end, a new hybrid MCDM method 

is proposed, which uses the principles of grey systems theory, maximizing deviation method, 

possibility degrees, and PROMETHEE II. 

 This manuscript is organized as follow: section 3.3 establishes the proposed methodology to 

handle uncertain evaluations MCDM with unknown criteria weight information; section 3.4 

reflects the feasibility of the methodology using an illustrative example; section 3.5 validates the 

methodology by providing a comparative analysis with an existing approach; Finally, section 3.6 

provides the concluding remarks. 

3.3 Decision making method of interval grey MCDM with unknown weight information 

3.3.1 Problem description 

Definition 3.1 Suppose that the set of feasible alternatives of a multi-criteria decision making 

under uncertainty is 𝐴 = {𝐴1, 𝐴2 , … , 𝐴𝑛}, where 𝑛 is the number of the feasible alternatives 

and 𝑖 = 1, 2, … , 𝑛. The set of evaluation criteria is denoted by 𝐶 = {𝑐1, 𝑐2 , … , 𝑐𝑚}, where m is the 

number of criteria, and 𝑗 = 1, 2, … ,𝑚. Let the weight of criterion  𝑐𝑗 be represented 

by 𝑤𝑗 , where 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1; but information on criteria weights is unknown. 

Definition 3.2 Let 𝐴 × 𝐶 be the Cartesian product of the set of alternatives and the set of criteria, 

and 𝑅[⨂] denote the set of interval grey numbers, where the evaluation of 𝐴𝑖  (𝑖 =

1, 2, … , 𝑛) over 𝑐𝑗 (𝑗 = 1, 2, … ,𝑚) is represented by interval grey number 𝑦𝑖𝑗(⨂) ∈ [𝑦𝑖𝑗, 𝑦𝑖𝑗], 
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where 0 ≤ 𝑦𝑖𝑗 ≤ 𝑦
𝑖𝑗

. Accordingly, the grey description function for the decision matrix (𝑓⨂) is 

defined as follows: 

 𝑓⨂: 𝐴 ×  𝐶 → 𝑅[⨂], 𝑡ℎ𝑢𝑠 (3.1) 

∀𝑓⨂(𝐴𝑖 ∈ 𝐴, 𝑐𝑗 ∈ 𝐶): 𝑦𝑖𝑗(⨂) ∈ 𝑅[⨂] 

3.3.2 Normalize decision matrix 

 For consistency in the decision matrix such that all the evaluations would be grey based with 

[0,0] ≤ 𝑦𝑖𝑗𝑘(⨂) ≤ [1,1] (Bai et al., 2012), a normalization procedure of two steps is used: first, 

turn all non-grey values (e.g., crisp number, which is a single precise number) in the decision 

matrix into interval grey numbers according to Definition 3.3; second, normalize all the values 

using Algorithm 3.1, which is explained by Definition 3.4. 

Definition 3.3 Let 𝑦𝑖𝑗  denote a white number that represents the evaluation of alternative 𝐴𝑖 (𝑖 =

1, 2, … , 𝑛) over criterion 𝑐𝑗  (𝑗 = 1, 2, … ,𝑚), the relative grey number (𝑦𝑖𝑗(⨂)) of the given white 

number (𝑦𝑖𝑗) is 

                                         𝑦𝑖𝑗(⨂) = [𝑦𝑖𝑗, 𝑦𝑖𝑗] , where 𝑦𝑖𝑗 = 𝑦𝑖𝑗 = 𝑦
𝑖𝑗

                                       (3.2) 

 Note that although some evaluations would be expressed by interval grey numbers, a 

normalized scale over the given criteria is not guaranteed. Therefore, all the interval grey values 

should be normalized. 

Definition 3.4 Let 𝑦𝑖𝑗(⨂) represent a general grey number that reflects the evaluation of 

alternative 𝐴𝑖  (𝑖 = 1, 2… , 𝑛) over criterion 𝑐𝑗  (𝑗 = 1, 2… ,𝑚); let min(𝑦𝑖𝑗) and max(𝑦𝑖𝑗) denote 

the lower and upper bounds among all 𝑦𝑖𝑗(⨂), respectively. Let 𝑦𝑗
∗ represent a given optimal 

evaluation over a targeted criterion 𝑐𝑗. Let �̃�𝑖𝑗(⨂) ∈ �̃�[⨂] denote the relative normalized value of 

the general grey number 𝑦𝑖𝑗(⨂) ∈ 𝑅[⊗]. 
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|

|

|

|

|

|

|

|

|

𝑖𝑓𝑗 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                           

|

|

|
𝑦𝑖𝑗(⨂̃) =

[𝑦𝑖𝑗(⊗)−𝑚𝑖𝑛(𝑦𝑖𝑗)]

[𝑚𝑎𝑥(𝑦𝑖𝑗) − 𝑚𝑖𝑛(𝑦𝑖𝑗)]

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑗 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                              

|

|
𝑦𝑖𝑗(⨂̃) =

[𝑚𝑎𝑥(𝑦𝑖𝑗) − 𝑦𝑖𝑗(⊗)]

[𝑚𝑎𝑥(𝑦𝑖𝑗) −𝑚𝑖𝑛(𝑦𝑖𝑗)]

𝑒𝑙𝑠𝑒 𝑗 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                       

|𝑦𝑖𝑗(⨂̃) = 1 −
|𝑦𝑖𝑗(⊗)−𝑦𝑗

∗|

𝑀𝑎𝑥{𝑚𝑎𝑥(𝑦𝑖𝑗), 𝑦𝑗
∗}  −  𝑀𝑖𝑛 {𝑚𝑖𝑛(𝑦𝑖𝑗), 𝑦𝑗

∗}

 

Algorithm 3.1: Normalize alternatives evaluations based on grey systems theory. 

3.3.3 Establish criteria weights 

 Since the criteria weights are unknown for the considered type of MCDM problems, the overall 

evaluation of the MCDM problem cannot be derived directly from the uncertain evaluations. To 

determine the criteria weights, an optimization model based on the maximizing deviation method 

is established, in which the evaluations are assumed to be interval grey numbers, as follows:  

3.3.3.1 Construct deviation matrix 

 As mentioned earlier, the maximizing deviation method emphasizes on the deviation degrees 

between evaluations; in which the larger the deviation, the higher the importance of the associated 

criterion. Accordingly, deviations between normalized interval grey evaluations can be established 

as follows: 

Definition 3.5 Assume �̃�(⨂) =  [�̃�, �̃�] and �̃�(⨂) =  [�̃�, �̃�] are two normalized interval grey 

numbers. Let the deviation degree between �̃�(⨂) and �̃�(⨂) be denoted by 𝑑(�̃�(⨂), �̃�(⨂)). 

Theorem 3.1 The deviation between �̃�(⨂) and �̃�(⨂), where none of them fully preferred over 

the other, is 

𝑑(�̃�(⨂), �̃�(⨂)) =  |�̃�(⨂) − �̃�(⨂)| = |�̃�(⨂) − �̃�(⨂)| = |(�̃� − �̃�) + (�̃� − �̃�)|          (3.3) 
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Proof 3.1 Let �̃�(⨂) and �̃�(⨂) denote two normalized grey numbers in one dimensional space, 

such that 

�̃� ≽ �̃� ≻ �̃� ≽ �̃�. Let the distance function between �̃�(⨂) and �̃�(⨂) be denoted by 𝑑(�̃�(⨂), �̃�(⨂)) 

and be represented by Manhattan distance, which is a distance traveled to get from one data point 

to another (Ang, Lee, Ooi, & Ooi, 2017), such that 

𝑑(�̃�(⨂), �̃�(⨂)) = ‖�̃�(⨂) − �̃�(⨂)‖ = |(�̃� − �̃�)| + |(�̃� − �̃�)|     (3.4) 

Considering the ordering of the normalized grey numbers (�̃� ≽ �̃� ≻ �̃� ≽ �̃�), Eq. (3.4) would be 

𝑑(�̃�(⨂), �̃�(⨂)) = �̃�(⨂) − �̃�(⨂) = (�̃� − �̃�) + (�̃� − �̃�)      (3.5) 

By applying basic arithmetic operations, Eq. (3.5) can be written as 

𝑑(�̃�(⨂), �̃�(⨂)) = �̃�(⨂) − �̃�(⨂) = (�̃� − �̃�) + (�̃� − �̃�)      (3.6) 

To generalize Eq. (3.6) for �̃�(⨂) and �̃�(⨂), where full preference relation does not exist, the 

absolute value of the total deviations should be considered, such that   

𝑑(�̃�(⨂), �̃�(⨂)) =  |�̃�(⨂) − �̃�(⨂)| = |�̃�(⨂) − �̃�(⨂)| = |(�̃� − �̃�) + (�̃� − �̃�)| 

Theorem 3.2 If �̃�(⨂) has a full preference over �̃�(⨂), such that �̃� ≽ �̃�, the deviation 

between �̃�(⨂) and �̃�(⨂) is 

 𝑑(�̃�(⨂), �̃�(⨂)) =  �̃� − �̃�          (3.7) 

Proof 3.2 The distance between two numbers 𝑎 𝑎𝑛𝑑 𝑏 on a number line is given by the absolute 

value of their difference, that is |(𝑎 − 𝑏)| = |(𝑏 − 𝑎)| (Cohen, Lee, & Sklar, 2011), by the same 

token the difference between two interval grey numbers �̃�(⨂) and �̃�(⨂) on a number line, where 

�̃� ≻ �̃� ≽ �̃� ≻ �̃�, can be given as follows: 
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    𝑑(�̃�(⨂), �̃�(⨂)) =  |(�̃� − �̃�)| + |(�̃� − �̃�)| + |(�̃� − �̃�)|      (3.8) 

Considering the ordering of the normalized grey numbers (�̃� ≻ �̃� ≽ �̃� ≻ �̃�), Eq. (3.8) would be 

      𝑑(�̃�(⨂), �̃�(⨂)) =  (�̃� − �̃�) + (�̃� − �̃�) + (�̃� − �̃�)              (3.9) 

By applying basic arithmetic operations, Eq. (3.9) can be written as 

𝑑(�̃�(⨂), �̃�(⨂)) = (�̃� − �̃�)         (3.10) 

Theorem 3.3 If a normalized grey number has a partial preference over another such that, 

�̃� ≻ �̃� ≻ �̃� ≻ �̃� or �̃� ≻ �̃� ≻ �̃� ≻ �̃� ; the deviation between them would be 

        𝑑(�̃�(⨂), �̃�(⨂)) =  |(�̃� + �̃�) − (�̃� + �̃�)|        (3.11) 

Proof 3.3 Let �̃�(⨂) and �̃�(⨂) denote two normalized grey numbers in one dimensional space, 

such that 

�̃� ≻ �̃� ≻ �̃� ≻ �̃�. Let the distance between the �̃�(⨂) and �̃�(⨂) be denoted by 𝑑(�̃�(⨂), �̃�(⨂)) and 

be represented by the Manhattan distance function (Ang et al., 2017),  

‖�̃�(⨂) − �̃�(⨂)‖ = |(�̃� − �̃�)| + |(�̃� − �̃�)|       (3.12) 

Considering the ordering of the normalized grey numbers �̃� ≻ �̃� ≻ �̃� ≻ �̃�, Eq. (3.12) can be 

represented as 

     �̃�(⨂) − �̃�(⨂) = (�̃� − �̃�) + (�̃� − �̃�)        (3.13) 

By applying basic arithmetic operations, Eq. (3.13) can be written as 

      �̃�(⨂) − �̃�(⨂) = (�̃� + �̃�) − (�̃� + �̃�)        (3.14) 
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To generalize Eq. (3.14) for �̃�(⨂) and �̃�(⨂), where partial preference exists, the absolute value 

should be considered, such that   

𝑑(�̃�(⨂), �̃�(⨂)) =  |�̃�(⨂) − �̃�(⨂)| = |�̃�(⨂) − �̃�(⨂)| = |(�̃� + �̃�) − (�̃� + �̃�)| 

The larger the value of 𝑑(�̃�(⨂), �̃�(⨂)), the greater the deviation degree between �̃�(⨂) and �̃�(⨂). 

Thus,  

𝑑(�̃�(⨂), �̃�(⨂)) = 0 if and only if �̃�(⨂) = �̃�(⨂)                                           (3.15) 

Definition 3.6 Let the deviation degree between the normalized grey evaluations of two 

alternatives, i.e. 𝐴𝑖  and 𝐴𝑘 (𝑖, 𝑘 = 1, 2… , 𝑛), over 𝑐𝑗  (𝑗 = 1, 2… ,𝑚) be denoted 

by 𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂)). Based on Eqs. (3.3), (3.7), (3.11), and (3.15), let Algorithm 3.2 represent 

all possible evaluations of 𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂)): 

|

|

|

|

𝑖𝑓 �̃�𝑖𝑗(⨂) = �̃�𝑘𝑗(⨂)                                                              

|

|

|

|

𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) ) = 0
 

𝑒𝑙𝑠𝑒 𝑖𝑓 �̃�𝑖𝑗(⨂) ≠ �̃�𝑘𝑗(⨂) ∧   (�̃�𝑖𝑗 ≽ �̃�𝑘𝑗)                      

|

|

|

𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) ) = (�̃�𝑖𝑗 − �̃�𝑘𝑗)
 

𝑒𝑙𝑠𝑒 𝑖𝑓�̃�
𝑖𝑗
≻ �̃�

𝑘𝑗
≻ �̃�𝑘𝑗 ≻ �̃�𝑖𝑗                                          

|
|

𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) ) = |(�̃�𝑖𝑗 + �̃�𝑘𝑗) − (�̃�𝑖𝑗 + �̃�𝑘𝑗)|
 

𝑒𝑙𝑠𝑒                                                                                       

𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) ) = |(�̃�𝑖𝑗 − �̃�𝑘𝑗) + (�̃�𝑖𝑗 − �̃�𝑘𝑗)|

 

Algorithm 3.2: Deviation evaluations between normalized interval grey numbers. 

3.3.3.2 Estimate criteria weights 

Definition 3.7 Let  𝐷𝑖𝑗(𝑤) denote the overall deviation between alternative 𝐴𝑖 and other 

alternatives over criterion 𝑐𝑗. Let 𝑤𝑗 denote the associated criterion weight such that,  
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 𝐷𝑖𝑗(𝑤) = ∑ 𝑑(�̃�𝑖𝑗(⨂) , �̃�𝑘𝑗(⨂) )𝑤𝑗
𝑛
𝑘=1,
𝑘≠𝑖 

, 𝑖, 𝑘 = 1, 2, … , 𝑛, 𝑗 = 1, 2… ,𝑚                       (3.16) 

Definition 3.8 Let  𝐷𝑗(𝑤) denote the global deviation between alternatives over a criterion 𝑐𝑗. 

Then,  

 𝐷𝑗(𝑤) = ∑  𝐷𝑖𝑗(𝑤)
𝑛
𝑖=1 = ∑ ∑ 𝑑(�̃�𝑖𝑗(⨂) , �̃�𝑘𝑗(⨂) )𝑤𝑗

𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1 , 𝑗 = 1, 2… ,𝑚                   (3.17) 

Definition 3.9 Let 𝐷(𝑤) denote the total deviations over all the criteria, such that the total 

deviation function would be expressed as follows:  

𝐷(𝑤) = ∑  𝐷𝑗(𝑤)
𝑚
𝑗=1 = ∑ ∑ ∑ 𝑑(�̃�𝑖𝑗(⨂) , �̃�𝑘𝑗(⨂) )𝑤𝑗

𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1                            (3.18) 

Theorem 3.4 In a grey MCDM with completely unknown criteria weights, the optimal solution to 

maximize the decision space can be obtained using 𝑤𝑗
∗ = (𝑤1

∗, 𝑤2
∗, … , 𝑤𝑚

∗ ), where  

       𝑤𝑗
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖

𝑛
𝑖=1

√∑ [∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1 ]

2

𝑚
𝑗=1

, 𝑗 = 1,2… ,𝑚                        (3.19) 

In order to satisfy the normalization constraint condition, the weight of criterion 𝑐𝑗 can be 

expressed as 

      𝑤𝑗 =
𝑤𝑗
∗

∑ 𝑤𝑗
∗𝑚

𝑗=1

=

∑ ∑ 𝑑(�̃�𝑖𝑗(⨂) ,�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

, 𝑗 = 1,2… ,𝑚                 (3.20) 

Proof 3.4 For unknown weights of criteria, the maximizing deviation method (Y. M. Wang, 1998) 

can be adapted, in which the criteria weights are being estimated based on the deviation degrees 

between evaluations. In other words, the larger the deviation, the higher the importance of the 

associated criterion. To this end, the following optimization decision making model is established 

      𝑚𝑎𝑥 𝐷(𝑤) = ∑  𝐷𝑗(𝑤)
𝑚
𝑗=1 = ∑ ∑ ∑ 𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) )𝑤𝑗

∗𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1      (3.21) 
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       𝑠. 𝑡. ∑ (𝑤𝑗
∗)
2
= 1𝑚

𝑗=1 , 𝑤𝑗
∗ ≥ 0, 𝑗 = 1,2… ,𝑚                               (3.22) 

Note that ∑ (𝑤𝑗
∗)
2
= 1𝑚

𝑗=1  is used as a constraint to accentuate the higher deviations by reflecting 

a wider range, which would maximize the evaluation space. 

The model can be solved using Lagrange function (Z. Xu & Cai, 2012): 

       𝐿(𝑤𝑗
∗, 𝜆) = 𝐷(𝑤) −

1

2
𝜆 (∑ (𝑤𝑗

∗)
2
− 1𝑚

𝑗=1 ), where                       (3.23) 

𝜆 is the Lagrange multiplier. Thus,  

     𝐿(𝑤𝑗
∗, 𝜆) = ∑ ∑ ∑ 𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) )𝑤𝑗

∗𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1 −

1

2
𝜆 (∑ (𝑤𝑗

∗)
2
− 1𝑚

𝑗=1 )       (3.24) 

By calculating the partial derivative of Eq. (3.24) with respect to 𝑤𝑗
∗(𝑗 = 1, 2… ,𝑚) and 𝜆, while 

setting these partial derivatives to zero, the following equations are obtained: 

      
𝜕𝐿(𝑤𝑗

∗,𝜆)

𝜕𝑤𝑗
∗ = ∑ ∑ 𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) )

𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1 − 𝜆𝑤𝑗

∗ = 0       (3.25) 

         
𝜕𝐿(𝑤𝑗

∗,𝜆)

𝜕𝜆
= ∑ (𝑤𝑗

∗)
2
− 1𝑚

𝑗=1 = 0           (3.26) 

From Eq. (3.25), we can obtain 

           𝑤𝑗
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1

𝜆
                (3.27) 

Since ∑ (𝑤𝑗
∗)
2
= 1𝑚

𝑗=1 , the value of 𝜆 can be obtained using Eq. (3.27) as follows: 

         ∑ (

∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1

𝜆
)

2

= 1𝑚
𝑗=1                  (3.28) 

By simplifying Eq. (3.28) 
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       𝜆 = √∑ [∑ ∑ 𝑑(�̃�𝑖𝑗(⨂), �̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1 ]

2

𝑚
𝑗=1                (3.29) 

Thus, the optimal weight value of a given criterion would be obtained as follows: 

  𝑤𝑗
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖

𝑛
𝑖=1

√∑ [∑ ∑ 𝑑(�̃�𝑖𝑗(⨂),�̃�𝑘𝑗(⨂) )
𝑛
𝑘=1,
𝑘≠𝑖 

𝑛
𝑖=1 ]

2

𝑚
𝑗=1

, 𝑗 = 1,2… ,𝑚 

3.3.4 Evaluate and rank feasible alternatives 

 After establishing the weights of the criteria for a grey MCDM problem with unknown weight 

information, the MCDM problem would be evaluated using the established criteria weights, 

possibility degrees, and PROMETHEE II. The detailed process is described in the following 

subsections. 

3.3.4.1 Establish preferences 

 In order to establish preferences among the evaluation measures over each criterion, the 

possibility degree formula is used based on the definition of Xu and Da (2002). 

Definition 3.10 Let 𝑙�̃�(⨂)𝑗 and 𝑙�̃�(⨂)𝑗 denote the difference between the upper and lower limits for 

two normalized grey numbers �̃�(⨂) and �̃�(⨂), respectively, such that  

   𝑙�̃�(⨂)𝑗 = �̃�𝑗 − �̃�𝑗                              (3.30)   

   𝑙�̃�(⨂)𝑗 = �̃�𝑗 − �̃�𝑗                              (3.31)                                                           

Definition 3.11 Let 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) denote the degree of preference of �̃�(⨂) over  �̃�(⨂) with 

respect to 𝑐𝑗. Using possibility degrees, 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) would be determined as 

        𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) =
�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
                                             (3.32) 
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Theorem 3.5 For any two unequal grey numbers (e.g., �̃�(⨂) =  [�̃�, �̃�] and �̃�(⨂) =  [�̃�, �̃�]) the 

sum of preferences 𝑝𝑗(�̃�(⨂), �̃�(⨂)) is 

    𝑝𝑗(�̃�(⨂), �̃�(⨂)) = 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) + 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) = 1     (3.33) 

Proof 3.5 Let 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) =
�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
, 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) =

�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
 and �̃�(⨂) ≠

�̃�(⨂). By taking the sum of preferences, the following equation is obtained: 

        
�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
+

�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
=

(�̃�𝑗−�̃�𝑗)+(�̃�𝑗−�̃�𝑗)

(�̃�𝑗−�̃�𝑗)+(�̃�𝑗−�̃�𝑗)
= 1              (3.34)  

Based on Eqs. (3.32) and (3.33), 𝑝𝑗(�̃�(⨂) ≽ �̃�(⨂)) can be represented as  

 𝑝𝑗(�̃�(⨂) ≽ �̃�(⨂)) =

{
 
 

 
 0                   if 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) ≤ 0         

�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
  if 0 < 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) < 1  

1                     if 𝑝𝑗(�̃�(⨂) ≻ �̃�(⨂)) ≥ 1           

  (3.35) 

3.3.4.2 Determine relative preferences 

 The relative preferences between alternatives can be determined using the calculated degrees 

of preferences between the alternatives and the associated criteria weights. 

Definition 3.12 Let 𝑝𝑗(𝐴𝑎 ≻ 𝐴𝑏) represent the degree of preference of alternative 𝐴𝑎 over 𝐴𝑏 with 

respect to criterion 𝑐𝑗 . Let the associated normalized optimal weight of  𝑐𝑗 be represented by 𝑤𝑗, 

where ∑ 𝑤𝑗 = 1,𝑚
𝑗=1 𝑗 = 1, 2… ,𝑚. Let �̃�(𝐴𝑎 ≻ 𝐴𝑏) denote the relative preference of alternative 

𝐴𝑎 over 𝐴𝑏 across the set of evaluation criteria 𝐶 = {𝑐1, 𝑐2 … , 𝑐𝑚}. Accordingly, �̃�(𝐴𝑎 ≻ 𝐴𝑏) is 

 �̃�(𝐴𝑎 ≻ 𝐴𝑏) = ∑ 𝑤𝑗 𝑝𝑗(𝐴𝑎 ≻ 𝐴𝑏)
𝑚
𝑗=1 , 𝑗 = (1, 2, … ,𝑚)  (3.36) 

3.3.4.3 Estimate global preferences and rank available alternatives 

 Using the resultant relative preferences matrix, the global preference of a given alternative 

over others can be determined using the outranking flows measures of PROMETHEE II.  
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Definition 3.13 For a grey MCDM problem, let �̃�+(𝐴𝑎) denote the extent to which alterative 𝐴𝑎 

is preferred over all other alternatives (i.e., positive outranking flow of 𝐴𝑎). Let �̃� (𝐴𝑎 ≻

𝐴𝑏) indicate the relative preference of 𝐴𝑎 over 𝐴𝑏. Using the preference indication measures of 𝐴𝑎 

over other alternatives, the function of �̃�+(𝐴𝑎) would be 

 �̃�+(𝐴𝑎) =  
1

𝑛−1
∑ �̃�(𝐴𝑎 ≻ 𝐴𝑏) 
𝑛
𝑏=1   (3.37) 

Definition 3.14 For a grey MCDM problem, let �̃�−(𝐴𝑎) denote the extent to which alterative 𝐴𝑎 

is outranked by all other alternatives (i.e., negative outranking flow of 𝐴𝑎). Let �̃� (𝐴𝑏 ≻

𝐴𝑎) indicate the degree by which alternative 𝐴𝑎 is outranked by 𝐴𝑏. Using �̃� (𝐴𝑏 ≻ 𝐴𝑎), the 

function of �̃�+(𝐴𝑎) would be 

 �̃�−(𝐴𝑎) =  
1

𝑛−1
∑ �̃�(𝐴𝑏 ≻ 𝐴𝑎)
𝑛
𝑏=1  (3.38) 

Definition 3.15 For a grey MCDM problem, let �̃� (𝐴𝑎) denote the global preference (i.e., net 

outranking flow) of alternative 𝐴𝑎. Using the measures of positive and negative outranking flows, 

�̃� (𝐴𝑎) can be obtained, such that 

 �̃� (𝐴𝑎) =  �̃�
+ (𝐴𝑎) − �̃�

− (𝐴𝑎) (3.39) 

 Once the net outranking flow has been estimated for all feasible alternatives, a complete 

ranking index can be established based on the values of global preferences, wherein the higher the 

value of �̃� (𝐴𝑎), the better is the alternative. Thus, the best alternative is the one with the highest 

global preference value. 

3.4 Illustrative example 

 To demonstrate the feasibility and practicability of the proposed methodology, an illustrative 

example is given. Consider a problem that a factory plans to install a fire protection system for the 

new expansion; four subcontractors are considered for the project and represented by 𝐴𝑖  (𝑖 =

1,2,3,4); each of which should be evaluated over five different criteria: 𝑐1 − reliability, 𝑐2 − 

reaction ability, 𝑐3 − control distance, 𝑐4 − impact on the fire, and 𝑐5 − cost. All the criteria, 
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except 𝑐5, are increasing criteria (benefit type criteria). Each of 𝑐𝑗  (𝑗 = 1,2,3,4,5) has an associated 

weight 𝑤𝑗 ∈ [0,1], in which ∑ 𝑤𝑗 = 15
𝑗=1 , where the criteria weights are unknown. The evaluations 

of the alternatives are listed in Table 3.1. 

Table 3.1: Uncertain decision matrix 

Performance matrix Alternatives 

Criteria A1 A2 A3 A4 

Reaction ability (c1) m [160, 180] [200, 300] [150, 250] [180, 200] 

Reliability (c2) % [0.6, 0.8] [0.7, 0.8] [0.6, 0.9] [0.5, 0.7] 

Control distance (c3) m [180, 190] [150, 170] [160, 180] [170, 200] 

Impact on the fire (c4) % [0.7, 0.8] [0.5, 0.7] [0.6, 0.9] [0.4, 0.6] 

Cost (c5) $ 
[15000, 

16000] 

[27000, 

29000] 

[24000, 

26000] 

[15000, 

17000] 

The proposed methodology is utilized to solve the decision problem as follows: 

Step 1 Normalize the grey numbers of the uncertain decision matrix using Algorithm 3.1. The grey 

normalized values of the uncertain decision matrix is listed in Table 3.2. 

Step 2 Estimate criteria weight vector 𝑤 = ( 𝑤1,  𝑤2,  𝑤3,  𝑤4,  𝑤5) using Eq. (3.20): 

𝑤 = (0.2036, 0.1636, 0.2073, 0.2073, 0.2182) 

Step 3 Evaluate preferences between alternatives using Eq. (3.35). The preference matrices are 

reflected in Tables 3.3, 3.4, 3.5, and 3.6 for 𝐴1 to  𝐴4, respectively. 

Step 4 Determine relative preferences (Table 3.7) among alternatives by considering the calculated 

degrees of preferences between the alternatives and the estimated weights using Eq. (3.36). 
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Table 3.2: Normalized uncertain decision matrix 

Performance matrix  Alternatives 

Criteria A1 A2 A3 A4 

Reaction ability (c1) [0.067, 0.2] [0.333, 1] [0, 0.667] [0.2, 0.333] 

Reliability (c2) [0.6, 0.8] [0.7, 0.8] [0.6, 0.9] [0.5, 0.7] 

Control distance (c3) [0.6, 0.8] [0, 0.4] [0.2, 0.6] [0.4, 1] 

Impact on the fire (c4) [0.7, 0.8] [0.5, 0.7] [0.6, 0.9] [0.4, 0.6] 

Cost (c5) [0.923, 1] [0, 0.143] [0.214, 0.357] [0.857, 1] 

Table 3.3: Preference matrix of A1 

Multi-criteria preference matrix Alternatives 

Base alternative Criteria A2 A3 A4 

A1 

Reaction ability (c1) 0 0.25 0 

Reliability (c2) 0.3333 0.4 0.75 

Control distance (c3) 1 1 0.5 

Impact on the fire (c4) 1 0.5 1 

Cost (c5) 1 1 0.6667 

Step 5 Establish global preferences among alternatives (Table 3.8) using Eqs. (3.37), (3.38), and 

(3.39). 

Step 6 Rank the alternatives according to the net outranking flow values in descending order: 

𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 

Thus, alternative 𝐴1 is the best selection for the given uncertain MCDM problem. 
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Table 3.4: Preference matrix of A2 

Multi-criteria preference matrix Alternatives 

Base alternative Criteria A1 A3 A4 

A2 

Reaction ability (c1) 1 0.75 1 

Reliability (c2) 0.6667 0.5 1 

Control distance (c3) 0 0.25 0 

Impact on the fire (c4) 0 0.2 0.75 

Cost (c5) 0 0 0 

Table 3.5: Preference matrix of A3 

Multi-criteria preference matrix Alternatives 

Base alternative Criteria A1 A2 A4 

A3 

Reaction ability (c1) 0.75 0.25 0.5833 

Reliability (c2) 0.6 0.5 0.8 

Control distance (c3) 0 0.75 0.2 

Impact on the fire (c4) 0.5 0.8 1 

Cost (c5) 0 1 0 
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Table 3.6: Preference matrix of A4 

Multi-criteria preference matrix Alternatives 

Base alternative Criteria A1 A2 A3 

A4 

Reaction ability (c1) 1 0 0.4167 

Reliability (c2) 0.25 0 0.2 

Control distance (c3) 0.5 1 0.8 

Impact on the fire (c4) 0 0.25 0 

Cost (c5) 0.3333 1 1 

Table 3.7: Relative preference matrix 

Alternatives A1 A2 A3 A4 

A1 0.5 0.6873 0.6455 0.5791 

A2 0.3127 0.5 0.3278 0.5227 

A3 0.3545 0.6722 0.5 0.4984 

A4 0.4209 0.4773 0.5016 0.5 

Table 3.8: Outranking flows computations 

Outranking 

flows 

Alternatives 

A1 A2 A3 A4 

Outflow 0.8039 0.5544 0.6751 0.6333 

Inflow 0.5294 0.7789 0.6583 0.7001 

Net flow 0.2745 -0.2245 0.0168 -0.0668 
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3.5 Comparative analysis 

 To validate the proposed methodology, an existing example in the literature is used. The 

example was adopted from the work of Xu (2015), which addressed MCDM problems with 

unknown weight information based on the deviation degrees of interval numbers. 

 In order to compare the proposed methodology in this manuscript and the original approach of 

Xu (2015) with respect to criteria weights estimation, four different approaches have been 

considered as shown in Table 3.9. The approaches are as follows: (1) the proposed methodology 

of this manuscript; (2) Combination A: used the normalization approach of Xu (2015) and the 

deviation function of this manuscript; (3) Combination B: used the proposed normalization 

approach of this manuscript and the deviation function of Xu (2015) (i.e., Manhattan distance); (4) 

the approach of Xu (2015). The different normalization approaches were considered to highlight 

the influence of normalization procedure on the final outcomes. 

Table 3.9: Criteria weights using different approaches 

Criteria Proposed 
Combination 

A 

Combination 

B 
Xu (2015) 

Fire attack ability (c1) 0.2021 0.2215 0.1980 0.2189 

Reaction ability (c2) 0.2068 0.2755 0.1504 0.2182 

Maneuverability (c3) 0.1736 0.1376 0.2032 0.1725 

Survival ability (c4) 0.2068 0.2135 0.2082 0.2143 

Cost (c5) 0.2108 0.1518 0.2402 0.1761 

 From Table 3.9, it is obvious that different normalization approaches resulted in different 

criteria weights, regardless of the employed deviation function. However, Maneuverability (c3) 

scored the lowest weight in three approaches out of the four, i.e., the proposed methodology, 

Combination A, and the approach of Xu (2015).  
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 When it comes to deviation degrees consideration, by using the proposed deviation function in 

this manuscript, regardless of the normalization approach, Reaction ability (c2) scored the highest 

weight and Maneuverability (c3) scored the lowest weight.  

 To compare the final ranking order of the proposed methodology with the results of Xu (2015),  

criteria weights of the proposed approach are used. Consequently, the ranking order of the given 

decision problem based on the proposed methodology would be   

𝐴1 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴2 

with 𝐴1 as the best option, which is the best option while using the approach of Xu (2015) as well. 

However, the ranking order is different for the rest of alternatives due to procedure differences in 

addressing the problem, which can be summarized in the following: (1) Normalization approach; 

(2) Deviation function to estimate criteria weights; (3) Alternatives evaluation and ranking 

methodology. 

 It is noteworthy to mention that during the analysis of different possible scenarios for the 

deviation between two interval numbers, one scenario was identified where the deviation function 

of Xu (2015) (i.e. Manhattan distance) fails to address. The scenario can be denoted by the empty 

intersection scenario; which indicates that a given two data points have no points in common. 

However, the proposed approach in this manuscript considers this scenario. As a result, Theorem 

3.6 is introduced. 

Theorem 3.6 For a given two interval numbers 𝑎 = [𝑎, 𝑎] and 𝑏 =  [𝑏, 𝑏], where the intersection 

between the two data points is empty (i.e. 𝑎 ≻ 𝑏 𝑜𝑟 𝑏 ≻ 𝑎), the deviation between the two data 

points cannot be determined using the Manhattan distance. 

Proof 3.6 The distance between two numbers 𝑎 𝑎𝑛𝑑 𝑏 on a number line is given by the absolute 

value of their difference, that is |(𝑎 − 𝑏)| = |(𝑏 − 𝑎)| (Cohen et al., 2011), by the same token the 

difference between two interval numbers 𝑎 = [𝑎, 𝑎] and 𝑏 =  [𝑏, 𝑏] on a number line, where 𝑎 ≻

𝑎 ≻ 𝑏 ≻ 𝑏, can be given as follows: 
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        𝑑(𝑎, 𝑏) =  |(𝑎 − 𝑎)| + |(𝑎 − 𝑏)| + |(𝑏 − 𝑏)|           (3.40) 

Considering the ordering of the normalized grey numbers (𝑎 ≻ 𝑎 ≻ 𝑏 ≻ 𝑏), Eq. (3.40) would be 

            𝑑(𝑎, 𝑏) =  (�̃� − �̃�) + (�̃� − �̃�) + (�̃� − �̃�)                       (3.41) 

By applying basic arithmetic operations, Eq. (3.41) can be written as 

        𝑑(𝑎, 𝑏) = (�̃� − �̃�) ≠ |(�̃� − �̃�)| + |(�̃� − �̃�)|                 (3.42) 

Accordingly, the deviation function by Xu (2015) fails to address the deviation between two 

interval numbers in which they have no data points in common. In contrast, the proposed deviation 

algorithm (i.e., Algorithm 3.2) in this thesis considers this case. 

3.6 Conclusion 

 Although MCDM problems with unknown weight information have been addressed in the 

literature using different approaches and different types of information (e.g., fuzzy set theory, 

intuitionistic fuzzy set, hesitant fuzzy set, interval fuzzy set, neutrosophic set), there exist MCDM 

problems with small amount of data and poor information, which cannot be described by a 

probability distribution. In such MCDM problems, the applicability of existing approaches would 

be influenced. To overcome this limitation, this manuscript investigates MCDM problems with 

small amount of data and poor information, where information on criteria weights is completely 

unknown, and proposes to use grey systems theory due to its less restricted procedure that neither 

requires any robust membership function, nor a probability distribution. To this end, a new hybrid 

MCDM methodology is proposed. At first, the unknown criteria weights should be estimated. 

Accordingly, a new optimization model is established based on the integration of grey system 

theory’s principles and the maximizing deviation method. By solving the optimization model, a 

function to determine the optimal criteria weights is obtained. Consequently, potential alternatives 

are evaluated by integrating degrees of possibility and PROMETHEE II, where the resultant 

weights are used to evaluate possible alternatives. Once the evaluation process is completed, the 
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rank index for potential alternatives is provided based on the values of global preferences, wherein 

the higher the value, the better is the alternative. 

 To determine the feasibility of the proposed methodology, an illustrative example is given; 

whereas to validate the methodology, a comparative analysis with an existing approach is 

provided. 

 The contributions of this manuscript over existing research works can be summarized in the 

following points: (1) Determine the optimal criteria weights for MCDM problems with small 

amount of data and poor information where information on criteria weights is unknown, by 

establishing a new optimization model which integrates the principles of the grey system theory 

and the maximizing deviation method; (2) Extend the PROMETHEE II approach such that to 

evaluate and rank potential alternatives within uncertain MCDM with unknown weights 

information; (3) Generalize the determination procedure of deviation degrees to account for 

various scenarios of deviation between interval numbers. 
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Chapter 4 

A New Approach to Address Uncertain Dynamic Multi-

Criteria Decision Problems with Unknown Weight 

Information 

Abstract 

Conventional Multi-Criteria Decision Making (MCDM) approaches are not suitable to address the 

dynamics over time. Therefore, different hybrid approaches have been introduced to deal with 

Dynamic MCDM (DMCDM) problems. Two main concerns with existing approaches were 

identified: (1) Criteria weights establishment within the context of DMCDM with unknown weight 

information; (2) Weight vector establishment of different periods where the influences of the 

evaluation criteria are changing over time. To overcome the shortcomings of existing approaches, 

this manuscript proposed a new hybrid methodology to handle DMCDM with small amount of 

data and poor information, which cannot be described by a probability distribution, where 

information on criteria weights and the influence of different time periods are unknown. The 

proposed methodology estimates the unknown criteria weights using the maximizing deviation 

method, where the deviation degrees calculations adopted the principles of grey systems theory. 

When it comes to weight vector establishments of different periods, a new optimization model is 

introduced where the influence of different evaluation criteria on decision problems are changing 

over different periods. To evaluate and rank potential alternatives of DMCDM problems, the 

PROMETHEE II approach is extended using the optimized weights and the possibility degrees.  
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4.1 Introduction 

Multi-Criteria Decision Making (MCDM) is a branch of operation research that is intended to 

aid decision makers in establishing coherent preferences in complex decision problems (Roy, 

2016; Wątróbski & Jankowski, 2016). Different methods of MCDM have been proposed, each of 

which has its own characteristics in evaluating decision problems (Mardani et al., 2015). 

Therefore, understanding the background differences among these methods is essential to properly 

analyze a decision problem. To differentiate between the MCDM methods, the following 

classification is provided (Belton & Stewart, 2002):  

(1) Value measurement methods: this group of methods are value focused, in which the overall 

evaluation over different criteria is used to select between alternatives; among this category of 

methods are Analytic Hierarchy Process (AHP), Multi-Attribute Utility Theory (MAUT), and 

Weighted Average (WA) approach. 

(2) Goal, aspiration, or reference-level methods: this group of methods are optimal value 

focused where alternatives are evaluated with respect to a particular goal, aspiration, or 

reference levels; examples of methods within this category are: Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) and Vlsekriterijumska Optimizacijia I 

Kompromisno Resenje (VIKOR). 

(3) Outranking methods: this group of methods are pairwise comparisons focused where 

alternatives are compared over each criterion and the aggregated comparisons would be used 

to rank the alternatives; the most prominent methods within this category are: ELimination and 

Choice Expressing REality (ELECTRE) and Preference Ranking Organization METHod for 

Enrichment Evaluations (PROMETHEE) family of methods. 

Although MCDM conventional approaches can be used to establish a better ground for 

decision makers in complex decision problems, they are deemed inappropriate to handle decision 

problems that involve uncertain, imprecise, and subjective data; as they presume the availability 

of precise information.  

The complexity of decision problems increases in many real life applications, where 

information from different periods (e.g., multi-period investment, medical diagnosis) should be 
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considered in the decision process (G. Wei, 2011). Conventional MCDM approaches are not 

appropriate to understand the dynamics over time, as they are clearly static (Pruyt, 2007). 

4.2 Background 

To account for the dynamic aspects in MCDM problems, different hybrid approaches have 

been proposed. For instance, Lin et al. (2008) developed a DMCDM method using a hybrid 

approach, in which TOPSIS was used as the main structure, while the combination of grey concept 

(which was introduced by Ju-long (1982) to handle data imprecision or insufficiency using interval 

number where its exact value is unknown but a range within which the value lies is known (Sifeng 

Liu & Lin, 2006)) and Minkowski distance function (which is a generalization function of the most 

widely used distance measures (i.e., Euclidean distance and the Manhattan distance) between two 

data points (Chen, 2018)) to handle uncertain information and the multi period evaluations. Park, 

Cho, and Kwun (2013) proposed two aggregation operators called Dynamic Intuitionistic Fuzzy 

Weighted Geometric (DIFWG) operator and Uncertain Dynamic Intuitionistic Fuzzy Weighted 

Geometric (UDIFWG) operator to solve MCDM problems under dynamic intuitionistic fuzzy 

environment using VIKOR principles; in which the evaluations are expressed in different periods 

using intuitionistic fuzzy set, which is an extension of Zadeh’s fuzzy set whose basic component 

is only a membership function for an element to a given set, in which the intuitionistic fuzzy set 

defines the degree of membership as well as the degree of non-membership. Gümüş and Bali 

(2017) introduced two methods based on Einstein operational laws on intuitionistic fuzzy sets, 

which are Dynamic Intuitionistic Fuzzy Einstein Averaging (DIFWA∊) operator and Dynamic 

Intuitionistic Fuzzy Einstein Geometric Averaging (DIFWG∊) operator, to solve multi-periods 

MCDM problems within intuitionistic fuzzy environment. Esangbedo and Che (2016) proposed a 

Grey Weighted Sum Model (GWSM) to handle uncertainty over multi-periods multi-criteria 

decision problems, in which interval grey numbers are used to express varying performances over 

multi-periods, while the concept of WSM is used to aggregate the results of different alternatives. 

Wei and Lin (2008) proposed a new concept of dynamic uncertain multiplicative linguistic 

preference relations to solve the multi-periods MCDM problems, where the criteria values are 

given in uncertain multiplicative linguistic relations collected in different time periods.  
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A common concern of the above-mentioned approaches is related to the weight vector 

establishment for different periods. The weights of different periods are assumed to be given or 

simply ignored. Moreover, information on criteria weights is assumed to be known. 

To account for the weights of different time periods in MCDM problems, different studies used 

the Basic Unit-interval Monotonic (BUM) function (Yager, 1998, 2004), which is one of the most 

common weight determination methods of different time periods. For instance, Peng and Wang 

(2014) presented some dynamic hesitant fuzzy aggregation operators, based on the weighted 

averaging and the weighted geometric approaches, to tackle multi-period decision making 

problems where all decision information from different period is provided in hesitant fuzzy 

information (which has been introduced by Torra (2010) as an extension of fuzzy set where the 

membership of an element to a given set can be denoted by an interval in order to deal with 

uncertain information). However, two linguistic approaches were introduced based on BUM 

function to estimate the weight vector of the different periods: one approach depends on the degree 

of emphasis between the initial and the final period; while the other focuses on the values of the 

argument variables at each period, which is determined based on the score function of Xia and Xu 

(2011). Similarly, G. Li et al. (2015) proposed a dynamic fuzzy multiple criteria decision making 

(DFMCDM) method based on TOPSIS, where the time weight is calculated using BUM function. 

 Within the context of DMCDM problems under uncertain environment, existing methods to 

obtain the weights of different time periods, such as BUM function, would address the influence 

of different periods independently from the evaluation criteria. In other word, the variabilities in 

nature of different decision criteria are ignored, which impose a falsify assumption with regards to 

the dynamic aspect of this type of MCDM problems. Furthermore, the overall evaluation of a 

MCDM problem is based on alternatives evaluations over the multi-criteria and the weights of the 

criteria. The above-mentioned approaches assume that information about criteria weights is 

known. However, in cases where the criteria weights are unknown due to different reasons, e.g., 

time pressure, limited expertise, incomplete knowledge, and lack of information (Das et al., 2016; 

S. Zhang et al., 2011), the overall evaluations cannot be derived (Xu, 2015). Accordingly, the 

proper assessment of criteria weights is critical for MCDM problems and may influence the 

analysis of a decision problem (Das et al., 2016).  

 In such decision settings, it is useful to utilize the available information, the knowledge, and 

the expertise of the decision makers to approximate evaluation ranges (Lin et al., 2008). To 
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approximate evaluation ranges, Gao and Liu (2016) mentioned that maximizing deviation method 

is the most popular approach to establish objective weights for solving MCDM problems with 

unknown weight information. The maximizing deviation method introduced by Wang (1998) 

where larger deviations are being emphasized more than smaller ones. 

 Although several research papers have tried to address MCDM problems with unknown 

criteria weights using different types of information (e.g., fuzzy set theory, intuitionistic fuzzy set, 

and hesitant fuzzy set), there exist decision problems with small amount of data and poor 

information, which cannot be described by a probability distribution. In such decision problems, 

grey systems theory is recommended (D.-C. Li et al., 2012; S. Liu & Lin, 2006) due to its less 

restricted procedure that neither requires any robust membership function, nor a probability 

distribution (Memon et al., 2015).  

 Building on the above arguments, the aim of this manuscript is to contribute to the current 

literature by addressing DMCDM problems with small amount of data and poor information where 

information on criteria weights and the weight vector of different time periods are unknown. To 

this end, a new hybrid DMCDM methods is proposed using the principles of grey systems theory, 

the maximizing deviation method, possibility degrees, and PROMETHEE II. 

 This manuscript is organized as follows: section 4.3 establishes the proposed approach to 

handle Dynamic Grey Multi-Criteria Decision Making (DGMCDM) problems; section 4.4 reflects 

the feasibility and the practicability of the proposed approach using an adopted case; section 4.5 

provides a comparative analysis with existing approaches to validate the proposed approach; 

finally, section 4.6 provides the concluding remarks.  

4.3 Decision making method of DGMCDM with unknown weight information 

4.3.1 Problem description 

Definition 4.1 Let 𝐴 = {𝐴1, 𝐴2 … , 𝐴𝑛} denote the set of available alternatives of a multi-periods-

multi-criteria decision making, where 𝑛 is the number of the alternatives and 𝑖 = 1, 2… , 𝑛. Let 

 𝐶 = {𝑐1, 𝑐2 … , 𝑐𝑚} represent the set of evaluation criteria, where m is the number of criteria 

and 𝑗 = 1, 2… ,𝑚 .  Let 𝑆(𝑡) = {𝑡1 , 𝑡2 … , 𝑡𝑝} indicate the set of time periods, where 𝑝 is the 

number of different periods and 𝑘 = 1, 2… , 𝑝. 
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Definition 4.2 Let 𝐴 × 𝐶 × 𝑆(𝑡) be the Cartesian product of the set of alternatives, the set of 

criteria, and the set of periods. Let 𝑅 [⨂] denote the set of interval grey numbers, in which each 

element of 𝑅 [⨂] represent an evaluation of 𝐴𝑖 over 𝑐𝑗 within 𝑡𝑘 and denoted by an interval grey 

number 𝑦𝑖𝑗𝑘(⨂) ∈ [𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗𝑘], where 0 ≤ 𝑦𝑖𝑗𝑘 ≤ 𝑦
𝑖𝑗𝑘

. Accordingly, the grey description function 

for a decision matrix (𝑓⨂) within a DGMCDM problem is defined as follows: 

 𝑓⨂: 𝐴 ×  𝐶 × 𝑆(𝑡) → 𝑅[⨂], 𝑡ℎ𝑢𝑠 (4.1) 

∀𝑓⨂(𝐴𝑖 ∈ 𝐴, 𝑐𝑗 ∈ 𝐶, 𝑡𝑘 ∈ 𝑆(𝑡)): 𝑦𝑖𝑗𝑘(⨂) ∈ 𝑅[⨂] 

Definition 4.3 Assume that the influence of 𝑐𝑗 ∈ 𝐶 (𝑗 = 1, 2… ,𝑚) on a decision problem is 

changing over 𝑡𝑘 (𝑘 = 1, 2… , 𝑝). Let the weight of 𝑐𝑗 over 𝑡𝑘 be denoted by 𝑤𝑗𝑘, where 𝑤𝑗𝑘 ∈

[0,1] and ∑ 𝑤𝑗𝑘
𝑚
𝑗=1 = 1; but the information on criteria weights is unknown. 

Definition 4.4 Let 𝜃𝑗 = {𝜃𝑗 (𝑡1), 𝜃𝑗 (𝑡2)… , 𝜃𝑗 (𝑡𝑝)} (𝑗 = 1, 2… ,𝑚) denote the weight vector of 

𝑆(𝑡) = {𝑡1 , 𝑡2 … , 𝑡𝑝} with respect to 𝑐𝑗, where 𝜃𝑗 (𝑡𝑘) ∈ [0,1] and ∑ 𝜃𝑗 (𝑡𝑘)
𝑝
𝑘=1 = 1 (𝑘 =

1, 2… , 𝑝); but the information on 𝜃𝑗 is unknown. 

4.3.2 Normalize DGMCDM 

 For consistency in the evaluations over each period such that all the evaluations would be grey 

based with [0,0] ≤ 𝑦𝑖𝑗𝑘(⨂) ≤ [1,1] (Bai et al., 2012), a normalization procedure of two steps is 

used over each decision matrix: first, turn all non-grey values (e.g., crisp number, which is a single 

precise number) in the decision matrix into interval grey numbers according to Definition 4.5; 

second, normalize all the values using Algorithm 4.1, which is explained by Definition 4.6.  

Definition 4.5 Let 𝑦𝑖𝑗  denote a white number that represents the evaluation of alternative 𝐴𝑖 (𝑖 =

1, 2… , 𝑛) over criterion 𝑐𝑗 (𝑗 = 1, 2… ,𝑚) within a given period 𝑡𝑘 (𝑘 = 1, 2… , 𝑝) such that, the 

relative grey number (𝑦𝑖𝑗𝑘(⨂)) of the given white number (𝑦𝑖𝑗𝑘) is 

 𝑦𝑖𝑗𝑘(⨂) = [𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗𝑘] , where 𝑦𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘   (4.2) 
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 Note that although some evaluations would be expressed by interval grey numbers, a 

normalized scale over the given criteria is not guaranteed. Therefore, all the interval grey values 

should be normalized. 

Definition 4.6 Let 𝑦𝑖𝑗𝑘(⨂) represent an interval grey number that reflects the evaluation of an 

alternative 𝐴𝑖  (𝑖 = 1, 2… , 𝑛) over a criterion 𝑐𝑗  (𝑗 = 1, 2… ,𝑚) within a given period 𝑡𝑘 (𝑘 =

1, 2… , 𝑝). Let min(𝑦𝑖𝑗)
𝑘
 and max(𝑦𝑖𝑗)

𝑘 denote the lower and upper bounds among all 𝑦𝑖𝑗(⨂) 

over 𝑡𝑘 , respectively. Let (𝑦𝑗𝑘
∗ )

𝑘
 represent a given optimal evaluation over a targeted criterion 𝑐𝑗 

within a given period 𝑡𝑘. Let �̃�𝑖𝑗𝑘(⨂) ∈ �̃�[⨂] denote the relative normalized value of the interval 

grey number 𝑦𝑖𝑗𝑘(⨂) ∈ 𝑅[⊗]. 

|

|

|

|

|

|

|

|

|

|

|

|

𝑖𝑓𝑗 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                                          

|

|

|
𝑦𝑖𝑗𝑘(⨂̃) =

[𝑦𝑖𝑗𝑘(⊗)−𝑚𝑖𝑛(𝑦𝑖𝑗)
𝑘]

[𝑚𝑎𝑥(𝑦𝑖𝑗)
𝑘
−𝑚𝑖𝑛(𝑦𝑖𝑗)𝑘]

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑗 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                           

|

|
𝑦𝑖𝑗𝑘(⨂̃) =

[𝑚𝑎𝑥(𝑦𝑖𝑗)
𝑘
− 𝑦𝑖𝑗𝑘(⊗)]

[𝑚𝑎𝑥(𝑦𝑖𝑗)
𝑘
−𝑚𝑖𝑛(𝑦𝑖𝑗)𝑘]

𝑒𝑙𝑠𝑒 𝑗 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                                  

|𝑦𝑖𝑗𝑘(⨂̃) = 1 −
|𝑦𝑖𝑗𝑘(⊗)−(𝑦𝑗

∗)
𝑘
|

𝑀𝑎𝑥{𝑚𝑎𝑥(𝑦𝑖𝑗)𝑘, (𝑦𝑗
∗)
𝑘
}  −  𝑀𝑖𝑛 {𝑚𝑖𝑛(𝑦𝑖𝑗)𝑘, (𝑦𝑗

∗)
𝑘
}

 

Algorithm 4.1 Normalizing algorithm in DGMCDM. 

4.3.3 Establish criteria weights 

Since the criteria weight information in this manuscript is assumed to be completely unknown, 

proper assessment of criteria weights is required to carry out the overall evaluations in MCDM. 

To this end, a combination of grey systems theory and the maximizing deviation method is 

proposed in the following subsections, in which the total deviation between alternatives over each 

period would be maximized. 
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4.3.3.1 Construct deviation matrix  

 As mentioned earlier, the maximizing deviation method considers criteria with larger 

deviations more than criteria with smaller deviations. Accordingly, deviation measures between 

normalized interval grey evaluations over a given period can be established using Algorithm 4.2, 

which is explained by Definition 4.7. 

Definition 4.7 Let the deviation measure between the normalized grey evaluations of two 

alternatives over a criterion 𝑐𝑗  within a period 𝑡𝑘  be denoted by 𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂)), 

where 𝑖, ℎ = 1, 2… , 𝑛; 𝑗 = 1, 2… ,𝑚 and 𝑘 = 1, 2… , 𝑝. 

|

|

|

|

𝑖𝑓 �̃�𝑖𝑗𝑘(⨂) = �̃�ℎ𝑗𝑘(⨂)                                                                     

|

|

|

𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂) ) = 0

𝑒𝑙𝑠𝑒 𝑖𝑓 �̃�𝑖𝑗𝑘(⨂) ≠ �̃�ℎ𝑗𝑘(⨂) ∧   (�̃�𝑖𝑗𝑘 ≽ �̃�ℎ𝑗𝑘)                           

|

|

𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂) ) = (�̃�𝑖𝑗𝑘 − �̃�ℎ𝑗𝑘)

𝑒𝑙𝑠𝑒 𝑖𝑓�̃�
𝑖𝑗𝑘
≻ �̃�

ℎ𝑗𝑘
≻ �̃�ℎ𝑗𝑘 ≻ �̃�𝑖𝑗𝑘                                               

|

𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂) ) = |(�̃�𝑖𝑗𝑘 + �̃�ℎ𝑗𝑘) − (�̃�𝑖𝑗𝑘 + �̃�ℎ𝑗𝑘)|

𝑒𝑙𝑠𝑒                                                                                                 

𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂) ) = |(�̃�𝑖𝑗𝑘 − �̃�ℎ𝑗𝑘) + (�̃�𝑖𝑗𝑘 − �̃�ℎ𝑗𝑘)|

 

Algorithm 4.2: Deviation measure algorithm in DGMCDM. 

4.3.3.2 Estimate criteria weights 

Definition 4.8 Let  𝐷𝑖𝑗𝑘(𝑤) denote the overall deviation between alternative 𝐴𝑖 and other 

alternatives over a criterion 𝑐𝑗 within a period 𝑡𝑘 . Let 𝑤𝑗𝑘 denote the associated criterion weight 

within  𝑡𝑘 such that,  

       𝐷𝑖𝑗𝑘(𝑤) = ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂) , �̃�ℎ𝑗𝑘(⨂) )𝑤𝑗𝑘
𝑛
ℎ=1,
ℎ≠𝑖 

,           (4.3) 

𝑖 = 1, 2… , 𝑛;   𝑗 = 1, 2… ,𝑚;   𝑘 = 1, 2… , 𝑝 

Definition 4.9 Let  𝐷𝑗𝑘(𝑤) denote the global deviation between alternatives over 𝑐𝑗 within 𝑡𝑘 , such 

that  
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    𝐷𝑗𝑘(𝑤) = ∑  𝐷𝑖𝑗𝑘(𝑤)
𝑛
𝑖=1 = ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂) , �̃�ℎ𝑗𝑘(⨂) )𝑤𝑗𝑘

𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1 ,          (4.4) 

𝑗 = 1, 2… ,𝑚;  𝑘 = 1, 2… , 𝑝 

Definition 4.10 Let  𝐷𝑘(𝑤) denote the total deviations over all the criteria within 𝑡𝑘, in which the 

total deviation function over 𝑡𝑘 is expressed as follows: 

    𝐷𝑘(𝑤) = ∑  𝐷𝑗𝑘(𝑤)
𝑚
𝑗=1 = ∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂) , �̃�ℎ𝑗𝑘(⨂) )𝑤𝑗𝑘

𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1 ,      (4.5) 

𝑘 = 1, 2… , 𝑝 

Theorem 4.1 In DGMCDM problems with unknown criteria weights, the optimal criteria weights 

𝑤𝑗𝑘
∗ = (𝑤1𝑘

∗ , 𝑤2𝑘
∗ … ,𝑤𝑚𝑘

∗ ) which maximize the total deviation between alternatives over each 

period 𝑡𝑘  can be obtained as follows: 

         𝑤𝑗𝑘
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

√∑ [∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1 ]

2

𝑚
𝑗=1

,           (4.6) 

𝑗 = 1,2… ,𝑚;  𝑘 = 1, 2… , 𝑝 

In order to satisfy the normalization constraint condition, the weight of criteria 𝑐𝑗 within a 

period 𝑡𝑘  can be determined as follows: 

       𝑤𝑗𝑘 =
𝑤𝑗𝑘
∗

∑ 𝑤𝑗𝑘
∗𝑚

𝑗=1

=

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

          (4.7) 

Proof 4.1 For unknown criteria weights, the maximizing deviation method (Y. M. Wang, 1998) 

can be adapted, in which the criteria weights over a period 𝑡𝑘 are being estimated based on the 

deviation degrees between the evaluations within 𝑡𝑘. To this end, the following optimization model 

is established 
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    𝑚𝑎𝑥𝐷𝑘(𝑤) = ∑  𝐷𝑗𝑘(𝑤)
𝑚
𝑗=1 = ∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂) , �̃�ℎ𝑗𝑘(⨂) )𝑤𝑗𝑘

∗𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1      (4.8) 

           𝑠. 𝑡. ∑ (𝑤𝑗𝑘
∗ )

2
= 1𝑚

𝑗=1 , 𝑤𝑗𝑘
∗ ≥ 0,                      (4.9) 

𝑗 = 1,2… ,𝑚;  𝑘 = 1, 2… , 𝑝 

Note that ∑ (𝑤𝑗𝑘
∗ )

2
= 1𝑚

𝑗=1  is used as a constraint to accentuate the larger deviations within each 

time period. Thus, to ensure that criteria which make larger deviations would be assigned higher 

weights in comparison to criteria which make smaller deviations.  

The model can be solved using Lagrange function (Z. Xu & Cai, 2012): 

      𝐿(𝑤𝑗𝑘
∗ , 𝜆) = 𝐷𝑘(𝑤) −

1

2
𝜆 (∑ (𝑤𝑗𝑘

∗ )
2
− 1𝑚

𝑗=1 ), where                                   (4.10) 

𝜆 is the Lagrange multiplier. Thus,  

  𝐿(𝑤𝑗𝑘
∗ , 𝜆) = ∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂) , �̃�ℎ𝑗𝑘(⨂) )𝑤𝑗𝑘

∗𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1 −

1

2
𝜆 (∑ (𝑤𝑗𝑘

∗ )
2
− 1𝑚

𝑗=1 )   (4.11) 

By calculating the partial derivative of Eq. (4.11) with respect to 𝑤𝑗𝑘
∗  (𝑗 = 1, 2… ,𝑚, 𝑘 =

1, 2… , 𝑝) and 𝜆, while setting these partial derivatives to zero, the following equations are 

obtained: 

     
𝜕𝐿(𝑤𝑗𝑘

∗ ,𝜆)

𝜕𝑤𝑗𝑘
∗ = ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂) )

𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1 − 𝜆𝑤𝑗𝑘

∗ = 0                 (4.12) 

              
𝜕𝐿(𝑤𝑗𝑘

∗ ,𝜆)

𝜕𝜆
= ∑ (𝑤𝑗𝑘

∗ )
2
− 1𝑚

𝑗=1 = 0              (4.13) 

From Eq. (4.12), we can obtain 

         𝑤𝑗𝑘
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝜆
                    (4.14) 



80 
 

Since ∑ (𝑤𝑗𝑘
∗ )

2
= 1𝑚

𝑗=1 , the value of 𝜆 can be obtained using Eq. (4.14) as follows: 

            ∑ (

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝜆
)

2

= 1𝑚
𝑗=1        (4.15) 

By simplifying Eq. (4.15) 

       𝜆 = √∑ [∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂), �̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1 ]

2

𝑚
𝑗=1                                    (4.16) 

Thus, the optimal solution of the model is 

𝑤𝑗𝑘
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

√∑ [∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1 ]

2

𝑚
𝑗=1

, 𝑗 = 1, 2… ,𝑚;  𝑘 = 1, 2… , 𝑝  

4.3.4 Estimate the influence of dynamic evaluations 

 Since weight information of different time periods is unknown, the overall evaluation over a 

DGMCDM problem cannot be obtained. As a result, the weight of the different time periods with 

respect to each criterion should be established. To this end, a new optimization model is proposed, 

in which the evaluation space over a DGMCDM problem would be maximized. 

Theorem 4.2 In a DGMCDM where the weight information of different time periods is unknown, 

the optimal solution to maximize the evaluation space over the dynamic decision problem can be 

obtained using 𝜃𝑗 = {𝜃𝑗 (𝑡1), 𝜃𝑗 (𝑡2)… , 𝜃𝑗 (𝑡𝑝)}, where 

     𝜃𝑗 (𝑡𝑘)
∗ =

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

√∑

[
 
 
 

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

]
 
 
 

𝑝
𝑘=1 

2
,   𝑗 = 1, 2… ,𝑚;  𝑘 = 1, 2… , 𝑝   (4.17) 
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In order to satisfy the normalization constraint condition, the optimal weight of period 𝑡𝑘 with 

respect to 𝑐𝑗 can be expressed as 

      𝜃𝑗 (𝑡𝑘) =
𝜃𝑗 (𝑡𝑘)

∗

∑ 𝜃𝑗 (𝑡𝑘)
∗𝑝

𝑘=1

=

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

∑

[
 
 
 

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

]
 
 
 

𝑝
𝑘=1 

               (4.18) 

Proof 4.2 In DMCDM problems, if the influence of 𝑐𝑗 ∈ 𝐶 is the same over 𝑡𝑘 ∈ 𝑆(𝑡), for all 𝑗 =

1, 2… ,𝑚 and 𝑘 = 1, 2… , 𝑝, then 

     𝑤𝑗𝑘 = ∑ 𝜃𝑗 (𝑡𝑘)𝑤𝑗𝑘
𝑝
𝑘=1 , for all 𝑗 = 1, 2… ,𝑚 and 𝑘 = 1, 2… , 𝑝          (4.19)  

However, Eq. (4.19) does not generally hold, i.e., the influence of 𝑐𝑗 is changing over 𝑡𝑘 and thus, 

there is always a difference in the value of 𝑤𝑗𝑘. Consequently, a general deviation function 𝐹(𝑒𝑗𝑘) 

is introduced: 

   𝐹(𝑒𝑗𝑘) = (∑ 𝜃𝑗 (𝑡𝑘)
∗𝑤𝑗𝑘

𝑝
𝑘=1 − 𝑤𝑗𝑘), for all 𝑗 = 1, 2… ,𝑚 and 𝑘 = 1, 2… , 𝑝   (4.20) 

Accordingly, to estimate the weight vector 𝜃𝑗 = {𝜃𝑗 (𝑡1), 𝜃𝑗 (𝑡2)… , 𝜃𝑗 (𝑡𝑝)} for 𝑐𝑗, the following 

optimization model is constructed by adapting the maximizing deviation method: 

        𝑚𝑎𝑥 𝐹(𝑒𝑗𝑘) = (∑ 𝜃𝑗 (𝑡𝑘)
∗𝑤𝑗𝑘

𝑝
𝑘=1 − 𝑤𝑗𝑘)                  (4.21) 

    𝑠. 𝑡. ∑ (𝜃𝑗 (𝑡𝑘)
∗)
2
= 1𝑝

𝑘=1 , 𝜃𝑗 (𝑡𝑘) ∈ [0,1], 𝑗 = 1,2… ,𝑚, 𝑘 = 1, 2… , 𝑝        (4.22) 

Note that ∑ (𝜃𝑗 (𝑡𝑘)
∗)
2
= 1𝑝

𝑘=1  is used as a constraint to stress the larger deviations by reflecting a 

wider range, which would maximize the evaluation space. 

The model can be solved using Lagrange function: 

      𝐿(𝜃𝑗 (𝑡𝑘)
∗, 𝜆) = 𝐹(𝑒𝑗𝑘) −

1

2
𝜆(∑ 𝜃𝑗 (𝑡𝑘)

2 − 1𝑝
𝑘=1 ), where           (4.23) 
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𝜆 is the Lagrange multiplier. Thus,  

   𝐿(𝜃𝑗 (𝑡𝑘)
∗, 𝜆) = (∑ 𝜃𝑗 (𝑡𝑘)

∗𝑤𝑗𝑘
𝑝
𝑘=1 − 𝑤𝑗𝑘) −

1

2
𝜆 (∑ (𝜃𝑗 (𝑡𝑘)

∗)
2
− 1𝑝

𝑘=1 )     (4.24) 

By calculating the partial derivative of Eq. (4.24) with respect to 𝜃𝑗 (𝑡𝑘)
∗ (𝑗 = 1, 2… ,𝑚, 𝑘 =

1, 2… , 𝑝) and 𝜆, while setting these partial derivatives to zero, the following equations are 

obtained: 

            
𝜕𝐿(𝜃𝑗 (𝑡𝑘)

∗,𝜆)

𝜕𝜃𝑗 (𝑡𝑘)
∗ = 𝑤𝑗𝑘 − 𝜆𝜃𝑗 (𝑡𝑘)

∗ = 0               (4.25) 

       
𝜕𝐿(𝜃𝑗 (𝑡𝑘)

∗,𝜆)

𝜕𝜆
= ∑ ∑ (𝜃𝑗 (𝑡𝑘)

∗)
2
− 1𝑝

𝑘=1
𝑝
𝑘=1 = 0                                         (4.26) 

From Eq. (4.25), we can obtain 

            𝜃𝑗 (𝑡𝑘)
∗ =

𝑤𝑗𝑘

𝜆
                                                   (4.27) 

Since ∑ (𝜃𝑗 (𝑡𝑘)
∗)
2
= 1𝑝

𝑘=1 , the value of 𝜆 can be obtained using Eq. (4.27) as follows: 

            ∑ (
𝑤𝑗𝑘

𝜆
)
2

= 1𝑝
𝑘=1                 (4.28) 

By simplifying Eq. (4.28) 

            𝜆 = √∑ [𝑤𝑗𝑘]
2𝑝

𝑘=1           (4.29) 

Thus, the optimal solution of the model is 

𝜃𝑗 (𝑡𝑘)
∗ =

𝑤𝑗𝑘

√∑ [𝑤𝑗𝑘]
2𝑝

𝑘=1

=

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

√∑

[
 
 
 

∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

∑ ∑ ∑ 𝑑(�̃�𝑖𝑗𝑘(⨂),�̃�ℎ𝑗𝑘(⨂) )
𝑛
ℎ=1,
ℎ≠𝑖 

𝑛
𝑖=1

𝑚
𝑗=1

]
 
 
 

𝑝
𝑘=1 

2
  



83 
 

4.3.5 Evaluate and rank feasible alternatives 

Once criteria weights are established and the dynamism over the multi-criteria decision 

problem has been considered, the DGMCDM problem would be evaluated by extending the 

PROMETHEE II approach using the optimized weights and the possibility degrees. The detailed 

procedure of evaluating and ranking decision alternatives is provided in the rest of this section. 

4.3.5.1 Establish preferences 

 To establish preferences among available alternatives over each criterion within a given 

period 𝑡𝑘, the possibility degree formula is used based on the definition of Xu and Da (2002). 

Definition 4.11 Let 𝑙 �̃�𝑗𝑘(⨂) and 𝑙 �̃�𝑗𝑘(⨂) denote the difference between the upper and lower limits 

of two normalized grey numbers �̃�(⨂) and �̃�(⨂), respectively, over a criterion 𝑐𝑗 within a 

period 𝑡𝑘 such that,  

 𝑙 �̃�𝑗𝑘(⨂) = �̃�𝑗𝑘 − �̃�𝑗𝑘                                  (4.30)   

 𝑙�̃�𝑗𝑘(⨂) = �̃�𝑗𝑘 − �̃�𝑗𝑘   

Definition 4.12 Let 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) denote the preference degree of �̃�(⨂) over �̃�(⨂) with 

respect to 𝑐𝑗 within 𝑡𝑘, in which 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) would be determined using the possibility 

degree formula as follows: 

         𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) =
�̃�𝑗−�̃�𝑗

𝑙�̃�(⨂)𝑗+𝑙�̃�(⨂)𝑗
                  (4.31) 

Definition 4.13 Let the sum of preferences for any two unequal grey numbers (e.g., �̃�(⨂)  =

 [�̃�, �̃�] and �̃�(⨂)  =  [�̃�, �̃�]) equal to 1, such that 

 𝑝𝑗𝑘(�̃�(⨂), �̃�(⨂)) = 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) + 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) = 1    (4.32) 

Based on Eqs. (4.31) and (4.32), 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) would be determined as follows:   
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 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) =

{
 
 

 
 0                        if 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) ≤ 0         

�̃�𝑗𝑘−�̃�𝑗𝑘

𝑙 �̃�𝑗𝑘(⨂)
+𝑙 �̃�𝑗𝑘(⨂)

  if 0 < 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) < 1  

1                        if 𝑝𝑗𝑘(�̃�(⨂) ≻ �̃�(⨂)) ≥ 1         

  (4.33) 

4.3.5.2 Determine relative preferences 

 In order to determine the relative preferences between alternatives in DGMCDM problems 

based on the degrees of preferences between the alternatives, the criteria weights, and the 

associated time period weight; the following definition is proposed. 

Definition 4.14 Let 𝑝𝑗𝑘(𝐴𝑎 ≻ 𝐴𝑏) represent the preference degree of alternative 𝐴𝑎 over 𝐴𝑏 with 

repsect to criterion 𝑐𝑗 within period 𝑡𝑘. Let the weight of 𝑐𝑗  within 𝑡𝑘 be represented by 𝑤𝑗𝑘, 

where ∑ 𝑤𝑗𝑘 = 1,
𝑚
𝑗=1 𝑗 = 1, 2… ,𝑚. Let the weight of the associated period 𝑡𝑘 with respect to 𝑐𝑗  be 

donated by 𝜃𝑗 (𝑡𝑘), where ∑  𝜃𝑗 (𝑡𝑘) = 1
𝑝
𝑘=1 , 𝑘 = 1, 2… , 𝑝. Let �̃�𝑘(𝐴𝑎 ≻ 𝐴𝑏) denote the relative 

preference of alternative 𝐴𝑎 over 𝐴𝑏 across the set of evaluation criteria 𝐶 =  {𝑐1, 𝑐2 … , 𝑐𝑚} 

within 𝑡𝑘. Accordingly, �̃�𝑘(𝐴𝑎 ≻ 𝐴𝑏) would be determined using the cumulative preference 

degrees of 𝐴𝑎 over 𝐴𝑏 with respect to the evaluation criteria within 𝑡𝑘 such that, 

 �̃�𝑘(𝐴𝑎 ≻ 𝐴𝑏) = ∑ 𝑤𝑗𝑘  𝜃𝑗 (𝑡𝑘) �̃�𝑗𝑘(𝐴𝑎 ≻ 𝐴𝑏)
𝑚
𝑗=1 , 𝑗 = (1, 2… ,𝑚)  (4.34) 

4.3.5.3 Estimate global preferences and rank available alternatives 

The global preference of a given alternative over others in DGMCDM problems can be 

estimated using the resultant relative preferences matrices as follows: 

Definition 4.15 For a DGMCDM problem, let �̃�+
𝑘
(𝐴𝑎) denote the positive outranking flow of 𝐴𝑎 

within 𝑡𝑘, which represents the extent to which an alterative 𝐴𝑎 is preferred over all others 

within 𝑡𝑘. Let �̃�𝑘(𝐴𝑎 ≻ 𝐴𝑏) indicate the relative preference of 𝐴𝑎 over 𝐴𝑏 within 𝑡𝑘. The function 

of �̃�+
𝑘
(𝐴𝑎) would be determined using the relative preference measures of 𝐴𝑎 over other 

alternatives within 𝑡𝑘 such that, 

 �̃�+
𝑘
(𝐴𝑎) =  

1

𝑛−1
∑ �̃�𝑘(𝐴𝑎 ≻ 𝐴𝑏)

𝑛

𝑏=1
  (4.35) 
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Definition 4.16 For a DGMCDM problem, let �̃�−
𝑘
(𝐴𝑎) denote the negative outranking flow of 𝐴𝑎 

within 𝑡𝑘, which represents the extent to which an alterative 𝐴𝑎 is outranked by all other 

alternatives within 𝑡𝑘. Let �̃�𝑘(𝐴𝑏 ≻ 𝐴𝑎) indicate the degree by which an alternative 𝐴𝑎 is 

outranked by 𝐴𝑏 within 𝑡𝑘. The function of �̃�−
𝑘
(𝐴𝑎) would be determined using �̃�𝑘(𝐴𝑏 ≻

𝐴𝑎)  within 𝑡𝑘 such that, 

 �̃�−
𝑘
(𝐴𝑎) =  

1

𝑛−1
∑ �̃�𝑘(𝐴𝑏 ≻ 𝐴𝑎) 

𝑛

𝑏=1
 (4.36) 

Definition 4.17 For a DGMCDM problem, let �̃� (𝐴𝑎) denote the global preference (i.e., net 

outranking flow) of alternative 𝐴𝑎 over multi-periods, in which the function of �̃� (𝐴𝑎) is based on 

the net measures of positive and negative outranking flows over 𝑆(𝑡) such that, 

 �̃� (𝐴𝑎) =  ∑ (�̃�+
𝑘
(𝐴𝑎) − �̃�

−
𝑘
(𝐴𝑎))

𝑝
𝑘=1  (4.37) 

 After estimating the net outranking flow for each alternative, the ranking index would be 

established using the resulted global preferences over the multi-periods decision problem, where 

the higher the value of �̃� (𝐴𝑎), the better is the associated alternative. 

4.4 Illustrative example 

 To demonstrate the feasibility and practicability of the proposed methodology, a practical 

example in the literature was used. The example was adopted from the work of Peng and Wang 

(2014), which intended to address multi-period decision making problems using dynamic interval-

valued hesitant fuzzy aggregation operators. 

 A given company is going through a subcontractor selection process, in which the performance 

of each subcontractor is examined over different periods. Four subcontractors are considered, 

namely 𝐴1, 𝐴2, 𝐴3, and 𝐴4, and three evaluation periods, i.e., 𝑇1, 𝑇2, and 𝑇3. The performance of 

each subcontractor is evaluated by the following criteria: Reliability (𝐶1), which is evaluated by 

the reputation, records and financial condition; Schedule-control ability (𝐶2), which is measured 

by the subcontractors’ mobilization and efficiency; Management ability (𝐶3), which is intended to 

assess the quality, safety, and environmental management level of each subcontractor. The weight 
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information with regard to the evaluation criteria and the different periods are completely 

unknown. Moreover, the evaluations are subjective and uncertain. Therefore, the evaluation 

information is represented by interval grey numbers over each period as represented in Table 4.1.  

Table 4.1: Uncertain decision matrix at each period 

Performance matrix (𝑻𝟏) 

Criteria 

Alternatives 

A1 A2 A3 A4 

Reliability (𝑪𝟏) [0.3, 0.8] [0.3, 0.5] [0.3, 0.4] [0.5, 0.8] 

 Schedule-control ability (𝑪𝟐) [0.3, 0.6] [0.5, 0.8] [0.2, 0.7] [0.3, 0.5] 

Management ability (𝑪𝟑) [0.3, 0.6] [0.4, 0.9] [0.4, 0.8] [0.3, 0.4] 

Performance matrix (𝑻𝟐) 

Reliability (𝑪𝟏) [0.2, 0.9] [0.2, 0.5] [0.2, 0.8] [0.6, 0.7] 

 Schedule-control ability (𝑪𝟐) [0.8, 0.9] [0.2, 0.8] [0.6, 0.7] [0.5, 0.6] 

Management ability (𝑪𝟑) [0.5, 0.9] [0.3, 0.8] [0.7, 0.9] [0.3, 0.7] 

Performance matrix (𝑻𝟑) 

Reliability (𝑪𝟏) [0.5, 0.7] [0.4, 0.8] [0.2, 0.5] [0.2, 0.7] 

 Schedule-control ability (𝑪𝟐) [0.4, 0.9] [0.7, 0.8] [0.5, 0.7] [0.2, 0.9] 

Management ability (𝑪𝟑) [0.5, 0.6] [0.6, 0.7] [0.3, 0.6] [0.4, 0.6] 

In order to overcome the decision problem at hand, the proposed methodology is applied as 

follows: 

Step 1 Normalize the grey evaluations of the uncertain decision matrices using Algorithm 4.1. The 

grey normalized values of the uncertain decision matrix are listed in Table 4.2.  
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Table 4.2: Normalized uncertain decision matrix at each period 

Performance matrix (𝑻𝟏) 

Criteria 

Alternatives 

A1 A2 A3 A4 

Reliability (𝑪𝟏) [0, 1] [0, 0.4] [0, 0.2] [0.4, 1] 

 Schedule-control 

ability (𝑪𝟐) 
[0.167, 0.667] [0.5, 1] [0, 0.833] [0.167, 0.5] 

Management ability (𝑪𝟑) [0, 0.5] [0.167, 1] [0.167, 0.833] [0, 0.167] 

Performance matrix (𝑻𝟐) 

Reliability (𝑪𝟏) [0, 1] [0, 0.429] [0, 0.857] 
[0.571, 

0.714] 

 Schedule-control 

ability (𝑪𝟐) 
[0.857, 1] [0, 0.857] [0.571, 0.714] 

[0.429, 

0.571] 

Management ability (𝑪𝟑) [0.333, 1] [0, 0.833] [0.667, 1] [0, 0.667] 

Performance matrix (𝑻𝟑) 

Reliability (𝑪𝟏) [0.5, 0.833] [0.333, 1] [0, 0.5] [0, 0.833] 

 Schedule-control 

ability (𝑪𝟐) 
[0, 1] [0.6, 0.8] [0.2, 0.6] [0.6, 1] 

Management ability (𝑪𝟑) [0.5, 0.75] [0.75, 1] [0, 0.75] [0.25, 0.75] 

Step 2 Estimate criteria weights at each period using Eq. (4.7). Thus, the criteria weigh vector over 

each period 𝑤𝒕𝒌 = ( 𝑤1𝑘,  𝑤2𝑘,  𝑤3𝑘), 𝑘 = 1, 2, and 3, would be: 

𝑤𝒕𝟏 = (0.4099, 0.2950, 0.2950) 

𝑤𝒕𝟐 = (0.3221, 0.3490, 0.3289) 

𝑤𝒕𝟑 = (0.3273, 0.3535, 0.3191) 
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Step 3 Estimate the weight of each period with respect to each criterion using Eq. (4.18). Thus, 

the weight vector of each period with respect to each criterion 𝜃𝑗 = {𝜃𝑗 (𝑡1), 𝜃𝑗 (𝑡2), 𝜃𝑗 (𝑡3)}, 𝑗 =

1, 2, and 3, would be: 

𝜃1 = (0.3869, 0.3041, 0.3090) 

𝜃2 = (0.2958, 0.3499, 0.3544) 

𝜃3 = (0.3129, 0.3487, 0.3384) 

Step 4 Evaluate the preferences between the alternatives using Eq. (4.33). Take alternative 𝐴1 over 

period 𝑇1 for example, Table 4.3 shows the preference degrees of 𝐴1 over other alternatives within 

period 𝑇1.  

Table 4.3: Preference matrix of A1 over T1 

Multi-criteria preference matrix Alternatives 

Base alternative Criteria A2 A3 A4 

A1 

Reliability (𝑪𝟏) 0.714 0.833 0.375 

 Schedule-control ability (𝑪𝟐) 0.167 0.500 0.600 

Management ability (𝑪𝟑) 0.250 0.286 0.750 

Step 5 Determine relative preferences by considering the calculated degrees of preferences 

between the alternatives, the criteria weights, and the associated time period weight; using Eq. 

(4.34). For illustration, Table 4.4 reflects the relative preference measures of alternative 𝐴1 over 

other alternatives within period 𝑇1. 

Step 6 Establish global preferences among alternatives using Eqs. (4.35), (4.36), and (4.37): 

�̃� (𝐴1) = 0.1829, �̃� (𝐴2) = 0.0834, �̃� (𝐴3) = −0.2024, �̃� (𝐴4) = −0.0639 

Step 7 Rank the alternatives and select the best one(s) in accordance with the net outranking flow 

values: 
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𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 

Thus, alternative 𝐴1 is the appropriate subcontractor for the uncertain DMCDM problem. 

Table 4.4: Relative preference matrix of A1 over T1 

Multi-criteria preference matrix Alternatives 

Base alternative Criteria A2 A3 A4 

A1 

Reliability (𝑪𝟏) 0.113 0.132 0.059 

 Schedule-control ability (𝑪𝟐) 0.015 0.044 0.052 

Management ability (𝑪𝟑) 0.023 0.026 0.069 

4.5 Comparative analysis 

 By comparing the obtained ranking order for the adopted subcontractor selection case using 

the proposed methodology in this manuscript with the original results of Peng and Wang (2014) 

using dynamic interval-valued hesitant fuzzy aggregation operators, similar ranking order was 

obtained.  

 Furthermore, Peng and Wang (2014) proposed another approach where dynamic hesitant fuzzy 

aggregation operators were used to handle uncertain DMCDM problems. Likewise, the same 

example was analyzed using hesitant fuzzy information instead of interval hesitant fuzzy 

information. Once again, the proposed methodology in this manuscript provided the same ranking 

order. 

 The advantages of the proposed methodology over the work of Peng and Wang (2014) can be 

summarized as follows: (1) the original work presumed that decision makers are able to assign 

criteria weights precisely, which is hardly the case in practical applications especially with 

decision problems under uncertainty. In contrast, the proposed methodology is able to overcome a 

more complicated DMCDM problems, in which the criteria weights are completely unknown using 

the available information on alternatives evaluations; (2) the original work adapted the concept of 

the BUM function for obtaining the weight vector of different periods, which does so 
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independently from the evaluation criteria. In contrast, the proposed methodology estimates the 

weight vector of different time periods considering the changing in the influence of each evaluation 

criterion over different periods. Thus, the dynamic aspects of different criteria are considered in 

the proposed methodology, which have not been considered in BUM or other existing methods for 

obtaining the weight vector of time periods. 

4.6 Conclusion 

 Conventional MCDM approaches are not suitable to address the dynamics over time. 

Therefore, different hybrid approaches have been developed to deal with DMCDM problems. 

Different issues with the existing approaches have been identified in this research: (1) Criteria 

weights: the overall evaluation of MCDM problems is based on alternatives evaluations and the 

criteria weights, existing approaches in DMCDM problems assumes that information about criteria 

weights is known, static over different periods, and/or can be assigned by decision makers. 

However, there are cases where information on criteria weights is completely unknown due to 

different reasons (e.g., time pressure, limited expertise, incomplete knowledge, and lack of 

information), which would be an obstacle for the overall evaluations; (2) Weight vector 

establishment of different time periods: within the context of DMCDM, the existing approaches 

which estimate weight vector of different time periods does not consider the variabilities in the 

influence of different criteria over different periods. 

 To overcome the shortcomings of the existing approaches, this manuscript is provided. It 

investigates DMCDM problems with small amount of data and poor information, which cannot be 

described by a probability distribution, where information on criteria weights and the influence of 

different time periods are unknown. To this end, a new hybrid DMCDM methodology is proposed. 

At first, consistency among evaluations over each period should be established. After that, the 

unknown criteria weights should be estimated over each period; thus, an optimization model was 

established based on the integration of grey system theory’s principles and the maximizing 

deviation method. By solving the optimization model, a function to determine the optimal criteria 

weights was obtained. Subsequently, the weight vector of different time periods with respect to 

each evaluation criterion would be established using a new optimization model where the 

evaluation space over a DMCDM problem would be maximized. Consequently, the DGMCDM 
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problem would be evaluated using a combination of the possibility degrees and PROMETHEE II. 

Once the evaluation process is completed, the rank index for potential alternatives would be 

provided based on the values of global preferences; in which the higher the value, the better is the 

alternative. 

 To determine the feasibility and practicability of the proposed methodology, an existing case 

in the literature was adopted; whereas to validate the methodology, a comparative analysis with 

existing approaches was provided. 

 The advantages of this manuscript over other existing research works can be summarized in 

the following points: (1) Estimate unknown criteria weights within the context of DMCDM 

problems with small amount of data and poor information, which cannot be described by a 

probability distribution, using the maximizing deviation method where the deviation degrees 

functions are based on the principles of grey systems theory; (2) Establish the unknown weight 

vector of different time periods by introducing a new optimization model, which considers the 

changing in the influence of the different evaluation criteria over different periods; (3) Extend the 

PROMETHE II approach to evaluate and rank potential alternatives within the context of 

DMCDM problems using the optimized weights and the possibility degrees. 
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Chapter 5 

Conclusions, Contributions and Future Research 

5.1 Concluding remarks 

MCDM is well recognized branch of operation research that intended to aid DMs in complex 

decision problems, where different types of criteria of different nature should be considered. A 

variety of MCDM approaches exist to address decision problems of different nature. However, the 

various approaches of MCDA can be classified into three main categories: value measurement 

models; goal, aspiration, or reference-level models; and outranking models.  

The conventional approaches of MCDM have an implicit assumption, which presumes the 

availability and accuracy of information. However, in many real life applications available 

information is subject to uncertainty, imprecision, and subjectivity; which renders the conventional 

approaches insufficient to handle the associated decision problem. 

Although different hybrid methodologies have been introduced to handle the lack of accurate 

information in a MCDM, there exist decision problems with small amount of data and poor 

information in which the applicability of existing approaches would be influenced. Accordingly, 

this manuscript-based thesis is intended to address decision problems that involve uncertain 

evaluations due to lack of information. The significance of this thesis is highlighted in the 

followings: (1) It focuses on MCDM problems under uncertain evaluations with small amount of 

data and poor information. (2) It assesses different alternatives over complex interrelated decision 

structure, which are subject to subjective and objective uncertain evaluations. (3) It provides a 

systematic approach to carry out the overall evaluation for MCDM problems with small amount 

of data and poor information, where information on criteria weight is unknown completely. (4) It 

addresses DMCDM problems with small amount of data and poor information where information 

on criteria weights and the weight vector of different time periods are unknown. (5) It considers 

the fluctuations in the influence of different evaluation criteria on a decision problem over different 

time periods. (6) It maximizes the evaluation space over MCDM and DMCDM with small amount 

of data and poor information. 
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The conceptual and methodological contributions of this thesis to the current literature are 

presented in the following subsections.  

5.2 Conceptual contributions  

This research proposed a new systematic methodology to address the limitation of 

conventional MCDM approaches when uncertainty related aspects are present in a decision 

problem. Different types of uncertainty related aspects are considered in the proposed approach: 

(i) uncertainty associated with limited objective information, e.g., quantitative (interval scales), 

and (ii) uncertainty associated with subjective expert knowledge (i.e., ambiguous concepts and 

semantic meanings).  

Although there exist different hybrid approaches to address different types of uncertainty, the 

applicability of the existing approaches are limited when it comes to handle MCDM problems with 

a relatively small amount of data and poor information, where evaluation criteria are of different 

nature and interdependencies exist among them. This type of MCDM problem has been tackled in 

the first manuscript of this thesis by considering interactions and interdependencies within and 

between different evaluation clusters of a complex system, using linguistic expressions to 

articulate DMs’ preferences, and employing range of values instead of exact values to map 

linguistic expressions.  

One of the major contributions of this research is to optimize the evaluation space over 

uncertain MCDM problems, where the influence of each criterion over the decision problem is 

unknown completely as a result of different reasons, such as time pressure, limited expertise, 

incomplete knowledge and lack of information. The second manuscript of this thesis proposes a 

new approach to tackle this type of MCDM problems. The concept behind the proposed approach 

is to emphasize criteria that reflect larger deviations among alternatives. Thus, criteria which make 

larger deviations should be assigned higher weights in comparison to criteria which make smaller 

deviations. 

Another contribution of this research is to handle MCDM problems within a dynamic context, 

in which uncertain evaluations from different periods are provided, while information on the 

influence of different criteria and the different periods over a decision problem are unknown 
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completely. Although there exist a number of approach to address dynamic MCDM problems, this 

thesis presents in the third manuscript the first attempt that focuses on the variabilities in the 

influence of the evaluation criteria throughout the different periods. 

5.3 Methodological contributions 

This manuscript-based thesis is intended to address a number of shortcomings in the existing 

approaches associated with the modeling and analysis of MCDM with a relatively small amount 

of data and poor information. 

The first challenge was to optimize the evaluation space in decision problems that are subject 

to subjective and objective uncertainty over different types of interrelated criteria (i.e., evaluation 

criteria with different nature, different scales, and different values). To this end, the first 

manuscript proposes a four-phased methodology, in which grey systems theory is integrated with 

a distinctive combination of MCDM approaches (i.e., ANP and PROMETHEE II) as follows: the 

grey systems theory is utilized to articulate the associated uncertainty with subjective and objective 

evaluations; the principles of ANP is used to handle the complexity of the decision structure; the 

PROMETHEE II approach is extended to evaluate and rank potential alternatives over interrelated 

criteria under uncertain evaluations. The emergent strengths of the integrated approach should 

improve the evaluation space in such a complex decision problem under uncertainty. To validate 

the proposed methodology, a comparative analysis is put forward with the work of Kuo, Hsu, and 

Chen (2015), which used fuzzy theory to address the uncertain related aspects. Although both 

approaches reflect the same ranking order of available alternatives, yet the proposed methodology 

is suitable to address decision problems with a relatively small amount of data and poor 

information since it uses grey systems theory, which is preferred over fuzzy theory in such a 

decision problem context where available information cannot be used to draw a robust membership 

function that is required to carry out fuzzy theory’s calculations.  

In the second manuscript, a more complicated scenario of MCDM problems within the context 

of small amount of data and poor information was considered in which information on criteria 

weights was completely unknown. The first phase was concerned with criteria weights estimation. 

Accordingly, a new optimization model was introduced using the maximizing deviation method 
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and the principles of grey systems theory, where various scenarios of deviation were considered 

to generalize the model. In the light of the proposed optimization model, a new function was 

obtained to determine the optimal criteria weights in such MCDM problems. In the second phase, 

potential alternatives were evaluated and ranked based on the integration of PROMETHEE II and 

degrees of possibility, where the resultant criteria weights from the first phase were used as inputs 

for the evaluation process. In order to validate the proposed methodology, a comparative analysis 

with the work of Xu (2015) is carried out. The conclusion of the analysis indicates that three factors 

influence alternatives ranking order, i.e., normalization approach, deviation function, and 

alternative evaluation and ranking methodology. Moreover, a wider deviation area is covered 

under the proposed methodology, which promotes the use of it over the work of Xu (2015). 

In the third manuscript, the dynamic aspect of MCDM is investigated, in which evaluations 

over different criteria change throughout the time while information on criteria weights and the 

influence of different time periods is completely unknown. Although a number of approaches have 

been introduced to address DMCDM, a number of shortcomings in the existing approaches are 

identified in terms of criteria weights evaluations and the weight vector establishment of different 

time periods. Consequently, a new hybrid DMCDM methodology is developed. The proposed 

methodology targets three research problems: (1) establish priorities among evaluation criteria 

over different time periods; (2) estimate weight vectors of different time periods considering the 

variabilities in the influence of the evaluation criteria over the different periods to maximize the 

evaluation space over a DMCDM; (3) evaluate and rank potential alternatives over DMCDM 

problems with a relatively small amount of data and poor information. To validate the proposed 

methodology, a comparative analysis with existing approaches (Peng & Wang, 2014) is 

established. Although, the proposed methodology arrive to the same conclusion of Peng and Wang 

(2014) with respect to alternatives ranking order, the proposed methodology surpass the work of 

Peng and Wang (2014) in a number of issues: (1) providing a systematic approach to establish 

criteria weights, where information on criteria weights is unknown; (2) considering the fluctuations 

in the influence of different evaluation criteria on a decision problem over different time periods, 

while estimating weight vectors of different time periods to maximize the evaluation space in a 

dynamic decision problem. 
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5.4 Ideas for future research   

The increased complexity of many decision problems makes it essential to look after 

specialized knowledge, this impose the need of involving a number of DMs to build upon their 

various knowledge and experience. In this thesis, it is assumed that consensus can be reached 

among DMs or there is only one decision maker. However, conflicts in interests among decision 

makers may raise; hence, the proposed methodologies can be enhanced by incorporating a conflict 

resolution technique in future works. Moreover, the criticality of a DM can be considered in terms 

of the level of related knowledge and expertise to the given decision problem, also the level of 

authority among DMs. To this end, interactions among the involved DMs can be simulated to 

provide valuable insights about the influence of a DM and the degree of involvement in a given 

decision. 

The learning curve within a dynamic decision environment can be considered as a factor in 

order to improve perceptions of DMs, and thereby enhance their judgments. 

Finally, real-world applications within the context of MCDM can be analyzed using the 

proposed methodologies to refine and modify the methodologies. Also, the real data of these 

applications can be simulated to demonstrate the feasibility of the proposed approaches; for 

instance, uncertain evaluations and weights information can be generated from the corresponding 

distributions, then the approximated values are used in the proposed functions. After a number of 

iterations, criteria weights, alternatives ranking order and confidence factor can be obtained. 

5.5 Related publications 

During the course of work on this thesis, the following list of papers have been integrated into 

the writing of it: 

5.3.1 Journal papers 

Maghrabie, H., Schiffauerova, A. & Beauregard, Y. “Grey-based Multi-Criteria Decision 

Analysis Approach: Addressing Uncertainty at Complex Decision Problems”, Technological 

Forecasting & Social Change. Submitted on October 2017. 
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Maghrabie, H., Beauregard, Y. & Schiffauerova, A., “Multi-Criteria Decision-Making Problems 

with Unknown Weight Information under Uncertain Evaluations”, Computers & Industrial 

Engineering. Submitted on November 2017. 

Maghrabie, H., Beauregard, Y. & Schiffauerova, A., “A New Approach to Address Uncertain 

Dynamic Multi-Criteria Decision Problems with Unknown Weight Information”, Expert Systems 

with Applications. Submitted on February 2018. 

5.3.2 Conference papers 

Maghrabie, H., Schiffauerova, A., & Beauregard, Y. (2016). The use of Grey Systems Theory 

in Complex Decision Problems under Uncertainty. Presented at MOSIM annual meeting 2016, 

Montreal, QC, Canada. 

Maghrabie, H., Schiffauerova, A., & Beauregard, Y. (2016). Grey based Multi Criteria 

Decision Analysis to Address Multi Criteria Decision Problems under Uncertainty . Presented 

at GDN annual meeting 2016, Bellingham, WA, United States. 

Maghrabie, H., Schiffauerova, A., & Beauregard, Y. (2015). Improving the Front End 

Innovation - Systems Engineering Approach. Presented at INFORMS annual meeting 2015, 

Philadelphia, PA, United States. 
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