

Accepted Manuscript

Fast Neighbor Search By Using Revised K-D Tree

Yewang Chen, Lida Zhou, Yi Tang, Jai Puneet Singh,
Nizar Bouguila, Cheng Wang, Huazhen Wang, Jixiang Du

PII: S0020-0255(18)30712-6
DOI: https://doi.org/10.1016/j.ins.2018.09.012
Reference: INS 13923

To appear in: Information Sciences

Received date: 19 May 2018
Revised date: 4 September 2018
Accepted date: 5 September 2018

Please cite this article as: Yewang Chen, Lida Zhou, Yi Tang, Jai Puneet Singh, Nizar Bouguila,
Cheng Wang, Huazhen Wang, Jixiang Du, Fast Neighbor Search By Using Revised K-D Tree, In-
formation Sciences (2018), doi: https://doi.org/10.1016/j.ins.2018.09.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ins.2018.09.012
https://doi.org/10.1016/j.ins.2018.09.012

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fast Neighbor Search By Using Revised K-D Tree

Yewang Chen

College of Computer, Science and Technology Huaqiao University, Xiamen, China, 361021, email:

ywchen@hqu.edu.cn

Lida Zhou

College of Computer, Science and Technology Huaqiao University, Xiamen, 361021, China

Yi Tang1

School of Mathematics and Information Science, Guangzhou University, China, 510006 email:

ytang@gzhu.edu.cn

Jai Puneet Singh

Concordia Engineering and Computer Science Concordia University Montreal, Quebec, Canada, H3G

2W1.

Nizar Bouguila

Concordia Institute for Information Systems Engineering, Faculty of Engineering and Computer Science,

Concordia University, Montreal, Quebec, Canada, H3G 2W1. email: nizar.bouguila@concordia.ca

Cheng Wang

College of Computer, Science and Technology Huaqiao University, Xiamen, China, 361021

Huazhen Wang

College of Computer, Science and Technology Huaqiao University, Xiamen, China, 361021

Jixiang Du

College of Computer, Science and Technology Huaqiao University, Xiamen, China, 361021

Abstract

We present two new neighbor query algorithms, including range query (RNN) and

nearest neighbor (NN) query, based on revised k-d tree by using two techniques. The

first technique is proposed for decreasing unnecessary distance computations by check-

ing whether the cell of a node is inside or outside the specified neighborhood of query

1corresponding author: Yi Tang, ytang@gzhu.edu.cn

Preprint submitted to Journal of LATEX Templates September 6, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

point, and the other is used to reduce redundant visiting nodes by saving the indices

of descendant points. We also implement the proposed algorithms in Matlab and C.

The Matlab version is to improve original RNN and NN which are based on k-d tree,

C version is to improve k-Nearest neighbor query (kNN) which is based on buffer k-d

tree. Theoretical and experimental analysis have shown that the proposed algorithms

significantly improve the original RNN, NN and kNN in low dimension, respectively.

The tradeoff is that the additional space cost of the revised k-d tree is approximately

O(αn log(n)).

Keywords: k-d tree, NN, kNN, RNN

2010 MSC: 00-01, 99-00

1. Introduction

Neighbor query, as a form of proximity search, is the optimization problem of find-

ing the point in a given set that is closest (or most similar) to a given point. Closeness

is typically expressed in terms of a dissimilarity function: the less similar the objects,

the larger the function values. Formally, the nearest-neighbor (NN) query problem is5

defined as follows: given a set S of points in a space M and a query point q ∈M , find

the closest point in S to q. k-Nearest Neighbor query (kNN) is a direct generalization

of this problem, the task of kNN is to find the first k closest points. Range query, known

as range nearest-neighbor (RNN) query, is another type of neighbor query, which is to

find neighbors within a specified neighborhood.10

Neighbor query is a fundamental problem in computational geometry and machine

learning, computer vision, pattern recognition, computational geometry, data compres-

sion, coding theory etc, and has been widely used in various applications. For example,

content-based image and video retrieval Li et al. (2018); Cao et al. (2015) are nearest

neighbor problems where the main goal is to find examples that are most relevant to the15

query in a large database; Some clustering algorithms, such as DBSCAN Chen et al.

(2018 (in press), DPeak Rodriguez and Laio (2014), DCore Chen et al. (2018) perform

the task of clustering based on density, where the density of an arbitrary point p is de-

fined as the total number of points within a given range of p, which is in fact a RNN

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

problem; Finding the best match for local image features in large data sets Philbin et al.20

(2007); Clustering local features into visual words by using k-means or similar algo-

rithms Zhang et al. (2017). Besides, neighbor query also can be widely used in other

fields, such as network security Cai et al. (2017); Zhu et al. (2018); Gao et al. (2018),

cloud computing Li et al. (2015); Zhou et al. (2016), secure transmission Fan et al.

(2017), model analysis He et al. (2017), and water data analysis Wang et al. (2018) etc.25

However, the naive version of NN, RNN and KNN algorithms are easy to imple-

ment by computing the distances from the test example to all stored examples, but it is

computationally intensive for large training sets. Many nearest neighbor search algo-

rithms have been proposed over the years, which generally seek to reduce the number

of distance evaluations actually performed. The goal of this paper is to improve these30

algorithms, and the main contributions of this paper are the followings: (1) The draw-

backs of current k-d tree algorithms is discussed, and two techniques are invented to

prune redundant distance computations and node visiting. (2) We implement our idea

in both Matlab and C, the Matlab version is to improve the original RNN and NN,

and C version is to improve kNN based on buffer k-d tree. (3) We conduct a series of35

experiments on real application and synthetic data sets, and the experimental results

demonstrate significant improvement of the proposed algorithm.

The rest of this paper is organized as follow: Section 2 lists related works; Section

3 describes the notations used in this manuscript; Section 4 presents the drawbacks

of current k-d tree based range search; Section 5 introduces the proposed methods in40

detail; Section 6 shows the experimental results of the proposed algorithms on various

data sets, and Section 7 gives conclusion and our future works.

2. Related Works

There are some techniques that are used in neighbor query, such as partition trees,

graph methods, hashing techniques and probabilistic approaches.45

(1) Partition trees are one of the most popular techniques for RNN and NN, they

are used to recursively split the space into subspaces, and organize the subspaces via

a tree structure. Most approaches of this kind select hyper-planes or hyper-spheres to

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

partition the space and divide the data points into subsets, according to the distribution

of data points.50

K-d tree Bentley (1975) is a typical partition tree, which is widely used in many

applications Zhang et al. (2016), and has various variants, such as optimized k-d trees

Silpa-Anan and Hartley (2008), FRS Chen et al. (2017), and buffer k-d trees Gieseke

et al. (2014) which is currently the fastest algorithm for NN and kNN query, as far as

we know. However, k-d tree is not suitable for high-dimensional spaces. As a general55

rule, if the dimensionality is d, the number of data points, n, should satisfy n >> 2d.

A query with an axis-parallel rectangle in a k-d tree storing n points can be performed

in O(n1−1/d + m) time, and in O(log(n)) time if ε is small De Berg et al. (2000),

where m is the number of the reported points.

In addition to k-d tree, there are various other partitioning trees that can be used60

in RNN and NN. Leibe et al. Leibe et al. (2006) proposed a ball-tree data structure

constructed using a mixed partitional-agglomerative clustering algorithm. Schindler

et al. Schindler et al. (2007) proposed a new way of searching the hierarchical k-

means tree. Philbin et al. Philbin et al. (2007) conducted experiments showing that

an approximate flat vocabulary outperforms a vocabulary tree in a recognition task.65

Marius et al. Marius Muja (2014) described a modified k-means tree algorithm that

gives the best results for some data sets, while randomized k-d trees are the best for

others. Tao Tao et al. (2002) developed a new index structure called the U-tree for

minimizing the range query overhead in uncertain database. Besides, there are also

other techniques, such as R* tree Hjaltason and Samet (1999), PCA tree, k-means tree70

Muja and Lowe (2014), Exo-tree Hu and Lee (2006), anchors hierarchy Moore (2000),

vptree Yianilos (1993), cover tree Beygelzimer et al. (2006) and spill-tree Liu et al.

(2004) [23].

(2) Many hashing techniques are also proposed to approximately solve the prob-

lems of RNN and NN, such as ANN based on trinary-project tree Wang et al. (2014),75

Product quantization for nearest neighbor search Jegou et al. (2011), LSH (Locality-

Sensitive Hashing) Andoni and Indyk (2008), FLANN Marius Muja (2014). For ex-

ample, to solve the approximate nearest neighbor search problem (NNS) on the sphere,

Becker et al. Becker et al. (2016) proposed a method using locality-sensitive filters

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(LSF), with the property that nearby vectors have a higher probability of surviving the80

same filter than vectors which are far apart. Bawa et al. Bawa et al. (2005) showed that

the performance of the standard LSH algorithm is critically dependent on the length of

the hashing key and proposed the LSH Forest, a self-tuning algorithm that eliminates

this data dependent parameter. Muja et al. Muja and Lowe (2009) proposed an auto-

matic nearest neighbor algorithm configuration method by combining grid search with85

a finer grained NelderMead downhill simplex optimization process. They also invented

new algorithms Muja and Lowe (2014) for approximate nearest neighbor matching and

evaluate and compare them with previous algorithms. The authors showed that the

optimal nearest neighbor algorithm and its parameters depend on the data set charac-

teristics, and then describe an automated configuration procedure for finding the best90

algorithm to search a particular data set. Huang et al. Huang et al. (2016) discussed

location sensitive hash functions and their applications such as biometric encryption

Wu et al. (2016), keyword search in security Yang et al. (2018).

(3) Computing the quantification probabilities also has attracted much attention in

the database community. Cheng et al. Cheng et al. (2004) used numerical integration,95

which is quite expensive. Cheng et al. Cheng et al. (2008) and Bernecker et al. Ber-

necker et al. (2011) proposed some filter refinement methods to give upper and lower

bounds on the quantification probabilities. Agarwal et al. Agarwal et al. (2016) pre-

sented an efficient NN algorithms for (i) computing all points that are nearest neigh-

bors of a query point with nonzero probability and (ii) estimating the probability of a100

point being the nearest neighbor of a query point, either exactly or within a specified

additive error.

3. Notations

Before starting, we introduce some notations. Let P ⊂ Rd be data points set, where

d is dimension; n be the cardinality of P ; pi be the ith point in P ; dist(p, q) = ‖p−q‖2105

be the distance from q to p; Range(p, ε) be the ε-neighborhood of p, which is defined

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as below:

Range(p, ε) = {o|‖p, o‖2 ≤ ε, o ∈ Rd} (1)

We also define OutRange(p, ε) as a L∞ norm ball centered by p with radius ε as

below:

OutRange(p, ε) = {o|‖p, o‖∞ ≤ ε, o ∈ Rd} (2)

Then the RNN query is defined as follows:

Definition 1. Given a distance ε, the Range Nearest Neighbor of q is defined as

RNN(q, ε) = {p|p ∈ Range(q, ε) ∩ P} (3)

4. The drawbacks of current k-d tree based range search

Fig. 1 shows an example of the subdivision and structure of a k-d tree. A k-d tree110

for a set of n points uses O(n) storage and can be constructed in O(n log(n)) time.

Each point is a node in k-d tree, and there exists a minimum hyper-rectangle, which is

called as a cell, that covers the point and all its descendants. For example, as shown in

Fig. 1, cell 1 is the cell of node f , which is a hyper-rectangle that covers f and g. The

cell of node i is cell 3 that covers i, j and k.115

In the task of performing range query based on k-d tree, we have to query within

an axis-parallel rectangle first. For example, to retrieve RNN(q, ε) in Fig. 1 (a), there

are two steps as following:

• Recursively visit possible nodes A = {a, b, c, d, f, i, g, j}, according to splitted

dimension, then report the result: B = OutRange(q, ε) ∩A = {f, i}.120

• Check distances from q to all nodes in B, and then report RNN(q, eps) = {φ}.

The complexity of the first step, i.e. rectangular range query is O(n1−1/d + m)

De Berg et al. (2000) where m is the number of reported points. Obviously, the worst

complexity is O(n) if OutRange(q, ε) covers all points. However, we notice that the

complexity depends on the total number of visiting nodes and distance computations,125

and many of them are redundant as shown below:

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) subdivision (b) structure

Figure 1: The subdivision and structure of a k-d tree. In (a), the dashed red circle is Range(q, eps), the

shaded green square is OutRange(q, eps), and each red rectangle represents the cell of a node. In (b) all

shaded nodes should be visited.

(1) Redundant visiting nodes: For a query point q, it has to traverse the sub-tree of

a node, if Range(q, ε) covers the whole cell of the node. For example, Range(q, ε)

covers the cell of the root node, then RNN(q, ε) = P , which means traversing the

whole tree is inevitable. In fact, it is unnecessary.130

(2) Redundant distance computations: Although, k-d tree filters some distance cal-

culations, there are still some redundant distance computations, e.g. dist(q, f) and

dist(i, q), as the cells f and q don’t intersect with Range(q, eps). Also, there is no

need to visit their descendant nodes g and j, respectively. Similarly, it is unneces-

sary to compute distances from q to all points in those cells that do not intersect with135

Range(q, eps).

Thus, the main process of querying nearest neighbor in a k-d tree is listed as below

2:

1. Start from root node, the algorithm recursively moves down the tree, in the same

way that it would if the search point were being inserted. Once the algorithm140

reaches a leaf node, it saves this leaf node as the “current best” point c.

2. Unwind the recursion of the tree, and compares each visiting node. If dist(q, c) >

dist(q, v) then c = v, where v is the current visiting node.

3. Check whether there could be any points that can become current best on the

2https://en.wikipedia.org/wiki/K-d tree

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

other side of the splitting plane, by the way of judging whether the splitting hy-145

perplane intersect withRange(q, ε) where ε = dist(q, c). Since the hyperplanes

are all axis-aligned, the algorithm simply makes a comparison to check whether

the distance between the splitting coordinate of the search point and current node

is lesser than the distance from the search point to the current best.

(a) If the hypersphere intersects with the plane, there could be nearer points on150

the other side of the plane, so the algorithm has to check the other branch

to find them, following the same way as the entire search.

(b) Otherwise, ignore the whole branch on the other side of the current node.

In Friedman et al. (1977), Friedman et al. claimed the above algorithm runs inO(log(n))

time. However, in high-dimensional data, the algorithm has to visit many more branches155

than in lower-dimensional spaces. In particular, in the case of the data is high-dimensional

and sparse, it runs in O(n).

Take Fig. 2 for example, suppose node f is the current nearest point to q, we can see

that Range(q, dist(q, f)), the hypersphere of q that has a radius equal to dist(q, f) as

shown by the green circle, intersects with the hyperplane of g, while doesn’t intersect160

with that of h. Therefore, the algorithm ignores h, but has to visit g. Similarly, on the

other side, the algorithm has to visit node c, d, i, j, and ignores k, e,m.

Actually, there are also many redundant visiting nodes in this algorithm, the reason

is that the nearest distance from a cell of current searching node c to query point q is

always larger than the distance from q to the splitting coordinate of c. For example,165

Range(q,dist(q,f)) doesn’t intersect with the cells of i and j, but intersects with the

hyperplanes of the two nodes. Therefore, node i and j are unnecessary to visit.

Therefore, our goal is to improve the original k-d tree based RNN and NN by de-

creasing the number of visiting nodes and distance computations.

5. The proposed methods170

Let ξ be a cell of node s, and t be a point, there are three cases between ξ and

Range(t, ε), as follows:

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: An example of searching nearest point to q. Node f is current best node, Range(q, dist(q, f))

intersect with the hyperplanes of i and j, but doesn’t intersect with the cells of i and j.

• Case (1) non-intersect: all points within cell ξ are all far from t, there is no need

to visit these points.

• Case (2)Range(t, ε) covers (includes) ξ: all points within cell ξ are all neighbors175

of t. Also, it is unnecessary to visit these points.

• Case (3) intersect: it is necessary to visit its children nodes.

Thus, we can directly filter visiting nodes and distance computations for case (1)

and case (2). Therefore, the key is to judge the case between ξ and Range(t, ε), as

well as to retrieve all points within ξ directly instead of traversing the subtree rooted at180

node s.

5.1. Determine relationship between a cell and searching range

If the closest and the farthest distance of ξ from q are known, then t is easy to

determine the relationship between a cell and a query point: case (1) holds if the closest

distance is larger than ε, case (2) holds if the farthest distance is less than ε, otherwise185

case (3) holds.

As cell ξ is a hyper-rectangle, we can determine the closest and the farthest distance

as below.

Let rect ⊂ Rd be a hyper-rectangle in d dimension, and lvex and uvex be two

key vertexes of rect, such that ∀q ∈ rect s.t. ∀j lvexj ≤ qj ≤ uvexj , where j =190

1, 2, ..., d. Let cent be the center point of rect, i.e. cent = (lvex + uvex)/2, and

dvec = uvex− cent = cent− lvex be a vector that indicates the distances from cent

to each face (hyper-plane) of rect. Obviously, ∀i we have dveci ≥ 0.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 3: An example of the lvex, uvex, cent and dvec of a cell.

Given an arbitrary point p, we say p is in the range of rect in the ith dimension if

lvexi ≤ pi ≤ uvexi, otherwise it is out of the range of rect in this dimension. Also,195

we have |centi−pi| ≤ dveci if p is in the range of rect in the ith dimension, otherwise

|centi − pi| > dveci.

Fig. 3 shows the concepts of lvex, uvex, cent and dvec. For example, let lvex =

[1,−1, 1]′, uvex = [3, 7, 5]′, then cent = [2, 3, 3]′, and dvec = [1, 4, 2]′.

For point p, we define the closest and the farthest distance of rect from p as below:200

Definition 2. ldist(rect, p) is the closest distance of rect from p, i.e. ldist(rect, p) =

min
q

(dist(p, q)), q ∈ rect.

Obviously, ldist(rect, p) = 0 if p ∈ rect.

Definition 3. udist(rect, p) is the farthest distance of rect from p, i.e. udist(rect, p) =

max
q

(dist(p, q)), q ∈ rect.205

Let x be a real number, I(x) and G(x) are two discriminant functions, as follows:

I(x) =





1, x ≥ 0

0, x < 0

G(x) =





1, x ≥ 0

−1, x < 0

Theorem 1. Let u = cent − p, the farthest point in rect from p is v, where vi =

centi + dveci ∗G(ui), i.e. udist(rect, p) = ‖v − p‖2.

Proof. First, ∵ dvec = uvex − cent = cent − lvex and G(ui) = ±1, ∴ ∀i =210

1, 2, ..., d we have:

vi =




uvexi, G(ui) = 1

lvexi , G(ui) = −1

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This means v ∈ rect, and it is just one vertex of rect.

Second, ∵ vi−pi = centi+dveci∗G(ui)−pi = (centi−pi)+dveci∗G(centi−
pi), ∴ we have:

vi − pi =




centi − pi + dveci, centi − pi ≥ 0

centi − pi − dveci, centi − pi < 0

(4)

∀q ∈ rect, we have lvexi ≤ qi ≤ uvexi, ∴ (centi − dveci) ≤ qi ≤ (centi +

dveci), thus we have:

centi − pi − dveci ≤ qi − pi ≤ centi − pi + dveci (5)

• Case (1) centi − pi ≥ 0: ∵ dveci ≥ 0, ∴ |centi − pi − dveci| ≤ |centi − pi|+
|dveci| = centi − pi + dveci, then |qi − pi| ≤ centi − pi + dveci. According215

to Equation (4) |vi − pi| = centi − pi + dveci, yields:

|vi − pi| ≥ |qi − pi|

• Case (2) centi − pi < 0: ∵ dveci ≥ 0, ∴ |centi − pi − dveci| ≥ |centi −
pi + dveci|, thus |qi − pi| ≤ |centi − pi − dveci|. According to Equation (4)

|vi − pi| = |centi − pi − dveci|, yields:220

|vi − pi| ≥ |qi − pi|

From the above two cases, we have dist(v, p) = ‖v−p‖2 ≥ ‖q−p‖2 = dist(q, p),

i.e v is the farthest point in rect from p.

Theorem 1 tells us that for any point p, the farthest point in rect from p is always

one of the vertexes of rect. Also, it shows the way to find this vertex which is nontrivial225

to understand mathematically.

However, it is much easy to explain it geometrically as shown in Fig. 4. For

point p in this figure, we first go forward from p to cent, and then turn the direction

according to the rule of dveci ∗G(centi−pi) in ith dimension, which makes it always

go along with the direction that is the farthest away from p in each dimension. For230

example, p is on the left of cent in horizontal axis, then cent1 − p1 > 0 which makes

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 4: An example of finding the farthest point in rect. v and lvex is the farthest point in rect from p

and q, respectively.

G(cent1 − p1) = 1, and yields v1 = cent1 + r1. Vertically, p is on the top of cent,

then cent2− p2 < 0 which makes G(cent2− p2) = −1. Hence, v2 = cent2− r2, and

finally, we determine the farthest vertex is: v = [cent1 − r1, cent2 − r2, ...]′. Similar

to point q, lvex is found as the farthest point from q in the same way.235

Theorem 2. Let u = |cent − p| − dvec where |cent − p| is element wise absolute

terms, then ldist(rect, p) = ‖v‖2, where vi = ui ∗ I(ui), and the closest point in rect

from p is w, where wi = pi + vi ∗G(centi − pi).

Proof. First, ∀q ∈ rect, we have (centi − dveci) ≤ qi ≤ (centi + dveci), thus

|qi − centi| ≤ dveci, then we have:240

|qi − pi| = |(qi − centi) + (centi − pi)|

≥ | |centi − pi| − |qi − centi| |

≥ | |centi − pi| − devi |

∵ ui = |centi − pi| − dveci, then we have:

vi =




ui, |centi − pi| − dveci ≥ 0

0 , |centi − pi| − dveci < 0

Therefore, we have |qi−pi| ≥ |vi|, and then ‖q−p‖2 ≥ ‖v‖2, i.e. ldist(rect, p) ≥
‖v‖2.245

Second, we are to prove that w ∈ rect, as follows:

• Case (1) centi − pi ≥ 0 and |centi − pi| − dveci ≥ 0: we have wi = pi + vi =

pi + centi − pi − dveci = centi − dveci = lvexi;

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5: An example of finding the closest point in rect. w(p), w(q) andw(t) are the closest points in rect

from p, q and t, respectively. While the closest point from s in rect is s itself, because s ∈ rect.

• Case (2) centi − pi < 0 and |centi − pi| − dveci ≥ 0: we have wi = pi − vi =

pi − (−(centi − pi) + dveci = centi + dveci = uvexi;250

• Case (3) centi−pi ≥ 0 and |centi−pi|−dveci < 0: we have (a)wi = pi+vi =

pi + 0 = pi, and (b) lvexi ≤ pi ≤ uvexi otherwise |centi − pi| > dveci which

conflicts with |centi − pi| − dveci < 0;

• Case (4) centi−pi < 0 and |centi−pi|−dveci < 0: we have (a)wi = pi−vi =

pi − 0 = pi, and (b) lvexi ≤ pi ≤ uvexi otherwise |centi − pi| > dveci which255

conflicts with |centi − pi| − dveci < 0.

From Case (1) - Case (4), we conclude thatw ∈ rect, and dist(w, p) =
√

(wi − pi)2 =
√
v2i = ‖v‖2.

Therefore, ldist(rect, p) = ‖v‖2 and w is the closest point from p in rect.

Theorem 2 tells a fact that for any point p, the closest point in rect from p is260

always on the boundary of rect, and it presents the way to find this point which is also

nontrivial to understand mathematically.

It is also much easy to geometrically explain as shown in Fig. 5, lvex = [1, 1, 1]′

and uvex = [4, 3, 3]′ are the two key vertexes of the rectangle, and then cent =

[2.5, 2, 2]′, dvec = [1.5, 1, 1]′.265

For point p = [0, 4, 4]′, it is out of the range of rect in each dimension. In the

first dimension, ∵ p1 < cent1 ∴ I(u1) = 1 which means p is out of the range of

rect in the first dimension, and G(cent1 − p1) = 1 which means p is on the left of

cent, (G(centi − pi) = −1 means p is on the right of cent in ith dimension), then

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6: An example of revised k-d tree. Each node holds its all descendant points’ indices.

we have w(p)
1 = cent1 − dvec1 = 1 according to Theorem 2. Similarly, w(p)

2 =270

cent2 + dvec2 = 3 and w(p)
3 = cent3− dvec3 = 1, thus w(p) = [1, 3, 1]′ is a vertex of

rect.

For point q, w(q)
1 = 4 is determined by the same way as finding w(p)

1 because q1 is

out of the range of rect. However, in the second dimension, ∵ lvex2 < q2 < uvex2,

then we have w(q)
2 = q2 = 2 directly, and so does w(q)

3 = q3 = 2. Thus, we find that275

w(q) = [4, 2, 2]′ which is on a face of rect. Similarly, w(t) = [1, 2, 1]′ which is on an

edge of rect, while s is totally inside rect, thus the closest point in rect from s is itself.

5.2. Retrieve all descendant nodes directly

We modify the original k-d tree by simply adding an additional array to save indices

of all descendants for each node, as shown in Fig. 6. Each rectangle with a red label280

represents an additional array for a node besides it. For the root node a, all points

except a itself are its own descendants, then we just save ’-1’; for a non-leaf node, e.g.

node b, its descendants are h, f, g, they are all saved in its additional array; for leaf

node, such as k, nothing is saved.

Given an arbitrary node p and a query point q, if Range(q, ε) covers the whole cell285

of p, we can return all descendants of p directly in O(1) time, instead of traversing its

sub-tree which runs in O(m) time, where m is the total number of descendants of p.

Thus, m times of visiting nodes are saved.

Theorem 3. Suppose n is sufficient large, the space complexity of the additional cost

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in revised k-d tree is O(α n log(n)), where α ∈ (blog(n)c−3log(n) , H
log(n)), H is the depth of290

the revised k-d tree.

Proof. Let the root node be level 1, and its children be level 2 etc, then the revised

k-d tree has H levels. Let ni be the total number of nodes in ith level. Obviously,

1 ≤ ni ≤ 2i−1, n =

H∑

i=1

ni, and n−
i∑

j=1

nj points saved in the ith level.

(1) Obviously, the additional space cost T (n) is:295

T (n) = 1 +
H∑

i=2

(n−
i∑

j=1

nj) < nH

Let T (n) = αn log(n), and then α < H
log(n) .

(2) ∵ k-d tree is binary, ∴ H ≥ blog(n)c+ 1, then:

T (n) = 1 +

H∑

i=2

(n−
i∑

j=1

nj)

≥ 1 +

blog(n)c∑

i=2

(n−
i∑

j=1

2j−1)

While in full binary tree, H = blog(n)c + 1, the first blog(n)c levels are all full,300

then ni = 2i−1 s.t. i = 1, 2, ..., blog(n)c. At the last level, the additional space cost

is zero, because all nodes in this level are leaves. Then we have 2blog(n)c < n and the

total space cost yields:

T (n) = 1 +

blog(n)c∑

i=2

(n−
i∑

j=1

2j−1)

= n(blog(n)c − 1)−
blog(n)c∑

i=1

i∑

j=1

2j−1

= n(blog(n)c − 1)−
blog(n)c∑

i=1

(2i − 1)

= (n+ 1)(blog(n)c − 1)− 2blog(n)c+1 + 3

≥ (n+ 1)(blog(n)c − 1)− 2n+ 3

> (n+ 1)(blog(n)c − 3)

Let T (n) = αn log(n), then we have:305

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

α > (n+1)(blog(n)c−3)
n log(n) > blog(n)c−3

log(n)

The theorem above tells that the additional space cost is minimized if k-d tree is

full. A balanced k-d tree is very close to full binary tree, because the first H − 2 levels

of any balanced tree must be full. However, in most cases k-d tree is not balanced and310

full. Fortunately, in most cases log(n) < H << n and Brown Brown (2015) invented

an algorithm to build a balanced k-d tree in O(kn log(n)) time. Thus, the average cost

of building such a revised k-d tree is about O(αn log(n)) which is acceptable.

5.3. Range Query algorithm

Algorithm 1, which is also named as FSR, presents the detail of retrieving neigh-315

bors for a query point q within Range(q, ε). In each subroutine, we filter some nodes

according to Theorem 1 and 2.

Simply, the complexity isO(n−Ψ1−Ψ2), where Ψ1 is the total number of filtered

nodes whose cells are outside Range(q, ε), while Ψ2 is the total number of filtered

nodes whose cells are inside Range(q, ε). Both of Ψ1 and Ψ2 depend on dimension,320

data distribution and the size of ε.

In fact, any recursion path will stop at some nodes, called as stop nodes, whose

cells are either outside or inside Range(q, ε). While their ancestral cells all intersect

with Range(q, ε), which implies that these stop nodes as well as their parents should

distribute around nearby the border of Range(q, ε). Fig. 7 shows an example, the325

yellow point in the center is query point, q, with ε = 50, 000. Other colored points

are all visited points, where green points are stop nodes outside Range(q, ε), and blue

points are stop nodes inside Range(q, ε). Black points are all filtered. We can clearly

see that most visiting nodes and stop nodes distribute around the border ofRange(q, ε).

In section 6.5, more experiments about the distribution of visiting and stop nodes on330

different data sets will be shown. Hence, the larger surface area of Range(q, ε), the

more points will distribute around the border region, and the more points should be

visited.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

4

Figure 7: A distribution of visiting and stop points in 2 dimension. The yellow point in the center is query

point, q, with ε = 50, 000. Other colored points are all visited points, where green points are stop nodes

outside Range(q, ε), and blue points are stop nodes inside Range(q, ε). Black points are all filtered.

Suppose ε ≤ min(dvec) and Range(q, ε) is totally inside the cell of root node,

i.e. inside the whole space of data set P . Let Y be the total number of visiting points335

being distributed around the surface region, and S be the surface area of Range(q, ε).

Because S ∝ εd−1, then Y ∝ εd−1. Therefore, we can roughly determine Algorithm 1

averagely runs in aboutO(min(βεd−1 log(n), n)) time, where β is a coefficient of data

distribution, and then in low dimension it runs in O(log(n)) time because n >> εd−1.

Comprehensively, we have:340

• The best complexity is O(1), if Range(p, ε) covers the whole cell of root node

or non-intersects with it, regardless of dimension and data distribution.

• The complexity is O(log(n)), if Range(p, ε) is small that intersects few cells or

covers few nodes.

• The average complexity is O(min(βεd−1 log(n), n)).345

• In low dimension, the complexity is about O(log(n)).

5.4. Nearest Neighbor Query Algorithm

Algorithm 2, named as FNNS, shows the detail of retrieving the nearest neighbor

for a query point q. In each subroutine, we also use Theorem 2 to filter redundant

nodes.350

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Fast Range Search: FRS
1: Input: data P , revised k-d tree kdt, query point q, scanning radius ε, current node

c

2: Output: RNN(q, ε)

3: if c is not leaf then

4: fDist=udist(rectc, q) according to Theorem 1.

5: if fDist ≤ ε then

6: if c is root node then

7: RNN(q, ε) = P ;

8: else

9: RNN(q, ε) = c + all descendants of c;

10: end if

11: Return;

12: end if

13: cDist=ldist(rectc, q) according to Theorem 2.

14: if cDist ≥ ε then

15: RNN(q, ε) = NULL; Return;

16: end if

17: end if

18: if c ∈ OutRange(q, ε)&dist(q, c) ≤ ε then

19: add c into RNN(q, ε);

20: end if

21: %Searching left child and right child recursively;

22: if c is not leaf then

23: lRNN = FRS(P, kdt, q, eps, c.left);

24: rRNN = FRS(P, kdt, q, eps, c.right);

25: RNN(q, ε) = lRNN + rRNN ;

26: end if

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: The details of data sets and the revised k-d tree. PCA real dim is the real dimensionality got by

PCA; n is the cardinality of each data set, T (n) is the total number of additional points saved in revised k-d

tree.

PAM House Rand4 Blog

dim 4 7 4 59

PCA real dim 4 5 4 5

n 3,850,505 2,049,280 100,000 52,397

H (depth) 21 21 17 16

T (n) 72,815,821 37,171,606 1,380,436 660,902

T (n)/n 18.91 18.14 13.80 12.61
blog(n)c−3

log(n) 0.823 0.811 0.783 0.765

α = T (n)/n
log(n) 0.864 0.865 0.831 0.805
H

log(n) 0.960 1.001 1.024 1.021

As discussed in Section 4, the originalNN algorithm runs inO(log(n)) time in low

dimension, but in high-dimensional sparse space, it is O(n). Although the complexity

of FNNS is still at the same order of magnitude as original NN , in fact it performs

much better, because FNNS optimizes the strategy for filtering redundant visiting

nodes, as shown in line 11-14, which greatly improves the original NN . In Section355

6.6, we will presents the improvements of FNNS in various data sets.

5.5. kNN Algorithm

Currently, as stated above, as far as we know, buffer k-d tree Gieseke et al. (2014)

is the fastest kNN algorithm, which uses buffer and modern many-core devices such

as GPU to accelerate in parallel. The k-d tree build in this algorithm is also a little360

different from the original k-d tree, as shown in Fig.8, there are four parts: (1) a top

tree, (2) a leaf structure which contains more than one point, (3) a set of buffers (one

buffer per leaf of the top tree), and (4) two input queues. Each leave node contains a set

of points, which consists of blocks and stores all rearranged patterns. The blocks are

in a one-to-one correspondence with the leaves of the top tree. The buffer component365

consists of buffers, one buffer for each leaf. These buffers will be used to store query

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 Fast Nearest Neighbor Searching: FNNS
1: Input: data P , revised k-d tree kdt, query point q, current node c, searching radius

cur radius

2: Output: the index of the nearest point, bestNode, to q, minimum distance

min dist

3: global bestNode

4: global min dist

5: if c is root node then

6: min dist=dist(c, q)

7: curDist=dist(c, q)

8: bestNode = c

9: else

10: cur dist = cur radius

11: cDist=ldist(rectc, q) according to Theorem 2

12: if cDist ≥ min dist then

13: return ;

14: end if

15: if min dist > dist(c, q) then

16: min dist = dist(c, q)

17: bestNode = c

18: cur dist = min dist;

19: end if

20: end if

21: if c.left is not empty then

22: FNS(P, kdt, q, c.left, curDist)

23: end if

24: if c.right is not empty then

25: FNS(P, kdt, q, c.right, curDist)

26: end if

27: if c is root node then

28: return [bestNode, min dist];

29: end if

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 3 Revised PROCESSALLBUFFERS
1: Ensure: A sequence i1, ..., iN ∈ {1, ...,m} of query indices

2: I = NULL

3: for j = 1, ..., 2h do do

4: Remove all query indices i1, ..., iN(bj) from buffer bj

5: for all i1, ..., iN(bj) do in parallel do

6: if the nearest distance from the rect of current leaf associated with the buffer

bj < the kth nearest distance from current query point then

7: Update nearest neighbors w.r.t. all points in the leaf

8: end if

9: end for

10: I = I
⊕
i1, ..., iN(bj) (concatenate indices)

11: end for

12: Return I

indices and can accommodate a predefined number B > 1 of integers each.

For all query points, it uses FINDLEAFBATCH to find all candidate leaves for each

query point in parallel, and then invokes PROCESSALLBUFFERS to use brute force

algorithm to find all k-nearest neighbors from candidate leaves for each query point in370

parallel.

Here, we only apply our first technic in PROCESSALLBUFFERS to filter unnec-

essary distance computation from those points contained in candidate leaves, i.e, if the

nearest distance from the rect of a leaf to the query point q is larger than the current

kth nearest distance from q, then skip this leaf. Line 6 in Algorithm 3 presents filtering375

process.

6. Experiments

In this section, we conduct experiments to evaluate the proposed algorithms, in or-

der to make comparisons with original original k-d tree based algorithm and exhaustive

algorithm on different data sets, as well as kNN based on buffer k-d tree. All exper-380

iments are conducted on a machine equipped with 3.3GHz CPU and 8 GB memory,

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: The data structure of buffer k-d tree Gieseke et al. (2014). A buffer k-d tree is composed of (1)

a top tree, (2) a leaf structure (a leaf may contains more than one point), (3) a set of buffers (one buffer per

leaf of the top tree), and (4) two input queues.

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10

x 10
4 Total distance computation

ε

co
m

pu
ta

tio
n

tim
es

kd−tree pro
kd−tree
brute−force

0 5 10 15

x 10
4

0

2

4

6

8

10

x 10
4 Total distance computation

ε

co
m

pu
ta

tio
n

tim
es

kd−tree pro
kd−tree
brute−force

0 5 10 15

x 10
4

0

2

4

6

8

10

x 10
4 Total distance computation

ε

co
m

pu
ta

tio
n

tim
es

kd−tree pro
kd−tree
brute−force

(a) dim=2 (b) dim=3 (c) dim=4

Figure 9: Comparison of total distance computations on synthetic 2-dim, 3-dim and 4-dim Random Data,

respectively. The total distance computations of our RNN algorithm is #NormalComputation + #ExtraCom-

putation.

and Windows 10 64-bit OS. The RNN and NN algorithms are coded in MATLAB, and

compared to original k-d tree based algorithm. The proposed kNN is coded under the

framework of buffer k-d tree in C .

6.1. Experimental data sets385

Several real and synthetic data sets are employed in our experiments, we clear all

same data which makes all rows in each data set unique, and all data are normalized

such that the domain of each dimension is [0, 105]. They are as follows:

• Synthetic data: Rand2 is a 2-dimensional random data, Rand3 is a 3-dimensional

random data, and Rand4 is a 4-dimensional random data, all of them have the390

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000
Extra Cost

ε

co
m

pu
ta

tio
n

tim
es

normal distance computation
extra cost

0 5 10 15

x 10
4

0

2000

4000

6000

8000

10000

12000

14000
Extra Cost

ε
co

m
pu

ta
tio

n
tim

es

normal distance computation
extra cost

0 5 10 15

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4 Extra Cost

ε

co
m

pu
ta

tio
n

tim
es

normal distance computation
extra cost

(a) dim=2 (b) dim=3 (c) dim=4

Figure 10: Comparison between normal distance computations and extra computations of our RNN algo-

rithm on synthetic 2-dim, 3-dim and 4-dim Random Data, respectively.

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5
x 10

5 Total distance computation

ε

co
m

pu
ta

tio
n

tim
es

kd−tree pro
kd−tree
brute−force

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5
x 10

5 Total distance computation

ε

co
m

pu
ta

tio
n

tim
es

kd−tree pro
kd−tree
brute−force

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

x 10
4 Total distance computation

ε

co
m

pu
ta

tio
n

tim
es

kd−tree pro
kd−tree
brute−force

(a) PAM real dim=4 (b) House real dim=5 (c) Blog real dim=5

Figure 11: Comparison of total distance computations on PAM, Household, and BlogFeedback. The total

distance computations of our RNN algorithm is #NormalComputation + #ExtraComputation.

0 1 2 3 4 5 6

x 10
4

0

5000

10000

15000
Extra Cost

ε

co
m

pu
ta

tio
n

tim
es

normal distance computation
extra cost

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6
x 10

4 Extra Cost

ε

co
m

pu
ta

tio
n

tim
es

normal distance computation
extra cost

0 1 2 3 4 5 6

x 10
4

0

1000

2000

3000

4000

5000
Extra Cost

ε

co
m

pu
ta

tio
n

tim
es

normal distance computation
extra cost

(a) PAM real dim=4 (b) House real dim=5 (c) Blog real dim=5

Figure 12: Comparison between normal distance computations and extra computations of our RNN algo-

rithm on PAM, Household, and BlogFeedback.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5
running time comparison

ε

ru
nn

in
g

tim
e

(s
ec

)

kd−tree pro
kd−tree

0 5 10 15

x 10
4

0

0.5

1

1.5

2

2.5
running time comparison

ε

ru
nn

in
g

tim
e

(s
ec

)

kd−tree pro
kd−tree

0 5 10 15

x 10
4

0

0.5

1

1.5

2

2.5
running time comparison

ε

ru
nn

in
g

tim
e

(s
ec

)

kd−tree pro
kd−tree

(a) dim=2 (b) dim=3 (c) dim=4

On synthetic data sets

0 1 2 3 4 5 6

x 10
4

0

2

4

6

8

10
running time comparison

ε

ru
nn

in
g

tim
e

(s
ec

)

kd−tree pro
kd−tree

0 1 2 3 4 5 6

ǫ ×104

0

2

4

6

8

10

12

14

ru
nn

in
g

tim
e

(s
ec

)

running time comparison

kd-tree pro
kd-tree

0 1 2 3 4 5 6

ǫ ×104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ru
nn

in
g

tim
e

(s
ec

)

running time comparison

kd-tree pro
kd-tree

(d) PAM real dim=4 (e) House real dim=5 (f) Blog real dim=5

On realtime data sets

Figure 13: Comparison of running time of RNN on synthetic data and realtime data sets.

same cardinality of 100,000, while Rand5 is a 5-dimensional random data with

cardinality 2,000,000.

• Realtime application data: PAMPA (PAM) 3, Household (House), Reaction Net-

work (Reaction), BlogFeedback (Blog) 4, kdd04 (74 dim) and Tom Hardware

Information (Tom) (97 dim) all come from UCI archive 5.395

The first three rows of Table. 1 show more details. For each data set, we use PCA to

find the real dimension: Let |eig1| ≥ |eig2| ≥, ...,≥ |eigd| be the ordered eigenvalues

of a data set, setw = 99%, the real dimension isRealDim s.t. [
RealDim∑

i=1

eigi]/
d∑

i=1

eigi ≥
w.

3PAMPA a real data set of 4 dimension with cardinality 3,850,505, obtained by taking the first 4 principle

components of a PCA on a database Reiss and Stricker (2012)
4BlogFeedback is a 59-dimensional data set with cardinality 52,397 obtained by taking the first 59 nu-

meric attributes and the 60th-280th attributes are omitted, because most values in the 60th-280th attributes

are zero.
5http://archive.ics.uci.edu/ml/index.php

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 1 2 3 4 5 6

ǫ ×104

0

0.5

1

1.5

2

di
ff

×104 diff comparison

kd-tree pro
kd-tree

0 1 2 3 4 5 6

ǫ ×104

0

2

4

6

8

10

di
ff

×104 diff comparison

kd-tree pro
kd-tree

0 1 2 3 4 5 6

ǫ ×104

0

0.5

1

1.5

2

2.5

di
ff

×104 diff comparison

kd-tree pro
kd-tree

(a) PAM real dim=4 (b) House real dim=5 (c) Blog real dim=5

Figure 14: The comparison of diff on 3 realtime application data sets.

6.2. Experiment 1: space cost of the revised k-d tree400

The last 6 rows in Table. 1 show the detail of the revised k-d trees for each data set,

because Rand2, Rand5 and Rand10 are similar, we only list the detail of Rand10.

We can clearly see that the depths are all far less than cardinalities n, i.e. H << n,

and blog(n)c−3log(n) < α < H
log(n) which is consistent with Theorem 3. Furthermore, all α

are much closer to blog(n)c−3log(n) than to H
log(n) .405

6.3. Experiment 2: the comparisons of distance computations and running time for

RNN

In this part, we conduct experiments to compare the proposed algorithm with kd-

tree ori and brute-force by presenting the distance computations and running time.

(Here, we only use 500,000 data points of PAM and House in the following experi-410

ments.)

Distance computations comparison: According to Algorithm 1, there are two

types of distance computation for a query point: (1) Extra Distance Computation is

to compute the farthest and closest distance from a cell, which is the tradeoff of our

algorithm. (2) Normal Distance Computation is to compute a distance from another415

point. Therefore, the total distance computations of the proposed algorithm is:

#totalComputation=#NormalComputation + #ExtraComputation

We randomly select some points as query points, and increase ε from a small value

to a large one which makes all points as neighbors. Then, use the mean distance com-

putations to make comparison for each ε.420

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The results on synthetic data set are shown in Fig. 9, we can see that on 2-dim

and 3-dim data sets, the superiority of the proposed algorithm is significant. On 4-dim

data set, the distance computation times also grows fast with ε, but it is still less than

that in original algorithm. When the number of total distance computations reaches

its peak, it decreases quickly to 0. Fig.10 compares the normal distance computations425

and extra distance computations on the same 3 data sets, we can see the extra distance

computation is closed to the normal distance computations, but both of them increase

quickly with the dimension. That’s the reason that the proposed algorithm still not

suitable for high-dimensional data.

On realtime applications, the proposed algorithm still has significant advantages to430

the original algorithm in low real dimension, as Fig. 11 (a) (b) and (c) show. We also

present the comparison between the normal distance computations and extra distance

computations on the same 3 data sets as shown in Fig.12, the results are similar to those

in Fig.10.

Running time comparison: Because Matlab is inefficient for loops and recursion435

which are heavily used in our algorithm, therefore we only compare running time be-

tween the proposed method and kd-tree ori. Fig. 13 (a), (b) and (c) illustrate the com-

parison of running time on synthetic 2-dim, 3-dim and 4-dim data set, respectively, and

Fig. 13 (d), (e) and (f) present the comparison of running time on PAM, House and

Blog, respectively. They are all consistent with distance computations showed above.440

6.4. Experiment 3: the comparisons of visiting nodes

We show experiments in this section to compare the difference between visiting

nodes and distance computations, as follows:

diff = abs(|visitingNodes| − totalComputation) (6)

where |visitingNodes| is the total number of visiting nodes, and totalComputation

is the total number of distance computations which including normal distance compu-

tations and extra distance computations.

From Fig. 14, we can see that the proposed algorithm is much stable, and com-445

bined with Fig. 11, it is inferred that many unnecessary visiting nodes in the proposed

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 3 4 5 6 7 8

distance to query point ×104

0

1000

2000

n
u
m

b
e
r

o
f
p
o
in

ts

stop and visiting nodes, ǫ=40000

visiting nodes distribution
stop nodes distribution

0 2 4 6 8 10

distance to query point ×104

0

1

2

3

n
u
m

b
e
r

o
f
p
o
in

ts

×104 all data distribution

0 2 4 6 8 10

distance to query point ×104

0

5000

10000

n
u
m

b
e
r

o
f
p
o
in

ts

stop and visiting nodes, ǫ=10000

visiting nodes distribution
stop nodes distribution

0 0.5 1 1.5 2

distance to query point ×105

0

5

10

n
u
m

b
e
r

o
f
p
o
in

ts

×104 all data distribution

0 5 10 15

distance to query point ×104

0

200

400

600

n
u
m

b
e
r

o
f
p
o
in

ts

stop and visiting nodes, ǫ=20000

visiting nodes distribution
stop nodes distribution

0 0.5 1 1.5 2

distance to query point ×105

0

5000

10000

15000

n
u
m

b
e
r

o
f
p
o
in

ts

all data distribution

(a) PAM (b) House (c) Blog

Figure 15: The first row shows three distributions of stop nodes, visiting nodes and all points on PAM,

Household and BlogFeedBack, respectively. The second row is the distributions of all data points on the same

three data sets, respectively. Query points q = the 1000th, 2000th and 4000th point in PAM, Household

and BlogFeedBack, respectively.

0 5 10 15 20
0

1

2

3

4

5

6
x 10

5

dimension

nu
m

be
r o

f v
is

iti
ng

 n
od

es

Cardinality=500,000

our algorithm
original algorithm

Figure 16: The comparison of visiting nodes between our algorithm FNNS and original NN algorithm

on synthetic random data sets SY NDS, and for each data set in SY NDS, the query points q is the

geographical center.

algorithm are saved.

6.5. Experiment 4: the distribution of stop and visiting nodes

In order to examine the distribution of visiting and stop nodes, we conduct series of

experiments as Fig. 15 presents. Because short of pages, we only list three distribution450

examples, each of which has different searching range ε. As we can see, most of the

distances from these visiting and stop nodes to query point concentrate in the vicinity

of ε. This means most of these points distribute around the border of Range(q, ε),

which is consistent with the analysis in Section 5.3.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8
x 10

4 PAM: Cardinality=3850505

offset

nu
m

be
r o

f v
is

iti
ng

 n
od

es

our algorithm
original algroithm

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3
x 10

5 Household: Cardinality=2049280

offset

nu
m

be
r o

f v
is

iti
ng

 n
od

es

our algorithm
original algroithm

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Blog: Cardinality=52397

offset

nu
m

be
r o

f v
is

iti
ng

 n
od

es

our algorithm
original algroithm

0 1000 2000 3000 4000 5000
0

5000

10000

15000
Reaction: Cardinality=65554

offset

nu
m

be
r o

f v
is

iti
ng

 n
od

es

our algorithm
original algroithm

0 1000 2000 3000 4000 5000
2

4

6

8

10

12

14

16
x 10

4 Kdd04: Cardinality=145751

offset

nu
m

be
r o

f v
is

iti
ng

 n
od

es

our algorithm
original algroithm

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5
x 10

4 Tom: Cardinality=28179

offset

nu
m

be
r o

f v
is

iti
ng

 n
od

es

our algorithm
original algroithm

Figure 17: The comparison on mean number of visiting nodes between our algorithm FNNS and original

NN algorithm on different realtime data sets.

6.6. Experiment 5: comparison between FNNS and original NN455

In this section, we only compare visiting nodes of our fast nearest neighbor search-

ing algorithm FNNS with originalNN on both synthetic SY NDS and realtime data

sets, as shown in Fig. 16 and Fig. 17, respectively.

On SY NDS, for each data set ds ∈ SY NDS, we choose the geographical center

of ds as query point q. We can see that both the numbers of visiting nodes increase460

with dimension in these random data sets, but our algorithm FNNS is clearly much

better than the original NN . It is also observed that our algorithm still runs in O(n)

time in high dimension because of the “cures of dimensionality”.

On realtime data sets, we randomly choose 30 points as seeds. For each seed point

s, we shift it in each dimension and yield query point q as follows:

qi = si + (−1)RI × offset (7)

where offset = 100× step, RI is a random integer.

In the following experiments, step varies from 1,2..., to 50, which makes offset465

changes from 100,200,... to 5000. For each offset, we calculate mean number of

visiting nodes for all query points:

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

|visitingnodesmean|= 1
30 ×

30∑

i=1

(number of visiting nodes of qi)

The results conducted on different data sets are shown in Fig. 17. We can see that

FNNS outperforms original NN evidently, on all data sets except kdd04 it runs in470

log(n) expected time for all different query points regardless of their position. While

the complexity of original NN depends on the location of query point q, the farther of

q from its nearest point, the higher complexity of the algorithm.

6.7. Experiment 6: comparison between the revised kNN and buffer k-d tree

In this section, we benchmark buffer k-d tree and our kNN, and make comparisons475

on different data sets. The number of query points are 2000, they are all generated

randomly.

The basic configuration of buffer k-d tree is: tree depth=10, num threads=1, and

num nXtrain chunks=10.

The device of our machine for running OpenCL Stone et al. (2010) (Buffer k-d tree480

works via OpenCL) is: platform 0- Intel(R) OpenCL; device 0- Intel(R) HD Graphics

4400; Number of compute units:20; Size of memory (GB) 1.45; Maximum memory

allocation (GB) 0.3634; OpenCL version 1.2.

Fig.18 shows the running time of both algorithms on 5 data sets, the value of k is 1,

41 and 121, respectively. Table 2 presents the total distance computations on the same485

data sets with the same value of k.

We can see that on low dimension our kNN has great superiority to buffer k-d tree,

e.g., on RAND 5dim and PAM. It is worth noting that improvement of our kNN on

running time is not as remarkable as on total distance computations, the reason is the

framework of buffer k-d tree relies on OpenCL which has basic overhead. However,490

with dimension grows the superiority vanishes, e.g., on BLOG (59 dim), both algo-

rithms perform similarly, which means our algorithm no longer has any effect to filter

unnecessary distance computation in such high dimension.

6.8. Comprehensive analysis

From the above experiments, we can see that the number of redundant visiting495

nodes and distance computation are greatly reduced in the proposed algorithms in low

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) k = 1 (b) k = 41 (c) k = 121

Figure 18: The running time comparisons of kNN for 2000 random query points on different data sets with

different k. Our kNN algorithm improves buffer k-d tree greatly in low dimension, while the effectiveness

vanish with dimension grows.

Table 2: Comparison of total distance computations of kNN for 2000 random query points on different data

sets.

data set rand 5dim pam house blog

k=1

our kNN 605,203,501 2,893,962,806 1,740,878,290 23,456,390

buffer kd 2,003,902,872 3,854,265,000 1,910,181,802 23,922,000

speedup 3.31 1.33 1.10 1.02

k=41

our kNN 995,721,799 3,064,925,450 1,817,370,755 23,477,900

buffer kd 2,003,906,245 3,854,265,000 1,910,215,318 23,922,000

speedup 2.01 1.26 1.05 1.02

k=121

our kNN 1,037,119,337 3,129,228,967 1,843,986,073 23,470,730

buffer kd 2,003,903,906 3,854,265,000 1,910,137,114 23,922,000

speedup 1.93 1.23 1.03 1.02

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

dimension. The tradeoff is that the additional space cost of the revised k-d tree is

averagely about O(αn log(n)).

In high dimension, the superiority is not so remarkable. But for RNN, in the case of

ε is either very small or large, our algorithm is much better than original and brute-force500

algorithm, regardless of dimension. All experiments are consistent with the complexity

analysis in section 5.3.

7. Conclusion

RNN (Range Query), NN (Nearest Neighbor Query) and kNN (k-Nearest Neighbor

Query) are fundamental problems in computational geometry, data mining and machine505

learning, and are widely used in many applications. There exists great number of

unnecessary visiting nodes and distance computations in current RNN, NN and kNN

algorithm based on k-d tree.

In this paper, we propose new RNN, NN and kNN algorithm, which greatly reduces

unnecessary visiting nodes and distance computations, based on two techniques as510

follows:

• The first one is to check whether the cell of a node is inside or outsideRange(q, ε),

if it holds then the distance computations from q to all points inside the cell are

all filtered.

• The second one is to reduce unnecessary visiting nodes based on a revised k-515

d tree, whose space cost is about O(αn log(n)). With the help of the revised

k-d tree, we can retrieve all descendants of any node in O(1) time, instead of

traversing the subtree of the node.

There are two main disadvantages of the proposed algorithms, the first one is the

extra distance computations increase rapidly with dimension, which makes it currently520

not suitable for high-dimensional data if ε is not large enough, and the other is the space

cost is still relatively high.

Averagely, the proposed RNN runs in O(min(βεd−1 log(n), n)) time. In the case

of low dimension or small ε, the algorithm performs in O(log(n)) time. Best of all,

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the complexity is only O(1), if Range(p, ε) covers the whole cell of the data space or525

non-intersects with it. The worst case is still O(n) which happens in high dimension

and Range(p, ε) just intersects most nodes’ cell.

Although the complexity of the proposed NN query algorithm FNNS is at the

same order of magnitude as original NN algorithm, in fact it significantly improves

the later. Our new kNN algorithm based on the framework of buffer k-d tree also530

greatly improve buffer k-d tree in low dimension.

Our future works are: (1) take the advantages of other techniques such as cover tree,

PCA tree and convex hull Barber et al. (1996) etc, to filter more unnecessary distance

computations; (2) decrease the space cost.

8. acknowledgements535

This work was supported by the National Science Foundation of China (No.61673186);

Science and technology project of Quanzhou City 2018Z008; the Open Project Pro-

gram of the National Laboratory of Pattern Recognition (NLPR) (NO. 201700002);

the Natural Science Foundation of Fujian Province (No.2016J01303); Project of sci-

ence and technology plan of Fujian Province of China (No.2017H01010065).540

References

References

Agarwal PK, Aronov B, Har-Peled S, Phillips JM, Yi K, Zhang W. Nearest-

neighbor searching under uncertainty ii. ACM Transactions on Algorithms (TALG)

2016;13(1):3.545

Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Communications of the ACM 2008;51(1):117–22.

Barber CB, Dobkin DP, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM

Transactions on Mathematical Software (TOMS) 1996;22(4):469–83.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Bawa M, Condie T, Ganesan P. Lsh forest: self-tuning indexes for similarity search.550

In: Proceedings of the 14th international conference on World Wide Web. ACM;

2005. p. 651–60.

Becker A, Ducas L, Gama N, Laarhoven T. New directions in nearest neighbor search-

ing with applications to lattice sieving. In: Proceedings of the Twenty-Seventh An-

nual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and555

Applied Mathematics; 2016. p. 10–24.

Bentley JL. Multidimensional binary search trees used for associative searching. Com-

munications of the ACM 1975;18(9):509–17.

Bernecker T, Emrich T, Kriegel HP, Mamoulis N, Renz M, Züfle A. A novel proba-

bilistic pruning approach to speed up similarity queries in uncertain databases. In:560

IEEE International Conference on Data Engineering. 2011. p. 339–50.

Beygelzimer A, Kakade S, Langford J. Cover trees for nearest neighbor. In: Pro-

ceedings of the 23rd international conference on Machine learning. ACM; 2006. p.

97–104.

Brown RA. Building kd tree in o (knlog n) time. Journal of Computer Graphics565

Techniques 2015;4(1):50–68.

Cai J, Wang Y, Liu Y, Luo JZ, Wei W, Xu X. Enhancing network capacity by weak-

ening community structure in scale-free network. Future Generation Computer Sys-

tems DOI: 101016/jfuture201708014 2017;.

Cao Y, Zhou Z, Sun X, Gao C. Coverless information hiding based on the molecular570

structure images of material. Computers Materials & Continua 2015;54(2):197–207.

Chen Y, Singh JP, Zhou L, Bouguila N. Frs: Fast range search by pruning unnecessary

distance computations based on k-d tree. In: IEEE International Conference on Data

Mining Workshops. 2017. p. 1160–5.

Chen Y, Tang S, Bouguila N, Wang C, Du J, Li HL. A fast clustering algorithm575

based on pruning unnecessary distance computations in dbscan for high-dimensional

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

data. Pattern Recognition 2018 (in press);doi:https://doi.org/10.1016/

j.patcog.2018.05.030.

Chen Y, Tang S, Zhou L, Wang C, Du J, Wang T, Pei S. Decentralized clustering

by finding loose and distributed density cores. Information Sciences 2018;433-580

434:649–60.

Cheng R, Chen J, Mokbel M, Chow CY. Probabilistic verifiers: Evaluating constrained

nearest-neighbor queries over uncertain data. In: IEEE International Conference on

Data Engineering. 2008. p. 973–82.

Cheng R, Kalashnikov DV, Prabhakar S. Querying imprecise data in moving585

object environments. IEEE Transactions on Knowledge and Data Engineering

2004;16(9):1112–27.

De Berg M, Van Kreveld M, Overmars M, Schwarzkopf OC. Computational geometry.

In: Computational geometry. Springer; 2000. p. 1–17.

Fan L, Lei X, Yang N, Duong TQ, Karagiannidis GK. Secrecy cooperative networks590

with outdated relay selection over correlated fading channels. IEEE Transactions on

Vehicular Technology 2017;66(8):7599–603.

Friedman JH, Bentley JL, Finkel RA. An algorithm for finding best matches in log-

arithmic expected time. ACM Transactions on Mathematical Software (TOMS)

1977;3(3):209–26.595

Gao C, Lv S, Wei Y, Wang Z, Zheli Liu XC. M-sse: An effective searchable sym-

metric encryption with enhanced security for mobile devices. IEEE ACCESS,

2018;doi:10.1109/ACCESS.2018.2852329.

Gieseke F, Heinermann J, Oancea CE, Igel C. Buffer kd trees: Processing massive

nearest neighbor queries on gpus. In: ICML. 2014. p. 172–80.600

He P, Deng Z, Gao C, Wang X, Li J. Model approach to grammatical evolu-

tion: deep-structured analyzing of model and representation. Soft Computing

2017;21(18):5413–23.

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Hjaltason GR, Samet H. Distance browsing in spatial databases. ACM Transactions

on Database Systems (TODS) 1999;24(2):265–318.605

Hu H, Lee DL. Range nearest-neighbor query. IEEE Transactions on Knowledge and

Data Engineering 2006;18(1):78–91.

Huang Y, Li W, Liang Z, Xue Y, Wang X. Efficient business process consolidation:

combining topic features with structure matching. Soft Computing 2016;22(2):645–

57.610

Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search. IEEE

Transactions on Pattern Analysis And Machine Intelligence 2011;33(1):117–28.

Leibe B, Mikolajczyk K, Schiele B. Efficient clustering and matching for object class

recognition. In: BMVC. 2006. p. 789–98.

Li J, Liu Z, Chen X, Xhafa F, Tan X, Wong DS. L-encdb: A lightweight framework615

for privacy-preserving data queries in cloud computing. Knowledge-Based Systems

2015;79:18–26.

Li Y, Wang G, Nie L, Wang Q, Tan W. Distance metric optimization driven con-

volutional neural network for age invariant face recognition. Pattern Recognition

2018;75:51–62.620

Liu T, Moore AW, Gray AG, Yang K. An investigation of practical approximate near-

est neighbor algorithms. In: NIPS. volume 12; 2004. p. 2004.

Marius Muja DGL. Scalable nearest neighbor algorithms for high dimen-

sional data. IEEE Transactions on Pattern Analysis And Machine Intelligence

2014;36(11):2227–40.625

Moore AW. The anchors hierarchy: Using the triangle inequality to survive high di-

mensional data. In: Proceedings of the Sixteenth conference on Uncertainty in arti-

ficial intelligence. Morgan Kaufmann Publishers Inc.; 2000. p. 397–405.

Muja M, Lowe DG. Fast approximate nearest neighbors with automatic algorithm

configuration. VISAPP (1) 2009;2(331-340):2.630

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Muja M, Lowe DG. Scalable nearest neighbor algorithms for high dimensional data.

IEEE Transactions on Pattern Analysis and Machine Intelligence 2014;36(11):2227–

40.

Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabu-

laries and fast spatial matching. In: Computer Vision and Pattern Recognition, IEEE635

Conference on. IEEE; 2007. p. 1–8.

Reiss A, Stricker D. Introducing a new benchmarked dataset for activity monitoring.

In: 2012 16th International Symposium on Wearable Computers. IEEE; 2012. p.

108–9.

Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science640

2014;344(6191):1492–6.

Schindler G, Brown M, Szeliski R. City-scale location recognition. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition. 2007. p. 1–7.

Silpa-Anan C, Hartley R. Optimised kd-trees for fast image descriptor matching. In:

IEEE Conference on Computer Vision and Pattern Recognition. 2008. p. 1–8.645

Stone JE, Gohara D, Shi G. Opencl: A parallel programming standard for

heterogeneous computing systems. Computing in science & engineering

2010;12(3):66–73.

Tao Y, Papadias D, Shen Q. Continuous nearest neighbor search. In: Proceedings

of the 28th international conference on Very Large Data Bases. VLDB Endowment;650

2002. p. 287–98.

Wang H, Wang W, Cui Z, Zhou X, Zhao J, Li Y. A new dynamic firefly algorithm for

demand estimation of water resources. Information Sciences 2018;438:95–106.

Wang J, Wang N, Jia Y, Li J, Zeng G, Zha H, Hua XS. Trinary-projection trees for

approximate nearest neighbor search. IEEE Transactions on Pattern Analysis And655

Machine Intelligence 2014;36(2):388–403.

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Wu Z, Tian L, Li P, Wu T, Jiang M, Wu C. Generating stable biometric keys for flexible

cloud computing authentication using finger vein. Information Sciences 2016;:431–

47.

Yang L, Han Z, Huang Z, Ma J. A remotely keyed file encryption scheme under mobile660

cloud computing. Journal of Network & Computer Applications 2018;(106):90–9.

Yianilos PN. Data structures and algorithms for nearest neighbor search in general

metric spaces. In: SODA. volume 93; 1993. p. 311–21.

Zhang S, Yang Z, Xing X, Gao Y, Xie D, Wong HS. Generalized pair-counting similar-

ity measures for clustering and cluster ensembles. IEEE Access 2017;(5):16904–18.665

Zhang Y, Wang N, Zhang S, Li J, Gao X. Fast face sketch synthesis via kd-tree search.

In: European Conference on Computer Vision. Springer; 2016. p. 64–77.

Zhou Z, Dong M, Ota K, Wang G, Yang LT. Energy-efficient resource allocation for

d2d communications underlaying cloud-ran-based lte-a networks. IEEE Internet of

Things Journal 2016;3(3):428–38.670

Zhu Y, Zhang Y, Li X, Hongyang Yan JL. Improved collusion-resisting secure near-

est neighbor query over encrypted data in cloud. Concurrency and Computation:

Practice and Experience, 2018;doi:10.1002/cpe.4681.

37

