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Abstract

Energy Prediction and Optimization of the Hybrid Community District
Heating System (H-CDHS)

Behrang Talebi, Ph.D.
Concordia University, 2018

The ever-increasing demand for energy in different sectors, such as building sector as one
of the main consumers of the energy, is a result of a considerable surge in the world population,
starting since the beginning of the industrial revolution in the late 18th century until the present.
One of the direct consequence of this rapid growth was the overuse of fossil fuels as the world's
main energy source resulting in a rapid depletion of them and thereby increasing the level of CO;
equivalent emissions at an atmospheric level known as greenhouse gasses. Increasing the
concentration of these gasses at atmospheric level, exceeding the 400 PPM level for the first time
in history, puts the earth at the point of no return. In order to sustain the economic growth while
reducing the greenhouse gas concentration at an atmospheric level at the current stage, providing
a clean sustainable solution which allows for a steady flow of energy is one of the most vital
challenges facing the politician and energy planners. One of the solutions proposed by the energy
planners which touches the higher level of energy management is to promote the usage of District

Heating Systems (DHS).

While designing an efficient DHS is highly dependant on accurate modeling of the thermal
performance of the buildings, district users; yet, limited simulation tools capable of modeling the
district energy systems, at a larger scale with a numerous user’s types and with an appropriated
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level of precision which can potentially be a very laborious and time-consuming process, have
been developed. Besides many associated limitations, providing a realistic demand profile of the
district energy systems is not a straightforward task due to a high number of parameters involved
in predicting a detailed demand profile. To this end, this dissertation focuses on the development
of the procedure for energy modeling and optimization of the Hybrid Community District Heating
System (H-CDHS) with integrated centralized thermal storage, the 4" generation of district heating

systems.

To do so, this study describes the procedure used to develop two types of simplified models
to predict the thermal load of a variety of buildings (residential, office, attached, detached, etc.).
The predictions were also compared with those made by the detailed simulation models. The
simplified model was then utilized to predict the energy demand of a variety of district types
(residential, commercial or mix), and its prediction accuracy was compared with those made by
detailed model: A good agreement was observed between the results. In next step, the proposed
procedure was utilized to predict the heating demand profile of an existing community, WWH
community in Glasgow. High prediction accuracy and low computational time of the proposed
method illustrates the potential of the proposed method in predicting the heating demand profile

of larger scale communities.

In the last step, the proposed load prediction method was coupled with energy simulation
tool (TRNSYS) and optimization tool (MATLAB/Simulink) in order to develop a simplified
methodology for dynamic optimization of a hybrid community-district heating system (H-CDHS)
integrated with a thermal energy storage system. Two existing and newly built community have
been defined and the results of the optimization on the equipment size of both communities have

been studied. The results for the newly build community is then compared with the one obtained
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from the conventional equipment sizing methods as well as static optimization methods to obtain

potential reduction in equipment size using the proposed method.
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Abstract

Evidence from a variety of research suggests that buildings hold a critical role in
climate change by significantly contributing to the global energy consumption and
the production of greenhouse gases emissions. Considering the trend of higher
energy consumption in building sector, it is important to influence this sector
toward decreasing its energy demand. District generation and cogeneration systems
integrated with the energy storage system have been suggested as a potential
solution to achieve such planned goals.

Unlike older generation of the DHS, where the main focus of the design was on
minimizing the system heat loss, in 4th generation DHS the higher system
efficiency is achievable through picking the optimal equipment size as well as
adopting the right control strategy. Different design methods have been adopted by
designers for selecting the equipment size but finding the optimal size is a challenge
most designer facing.

This paper reports the development of a simplified methodology for dynamic
optimizing a hybrid community-district heating system (H-CDHS) integrated with a
thermal energy storage system by coupling the simulation and optimization tools
together. Two existing and newly built community have been defined and the
results of the optimization on the equipment size of both community have been
studied. The results for newly build community later on compared with the one
obtained from the conventional equipment size methods whereas static optimization
methods and potential size reduction with conventional method has been obtained.

Chapters
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mostly determine the total energy consumption of the users as opposed to the
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Chapter 1: Introduction

1.1.Background

Since the beginning of the industrial revolution in the late 18th century until the present,
the world population increased from roughly 700 million to more than 7 billion people. Based on
world energy outlook developed by the International Energy Agency [1], with the same growth
pattern, the world's population will be projected to exceed 9.7 billion by the end of 2050. Along
with this considerable surge in the world population, the number of households is expected to

elevate to 3.2 billion in 2050, which represent a 70% increase of worldwide households since 2010

[2].

Providing a secure and clean source of energy to respond the households’ demand is one
of the upmost fundamental challenges faced by the energy planners. In effect, households represent
a significant share of the total energy demand while they are responsible for 40% and 26% of the
total energy consumptions as well as 38% and 36% of the total CO> emission in North America
and Europe, respectively [1]. In the last few decades, the overuse of the fossil fuels as the world's
main energy source has resulted in their rapid depletion and thereby increasing the level of CO»
equivalent emissions. Based on the atmospheric measurements done by NASA [3], over the last
few decades, for the first time, there was an unprecedented level of the atmospheric CO; equivalent
level at atmosphere passed the 300 ppm, in 1950. Since that time this level increased rapidly, which
exceed 400 ppm in latest measurements. Such evidences indicate that the Global warming is at the

point of no return. In other words, for the first time in past 650,000 years, the earth will not be able
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to recover from a glacial cycle. This fact becomes more important, knowing the fact that earth

went through 7 glacial cycles, but it always recovered [3].

Unequivocally, the above-mentioned statistics, emphasize the necessity of a global
objective to reduce the CO> emission and to increase efforts and market uptake from the building
sector as a major energy consumer. Given the expected rise in household energy consumption, the
building sector is now required to adapt itself to the new ambitious demand of developing Net-
Zero Energy Buildings/communities (NZEB) by 2050, which is described as an Energy
Technology Perspective 2017 Roadmap (IEA) goal, aiming to reduce CO; emissions by 50% by
2050. In order to reach this goal', different rigorous preventative codes and regulations at regional
and continental levels have been adopted by many countries, forcing their building sectors to seek
new alternatives to the conventional systems mainly focused at enhancing the energy conservation

with a higher level of energy management.

For instance, the European Union is obliged to commit a 9% reduction in energy use by
2016 based on the 2006/32/EC directives [4]. Also in 20-20-20 as the climate change package
legislation [5], the mandate of all European countries is to decrease the greenhouse gas emissions
as well as primary energy consumption by 20%. European countries must also increase the share
of renewable energy sources to 20% by 2020. Based on the energy supply and demand projection
of Canada, the non-hydro renewable energy share should be doubled by 2035 [6]. Paris climate
change accord, COP21 [7], as the most recent regulation on CO, emission production, also
mandates involved countries to limit the total CO> emission to 40 billion tonnes emitted per year

in order to limit the global warming to 1.5°C.

1 Energy Technology Perspective 2012 Roadmap (IEA)
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As a result, different energy conservation strategies have been applied at various levels,
including energy production, conversion, and user-demand, but the most promising solutions touch

a higher level known as energy management.

One of the suggested strategies focusing on the energy management at a higher level is
using District Heating System (DHS). Hybrid Community-District Heating System (H-CDHS),
Figure I-1, as sustainable forms of heating systems designed to distribute safe, clean, and
sustainable energy within the network of users at a higher efficiency and a lower CO> production
level. Although limited evidence of using DHS could be addressed over the span of several
centuries, it was not until last two decades that it has become an established method to design
green and energy efficient heating for buildings. Within different types and generations of DHS,
H-CDHS, or the fourth generation DHS, is a unique alternative for energy management purposes

as it also integrates thermal storage systems and renewable sources.

Figure 1-1: Schematic View of H-CDHS; [https:/www.ecopolis.danfoss.com]
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Since the energy generated by renewable sources such as solar and wind are inherently
intermittent in order to solve the problem of the mismatching between supply and demand sides,
a thermal storage system has been proposed to be integrated into H-CDHSs. To implement such
idea effectively, it is essential to predict the energy demand of H-CDHSs at smaller intervals such

as hourly bases.

This led to the development of several methods to model buildings’ energy demand profile.
Given its restricted number of users, a small-scale H-CDHS energy demand profile can be

predicted using a detailed model of users’ consumption created with energy simulation models.

Conversely, in large district scale systems, due to the large volume of users, a
comprehensive modeling is time-consuming, computationally expensive and sometimes
impractical. To overcome this problem, a variety of simplified models were developed to predict
the energy demand profile or the total energy demand of large communities. Though these
simplified models could reduce the computational time to a fraction of that of comprehensive
models, their simplicity would compromise the prediction accuracy as a consequence of using the
simplified models. In general, three major drawbacks can be addressed for most of these simplified
modes. First, the low prediction accuracy emerging from assumptions made in modeling of
individual buildings/units, i.e. presentation of the occupants' behavior and, the interaction of each
building with its surrounding buildings in an urban setting. Second, scaling effects impair accuracy
by oversimplifying scaling methods that extrapolate results from building level to the district level.
And third, flexible methods that predict community load profile containing diverse building types.
A closer analysis of existing models reveals that the current research requires further validation of

models that predict heating demands using measured data.
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Having the detail of users’ heating energy demand profile, dynamic optimization of a
district, to obtain the optimal size equipment and control strategy, is a challenge that designers
facing. Most existing districts have been sized based on the conventional sizing methods such as
design date method. These methods pick the equipment size by matching the maximum generation,
supply, with pick demand load one to one multiplied by the safety factor without considering the
interaction between different equipment. Using the safety factors along neglecting the interaction
between equipment results in oversizing of the energy generation equipment while this further
results in operation of the equipment at their partial load, which is not favorable due to a lower

operation efficiency.

1.2.0bjectives

To this end, three main objectives have been defined for this thesis:

1. Development and validation of a simplified procedure to accurately predict the detail
heating energy demand profile of the mid to large size community in a timely manner
a. Development of a simplified procedure for accurately predicting the heating energy
demand profile of the mid to large size community in a timely manner
b. Validation of the developed procedure using a set of measured data obtained from
a midsize community
2. Developing a dynamic optimization framework by coupling the developed prediction tool,
one of the exisitng simulation software (TRNSYS) and an optimization tool
(MATLAB/Simulink) to determine the optimal equipment size and operational schedule

with a target in minimizing the cost and CO2 emission of the whole system
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Chapter 2: Literature Review

A District Heating System, hereinafter referred to as “DHS”, is a heat
generation/distribution system consists of a network of users, hereinafter referred to as “Users”,
connected together through a set of insulated pipes hereinafter referred to as “Network” in order
to provide the heating energy demand required by users, hereinafter referred to as “Heating Energy
Demand Profile” or “HEDP”. The heat generation in a DHS could be in form of a centralized heat
generation station form or a set of smaller substations. The distributed energy could be used for a

variety of applications such as Space Heating, “SH”, or Domestic Hot Water, “DHW”.

Different classifications of DHSs have been suggested, which the one has been introduced
by Lund et al. [8] is the most well-known and well-recognized classification. Lund et al. classified
existing DHSs into four categories based on the heat transfer media type, its operating temperature

and the type of technologies have been used in them.
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Figure 2-1: District Heating System Generations [8]
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However, an essential step toward designing an efficient DHS, regardless of its generation

type, is detailed predictions of the demand user profile of the users of that district.
2.1. DHS Energy Prediction

Modeling the HEDP of a series of buildings at a district level is a complex task and requires
a high level of expertise. The demand profile of each individual building is varying as a function
of a time, this variation has a stochastic behavior in comparison with a deterministic behavior
model, which is resulting in increase of the complexity level of the model. In case of large-scale
district systems, with more varying occupants’ behavior, this complexity level further increase as
the building heterogeneity in district system is elevated, particularly in the urban setting where

each building has its own properties and corresponding HEDP.

Generally, the energy required by a DHS at each time-step is equal to the summation of
the energy required by individual users of that DHS in addition to the heat loss from the network.
Since most DHS operates within a specific temperature range, the heat loss from the network could
be considered as a function of the network size and not a function of time. As a result, the total

energy consumption of a DHS could be presented as:

t
Qrotat = Quoss + Xn=1 fl Q; (t).dt Equ. 2-1

where Qr,¢q; 18 the total energy consumption of the DHS, Q;(t) is the energy consumption of the
individual users at the time ¢ and Q;,, 1s the heat loss from the distribution network. To predict
the total energy required by a DHS, both heat loss of the network as well as HEDP of the individual

users of the DHS should be separately predicted.
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2.1.1. Energy Prediction for Distribution Network

A DHS distribution network is mainly designed in accordance with the system scale,
geographical considerations, type of the users and utilized heat generations sources. Beside the
role of the distribution network in linking the energy generation source with the users’ demand
and defining the inter-communication between different components of the system, it also effects
on the whole energy consumption of the system. Since most distribution networks operate within
a specific temperature range, the heat loss from the system could be again considered as a function
of the size of that network and not a function of time. The total energy requirement of the system
is equal to the summation of different users’ profiles in addition to the heat loss per network length.
Since a DHS is a type of hydronic system, the modeling technique to design the distribution system

can be either based on hydraulic or thermal equilibrium.

2.1.1.1. Hydraulic Equilibrium

The distribution system in the DHS operates based on the heat transfer through a heated
fluid; therefore, it should be designed based on the requirements of the hydraulic system regardless

of the flow rate and energy level of the fluid.

Mass flow balance:

The mass flow balance could be written for each point of the system as [9], [10]:

Yin Qin — 2Zout Qout — Luser Quser = 0 Equ. 2-2

where Qi 1s the mass flow rate entering the point, Q.. 1s the mass flow rate exiting the point, and
Quser 1s the mass flow rate required by the utility. Depending on the type of the system (e.g. open
or closed loop), Quser could be considered as zero. It is important to note that the system and

network are assumed to be leak free without any loss of the fluid mass.
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Energy balance

In the energy balance techniques, the energy balance could be written between any two points in

the system as [11]:
AH;; — (H;—H;) =0 Equ. 2-3

where AHj; represents the energy loss between points i and j; H; and H; are the energy content of
the fluid at points 7 and j, respectively. Considering the DHS as a closed system and without any
loss in the liquid mass, the energy loss in the system could be written as a correlation of the pressure

loss in the system represented in two different ways:

2
AH=f.L/D.p.V/2 Equ. 2-4
AH = ﬁ.p.Vz/2 Equ. 2-5

where f is the pipe friction coefficient, 8 is the resistance coefficient, L is the length of the pipe,
D is the pipe diameter, p is the density of the fluid and V is the flow velocity. In the distribution
pressure drop, the friction loss due to the viscous effect, generated by the pipe surface, is the key
parameter. The hydraulic diameter of the pipe, the mass flow rate of the system, and roughness of
the pipe surface are the parameters affecting the distribution pressure loss of the system [10].
Additionally, in a concentrated pressure loss, the head loss due to fittings and changes in the pipe

diameter is taken into the account [11].
2.1.1.2. Thermal Equilibrium

Thermal equilibrium can be represented as either a steady-state or dynamic equation. A

DHS with an operational temperature lower than 70 °C or with a low heat propagation (well
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insulated) can be represented as a steady state system. Inversely, a DHS operating with
temperatures higher than 110 °C or with a high heat propagation can be considered as a dynamic
system [12], [13]. The thermal model could be then written based on two major sources of the
temperature drop in the system, including temperature drop across the users and due to the heat
loss in the system. The temperature drop across the users can be modeled based on a simple

convection heat transfer equation [14],[15]:

Q =U.AT Equ. 2-6

where Q is the amount of the energy required by the system, U is the heat transfer coefficient and

AT is the temperature drop across the users.

On the other side, the temperature drop due to heat loss in the system occurs in both
longitudinal and radial directions. The longitudinal heat loss is along the system between different
locations, whereas the radial heat loss occurs in the surrounding environment. Both types of the
heat transfer in the system could simply be modeled by an enthalpy balance developed between

any two points [16], [17]:

a(mh)
ar(r,l:) = Zin hin — Zout hout — Zloss hioss Equ. 2-7
a;’(’::;l) = Qc(x) - Qc(x + dx) - dQ1 Equ. 2-8

where Q. (x) is the convective heat flow and dQ is the radial heat flow expressed as:
dQ, = k.dx. (T — Togren) Equ. 2-9

Qc(x) = qmx- Tx- Cp Equ. 2-10
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where £ is the radial heat transmission coefficient and g is the flow rate. By replacing the dQ,

and Q,(x) in the Equ. 2-8, the temperature at any point can be calculated as (see Figure 2-2):
Tin+1 == Tin + AT/ml Cp (qmi—1' Cp. Tiril - qmi' Cp. Tin - dQl) qul 2-11

where C, is the fluid heat capacity, 7" is the temperature, Af is the time step, and m; is the water

mass.

T

Ti-1, Qmi-1 Ti, gumi

Figure 2-2: Heat flow in the piping system

Based on the definition of dQl, one of the main factors, influencing the amount of heat loss, is the
soil temperature. In systems with high operating temperature, the higher differences in temperature
could result in higher amounts of heat loss in the system. Similarly, the increased heat losses in a
system could result in an increase in surrounding temperatures over a period of time, which itself

can consequently decrease the associated heat loss.
2.1.1.3. Holistic Modeling

Deterministic and black box models are the approaches conducted in the holistic modeling
of the DHS [18]. The network has been considered as a whole package in the black box models
where the individual design of the components is disregarded. The entire system is then modeled

by techniques such as the transfer function or Artificial Neural Network (ANN) [19]. On the other
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hand, in deterministic models, each component of the DHS has been designed separately with a
set of equations describing the flow and pressure losses of each element. For instance, [20]
categorized DHS with the link flow (Q), the loop corrective flow (AQ), the nodal heads (H) and

finally the mixed node-loop.

Due to the high number of the elements, obtaining a solution from such a system can be
computationally expensive. Therefore, numerical approaches have been widely used as

categorized as below [20]:

¢ Numerical minimization method: finding the minimum value of a nonlinear function
subjected to linear constraints.

e Hardy-Cross method: solving a system of nonlinear equations [21].

¢ Newton-Raphson method: solving a system of nonlinear equations [22].

e Linear theory method: solving a system of nonlinear equations [23].

Based on the simplicity of the input data, the number of equations and size of the matrix
of the equations [17], [24] as well as the accuracy of the results, the most frequently used method
is a combination of Newton-Raphson and nodal head methods [17], [20]. Furthermore, due to the
weak convergence of the nodal equation algorithm for networks with a low flow rate, the loop
equation method has been suggested, which is a combination of the loop corrective and Newton-

Raphson methods [20].

Further to the above-mentioned studies, several commercial software has been developed
based on the loop equation method using the graph theory such as TERMIS and SpHeat. Table

2-1 summarizes different modeling level in respect with district scale.
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Table 2-1: Summary of the Network Modeling for DHS

Modeling Different Components of the DHS

No. Description E‘;;::;:Z’ Source Mo;l;i;ndghllegvel System Scale  Energy source Utilized tool Validation Ref.
1 34 Users Italy GD P M CHP ODS TERMIS [11]
2 Combined sources SM M Combined UC [25]
3 Multi-unit apartment building GD P S CHP UC [14]
4 8 units, different supply temperature Geneva SM GD M CHP UC [26]
5 7users with L,> 13.5 km Germany GD P/T L Biomass ODS [27]
6 Compares HT and LT supply Ottawa LF P/T L CHP Logster TERMIS  [28]
7  Effect of human behavior Denmark LF P M HP IDA-ICE TERMIS  [29]
8  Thermal storage Stuttgart GD P/T L CHP/Biomass spHeat [9]

9  Solar district heating SM GD M Solar/CHP UC [30]
10 Solar thermal heating network Sonnenberg SM Software P/T M Geothermal/Solar spHeat [31]
11 CHP with thermal storage for 100 units  Flanders SM  Measurement P M CHP UC [32]
12 Biomass-fired CHP with storage Leini/Turin SM  Measurement L CHP/Biomass UC [33]
13 For 50% heating load calculation Zaragoza SM TRNSYS L Solar ucC [34]
14 Source optimization Estonia SM L CHP UC [35]
15 Different flow control strategy GD P/T M CHP/HP ucC [16]
16 Different control strategy Wales HDD TPL M CGP PSS SINCAL [36]
17 City level Yazd SM GD L Combined EMD [37]
18 Neighborhood Turin HDD [38]

Keys: SM: source modeling, GD: given data, LF: load factor, HDD: heating degree day, P: pressure model, T: thermal model, ODS: own developed software,
UC: user code, L: large, M: medium.
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2.1.2. HEDP Prediction of the Users

Accurate prediction of the HEDP of the users in a smaller time interval such as the hourly
basis can affect the efficiency of a DHS and its optimization procedure [39]. In order to define the

size of the heating equipment, predicting the heating demand profiles of users is essential.
2.1.2.1. HEDP Prediction at a Building Level

Regardless of the method used, the energy consumption of each individual building is a
function of physical and environmental characteristics of a building (i.e. R-value, infiltration rate,
ambient air temperature, solar radiation, and humidity), human-related factors or social behavior

of the occupants, and random factors that account for uncertainties.

Qtotal(t) = Z(Qbuiding assemblies (t) + QSolar gain (t) + C.Iinternal gain (t) + C.Iinf.,vent (t)) Eq“' 2-12

Different techniques have been suggested in the literature to predict the users demand

profile considering one or all of the above factors, including:

e Historical methods.
e Deterministic or simulation-based methods.

e Time series predictive methods.

Historical methods use historical data obtained from both demand and supply sides to
model the demand profile. Energy Use Intensity (EUI) and Load Factor (LF) are historical methods
utilized to estimate the users demand profile whereby the historical consumption data is provided.
EUTI is the rate of energy use per unit area [40] and LF is the ratio of energy consumption over the

maximum possible energy generation from the supply side [29] and [28]:

_ Consumption [kWh]
Lr= /Peak Demand Equ. 2-13

[kW] x Time [hr]
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Knowing the EUI and LF of different users>* results in the calculation of the total energy
and peak heating demand required for each user. The supply energy demand calculates the annual
average LF per area for different users. Mainly, the values are accessible based on region or
reference archetype [Foofnote 2&3]. Barnaby et al. [41] used this method for load prediction of
different users. One of the main problems with this method is associated with the nonexistence of
separated factors allocated to ambient conditions. For instance, even though the social behavior* of
the users, does not fluctuate dramatically over time, the method does not allow for long-term

generalizations.

Another common approach in predicting the demand profile of the buildings is to use
deterministic methods. Deterministic methods, also referred to as simulation-based modeling, use
the mathematical representation of the thermal behavior of the buildings. Based on the amount of
information used in these methods, deterministic methods could be categorized under two major
subdivisions: 1) comprehensive or software-based simulation modeling, which uses different
simulation software, taking into account all the different parameters affecting the demand profile
of a building and 2) simplified modeling, which approximate the energy consumption by taking

into account only few parameters.

Different commercial energy simulation software, such as TRNSYS [42], eQUEST,
Energy-Plus [43] and etc., are developed for modeling any arbitrary type of buildings. Although

they yield highly accurate demand profiles, the main disadvantages of these models are their

2 Commercial and institutional consumption of energy survey summary. Available at:

http://oee.rncan.gc.ca/publications/statistics/scieu09/scieu e.pdf

3 Energy Use Data Handbook. (1990-2011). Available at:
http://publications.gc.ca/collections/collection 2014/rncan-nrcan/M141-11-2011-eng.pdf

4 Social behavior is the effects of the social status of the occupants on their energy behavior. For instance lower
income family due to their lower budget tends to be more conservative in consuming energy.
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requirements in terms of data quantity and time for modeling of each building [34], [44], [45].
Thus, simplified deterministic methods have emerged as another effective solution. Simplified
methods are used when the adaption of the comprehensive method is relatively extensive due to
lack of detail data or high computational time. These methods simplify physical characteristics of
the buildings to predict their demand profile. For example, Kim et al. [46] considered the
parameters including shape, orientation, and occupancy type in the modeling of the end-users’
profile. They used the average energy required per square meter of a dwelling area of a building
based on its monthly/yearly outdoor design temperature. In order to take into account the shape
and orientation of the building, new sets of coefficients were introduced: (1) the ratio of the outdoor
surface to volume of the building (the shape factor) and (2) the orientation relative to the south
(orientation factor) [45]. Wang et al. [47] used a simplified deterministic method to predict the
demand profile within which they also included the effect of thermal mass on load prediction by
means of a genetic algorithm. Results obtained from their simulations illustrate a good correlation
with actual data for a residential building, which has a lower internal heat gain density. Inversely,

this method is unsuitable for larger buildings with higher internal heat gain density.

Another simplified method used for modeling the demand profile of buildings is the
degree-day method widely used for modeling of small buildings in which the main source of
energy is lost through their envelope. Al-Homoud [48] compares this method with another
simplified method known as the bin method. Unlike the degree day method, the bin method is
mainly used for larger scale buildings in which the internal load generation has a higher effect,
which would render the degree day method unfeasible. In both cases, the main concern in modeling
is the outdoor air condition of the buildings and the average building envelope thermal resistance.

The fact that factors such as the occupants behavior and the thermal mass of the buildings have
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not been taken into account result in predominantly poor findings [39]. Furthermore, the low
frequency of available data adds to obtaining inaccurate results. In the degree-day method, the
indoor and outdoor temperature differences on the daily, weekly and yearly bases were measured
and, as a result, the profile does not reflect the distribution of heat requirement for smaller intervals
such an hourly demand profile. In order to consider the effect of the occupants on the demand
profile in residential buildings, Yao et al. [49] developed a model to predict the load profile of
domestic buildings in the UK. In their model, they consider both “Behavioral Deterministic
Factors”, which are not/little related to climate and “Physical Determinist Factors”, which are
highly related to climate conditions and the building design. In their method, Yao et al. divided
the demand profile of each building into five different segments and added them up together in
order to define the entire profile of the building. According to their method, the heating profile of

the building could be estimated as:

dar
C E = Qaux + Psotar + Pvent + Pcona + Dsp Equ. 2-14

where C is the thermal capacity of the building, @aux is the auxiliary heating cooling load of the
building, @solar is the solar gain of the building, @vent is the ventilation load and finally the @sp is the
internal load due to occupants activity. The main contribution of Yao et al. [49] was in adding the
component representing the internal load generation related to the occupants in residential buildings.
In order to do so, they did an extensive statistical analysis on the data gathered from residential
households in the UK for a period of 15 years. They presented the results in eight different possible
load profile scenarios in which they considered the number of occupants, usage schedule and
equipment load. In spite of all advantages of their model, the main limitation was associated to the

simplicity of the model in consideration of a same daily profile for the internal gain throughout the
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year. Furthermore, they only focused on the number of occupants and not on the effect(s) of the

buildings’ characteristics.

Time series predictive methods is another approach adopted for predicting the demand
profile of buildings. Numerical predictive time series methods rely on the mathematical curve
fitting relation(s) between the influential parameter selected as input file and the demand profile
at previous time-steps. The predictive models themselves are categorized further to classical
approaches (i.e. time series ARMA models, regressions [50], [51], [34], Kalman filter) and
artificial intelligence (AI) methods (i.e. artificial neural network algorithms (ANN) [52] and fuzzy

neural network (FNN) [53] and Support Vector Machine (SVM)).

In ARMA time-series, the prediction will be done by implementation of a linear
combination between the previously predicted values along with previous and current values
weather and the noise [53]. For the demand profile prediction, Gross et al. used the ARMA time-

series method in a form of:
z(t) = Y,(t) +Y(t) Equ. 2-15

where Yy(t) represents the day and the normal weather condition for the design day and Y(t)
indicates the effect of deviation from the normal weather pattern. With slight difference from the
general form, different kinds of ARMA-type models can be developed, e.g., Box-Jenkins [54],

time-series [55], and ARIMA [56].

Another predictive method has been used for the energy prediction was Kalman Filter.
Similar to other predictive methods, this technique estimates the value of the variables for future
time-steps (t+At) based on the values of the variables at its current time step (t). In order to make

the best estimation, Kalman filter determines the best variable set, which minimizes the source
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function using the residual sequence method. In each step, the Kalman filter checks the difference
between the measurements and the model output, and choose the variable set to minimize the
difference. Since the deviation from the measurement can be positive or negative, two different
sets of residual sequences could be assumed for the system such as residual for the hot side and

residual for the cold side of the profile [57].

Regression-based methods are another type of predictive methods used for demand
prediction, usually divided into two subcategories: multiple linear autoregressive models (MLR),
and multiple non-linear autoregressive models (MNLR). While the main objective of the MLR is
to find a linear relationship between the number of independent variables and one dependent
variable (Equ. 2-16), the non-linear regression methods assumes a nonlinear behavior between the

dependent variable and independent variables (Equ. 2-17).
Y = 0(0 + 0(1X1 + a2X2 + -+ (Zan qul. 2-18

Y = ap + a1 X + @, X; + asXy + aX? + asX; + apXp + o + a, X, X X" Equ. 2-19

In some cases, the results of the dependent variable at the time t is highly influenced by the
value of the independent variables at the time t as well as some previous time-steps. In these cases,
such as a building with a higher thermal mass, the dependent variable was predicted based on the
previously observed set of independent variables. Due to its usefulness for predicting the

dependent variable, this method became a popular tool to forecast future results [58].

Using artificial intelligence predictive methods is another approach to predict the demand
profile of the building. The most common artificial intelligence methods used in the field of load
prediction are Artificial Neural Network [ANN], Fuzzy Neural Network [FNN], and Support

Vector Machine [SVM]. The ANN has been widely used in research for predicting the load
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particularly in forecasting the electricity consumption of buildings [59]. In most of the cases, ANN
shows higher prediction performance compared to other simulation-based methods. This higher
accuracy with the ANN method is usually due to its higher adaptability as it considers the social
parameters in the load prediction due to the integration of a real case data into the system training
[52], [59]. Despite the high accuracy of the predictive methods, their main drawbacks are the over-
fitting problem as well as the data requirements for the training proposes. Providing accurate and
comprehensive archives of data for ANN is one of the main drawbacks of this method. In cases
where the data archive used for training of the system is small, using the SVM method(s) [60]
shows a better performance. However, only a limited number of studies were conducted using

SVM; hence, the information regarding the utilization of this model is limited.

2.1.2.2. HEDP Prediction at a District Level

As mentioned earlier, building heterogeneity in each district system is different,
particularly in the urban setting, and each building has its own properties and demand profile.
Therefore, developing a model which could predict the demand profile of the entire district with
acceptable accuracy is essential. Most of the existing models used for the demand prediction of
DHSs have been developed based on the assumption of a standalone building, barely representing
the complexity of an urban/district setting. Indeed, the first assumption in the modeling of a
standalone building is that the entire building shell receives solar radiation and exchanges heat
with the surrounding environment. Moreover, since the demand profile of a building varies as a
function of time, this variation has a stochastic behavior (and not a deterministic behavior). As a
result, the level of model complexity is increased [26], [61], [62], especially for large district
systems with more varying occupant behaviors. In general, the methods suggested to model and

predict the demand profile of DHSs (similar to Section 2.1.2.1 for buildings), can be categorized
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as (1) deterministic methods, (2) historical methods [39], [44], and (3) time-series predictive
methods [63]. Nevertheless, regardless of the prediction methods used by designers to predict the

heating demand profile of the districts, these methods could be divided into two general categories:

e Comprehensive modeling using more detailed information and specifications of the
buildings such as commercial simulation software for modeling every individual user
within a district.

e Simplified numerical methods adopting times-series predictive or historical methods to
predict the district demand profile using some limited properties of individual users within

the network.

Comprehensive Methods:

A common way to predict HEDP at a district level is to use the deterministic methods.
Similar to building models, the deterministic methods are divided into two categories of (1)
comprehensive modeles using commercial simulation software and (2) simplified deterministic
methods. Over the past few decades, many simulation tools have been developed for predicting
the energy demand profile of buildings such as Energy Plus, TRNSYS, eQUEST, etc. These
simulation tools are broadly used for modeling various type of buildings. At the district level,
although they yield highly accurate demand profiles, their main disadvantages are the dependency

on data quantity and high computational cost for modeling of each individual building [34], [44].

For small-scale District Systems (DS) consisting of a limited number of buildings, using
the comprehensive method can increase the accuracy of the system. However, for a large-scale
DS, providing the required data for modeling of each building and the time required to model them

is not realistically feasible. Despite this fact, Zhang [64] used the comprehensive method for
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modeling the demand profile of 95,817 buildings in Westminster, UK. Another disadvantage of
the comprehensive method is modeling the effect of the occupant’s behavior on the final demand
profile of buildings. Nevertheless, providing the data and time required for modeling several
buildings at a city-wide scale district is very expensive. Since the application of the comprehensive
method is relatively unfeasible for a large-scale community such as a city given the individualized and
time-consuming modeling involved, simplified methods emerged as a popular option for the

prediction of demand profile of district networks.

Simplified Simulation Models:

Deterministic methods have been widely used at the building level, while historical/times
series methods are more favorable at the district level with more stochastic behaviors. This is due
to their high level of dependency to data for training purposes, especially for large DSs with diverse
building types [65]. These methods have mainly been adopted to predict buildings’ total energy
consumption and maximum demand rather than predicting the actual demand of the system in a

smaller interval such as an hourly basis [66].

At the district level, to simplify the prediction process and increase the prediction accuracy,
the community building stock is segmented into “building archetypes”, i.e. a building which can
represent a group of similar buildings. In this method, buildings with similar occupancy type are
divided into subcategories while a reference building is defined for each building category. The
demand profile of other buildings located within each category is later defined based on the
reference building with some adjustment. The number of building categories used in this method
as well as the number of adjustments required for modeling the entire demand profiles are the key
parameters in the simplified method. The most commonly utilized technique is the regression

method.

22|Page



Usually, segmentation of the building stock is carried out based on the type of parameter
picked. Although different sets of parameters can be used to generate building archetypes,

generally, these parameters are divided into three major categories:

1. Physical characteristics of the building
2. Usage and occupational behavior of the building

3. Climatological properties of the region

To conduct the segmentation, the first step is to investigate the existing building stock, to
define different types of occupancy behavior and to categorize the buildings with similar
occupancy type. After categorizing the buildings based on their occupancy behavior, they will be
grouped based on their physical characteristics and/or type of mechanical systems. Due to the
existence of different climates at different regions, these archetypes could be further grouped based
on climatological conditions of the region in the case of defining the archetypes at the national
level. Table 2-2, summarized the influential parameters in defining the number of archetypes

required for each building group.
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Table 2-2: Parameters Conceded to in Defining the Number of Archetypes for Each Building Stock

Building archetype
Statistics Parameters
Level Ref. - -
Country No. of buildings No. of archetype | Shape Area Age Usage System Climate
[67] Japan 1,128 20 v v
[68] USA 30 v v v v
[69] England 267,000 144 v v
Urban [70] Italy 1,320 7 v
level [71] Ttaly 56 v v v
[72] Netherlands 300,000 26 v v
USA 200 12 v v v v
[73] Switzerland 20,802 20 v v v
[74] England 115,751 47 v v
[75] Italy 11 M 96 v v v
[76]  Greece 2.5M 24 v v v
[76] Greece 2.5M 5 v v v v
. Italy 877,144 3,168 v v v v
Ni‘:v‘:;al [77] Ircland® 40,000 13
[78]  France 14.9 M 92 v v v v
[78] Spain 9.8 M 120 v v v v
[78] Germany 18 M 122 v v 4 4
[78] UK 205 M 252 v v v v
[79] Finland 36,000 12 v v

* Ireland: construction, thermal

Although the building shape has been widely used in defining the building archetype,
different studies considered different parameters to define the shape. For instance, in a study, the
correlation of the building with surrounding buildings was used as the main parameters to define
the building shape and shading effect, categorizing them as detached, semi-detached, townhouse
[72]. However, in another study, the height of the buildings was added to the previous parameters
[78]. Having the number of building archetypes, as well as the number of buildings within each
archetype, the demand profile of the users is predicted using different scaling methods. The most
common scaling methods are; (1) area weighted in which the demand profile of a reference
building is multiplied by the total district area over the reference building area ratio, and (2)
number based in which the demand profile of a reference building is multiplied by the number of

buildings within an archetype, Table 2-3.
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Table 2-3: Summary of the Methods used for HEDP in DHS Using Different Scaling Methods

DH Modeling
Country Year Method Scaling Method Type Output Ref.
Japan 2004 Archetype/ survey Number per archetype Residential Total EUI [67]
USA 2008 eQuest/.comprehenswe Area-weighted Mixed Hourly/ total consumption [68]
modeling/ archetype
Italy 2012 Regression analysis of Area-weighted Residential Total consumption [70]
measured data
. Archetype/ linear . .
Finland 2014 development using REMA Number per archetype Mixed Total consumption [79]
Italy 2013 Archetype/ corpprehenswe Area-weighted Mixed Total consumption [71]
modeling
Italy 2014 Slmpllﬁgd equivalent Area-weighted Residential Total consumption [80]
resistance
Greece 2011 ArChetypri/o(é(;?g ;ehenswe Area-weighted Residential  Hourly/ total consumption [76]
Simplified/ equivalent oy oy . .
Germany 2014 resistance / HDD Building by building Mixed Total consumption
Archetype/ simplified . . . .
2015 model/ adjusted HDD Area-weighted Residential Total consumption [81]

In such approaches, the level of simplification in the representation of the building stock
modeling is observed to be very high. For example, the orientation and other geometrical diversity
of the buildings are mainly neglected compared to the reference building within a defined
archetype. The above-addressed shortcomings in demand profile prediction are more magnified in
the case of having larger DSs with more uniform building archetypes. For instance, in the case of
Japanese district [67], German district [82] or Swiss district [81], with more homogeneous building
types, the simulation accuracy is presumably much lower compared with Italian district [71],

which has more heterogeneous building archetypes.

2.1.3. Limitations

The main limitations of the methods to predict the DHS demand profile include:

Feasibility of expanding one model to the entire district level: The first limitation of the

presented methods is related to the limitation of these models in prediction of the total energy
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consumption of the entire district. Especially, in the case of a larger district system where the
heterogeneity of buildings is elevated, this problem becomes more amplified. For instance, HDD
should be only used for prediction of small residential buildings while the BIN method is more
suitable for larger buildings with much higher internal heat generation density [48]. As a result, an
archetype method with a combination of these methods should be used to predict the total energy

load of the entire network.

Type of prediction: Another limitation of the presented methods is related to the prediction

method. Most of the presented methods have been adapted to predict the total energy consumption.
Even though DSs are initially designed based on the total energy consumption as well as the
maximum peak demand of the system, detailed profile of the network is further required to improve
the system efficiency and enhance the energy distribution management. Table 2-4 summarizes
different prediction methods that have been used to predict the consumption load of DSs.
According to the table, most of the studies focused only on the total energy consumption of the

networks and not the detailed profile.

Accuracy: Prediction accuracy is the next limitation of the previous models. Three primary
sources of discrepancies identified for the existing models are occupant behavior, neighborhood

interference, and scaling effect.

a) Since most of the models do not directly take into consideration the occupant behavior
influence, the accuracy of the prediction, particularly at the building level, is observed to
show a much lower value in many cases. In contrast, the accuracy is significantly higher at
the district level with more diverse building types due to the fact that several building
influencing parameters at a district level overlap on each other and therefore compensate

the accumulated error at some points, Table 2-5; as a consequence of this misleading
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b)

schedule prediction, most of the previous works are only focused on one type of building
in order to improve their simulation accuracy.

The unmeasured effects of the district/community on buildings such as shared walls
between them and also the solar blockage by the adjacent shadow casted from surrounding
buildings significantly impact on the prediction of the heating demand schedules. Most of
the existing models are designed as a standalone building, barely representing the
complexity of an urban/district setting. Indeed, the first assumption in the modeling of a
standalone building is that the entire building shell receives solar radiation and exchanges
heat with the surrounding environment.

Finally, many of the recent studies are utilizing scaling methods to represent the entire
housing stocks (see Table 2-3), which is another source of discrepancy in the demand
schedule prediction of DHSs. Commonly used methods are (1) area-weighted scaling
method in which the demand profile of the reference building has been multiply by the
total district area divided by the reference building area ratio in order to predict the demand
profile of the entire district and (2) number based in which the demand profile of the
reference building has been multiplied by the number of buildings within an archetype. In
such approaches, the level of simplification in the representation of the building stock
modeling is observed to be very high. For example, the orientation and other geometrical
diversity of the buildings are mainly neglected compared to the reference building within

a defined archetype

Computational time: The computational time of the stock modeling is one of the major

limitations of the current DHS models.
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Table 2-4: Summary of the methods used for load prediction in DHS

Load Prediction Methods in DHS

Ref. Year Prediction Prediction type/resolution Method
[81] 2015 Annual Total energy demand Simplified modeling/adjusted HDD
[83] 2014 Daily One day forecasting NARX", ANN
[79] 2014 Annual Total energy demand Linear development using REMA
[80] 2014 Annual Total energy demand Simplified equivalent RC
[84] 2014 Annual Total energy demand Simplified equivalent RC
[85] 2013 Daily Average daily and hourly variation Time series
[71] 2013 Annual Total energy demand Comprehensive modeling
[82] 2013 Annual Total energy demand Quasi-state monthly energy balance
[70] 2012 Annual Total energy consumption Linear regression analysis
[86] 2011 Annual Peak load and total demand Multivariant regression
[87] 2011 Annual Total energy demand Gray box model
[76] 2011 Annual Annual peak demand Comprehensive modeling
[88] 2010 Monthly Peak load forecasting Linear regression and clustering
[69],[89]2009 Annual Annual heating degree day Linear regression
[90] 2008 Annual Linearized peak day profile Linear regression
2008 Annual Total energy demand Gray box
[68] 2008 Annual Hourly/total energy demand Software modeling using cQUEST
[63] 2006 Annual Profile Gray box
[91] 2008 Annual Peak demand Stochastic method
2005 Annual Total energy demand Gray box
2004 Annual Total energy demand Multi-variant regression
[67] 2004 Annual Total EUlI/total energy demand Software modeling using SCHEDULE
2004 Annual Total energy demand Simplified equivalent RC
[39] 2002 Annual Profile Linear regression

"Nonlinear autoregressive network with exogenous inputs

Table 2-5: Summary of the accuracy level of the previous studies

Prediction Accuracy of Different Models

District Level Building Level

Year Country Error Ref. Year Country Error Ref.
2004  Japan 18% [67] 2014 USA 11-23% [92]
2008 USA 10-13% [68] 2011 Greece 12-55% [76]
2012 Italy 10% [70] 2013  Germany  5-50% [82]
2013 Italy 4% [71] 2013  Germany  18-31% [82]
2014 Italy 8% [80] 2014  Germany 1-60% [84]
2013 Germany 21% [82] 2014 Switzerland 6-88% [93]
2013 Germany 7% [82] 2015 Switzerland 8-99% [81]
2014 Switzerland 8% [93]

2015 Switzerland 9-66% [81]

To this end, this study aims to propose a new procedure for predicting the heating demand

schedule of the DHSs using simplified models.
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2.2.DHS Optimisation

As amajor energy consumer, the building sector accounts for about 40% of the total energy
consumption in North America and Europe, respectively [94]. Various countries prioritize the
implementation of energy enhancement strategies in this sector to respect the Paris Climate
Accord, COP21 [7]. Such strategies have been applied at various levels, including energy
production, conversion, and user-demand, but the most effective solution touches the higher level

known as energy management [95].

As mentioned earlier, a DHS is a unique type of energy system used at a higher level of
energy management. This system by storing the energy generated by different sources, such as
centralized boiler houses, renewable sources and the excessive heat of the industry, and by
distributing it among the network users throughout the distribution network, allows the operators
to control and manage the energy. In order to have a more efficient system with a higher level of
performance, different optimization methods have been developed to improve the performance
and efficiency of DHSs by minimizing the energy consumption of the system as well as the cost
associated with operation and construction of the DHSs. 7Table 2-6 summarizes the previous

optimization work at the district level.

While the objective function of most optimization works remains almost the same (See
Table 2-6 , cost and emission, the optimization goals and methods are varied. This variation in
methods and goals are mainly due to the differences between different types of existing DHSs.
While the main structures of DHSs remain almost untouched over the time, the methods in energy
generation and distribution have been drastically changed [13]. For an instant, the operating

temperature of the system has been dropped from +100°C steam in the earliest generation of the
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district heating system to 50-60°C water in the 4" generation DHSs. Even though decreasing the
operational temperature of the system alongside with other alterations such as enhancing the
energy efficiency of the system results in improving the performance of the DHS, but designing
the system, which could operate with a minimal cost and energy level, was always remained as a

challenging subject for designers.
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Table 2-6: Summary of the recent DHS optimization studies based on the optimization goals and objective function

DHS Optimization

Ref. Goal Objective Function Method
S L . 1. Mass flow (construction cost is fixed)
[14] Minimizing the initial HE and pump operational cost 2. Thermal conductance (pump power is fixed) Newton method
[25] Using mitigation strategy to control thermal comfort Minimizing the departure of the space temperature from Sequential linear programin,
- & & gy thermal comfort temperature d prog &
[96] Reduction 0 [the heat demand .at the user level by Decreasing the operational cost MODEST optimization model
applying the energy efficiency method
[97] Finding the enersy ﬂ9W from a dlfferent source i Minimizing the operational cost MODEST optimization model
order to minimize the operational cost
(98] Optimizing the payoff characteristic between the Minimize the pay off the HVAC system operational cost and Multi-Objective GA
energy cost and occupant thermal comfort thermal comfort
[99] Determining the energy and exergy eff"lc1‘enc.1es and Optimizing the mass flow rate ANN
exergy destruction for thermal optimization
Minimizing the investment cost of the system Minimizing the capitalized cost Non Linear Optimization Method
Presenting a model for structural and operational o .
[100] optimization of the district system Minimizing the total cost MILP programing
Minimizing the global warming potential during the 1. Maximizing the exergy efficiency C o
[101] life cycle and maximizing the exergy performance 2. Minimize the life cycle global warming potential Multi-Objective GA
[25] Economical optimization of the system Minimizing the hourly cost of the system MINLP programing & GA
[[]](())i]]’ Minimizing the total energy cost Minimizing the total annualized cost Nonlinear programing
[38] Defining a globally op.tlmal system from the energy average unit cost of heat supplied to all users GA
viewpoint
[37] Improving the design of community scale integrated Maximizing the exergy efficiency GRG non-linear
energy system
[19] Economical optimization of the system Minimizing the total annual cost ANN
[104] Economical optimization of the system Minimizing the investment and operation cost MILP programing
Cost and economical optimization of the system I Ma.xn'm.zmg the utility company pr Oﬁt MILP programing
2. Minimizing the greenhouse gas emission MILP programing

MILP, mixed-integer linear programing; MINLP, mixed-integer non-linear programing; GRG, generalized reduced gradient.
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The major design issue of the older district heating system (DHS) generations (1% to 3™
generation) was mainly high heat loss in the distribution network due to the high-temperature
media (100°C and more) [14], [105] In this regard, the optimization focus was on enhancing the
system efficiency by controlling the heat loss from the system and subsequently, improving the
system efficiency. As a result, most optimization studies have focused on minimizing the system
heat loss. However, the new generation DHS (4t generation) operates at a lower temperature (50-
60°C), and hence achieving higher system efficiency is possible by adopting appropriate control
strategies and also through optimization of the equipment size [103], [106]. Note that, designing
the 4™ generation DHS based on the conventional design method, sizing the equipment based on
the peak demand load, could lead to oversizing of the equipment and low system efficiency.
Therefore, the adoption of an optimal approach (for cost and energy) to enhance the efficiency of

the DHS while designing the 4™ generation DHS became a standard practice among designers

Aside from the optimization goals, different optimization methods have been developed to
improve H-CDHS efficiency and to reduce the system’s emission footprint and the overall cost
[65], [107]. Among the existing methods, mathematical methods based on continuous or discrete
variables [95], [108]-[110], generic algorithms [95], [111]-[113] and neural networks systems are
the most implemented techniques for optimizing the hybrid system’s efficiency. Based on the
defined type of the objective function, the DHS optimization is mainly formed on the basis of a
single objective function or multi-objective functions. While most single variable function is
solved using the deterministic numerical methods, the multi-objective functions use either
weighted factors or pareto-front approaches. In the weighted factor approach, importance factor is
fitted to different objectives of the optimization problem, based on a trial-and-error approach to

convert the multi-objective function to a single objective problem, which provides a numerical
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solution for the problem. Figure 2-3 presents different deterministic methods for the numerical

optimization approaches:

.

Mixed — Integer Linear Programming (MILP)
Mixed — Integer Mon — Linear Programming (MINLP)
Stochastic Programing
( Stochastic Programing

Nonlinearly Constrianed
Constrained Bound Constrained
Network Programing

Continuous 1 Linear Programing

Nonlinear Equations
Nonlinear Least Square

Global Optimization
\ \ Nondif ferentiable Optimization

Discrete Integer Programing {

Optimization: §

Unconstrained

Figure 2-3: Categorization of different numerical optimization approaches

where the optimization problem can be defined as [71]

h(x,y) =0
minZ = f(x,y) s.t. glx,y)<0 Equ. 2-20
x€X;ye {01}

where the objective function f (x, y) is subjected to a set of constraints. h(x,y) = 0 defines the
performance of the system, and g(x,y) < 0 stands for a feasible plan of the system. Moreover,
two different types of variables could be defined for MIP (MILP/MINLP) problems; the
continuous variable (x), representing the state variable and the discrete variable (y) with the value

of 0 and 1, representing the equipment assigned to with a sequential task to the system.

Optimization algorithms consist of both continuous and discrete variables where they
furthermore characterized as mixed integer linear programing (MILP) if all the equations are linear
or mixed-integer non-linear programing (MINLP) if one of the equations is non-linear. In the cases

of having no discrete variable, the optimization algorithm can be addressed with linear programing
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and non-linear programing [114]. The schematic of the optimization process, presented in Equ. 2-
18 , serves as a basis of several optimization tools, which have been developed for optimization of
the DHSs, e.g., general optimization toolboxes such as MATLAB or GenOpt [115], customized
DHS optimization tools such as FreeOpt [116], cost-associated optimization tools with the thermal
electrical load of the system such as STEFaN [117], network pipe size and routing optimization
tool such as MODEST(Model for Optimization of Dynamic Energy System with Time-Dependent
and Boundary Condition), the system investment, and operational cost optimization at both supply

and demand level [97], [118].

Besides the mathematical approaches (as shown in Figure 2-3) adopted to formulate the
optimization process, the optimization methods could be categorized either as static or dynamic
optimization based on the dependency of the decision-making process with respect to time. In
static optimization, the optimization time period remains the same for each iteration and the
optimal solution is selected for a particular point of time within the given time period. In other
words, in each iteration, regardless of any change in the optimization variables, the optimal
solution is always at the same time. For example, static optimization obtains the optimal size of
the equipment based only on the annual peak demand load. While in dynamic optimization, the
optimization time horizon is split into a set of smaller time periods and the solution for each period
affects the future solutions and possibilities. As a result, the optimizing agent takes into account

this effect in the decision-making process.

Even though there is a scientific consensus on the mathematical definition of the static and
dynamic optimization processes, there are many ongoing debates as to which type of optimization
method should be used when it comes to use of the commercial energy simulation and optimization

tools. Since similar simulation output could be obtained from all these commercial methods (e.g.
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energy demand profile), the interaction between the simulation and optimization tools can be used
to identify the optimization type (static or dynamic optimization). For instance, in static
optimization, the district component and the interaction between them are modeled either by using
the user-defined code or commercial simulation software [119] [120] in order to find the optimal
size of the DHSs’ equipment [108], [121]-[123]. Subsequently, the energy simulation is performed
exclusively from the optimization process and a set of unique solution is obtained per simulation.
In other words, the optimization population will be generated by simulating the model over the
simulation time period under different scenarios (optimizations variables) and the unique solution
is obtained based on the objective function (i.e. cost and emission) under each scenario. Later on,
the unique solutions are used by the optimization tools as an optimization population to find the
optimized value of the objective function. It is worth mentioning that all unique solutions obtained
from static optimization are for the same exact point of time (e.g. the peak demand time). By using
the non-interactive model, i.e., separate simulation and optimization model (static model), there
exists a higher probability of decreasing the effectiveness of the optimization tool towards

predicting the optimal size of the equipment [121].

On the other hand, in dynamic optimization, instead of generating the optimization
population by simulating the model for different scenarios, the optimization and simulation are
carried out simultaneously. By simultaneously performing the optimization and simulation, not
only a more comprehensive spectrum of the solution is generated as an optimization population,
but also the generated off-spring population reflect the effects of previous hours. Due to the

complexity of coupling the simulation and optimization tool in dynamic optimization, several
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research works focused on the dynamic optimization using user-defined codes for system

modeling® [110], [124], [125].

Since the dynamic optimization of the system using the detailed user-defined codes is
computationally expensive, and in many cases not feasible, different simplification approaches
have been adopted to decrease the computational time. These approaches resulted in a
simplification of the district energy model®, using the reduced input file and the representative
weather or demand file for the design period instead of using the whole year profile, or the
combination of two. Considering the above-said research gap, the main objective of this study is
to develop a dynamic optimization platform that could explore the optimal equipment size using
the detailed demand profile in a timely manner. The developed model predicts the detailed demand
profile of the DHS and uses them along with detailed energy model of the DHS and the equipment,
and interaction between them to dynamically optimize the entire system. Subsequently, the optimal
size of the equipment is obtained. The size of the equipment obtained from the model is later
compared with the one obtained from the conventional method (design day method), as well as
using a static optimization tool, (Biomass optimization tool). In this regard, data from an existing
H-CDHS with an integrated thermal energy storage system is used to optimize its boiler house to

minimize its overall cost and CO; emission.

5 Modeling the district components and the interaction between them.
6 Represent the components and the interaction between them with a simplified equation
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Table 2-7: Summary of the DHS optimization studies based on the type of the objective function and objective function

DHS Optimization

Ref. Type of Objective Function Objective Function Solving Method

[126] Multi-objectives optimization Cost and CO; emission Evolutionary algorithm/Perato front
[127] Multi-objectives optimization Cost and CO; emission Weighted factor/MILP
[128] Single Objective Pressure drop Deterministic/MINLP
[129] Multi-objectives optimization Global cost, operation, and investment Weighted factor/MINLP
[105] Multi-objectives optimization Accumulated error GA/non-linear objectives
[130] Multi-objectives optimization  Exergy efficiency and life cycle global warming GA/multi-objectives

[25] Single Objective Hourly cost GA/MINLP

[131] Multi-objectives optimization Global cost and CO2 emission Weighted factor/MILP
[14] Single Objective Mass flow rate/thermal conductance Newtown method

[19] Multi-objectives optimization Total cost ANN

[99] Single Objective Mass flow rate ANN

[38] Multi-objectives optimization Average unit cost of heat supplied to all users GA

[37] Single Objective Exergy efficiency Non-linear GRC

[96] Single Objective Operational cost MODEST optimization model
[132] Single Objective Capitalized cost NLP

[104] Multi-objectives optimization Total cost Weighted factor/MILP
[97] Single Objective Operational cost MODEST optimization model
[98] Multi-objectives optimization Operational cost and thermal comfort GA/multi-objectives

MILP, mixed-integer linear programing; MINLP, mixed-integer non-linear programing; GRG, generalized reduced gradient.
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Chapter 3: Methodology

Predicting building energy demand is a complex procedure consisting of different stages.
Even though a number of studies have been conducted to forecast the energy consumption of
buildings, a general model that can accurately predict the HEDP of different types of DHSs with
a wide range of the users in a timely manner is not proposed yet. Therefore, this study aims to
propose a new procedure for predicting the heating energy demand profile (HEDP) of the DHSs
using simplified models. For this purpose, a 4-step procedure has been developed to accurately
predict the hourly heating demand profile of the different type of district systems with a high
resolution, in a timely manner. The procedure benefits from multiple linear regression (MLR) and
multiple nonlinear regression (MNLR) methods. In this 4-step procedure, the heating energy
demand profile of the entire district is predicted by modeling each individual unit in the community
using their physical and geometrical characteristics, the regions’ meteorological information, and

the occupants’ behavior.

The proposed 4-steps procedure has been validated both at a building level and at a district

level using inter-modal comparison and measured data.

For the purpose of validation, Root Mean Square Error (RMSE) has been used as an
indicator to evaluate the correlation between the predicted value using the proposed method and

the results obtained from the comprehensive modeling. The RMSE indicator is defined as:

RMSE = [ 37, (%; — ¥;)?]°S Equ. 3-1
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where Y; is the predicted value obtained from the proposed method, Yi is the result of the

comprehensive simulation or measured data and m is the number of observations.
3.1. Development of the 4-Steps Procedure

The proposed procedure consists of four major steps:

Step 1: In the first step, a sample building stock model (BSM) is segmented into different
archetypes, and a reference building is defined for each archetype. The initial segmentation is
completed by considering the building’s construction method, physical and geometrical properties,
and construction period. Once the initial archetypes are determined, each archetype is further
divided into sub-archetypes based on the occupancy schedule (e.g. residential users with high,
medium and low usage) of the building within that archetype. Different methods are used for
segmenting the BSM based on the occupancy schedule. While some researchers only segment the
BSM based on major occupancy types (e.g. residential, commercial, or office types), others
segment it following the user’s energy profile. This study presents a more detailed approach for
defining the number of archetypes as well as the reference building for each archetype. A
hierarchical clustering method was adopted to this end. In this method, the data set is split into a
prefixed number of clusters. The building closest to the centroid of that cluster is defined as a
reference building for that cluster. To define the number of clusters required for a given data set,
prefixed number of clusters, the optimal number of cluster is defined using the elbow method

[133].

Step 2: The second step includes the generation of the model’s input files. These files are
constructed based on the physical properties of individual units, regional meteorological data, and

occupants’ behavior. In order to determine the input file of the model, extensive sensitivity analysis
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is done to identify the most influential parameter on the heating demand profile of the buildings.
Based on the results obtained from sensitivity analysis, four different input files are constructed

for this study.

Step 3: In the third step, a reference building’s heating demand profile is initially defined using
the measured data. An ANN model is then trained and tested using the reference building’s input

file as well as the heating profile to obtain the regression coefficients.

Step 4: Finally, in the fourth step, once the MLR/MNLR model is trained separately for each
archetype using the reference building, each individual unit’s heating demand profile is then
predicted by adopting the input file of them. This procedure is capable of predicting the heating

demand profile of both individual buildings and the entire district network.

Figure 3-1 presents the algorithm for a simplified 4-steps procedure for predicting the

HEDP of the DHS.
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3.1.1. Step 1: Defining the Archetypes

The first step in defining a proposed simplified procedure is to find the number of the
archetypes. Therefore, the entire building stock is initially identified and will be segmented into a
predefined number of building archetypes, each presenting buildings with similar properties in
term of the occupancy behavior and energy demand. Generally, building segmentation in a
building stock requires a thorough identification of the attributed parameters in energy demand.
Table 2-2 presents the addressed parameters used in previous building stock segmentation studies.
According to this table, the parameters used for the forming of a building stock model can be

divided into the four categories:

1. Building physical characteristics and properties.
2. Building usage and occupant behavior.
3. Regional climate.

4. Building mechanical system.

While the main focus of the building stock segmentation is on the mechanical space
conditioning at the national level, in a smaller scale, such as urban/district level, this focus has
been shifted toward the usage as well as the building age (see Table 2-2). Regardless of the scale
of the segregation procedure, in the first step, the existing building stock is segmented based on
the occupancy. The buildings are further grouped based on their physical properties and their type
of the mechanical systems. Eventually, the segmented archetypes could be further clustered based
on the regional climate in the case of defining the archetypes at the national level. To improve the
generation of the building archetypes for predicting the HEDP of the DHS, in this study, the

thermal mass of the building has been considered in the clustering process. This element is
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recognized to have a significant impact in developing a dynamic model at the district level.

Therefore, the modified clustering process is characterized as below:

1. Building mass: high, medium, low density, etc.

2. Building shape: low-rise, high-rise, medium-rise, etc.

3. Construction age: in the case of renovation, time of the renovation was considered to be a
construction time for a specific building. Thus, it is reasonable to assume that a constructed
building is following the minimum thermal resistance requirements code for that time
period.

4. Building occupancy schedule: residential, commercial, etc.

5. Building occupancy behavior: high, medium, low energy usage, etc.

Here, it should be noted that different parameters are suggested to define a building shape.
Mastrucci et al. [72] used the shading interaction of a building with its surrounding buildings and
categorized them as detached, semi-detached, and townhouse. In another study, Mata et al. [78]
have added the building height to the latter parameters. In this study, since exposure area is one of
input data, buildings’ height and interaction with surrounding building, detached, semi-attached

and or stand-alone building, is considered as the shape factor.

After investigating the BSM, and sorting the buildings within the BSM based on the main
categorization presented above, the next step is to define the number of sub-cluster required for
each main categories. Different methods have been suggested by researchers in order to define the
optimal number of cluster required within each main categories such as Information Criterion
Method, Information Theoretic Method, Average Silhouette Method and Elbow Method. In this

study, the elbow method is used [133].
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Elbow method, define the optimal number of the cluster by comparing a difference between
the within-cluster sums of the square (WSS)” of two consecutive cluster number. In other words,
whenever increasing the number of the cluster does not significantly decrease the WSS, the optimal

number of the cluster has been reached.

3.1.2. Step 2: Creating the Input File

With segmentation of the BSM into a predefined number of archetypes, the next step is to
define the model input variables. As mentioned earlier in Section 2.1.2, Equ. 2.12, the HEDP of

the building depends on four factors:

1. Building assemblies heat loss
2. Solar heat gain
3. Internal heat gain

4. Heat loss due to infiltration

However, detail calculation of all major heat gains/losses requires an extensive information
regarding the physical and geometrical properties of all buildings. Unlike the metrological data,
the geometrical properties of buildings can completely change from one building to another; as a
result, obtaining all required information for all individual users of the district, especially in a mid
to large size DHS is not practical. Thus, for the proposed simplified model, first, a sensitivity
analysis has been performed and based on the obtained results, the most influential parameters for

each major cause have been identified, and then the input files of the model has been defined.

7 The WSS is the sum of the squared deviations from each observation and the cluster centroid and calculated as
Y k=1 Yies;, X j=1(xij — Xij)* where Sk is the set of observations in the k™ cluster and %; is the j*" variable of the
cluster center of the k™ cluster
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3.1.2.1. Sensitivity Analysis

Sensitivity analysis is a technique to determine the impact of uncertainty of a particular
input variable on the model output. In many literatures, sensitivity analysis considered to be the
prerequisite for modeling [134]. Different techniques of sensitivity analysis have been suggested
in the literature [135]. In this study, the local sensitivity method using the central differences
approach is used. Firth used this method [136] to determine the effects of each parameter on the
model output of his community domestic energy model. Even though results obtained from Firth
and Salteli [137] show that the local sensitivity analysis cannot provide a thorough uncertainty
analysis of the model, but in case of community-level with a wider range of buildings, results could

be used with a good level of accuracy [138][137].

In this method, for a model consisting of multiple output variables (M) and multiple input

variables (N), the sensitivity coefficient can be determined as:

ay Y +Aun)-Y -A
SCyay = 2 M UN+AUN)—Y y (UN—DBuN) Equ. 3-2
’ dun 2Aupn

where py 1s the nominal value of the input variables and Au is the small change applied to that
variables while other variables kept constant. Chang [138] suggested that the uy could be
calculated as the weighted average of the N input parameter over all sample dwellings. While
Turanyi [139], suggested that perturbation size can affect the accuracy of the analysis as a large
step-size could result in damaging the local linearity assumption whereas too small step-size could
ended up in a high round of error. After calculating the sensitivity coefficient, the normalized

sensitivity coefficient is determined as:

=— Equ. 3-3
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Since in real case scenarios, more than one parameter changes from a building to another
one, the linearity, and additivity test were also performed [138] to study the effects of change of

multiple parameters on the model prediction:

Linearity Test : Y(B.Au) = B.Y(Au) Equ. 3-4

Additivity Test : Y(Au; + Auy) = Y(Auy) + Y (Auy) Equ. 3-5

Sensitivity analysis was initially performed by carrying out over 100 simulations using a
validated eQUEST model. The simulations were conducted over a range of buildings by
multiplying the selected input parameter(s) by a random number within the predefined range. As
mentioned earlier, the linearity and additivity test, the simulations were done by changing a single
parameter in 15% of the cases. While in the remaining 85%, two parameters in 25% of the cases,
and three parameters in 60% of the cases were changed. Then, the heating demand profiles
obtained from detailed simulation (¢€QUEST) were used for the sensitivity analysis as well as
performing the linearity and additivity tests. A further simulation was also conducted to study the
combined effects of different parameters on the performance of the model archetypes. The input

parameters are:

Occupancy density * Ran(1 £ 0.20);
Win/Wall * Ran(1-3);

Area * Ran(1 £ 0.40);

Aspect Ratio * Ran(1 + 0.5);
Infiltration * Ran(1 £ 0.50);

Area * Ran(1 + 0.25);

vV VvV Vv V¥V V VY VY

No. Stories [4,5 and 6 stories];
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The results obtained from the sensitivity analysis are presented in Table 3-7 and Figure
3-2. In general, it can be concluded that the results of the sensitivity analysis are in a good

agreement with those reported in literature [138].

Table 3-1: Results from linearity test and local sensitivity analysis

Sensitivity Analysis Results

Input Parameter p f(Ap) R? Norm. Sens. Coeff. &

Area (L): AY=0.7053Ap+0.2929 0.9998 0.71
Infiltration (L): AY=0.0133Ap+0.9867 1 0.018
Story Height (NL): AY=+0.002A+1.0001 0.9999 0.01

Window Ratio (NL): AY= 0.0027A12-0.025Ap+1.0223 | -0.025
Aspect Ratio (NL): AY=0.2454Ap>-0.4555Ap+1.1643 0.996 0.46
Aspect Ratio (NL): AY=0.0486Ap?-0.0895Ap+0.9943 0.9999 0.091
No Stories (NL): AY=-0.0101Au2+0.1615Ap+0.7175 | 0.16

Knowing the main causes of the heat loss/gain in a building, along with the most influential
physical and geometrical properties of the building, four input files have been defined for the

proposed simplified model:

1. Solar dependent variable: an equivalent of the solar gain of the building based on its shape,
orientation, exposed wall and window to wall ratio;

2. Thermal dependent variable: an equivalent of the heat gains or loss of the building based
on the heating/cooling temperature difference and the equivalent thermal resistance;

3. Internal generation: an equivalent of the heat generation based on occupant behavior;

4. The thermal mass of the building: represented in the form of the autoregressive model.
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3.1.2.2. Solar Dependent Variable

The solar dependent variable was defined based on a measured dataset in the form of a
TMY3 file and an isotropic solar model. The TMY3 [140] weather data defined the solar radiation
based on the global horizontal radiation (I), direct normal radiation (Iw), and diffuse horizontal
radiation (la). The global horizontal radiation is defined as the total amount of direct and diffuse
solar radiation on a horizontal surface while the direct normal is the solar radiation received on a
surface normal to the sun. By having the incident angle, tilt angle, solar altitude, building
orientation as well as the exposed facade of the building, hourly total heat gain profile of a building

are calculated as follows:

Iyt = Ip, .cos@ Equ. 3-6
I = Id(HCZOSﬁ) Equ. 3-7
I = 1.pg. (1_620513) Equ. 3-8
liotar = Ipt + lae + Le Equ. 3-9

where [, represents the beam radiation, I, is the diffuse sky radiation, I,.; is the reflected ground

radiation, p, is the ground reflectance, 6 is the incident angle and f is the tilt angle.

Having I;,;4;, the solar dependent variable can be written as:

N
SD(t) = Zpggl[ltotal,FO (t)-Awall,FO -(1 - awall) + Itotal,FO (t)-Awin,FO -Twin] +

Itotal(t) -Aroof -(1 - aroof) Equ. 3-10
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where a,,4;; is the wall albedo, ., is the roof albedo and 7,5, is the window transmittance. This

approach allows the model to take into account the effects of the shared wall by only measuring

the solar gain on the exposed exterior facade of a building.
3.1.2.3. Thermal Dependent Variable

The exterior facade of a building is the main source of heat exchange between its indoor
and outdoor environment. Depending on the type of a building assembly, there are different codes
and regulations for the optimal value of the thermal resistance of that assembly. Besides the
assembly type, the design method (i.e. passive or active) as well as the building application (i.e.
residential and commercial) could affect the thermal resistance of buildings. The thermal
dependent variable has been defined in order to represent the equivalent heat loss from the building

facade and presented as:
TD (t) = 1/Req' (ATHeating Difference) Equ. 3-11

where R, is the equivalent thermal resistance of the building and defined as:

A m2.°C
Req. = ZT‘ thal ) [

i=1 74, ]
@ v

where Agyeq; 18 the total building exterior facade area, and A; and R; are the area and thermal

Equ. 3-12

resistance of each wall, respectively. Also, ATyeqating pifference OF the heating temperature
difference can be then determined using the outdoor dry-bulb temperature from the TMY3 file and
indoor air temperature set point. For residential buildings with low internal heat generation, it can
be concluded that cooling and heating not happen simultaneously, thus, it is logical to separate

these load profiles from each other. As a result, a temperature set point was determined as a
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cooling/heating threshold, and the difference between the set-point and the dry-bulb outdoor-

temperature was used as an input file for the model as shown in Figure 3-3.
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Figure 3-3: (Left) Heating Temperature Difference; (Right) Temperature Difference Distribution [°C]

The heating/cooling temperature threshold for different regions/countries could be found
using the design code of that regions/countries. For instance, this temperature set-point, heating
threshold, for a city of Montreal, Canada could be assumed as 21°C [141]. Since the main focus
of the proposed model is to determine the HEDP of the users, the month with an average outdoor

temp above 21°C could be assumed as zero, Figure 3-3.
3.1.24. Internal Heat Generation:

Internal heat generation effect on the HEDP of a building, varying from day to day and from a
building to building. The variation is due to a different level of occupant density and a minimum
internal load associated with their occupancy type. For example, in residential buildings with a
low occupant density and a 24-h operational schedule, the effect of internal heat generation on the
energy consumption schedule is more or less uniform whereas it becomes more significant for
commercial buildings with higher internal heat generation. This implies that the study of the

internal heat generation effect requires a comprehensive statistical analysis, which is beyond the
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scope of this work. In this study, the typical design schedule suggested by MNECB [142] was used
for each building archetype. These schedules can be further expended to all buildings within an
archetype. For instance, Figure 3-4 & Figure 3-5 represent the typical schedules for electricity
usage, cooking, lighting and occupancy for a low-density residential building.

Light Power Density Cooking
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80% 80%

60% 60%

o I | 1|
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20% 20% .
OCVZ III IIIIII 0%IIIIIIIIIIIIIIIIIIIIIIII

1234567 8 9101112131415161718192021222324 1234567 8 9101112131415161718192021222324
Hour of the Day [hr] Hour of the Day [hr]

Figure 3-4: (Left) Typical Lighting Schedule (Right) Typical Cooking Schedule

Occupants Receptacle

100% 100%

80% 80%

60% 60%

40% 40% I I |

= Al —t—th

0% 0% I
1234567 89101112131415161718192021222324 1234567 89101112131415161718192021222324

Hour of the Day [hr] Hour of the Day [hr]

Figure 3-5: (Left) Typical Occupancy Schedule (Right) Typical Receptacle Schedule

3.1.2.5. Thermal Mass

Thermal mass, as the simplest means of thermal storage in buildings regulates the
temperature and heat demand profile. As a result, heat demand of a building at present time can be
assumed as a function of the building loads at the previous hours. Pfafferott et al. [143] showed

that buildings with a higher thermal mass can regulate the temperature fluctuation for a longer
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period of time. In this study, buildings were assumed to have low, medium and high thermal

masses [144].

3.1.3. Step 3: Model Training

As mentioned earlier two different methods have been used in training the simplified model
for predicting the HEDP of the DHS. These two models are the multiple linear autoregressive

models (MLR) and multiple non-linear autoregressive models (MNLR).

3.1.3.1. Multiple Linear Autoregressive Model

The main objective of the MLR is to find the relationship between the number of
independent variables and one dependent variable. The main assumption of this method is that
relationships between independent variables, predictors, and the dependent variable, criterion

variable, is linear. ASHRAE fundamental represents the MLR equation as follow:

Y=o<0+ °C1 X1+0C2 X2++ock Xk Equ3-13

where Y is the dependent variable, o, are the coefficients, X; are the independent variables and k
is the number of independent variables. Different methods were used to estimate the regression
coefficients of which the least square method is the most popular one [145]. In this method, the
regression coefficients usually estimated in a way to minimize the sum of the square errors between
the predicted and actual dependent variable. Once the regression coefficients were extrapolated
based on the verified set of data, the results were used to predict the new Y based on the new set

of independent variables.

In some cases, the results of the dependent variable at the time t is highly influenced by the

value of the independent variables at the time t as well as some previous time steps. In these cases,

53|Page



such as a building with higher thermal mass, the dependent variable was predicted based on the
previously observed set of independent variables, see Section 3.1.2.5. Due to its usefulness for
predicting the dependent variable, this method became a popular tool to forecast future results
[146]. There are different types of the time series method among which the simple exponential
smoothing is the most famous one. The Autoregressive (AR) method is a linear prediction time
series method that works based on the simple exponential smoothing method. Two different

autoregressive-based methods were used in this study to develop the simplified model.

The main difference between these two linear methods is the type of input variables that
has been used for them. In the first method, the thermal dependent variable, solar dependent
variable as well as internal heat generation of the building are used while in the second method the
predicted load at previous hours also consider as an extra input for the model. The following

equation shows the general format of the MLR used in this study.

Y(t) =x,; TD(t) +x, TD(t — 1) 43 TD(t — 2) + -+, TD(t —n — 1)

+ BySD(t) + BoSD(t — 1) + BaSD(t = 2) + -+ + B,SD(t —n — 1)

+yIG(t) + v, IG(t — 1) + y3IG(t —2) + -+ y,IG(t —n — 1)

+@1Y(t—1)+ @ Y(t—2)+@3Y(t—3)+ -+ @, Y(t—n)

+C Equ. 3-14

where a, 3, y and ¢ are the coefficients obtained from auto-regression; TD is the thermal dependent
variable; SD is the solar dependent variable; 1G is the interior heat generation dependent variable;
and Y is the energy demand of the building. By running the auto-regression between the input data

and the results obtained from DOE/eQUEST, the value of the coefficients a, B, v and ¢ are
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determined. Once the coefficients and the input data are established, the energy demand of any
building can be predicted by the presented formula. In order to verify the results, the energy
demand of another building modeled by DOE was predicted by using the presented formula, and

the results were compared with those from the detailed simulation.
3.1.3.2. Multiple Non-Linear Autoregressive Model

For the second method, non-linear regression method has been used. The main assumption
of the MLR was the linearity between the dependent variable and independent variables. For cases
in which this assumption is inaccurate, the multiple nonlinear regression analysis could be used.
In this method, the relationship between the dependent variable and independent variables were

assumed to be nonlinear. Adamowski [147] represents the MNLR equation as follow:
Y = ag+ BiXi + BoXj + BaXi + BuXP + Bs X7 + BeXip + - + BpXi XXy Equ. 3-15

where @ is the intercept, [ is the regression coefficient, and p is the number of observations. As
in the MLR method, the least squares method was used to estimate the regression coefficients. As

for the first model, two different non-linear models have been used to predict the load:

» A nonlinear input-output model, which predicts Y(t) given d as past values of series X(t):
YO =fX({t—-1),-,X(t—4a)) Equ. 3-16

» NARX: a Nonlinear autoregressive model with external Input, which predicts the series
Y(t) given d as past values of Y(t) and another series X(t):

YY) =fX(@t—=1),,X({t—=4d),Y(t—1),-,Y(t—4a)) Equ. 3-17

The main advantage of this method over the MLR is in the associated accuracy of the results

due to taking into consideration of a wider range of the buildings in the energy demand prediction.
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Inversely, its main disadvantage is related to the need for a large dataset for its training and

validation.

3.1.3.3. Model Training

Two different tools were utilized to develop the linear and nonlinear regression models.
The first tool adapted for the linear model (MLR) was R-Studio, which has a powerful and user-
friendly interface. While the ANN toolbox of MATLAB has been used for the nonlinear model
(MNLR). The closed loop forward ANN model was trained and validated using the existing set of
data from a detailed simulated schedule of more than 100 buildings. The ANN model was used to
predict the heating demand profile of the buildings within a district by finding the correlation
between hourly demand profile of a target and other input files defined in Step 2, Section 3.1.2.
This nonlinear autoregressive model with an external input (NARX) was therefore used to predict
the hourly heating demand profile of the model by taking into consideration of the past target data,
demand profile, and other series of input parameters defined earlier. Thus, to predict the demand
profile of the future hours previously predicted values and input files were used at the same time.
It should be noted that the utilized dataset was initially divided into three parts, including 75
buildings for the training stage (75%), 23 buildings for the validation stage (23%), and finally, two
buildings for the testing stage. The number of the hidden layers decided to be 9 based on Lu and
Viljanen’s suggestion [148]. He suggested the best number of hidden units for the system is equal
to two times the number of input layer plus one. To determine the accuracy of the model, the mean

square error of the predicted results against the validated data was calculated.
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3.1.4. Step 4: Load Prediction

After grouping the building stock model (BSM) into different archetypes, obtaining the
reference building for each archetype and training the prediction model for each archetypes using
the reference model for that specific archetypes, the last step is to obtain the overall load of the
entire community. To do so, the earliest extracted physical data for each unit® grouped using the
archetypes properties and the input files have been fed into the appropriated trained model®. The
trained model, using the regression coefficients obtained from the training of the model using the
reference building of that archetype'’, and the input file generated based on the physical data of
induvial units within that archetypes and the outdoor weather data, the HEDP for each individual
unit has been obtained. The total HEDP of the entire district is the summation of all the HEDP of
individual units of all different archetypes in addition to the heat loss from the distribution network.
The heat loss prediction of the distribution network explained in more details later on in Section

4.2.4.3.

8 Data such as: Window to wall ratio, area, aspect ratio, orientation, etc.

9 Using the reference building of each archetype, one model for that archetype has been trained.

10 Based on the method of training, instead of having the regression coefficients, MLR method, we could have an
ANN model, the MNLR method.
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Chapter 4: Model Validation Results

After developing the simplified procedure to predict the heating energy demand profile of
the DHS, the proposed model was validated both at a building level and community level. For
validating the model at building level, only Inter-model comparison was used while for the

community level, both intermodal comparison and measured data were used.
4.1. Inter-model Comparison

In the first step, the proposed method was validated using the inter-model comparison both
at building level and the community level. In both case, first a set of arbitrary buildings were
selected and modeled in an energy simulation software, cCQUEST/TRNSYS. Using the simulation
software, the heating energy demand profile of the simulated buildings were obtained. In next step,
the HEDP of the same buildings was predicted using the proposed procedure. Finally, the predicted

profile was compared with the one obtained from the detailed simulation.
4.1.1. Inter-model Comparison at the Building Level

First, the proposed procedure was used to predict the heating load of the individual building
using both MLR and MNLR approaches while the results were compared with the one obtained

from the comprehensive modelling.
4.1.1.1. MLR Model

Two new buildings were developed using the verified, DOE based model to validate the
proposed simplified procedure (MLR), called buildings “RI” and “R2”. The new buildings were

first modeled in DOE-eQUEST, by changing some of the parameters of the verified model in the
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reference building. The description of the reference building and tested buildings “R1I” and “R2”

could be found in Table 4-1.

Table 4-1: Description of the Verified Building vs. Tested Buildings

Building Description
Building Area|m?| Stories Win/Wall Set Point Note
Reference 1858 4 30% Constant 25 Detached No Shading
R1 2044 4 35% Constant 24 Common Wall on East
R2 1998 4 35% Schedule 1 20 ° Rotate to East
Schedule 1
Month November December January February  March April
Avg. Temp, [°C] 2.61 -6.82 -9.83 -9.43 -2.72 6.49
Set-point, [°C] 22 23 24 24 22 21

Having the energy demand profile of the reference building, the MLR model has been
trained and the regression coefficients have been obtained, Appendix A (MLR Method). These
coefficients later on have been used to predict the heating energy demand profile of the buildings

“RI” and “R2".

Since one of the identified sources of the discrepancy in predicted results was the common
wall, one of the newly developed buildings “R1” assumed to have a common wall on the east side.
Next, the heating demand profiles of the new buildings were obtained using MLR approach and
were compared with those obtained from the DOE simulation. Also, to check the accuracy of the
model under different circumstance, two different scenarios were defined (Table 4-1, Schedule 1)
with different air temperature set-points, and the accuracy of the results was compared with those
obtained from the comprehensive modeling. In the first scenario, a constant set-point air
temperature assigned to the building “R1I” for the entire year while in the second scenario, a set
point schedule was assigned to the building “R2” based on the average outdoor temperature. Also,

it was assumed that there is no heating load during the cooling season, even if the indoor air
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temperature drops below the thermostat set-point. For this study, the heating season was assumed
to be from 1% of November until the end of April. As mentioned earlier, to take into account the
effect of thermal mass on the heating demand profile of the buildings, set of regression analysis
with different “t” past values were performed and the best fit for each archetype was selected. For
instance, for a low-rise multifamily residential building, this value determined to be four. To
determine the best fit, two criteria were checked; having the highest R-value while maintaining the
P value within 95% of the confident interval, less than 0.05. 7Table 4-2, shows the best fit results
of the regression analysis obtained for “t = 4” for a low-rise multifamily residential building,

reference building.

Table 4-2: Regression Analysis of the Reference Building

Reference Building

Best Fit Regression Statistics

Multiple R 0.9983
Adjusted R Square 0.9966

Results obtained from the regression analysis, Table 4-2, shows a high correlation between
the input file, and target value, heating demand profile. Having the coefficients of the regression
analysis of the reference building, further simulations were performed using MLR method to
predict the heating demand profile of the “R1” and “R2” buildings. As shown in Table 4-1,
building “R1” has a common wall with another building on the east side and a constant set-point

set of 24°C.
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Figure 4-1: Building “R1” heating demand profile [kW]: (Top) one-month period, December; (Bottom) 8 days’
period in mid-December [hr]; Blue Line: simulation, Red Line: prediction.

Figure 4-1 presents the prediction made by the simplified procedure against one made by
comprehensive simulation for the month of December. Results show a good agreement between
the predicted and simulated profiles. The R-value and standard error of the prediction are given in

Table 4-3.
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Table 4-3: Prediction vs. simulation for building “R1”

Building R1
Building MSE R
R1 6.996 0.9971
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Figure 4-2: (Left) Residual against fitted value; (Right) error histogram [kW] of the building “R1”.
Since the main assumption in using the MLR method is that there is a linear relation
between load at time t and inputs, the linearity assumption was checked. As shown in Figure 4-2
(left), redline shows almost a linear relationship between predicted and simulated values. Also, the
magnitude of the errors between predicted and simulated profiles is shown in the histogram as
depicted in Figure 4-2 (Right). In the second scenario, the demand profile of building “R2” was
predicted only for the heating season (1 of November till 30™ of April). Unlike the previous

scenario, based on the average outdoor temperature, the set-point was varied between 21°C and

24°C.

Figure 4-3 shows the predicted demand profile against the simulated profile of building
“R2”. Similarly, a good agreement between the predicted and simulated demand profile can be
seen. Results obtained from the heating demand prediction for the second building tabulated in

Table 4-4: Prediction vs. simulation for building “R2”Table 4-4.
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Figure 4-3: Building “R2” heating demand profile [kW]: (Top) heating season; (Bottom) 10days’ period late
December till early January [hr]; Blue Line: simulation, Red Line: prediction.

Table 4-4: Prediction vs. simulation for building “R2”

Building R2
Building MSE R
R2 5.462 0.9947

The predicted heating demand profile for the second building “R2‘ shows a slightly lower
correlation compared with the demand profile obtained from detailed simulation. However, it
should be pointed out that the duration of simulation was different for two cases. It was 4341 [hr]
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for “R2“while it was 8760 [hr] for the building “R1”. The MSE value for “R1 " has been improved.
Figure 4-4 also proves the linearity assumption made earlier in the development of the MLR

methods. It also illustrates the error histogram for the “R2” building.
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Figure 4-4: (Left) Residual against fitted value; (Right) error histogram [kW] of the building “R1”.

4.1.1.2. MNLR Model

The ANN network was trained, Appendix B (ANN, MNLR Method) and the heating
demand profile of RI and R2 buildings were predicted using MNLR methods. Results obtained
from the nonlinear analysis are presented in Figure 4-5 and Table 4-5. Similar to MLR methods,
results obtained from MNLR method show good agreements between the predicted one and the
one obtained from the detailed simulation. Unlike the MLR method, using the nonlinear model
(MNLR) shows a better correlation between the predicted and the simulation profiles for the
building “R2”. This is mainly due to the fact that most of the buildings used for the training and
validation stage of the ANN network were stand-alone buildings and did not have a common wall
(unlike building “R1”’). Having more diversified training data is a key point in using the MNLR

method. Comparing MLR and MNLR methods shows that, in cases with a smaller training batch,
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using MNLR methods is not only computationally more expensive, but it also does not result in a

better prediction for all cases.

Table 4-5: MSE and R-value of building R1 and R2 using the MNLR method

MNLR
Building MSE R
R1 11.7 0.9961
R2 5.230 0.9978
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Figure 4-5: Error histogram [kW] of building R1 and R2 using MNLR method.

Even higher prediction accuracy expected to be obtained from using the MNLR method
but, due to use of the predefined internal occupancy schedule for the entire simulation period, the

prediction accuracy obtained from both MLR and MNLR method are close to each other.
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4.1.2. Inter-model Comparison at the District Level

Since the main purpose of this study was to develop a method for predicting the heating
energy demand profile of a district, in the next step, the proposed procedure was adopted in order
to predict the heating energy demand profile of the DHS. To do so, three different DHSs were
defined. Then, every individual user of the predefined district was modeled comprehensively using
the energy simulation software, eQUEST, and the corresponding HEDP of each individual
building was obtained. Utilizing the proposed procedure, the HEDP of the predefined districts
were obtained and the results were compared with the one obtained from the detailed simulation.

Thus, three districts were initially considered:

» District 1: solely comprised of 95 residential buildings
» District 2: solely consisting of 82 office buildings

» District 3: includes a mixture of 84 residential and 28 office buildings

Two validated reference buildings were selected for the study of these districts; including
a residential and office buildings. The geometric parameters obtained from these buildings (i.e.,
number of stories, aspect ratio, orientation, net area and window-to-wall ratio) are used to define
the remaining buildings of their associated community. In other words, the geometric parameters
from the reference buildings were altered in accordance with these buildings in order to define
other buildings within the district. These ranges were based on the likelihood of the characteristics
of the buildings’ archetypes within each community. Subsequently, the parameters of each

building were given a random value within each of the ranges defined in Table 4-6.
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Table 4-6: Description of the Districts

Solely Residential District “District 1”

No. of story No. of Buildings Area [m?] Win/Wall  Aspect Ratio  Orientation with South  Set Point [°C]

4 Story 32 3500-4500 20-45% 0.75-2.5 +25° 24
5 Story 36 3800-5000 20-45% 0.75-2.5 +25° 24
6 Story 27 3500-5500 20-45% 0.75-2.5 +25° 24

Solely Office District “District 2”

No. of story No. of Buildings Area [m?] Win/Wall  Aspect Ratio  Orientation with South  Set Point [°C]

4 Story 21 10200-12000  25-45% 0.75-2.5 +25° 24/20
5 Story* 37 10200-13000  25-45% 0.75-2.5 +25° 24/20
6 Story 24 22500-14000  25-45% 0.75-2.5 +25° 24/20

Mixed District “District 3”

No. of story No. of Buildings Area [m?] Win/Wall  Aspect Ratio  Orientation with South  Set Point [°C]

Residential -4S 25 3500-4500 20-45% 0.75-2.5 +20° 24

Residential -5S 32 3800-5000 20-45% 0.75-2.5 +25° 24

Residential -6S 27 3500-5500 20-45% 0.75-2.5 +20° 24
Office-4S 12 10200-12000  25-45% 0.75-2.5 +25° 24/20
Office-5S* 10 10200-13000  25-45% 0.75-2.5 +25° 24/20
Office-6S 6 22500-14000  25-45% 0.75-2.5 +25° 24/20

* Detail description of the 5 story office buildings could be found in Appendix C (Inter-Model Comparison)

Random values within the predefined ranges were attributed. For example, Community 1,
consisting of 95 residential buildings was assigned a range of 4-6 stories per building. These
buildings were further randomly defined as 32 x 4-story buildings, 36 x 5-story buildings and, 27

x 6-story buildings.

In order to further define other geometric parameters of these 4 to 6 story buildings, more
randomized values were attributed. For instance, for 15% of the 4-story buildings, one other
geometric parameter value was modified within its predefined range. For 25% of the 4-story
buildings, two parameters were modified within their range, and finally, for 60 % of the 4-story
buildings, three parameters were modified within their range. The modification of geometric

parameters as described above was then assigned to the 5 and 6-story buildings.
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It is important to note that 15%, 25% and 60% distribution for the modifications of the
geometric parameters were also constructed based on a random process. In effect, other than the
reference buildings, which are presented with realistic values, all of the other values were random
and their ranges were determined based on their likelihood within their specific district. In order
to define the buildings within the remaining districts 2 and 3, the same pattern of assignation of
random values was applied. The schematic process of defining each district was presented in

Figure 4-6.

After defining the buildings within each district, the heating demand profile of every
individual building was obtained using both simplified MLR approach as well as cQUEST. Results
obtained from detailed simulation show that the average space heating load for a low-rise multi-
family residential buildings is 53.3 kWh/m?*/year with a maximum heating demand of 200 kW
while for a low-rise office buildings, these numbers are, 55.3 kWh/m?/year and 959 kW,
respectively. Since the office buildings were assumed to be operating for a limited period of the
time during each day, two different occupancy set point temperatures were defined. To have more

consistently in the results, all buildings were assumed to use electrical heating systems.
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Since the internal heat generation of buildings is one of the input parameters for both MLR
and MNLR methods, the internal generation was determined by multiplying the density factor by
usage schedule defined by ASHRAE 90.1 [149] and MNECB [142]. Figure 4-7 and Figure 4-8
show the usage schedules that were used for multi-family residential buildings as well as office
buildings. More detailed description of the buildings within each district are tabulated in Table

4-6.

Typical Weekly Usage
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Figure 4-7: Usage Schedule for the Residential Buildings
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Figure 4-8: Usage Schedule for the Office Buildings

The MLR approach was used to predict the heating demand profile of three districts. The

reference building used for modeling of the residential building is the same as the one used earlier
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(Section 4.1.1.1). A similar approach was also used for the office buildings. Due to the
characteristics of the office buildings, which have different daily usage schedule as well as
temperature set point for the occupied and unoccupied periods, the results obtained from the
multilinear regression analysis for the district 2 shows a lower correlation between the predicted
and simulated results with R = 0.9401 compared to R = 0.9966 obtained for district 1. This lower
correlation is due to a higher daily heating load variation in the office buildings in district 2
compared with the residential buildings in district 1. Figure 4-9 shows the daily heating load

variation for the first 150 hours for district 1 and district 2 using the same period.
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Figure 4-9: Hourly heating load variation of the residential building against the office building

Comparing the total heating demand load of district 1 (solely residential buildings) with
the schedule obtained from the summation of the profile of all individual buildings using eQUEST
model shows a good agreement between them. Figure 4-710 and Figure 4-11 presents the predicted

against simulated heating energy demand profile of the district 1 as well as the error histogram.
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Simulation Vs. Prediction
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Figure 4-10: Predicted heating demand Profile [kW] vs. simulated demand profile [kW] of district 1; Last 11
Days of December [hr]; Blue: Simulation; Red: Prediction
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Figure 4-11: Error Histogram [kW] for the District 1; Whole Year Period
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Based on the reference office building developed earlier, the average heating demand
schedule of the office buildings within district 2 was predicted and presented in Figure 4-72 and
Figure 4-13. Due to the higher daily fluctuation of the heating demand schedule of the office
building especially at the early morning and the late afternoon, switching between the occupied
and unoccupied periods, the average standard errors for office buildings is higher and about 20.16
kW. Taking into account average office building area and average maximum peak, this value is

slightly higher (1.6%) for the office buildings.

Finally, the last community was modeled using both simulation and simplified models.
Results obtained for district 3 shows that due to a higher number of the residential buildings within
the district, the predicted profile is better fitted with the simulated schedule. The R value for district
3 is about 0.9856 and the average error is about 5.2%, which is quite close to the one obtained for
district 1 (4.67%). Figure 4-14 and Figure 4-15 present the simulated heating demand profile

against the predicted one for district 3.

Aside from high prediction accuracy of the presented model, the low computational time
of the model is another advantage of the proposed model over existing models. Having the heating
energy demand profile of the reference building, the only time consuming step in the proposed
model is the training step. After training the model, the prediction time required for predicting the
heating energy demand profile of the remaining building within community is in order of less than

a min per unit comparing with 5-10 min per unit for comprehensive modeling.
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Simulation Vs, Prediction
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Figure 4-13: Error Histogram [kW] for the District 1; Whole Year Period
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4.2. West Whitlawburn Housing Community (WWHC)

In next step, an existing H-CDHS was selected in order to validate the performance of the
proposed simplified procedure. Therefore the proposed model was utilized and the HEDP of the
district was predicted and results obtained from the prediction were compared with the one

obtained from the measured data.
4.2.1. Description of the DHS

The selected Hybrid Community-District Heating System (HCDHS) is a mid-size community
district heating system in Whitlawburn, Cambuslang, Scotland (WWH). The West Whitlawburn
Housing Community WWH was established in 1989 to provide local community control and
promote affordable quality housings for lower-income families. The community consists of 640+
dwelling units with four types of buildings. Until 2007, all buildings used the conventional
individual dwelling electrical heating systems for the space heating and domestic hot water (DHW)
supply. In 2007, the administration board developed their own district heating system to give the
community a more affordable energy and improve the quality of the indoor environment by
increasing the energy efficiency and decreasing the energy cost. Thus, after performing a
feasibility study, the community management decided to develop their own DHS using a central
energy center'! a network of insulated pipework connecting the boiler house to users, and
individual direct heat interface units in each dwelling. Figure 4-76 shows the location of buildings

connected to the H-CDHS with respect to the boiler house:

1. Newly renovated towers of 12 stories (6 towers)

11 A boiler house with a biomass boiler as its main heat generator, three backup gas boilers, and a 50m3 hot water
thermal storage tank to cover potential winter peaks.
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2. Newly built duplex detached houses (50 buildings)
3. 4-story terrace buildings (10 buildings)

4. Community buildings (5 buildings)

Tower

Boiler

Figure 4-16: Hybrid community-district heating system layout in Whitlawburn, Cambuslang, Scotland

Although most recent district systems prefer using the medium to low water temperature
to minimize the heat loss, an operational temperature of 80°C was chosen in this case to satisfy the
minimum temperature required for DHW usage. The proposed H-CDHS can be thus categorized
somewhere between the second generation (high temperature) and the third generation (energy

storage) of the DHSs according to the district system’s generation type (See Figure 2-7). In the
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first development phase, six high-rise towers and five terrace buildings were connected to the H-
CDHS. To size the boilers and the thermal storage tank, conservative industry standard sizing
methods were used, following the Design Day method, which pre-dates the current guidance [150].
The district’s energy demand was predicted based on the living space’s total square meters and the

Scottish building stock’s annual energy consumption benchmarks [151].

4.2.2. Monitoring the district heating system's performance

Since 2014, the district heating system became operative and provides energy for more than
80% of the dwellings within the community. To better understand the system's heat flow, a
monitoring Building Management System (BMS) interface was installed, enabling operators to
monitor the system's energy generation, the distribution network loss, and energy consumed by
tenants at different measuring points (MP). The main advantage of having a BMS system with
multiple MPs is that the data obtained from different MPs can be used to validate and calibrate
other MPs and estimate heat loss in the H-CDHS. In other words, using the data collected from
the district line and smart meters helps operators to measure the energy purchased by tenants, to
compare it with the energy generated by the boiler house, and to eventually determine the
distribution networks' heat loss. Thus, the MPs potentially help to verify the measurements'
accuracy at different stages. There are five MPs types installed in the H-CDHS at different

locations and data acquisition frequencies as shown in Figure 4-17:

1. Smart meters located in each dwelling monitor energy consumption of both space heating
(SH) and domestic hot water system every 30 minutes.
2. Energy meters installed on the dual heat exchanger units for SH and DHW inside the

dwelling heat interface units (HIUs) (See Figure 4-18) which provides the monthly supply
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and return hot water pipes' real-time mass flow rate and temperature, energy and volume
pulse outputs, and accumulated energy demand.

3. Building block energy meters similar to those in the HIUs at the entrance of each building
block were mainly used to measure the accumulated energy consumed.

4. District line meters measure the hot water flow rate, the HCDHS main supply line, and the
boiler house's temperature every 5 minutes.

5. The boilers sensors measure the accumulated amount of the fuel consumed and the energy

generated by each boiler every 15 minutes.

Figure 4-17: (A) Smart Meter; (B) Energy Meter; (C) District and Block Meter; (D) Boiler Sensors

Figure 4-18: The Dual Heat Exchanger Sub-System

A dual pipe network transfers the heated water from the boiler house to the building units,

where a dual heat exchanger (sub-system) was installed to provide energy for the space heating
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and domestic hot water purposes. Figure 4-79 and Table 4-7 present the schematic plan of the

MPs used in the WWHC.
Table 4-7: Location, Type and number of the MP
WWHC MPs
MP Name Location Number Type Unit  Frequency Type
MP-1 Building Meter Entrance of Buildings 6 Energy Consumed ~ MWh Monthly Manual
MP-2 Smart Meter Each Unit 6x72 Energy Consumed  kWh 30 min Incremental
MP-3 District Meter Boiler House 1 Flow m? 15 min Incremental
Supply Temp °C 15 min Incremental
Return Temp °C 15 min Incremental
Energy Provided MWh 15 min Accumulative
MP-4  Weather Sensor WWH Site 1 Dry Bulb Temp °C 15 min Incremental
Mp-5 Thermal Storage Thermal Storage 1 Mean temp °C 15 min Incremental
6 Different Depth °C 15 min Incremental
Mp-6 BioMass Boiler Boiler House 1 Flow Temp °C 15 min Incremental
Return Temp °C 15 min [ncremental
Flow m?3 15 min Incremental
Power kW 15 min Incremental
Fuel Wood kg -- Manual
Mp-7 Gaz Boiler Boiler House 3 Gaz Fuel m? -- Manual
Energy Delivered kWh -- Manual
BMS Total Power Boiler House kW 15 min Incremental

As previously mentioned, a wide range of users with different socio-economic levels and

behavior demands are connected to the system. Since a large number of users are among lower

income families, their energy consumption, and consequently their annual energy demand, are

highly dependent on their economical state and the financial support received. Thus, the

management office developed a prepaid energy credit system allowing each tenant to buy a credit

in advance. The prepaid system connects to a smart meter in each unit. Smart-meters function both

as an MP and a user interface that records the costs associated with the energy consumed every

half hour, which tenants could use to monitor their energy usage over time.
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4.2.2.1. Limitations in Demand Profile Prediction

After surveying the site and reviewing the plant sizing and load prediction procedures in
the design stage, it was concluded that several initial simplifications were made to predict the

district system's heating load:

1. All users were treated identically, irrespective of their behavior, socio-economical
background, etc., leading to a potentially significant error in the load prediction. For
example, while some senior tenants heat their units at a higher temperature throughout the
day, younger tenants try lowering their heating bill as much as possible by turning off the
system at night, and by using it for a short period of time in the evening. Those for whom
social welfare is the only income could potentially tolerate lower interior temperatures and
use less hot water than more affluent tenants. These factors were not considered in detail
in the early design stage.

2. All units were modeled following the same benchmark assumptions, while units'
characteristics (e.g. layout, orientation, insulation level, and window-to-wall ratio) were
ignored. For example, on top of developing the district heating system in 2007, the exterior
facade of all high-rise towers was renovated by adding a new layer over it. Also, balconies
were converted to solaria, primarily on the south and west sides, which could potentially
compensate a large amount of heat requirements during the day due to solar gains. This
highlights the potential error in using standard benchmarks, which are commonly based on
the floor area and the building age.

3. System heat loss was estimated based on the operating temperature of the distribution
network supply (85°C) and return (70°C), and the constant heat loss per degree temperature

throughout the building envelope. This assumption could hold for the newly renovated
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buildings, but not for the partially renovated terrace buildings (the community's oldest
buildings). In this case, the oversimplified assumption underestimates heat loss and thus
overestimates the demand profile prediction. However, underestimating the buildings' heat
loss could partly compensate for overestimating heating demands. But since the number of
units in the terrace buildings is less than 20% of the total units connected to the district
system, this underestimation is not enough to compensate for an exaggerated heating load

prediction for the high-rise units.

Simplifications and conservative standard methods can greatly overestimate the overall
energy and peak demands, causing an oversized and inefficient system with correspondingly
increased capital costs provoked by short cycling, an increase in inefficient combustion
maintenance requirements, and potentially shorter lifetimes and replacement periods. Therefore,

an alternative method that addresses these weaknesses was evaluated.
4.2.2.2. Data Validation

To ensure accuracy, all measured data were cross-validated at three different levels,
including unit level, building level, and district level. The methodology was applied to Arran tower
(Tower #1) and Arian tower (Tower #2). In the preliminary validation of the data collected by
smart meters in the Arran Tower units over four months of heating (November 2016 to February

2017), tenant occupancy was verified and any changes in the unit occupancy was eliminated from
results to avoid errors in the unit energy demand profile. After eliminating units with different

tenants'?, the monthly energy demand of the remaining units was calculated using the data

collected from smart meters. The monthly energy demand in units with similar tenants is expected

12 Between November 2016 and February 2017
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to correlate with the monthly outdoor temperature. Therefore, a unit's monthly usage in months
with similar average outdoor temperatures should remain almost constant. To ensure building data
accuracy, the cumulated monthly usage of all units in each building and the building's linearized
heat loss were calculated and compared with the building meter. A similar procedure was chosen
at the network level. The boiler house's total output was compared with the accumulated energy

demand of all buildings with the network losses added.

4.2.3. Data Analysis

In the first step, the CDHS’ two-year long monitored data was analyzed. Results showed
that CDHS’ existing condition operates less efficiently with a higher heat loss than the expected
design efficiency. Moreover, the predicted heating demand load for sizing the boiler house was 2-
2.5 higher than the district's actual demand power load. This overestimating caused an oversizing
of the boiler house. Given this, the boiler never worked at its optimal capacity and most of the time
operated at a partial capacity, which decreased the system's efficiency. Tenants' behavior is widely
variable and possibly affected by individual characteristics, including economic status. The
preliminary analysis of the data obtained from smart meters in each unit showed that units with
almost identical physical characteristic have significantly different monthly energy demands. A
field investigation and a recorded data reading revealed that only a few units used a thermostat
with a given set-point value to control the space heating. The majority did not use the heating
system for most of a day. In most units, the heating system was off during a day and night, or only
was used briefly during the day. For tenants who turned on the heating more frequently, such
unexpected behaviors were oversimplified in the CDHS’ design stage, assuming that all tenants

use thermostats to control space heating on a regular pattern during a day and night.
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4.2.3.1. Clustering

The first step in predicting the heating load, using the four-step procedure mentioned in the
methodology section, is to define the number of clusters required. To do that, all the units were
initially divided based on their built form and construction type into two archetypes, including the
newly renovated high-rise, and partially renovated old terrace buildings. The units within each
archetype were further segmented based on their occupancy behavior. A sample population dataset
was selected to define the optimal number of archetypes associated with the occupants' behavior
in each construction type. The total energy consumption [kWh], the number of the inner-unit heat
exchanger on/off cycle per month, the peak monthly load [kW], the monthly heating degree day
(HDD), and the average monthly outdoor temperature were determined as effective parameters for
defining the number of archetypes. For large-scale communities with numerous users like WWHC,
using all monitored data from every individual unit to determine the parameters required for
defining the optimal cluster number is computationally intensive. Instead of calculating the
required parameters of all units, the parameters of a smaller sample data that could represent the
same distribution as the whole community were considered (Arran tower with72 units). The

results were extrapolated to the entire data-set (Arian tower and the whole district).

Figure 4-20 shows Arran tower's average monthly energy demand (for all dwelling units)
for both DHW and SH, between November 2016 and February 2017. This figure shows the range
of energy demand fluctuation when outdoor temperatures and monthly HDD do not vary
considerably. Variations between 5.17°C and 5.98°C for outdoor temperature and from 312 to 331
for monthly HDD (Figure 4-21) are not significant for most units. Results obtained for all
individual units in the Arran tower show that the monthly energy demand remains almost constant,

with unit-to-unit variation generally being much greater than that of a unit’s monthly variation
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(except units 12, 37 and 39). Hence, most units’ demand profile’s monthly average is expected to

remain almost constant (Figure 4-20).
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Figure 4-20: Monthly consumption of individual units in Tower # 1, Arran Tower
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Figure 4-21: Outdoor temperature and HDD for the 2016-17 heating season (Nov 2016eFeb 2017)

Using the five parameters, monthly consumption, number of the inner-unit heat exchanger
on/off cycle per month, monthly peak demand, monthly HDD and monthly outdoor average

temperature, the K-means (number of clusters) varied between 1 and 20 to construct different
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numbers of clusters. Using R software for each value of k, the square metric distance (m?) of
residual (R) from a reference point was determined in order to find the optimal number of
archetypes (clusters) for simulation. This value was selected when the difference between the
residual of two consecutive clusters became negligible. One should choose a number of clusters
so that adding another cluster does not significantly increase the dataset presentation. The results
are plotted in Figure 4-22, and it can be concluded that four to seven archetypes can be chosen as
the optimal number. Here, k-means 4 was selected as the optimal number for demonstrating the

method with adequate accuracy while maintaining computational costs low.
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Figure 4-22: Optimal number of archetypes
Given the hierarchical clustering approach, all units in the sample dataset (Tower # 1) were
divided into four different archetypes: Non-Typical High Usage (NTHU) as cluster 1, Non-Typical
Low Usage (NTLU) as cluster 2, Typical Thermostat Control Usage (TTCU) as cluster 3, and
Non-Typical Medium Usage (NTMU) as cluster 4 (See Figure 4-23). The percentage ratio of units
within each archetype is shown in Figure 4-23. Results obtained from the clustering in Tower # 1

show that only 5% of units are from the TTCU archetype. This value was assumed to be 100% in
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the CDHS’ design stage. The percentage of users in other archetypes are 16% (for NTLU), 24%

(for NTMU), and 53% (for NTHU).
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Figure 4-23: Clustering Results for Tower#1

Figure 4-24 shows the typical daily demand profile of the reference buildings associated

with each defined archetype obtained from the monitored data. It is important to note that in the
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Figure 4-24: Demand profile for reference buildings of each class NTLU (1), NTMU (2), NTHU (3), TTCU (4)
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training stage (step 3), the annual reference building’s demand profile was used, while here only a
typical daily demand was presented. The heating demand profile for different occupancy
archetypes is similar to one reported by tenants in the field investigation. NTLU users’ profile is
largely dominated by a DHW usage in the morning and evening, and a slight use of space heating
in the evening. NTMU users heat their space more frequently during the day, while NTHU and
TTCU users generally use their thermostat to control space heating for defined periods. As a result,
their heating profile is more continuous. NTHU users turn off their heating at night, while TTCU

users keep it during a day, with variable night and day set points.

4.2.4. Predictive Model

After training the model using data from the reference buildings, and defining the input file
for the remaining units, the heating demand profile of the district was predicted. The MNLR model
was used here to predict WWH district’s heating demand profile, trained by adopting the non-
linear autoregressive model with an external Input (NARX). To account for the building’s thermal
mass effect on the unit’s energy demand, the model used past target data, a demand profile, and
other series of input parameters defined earlier in this study. To predict the demand profile in future
hours, previously predicted values and input files were used at the same time. To determine the
number of past hours required in the training stage, the model was trained with different past hours
ranging from 2 to 8 hours. The best fit was set as the number of past hours required for representing
the thermal mass of the units. For this study, 4 hours was the best fit. Also in this study, the data
for real H-CDHS was used to train and validate the MLNR model using the above-mentioned four-
step procedure. To verify the models’ flexibility to include different users’ behavior, WWH’s

diverse community with a wider range of users’ behavior was used.
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Due to limitations in acquired data, the adapted methodology (Figure 3-1) and developed

Matlab code were slightly modified to further improve the model’s accuracy, as explained below:

» In addition to the reference buildings’ demand profile and three sets of input files (i.e.
solar dependent, internal gain dependent, and temperature dependent data files), a time-
dependent factor related to the DHW was also considered.

» In the initial model, the indoor-outdoor temperature difference was used to generate the
temperature dependent data file. In this study, only the outdoor temperature was considered
since the units’ indoor temperature was not monitored.

» Since the internal heat generation was not monitored in each unit, the electrical energy
consumed by the reference building was used to indicate the unit’s internal energy
generation. The existing internal generation from the British Housing Model (BHM) was
thus adopted and scaled down to match the energy consumption.

» The adjusted typical thermostat control profile with a thermostat set-point of 19°C was
used for the common area. For the towers, the common area accounts for about 15.8% of

the total area of which only 45% is assumed to be conditioned.

Using the latter modifications, the input file for all units was generated. Moreover, the
reference buildings and their demand profiles were defined earlier in the clustering step. Having
the reference building’s input file and demand profile, the MNLR model was trained and the
related coefficients were determined. To verify the model’s accuracy, its prediction was compared
with measured data at three different levels. At the first level, the Arran tower’s (Tower #1) heating

demand profile'® was predicted. At the second level, the model was applied to the Arian Tower

13 This tower was used earlier to define the number of archetypes and the profile associated with each archetype.
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(Tower #2) and its prediction was compared with the measured data. The entire district’ total
energy demand was then predicted and compared with the data acquired from the district’s total

energy demand.
4.24.1. Energy demand prediction for the Arran tower (Tower #1)

In the first step, the energy demand profile of the Arran tower’s (Tower #I) has been
predicted. The predicted profile then was compared with the one obtained from measured data.
Figure 4-25 shows the energy demand profile for the first ten days of November 2016 where
appears a generally good agreement between the model’s prediction and the measured data. The
MSRE calculated for the hourly predicted profile was around 12.6%. A discrepancy between the
two curves can be attributed largely to the inevitable lack of information about occupants’

inherently stochastic behavior.
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Figure 4-25: Model prediction (Orange) vs. measured energy demand (Blue) for Tower #1.
4.24.2. Energy demand prediction for the Arian tower (Tower #2)

At the second level of model validation, the model’s prediction is validated with the

measured data for the Arian tower (Tower #2). No data collected from this tower was previously
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used to generate the model associated with the units’ energy demand profile. The Arian tower
holds 72 units and is approximately 300 meters away from the boiler house. Figure 4-26 compares
the model’s prediction and the measured data for the last 6 days of the December 2016, (Appendix
D (WWH Community Profiles)). A good agreement can be observed. The MSRE calculated for
the predicted data is around 21.7% for the hourly profile (entire year); 8.2% for the total
consumption over the year and 6.7 total consumption over the heating season. The predicted
demand’s general trend matches the measured demand. Considering the data used to generate the

demand profile model was based on occupants in a different tower, the result is remarkably good.
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Figure 4-26: Model prediction (Blue) vs. measured energy demand (Orange) for Tower # 2

4.2.4.3. District energy demand prediction

The WWH district consists of six 12-story towers and five 4-story terrace buildings
connected to the boiler house through an underground piping distribution network. To predict the
entire WWH district system’ total energy demand, predicting the loss and delivered energies is

required and calculated in this section. To predict the entire WWH H-CDHS’ demand, the demand
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of each block has to be first calculated. The losses associated with the distribution system itself

must be factored in.

The underground piping network has been used in this study is an insulated dual pipe
network transferring hot water at a temperature of 85°C and a return temperature of 70°C with a
total length of 2.4 km (1.2 km supply and 1.2 km return). Figure 4-27 shows the underground

piping network’ operational temperature.
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Figure 4-27: Underground Networks Operational Temperature

The underground network’s operational temperature remains relatively constant during the

year to control the amount of heat transfer from the boiler house to the consumers. This causes the

system’s mass flow rate to continuously vary. Figure 4-28 shows the fluctuating water flow rate

in the first 10 days of November 2016.
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Figure 4-28: Water Flow Rate vs. Outdoor Temperature in the Distribution Network

Having the underground network’s total length alongside its operational temperature, the
supply and return pipes’ water mass flow rate, the outdoor temperature, and the thermal properties
of the soil and pipe insulations, the distribution network’s total heat loss can be determined. To
simplify the prediction process, a linear relation for the temperature difference between the
operational temperature and surrounding environment temperatures is pre-assumed. Figure 4-29

shows the underground distribution network’s predicted heat loss for the entire system.
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Figure 4-29: Distribution network’s monthly heat loss projection
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Since for many units the demand profiles are not available, the energy demand predicted
for the entire system is compared with the total energy generated by the boiler house. As stated
earlier, the boiler house’s sensor measures only the accumulated amount of fuel consumed and the
energy generated by each boiler every 15 minutes. Figure 4-30 and Table 4-6 shows the district’s

predicted accumulated energy demand against the energy generated by the boiler house.

Table 4-8: Total Energy Consumption of the WWHC DHS; Prediction vs. Measurements

Predicted [kWh] Actual [kWh] E
rror
Monthly Accumulated Monthly Accumulated
Apr-16 265000 265000 282000 282000 6%
May-16 301003 566003 293610 575610 -3%
Jun-16 424837 990840 409140 984750 -4%
Jul-16 175360 1166200 168770 1153520 -4%
Aug-16 189030 1355230 185340 1338860 -2%
Sep-16 173552 1528782 177190 1516050 2%
Oct-16 259411 1788193 266710 1782760 3%
Nov-16 356885 2145078 368310 2151070 3%
Dec-16 388553 2533631 429580 2580650 10%
Jan-17 245779 2779410 349300 2929950 30%
Feb-17 359021 3138431 358390 3288340 0%
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Figure 4-30: Accumulated predicted energy delivered vs actual generated energy in the boiler house
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Results show a higher agreement between the predicted and actual energy demand with a
monthly discrepancy between -4% and 6%, except in January 2017, when the error was
approximately 30%. This error is due to a relatively high heat loss in the distribution network. In
January 2017, given two faulty bypass valves in two different towers, the system's mass flow rate
increased. Percentile and results in increasing the higher heat loss of the system are compared with
the normal condition. Over a year, the accumulated energy demand predicted (3,288,340 kWh)
shows a discrepancy of about 5% compared with the actual energy generated by the boiler house
(3,138,431 kWh). The underestimation of the total energy demand of the district is mainly due to
the buildings' heat loss, especially the older 4-stories terrace building with higher envelope
deterioration. However, in the training process (Step 3), the reference profile obtained from the
Arran tower, which is better renovated comparing with the terrace buildings, was used with a
relatively lower heat loss. It is important to note that at the training stage, the MNLR model was
trained once using the reference building obtained from the Arran tower. These trained models
were later used to predict the heating demand profile of the remaining units, only by adopting their
input file. Moreover, the ratio of the occupants' behavior considered in TTCU in the terrace

buildings was slightly higher.

Regarding the heat loss of the system from the distribution network, the results obtained
from Figure 4-29 shows that the heat loss of the system always remain within 12-16% percent of

the total energy distributed by the network.
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Chapter 5: Optimisation

As mentioned earlier, the major design issue of the older district heating system (DHS)
generations (1% to 3™ generation) was mainly high heat loss in the distribution network due to the
high-temperature media (100°C and more) [14], [105]. In this regard, the optimization focus was
on enhancing the system efficiency by controlling the heat loss from the system and subsequently,
improving the system efficiency. As a result, most optimization studies have focused on
minimizing the system heat loss. However, the new generation DHS (4" generation) operates at a
lower temperature (50-60°C), and hence achieving higher system efficiency is possible by adopting
appropriate control strategies and also through optimization of the equipment size [103], [106].
Note that, designing the 4™ generation DHS based on the conventional design method, sizing the
equipment based on the peak demand load, could lead to oversizing of the equipment and low
system efficiency. Therefore, the adoption of an optimal approach (for cost and energy) to enhance
the efficiency of the DHS while designing the 4™ generation DHS became a standard practice

among designers.

Considering the above-said research gap, the main objective of this study is to develop a
dynamic optimization platform that could explore the optimal equipment size using the detailed
demand profile in a timely manner. The developed model predicts the detailed demand profile of
the DHS and uses them along with detailed energy model of the DHS and the equipment, and
interaction between them to dynamically optimize the entire system. Subsequently, the optimal
size of the equipment is obtained. The size of the equipment obtained from the model is later

compared with the one obtained from the conventional method (design day method), as well as
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using a static optimization tool, (Biomass optimization tool). In this regard, data from an existing
H-CDHS with an integrated thermal energy storage system is used to optimize its boiler house to

minimize its overall cost and CO; emission.

To do so, TRNSYS was used as the simulation platform to define the relationship between
various system components and to couple the prediction and optimization tools. Also, a previously
developed simplified load prediction model was used to dynamically predict the system demand
load [66]. Results obtained from the prediction tool were fed as input to the TRNSY'S file in the
text format. The optimization process was then performed for an operational mode by coupling
the simulation (TRNSYS software) and optimization tools (MATLAB/Simulink) as shown in

Figure 5-1.
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Figure 5-1: Prediction, Simulation, and Optimization Process Flowchart
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5.1. Load Prediction Scenarios

To optimize an H-CDHS, the first step is to predict the hourly energy demand profile of
the entire H-CDHS, which includes the energy consumption and its corresponding losses. In
general, there are three different techniques to obtain a community’s energy demand profile: direct
measurement, a comprehensive energy simulation tool used when data is absent, and simplified

prediction methods for high-level computational costs.

In this study, a simplified four-step procedure developed for load prediction, Section 3.1,
was used for predicting the communities’ energy demand profile. The accuracy of the proposed
procedure was validated using two different approaches, using both an inter-model comparison,
and comparing with measured data, Chapter 4. Using the validated model, the community demand

profile was predicted for two different scenarios:

» Scenario I: Optimizing the district’s existing condition by considering users’ demographic
distribution regarding energy consumption habits.
» Scenario II: Optimizing the community as a newly built district by using design criteria

and thermostat control to simulate all users’ energy behavior.

Before performing the above-said optimization scenarios, in the first step, the community
demand profile was predicted. In order to predict the community demand profile, occupants were
divided into four different groups based on their energy consumption habits'*. The definition of

each group and its contribution to the total population presented in more detailed in chapter

“(Non-Typical High Usage (NTHU), Non-Typical Medium Usage (NTMU)), Non-Typical Low Usage
(NTLU) and Typical Thermostat Control Usage (TTCU))
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4.2.3.1. Once these groups’ consumption habits were available, the prediction model was trained

using the proportion of each group within the community, Chapter 3.1.

In the Scenario I, the proportion of the different occupants’ type within the community
remained constant and the results served as a basis of comparison for the optimization process.
Leaving occupants’ demographic distribution untouched, the district energy demand profile for
Scenario I was predicted using the on-site weather data and it was used to validate the energy
simulation tools’ (TRNSYS) accuracy, as the all on-site measured data correspond with this
scenario. As a result, Scenario I compare the effect of optimized equipment size and control

strategy on energy consumption pattern of the existing community, its CO2 emission and cost.

Conversely, in Scenario II, both weather file and occupants’ demographic distribution
were replaced by the design condition. In this scenario, redefining the weather file (TMY3) as the
prediction model input file and training it, based on the design condition, Typical Thermostat
Control Usage (TTCU) profile can show the potential savings in the initial investment cost of
major equipment (boilers and thermal storage). This assumption, using the thermostat control,
works better for newly built communities (design stage) with unknown occupants’ energy use
behavior. Having no data regarding potential district users, the district load is determined based on
the energy required to maintain the indoor air temperature at thermostat setpoint defined by a code
for each building type. Comparing the TMY 3 file with the onsite measured weather data file used
for validating the model shows the average outdoor temperature of 9.3°C and 10.8°C, and the
minimum outdoor temperature of -3.9°C and -3.3 °C for TMY3 and onsite measured data,
respectively. Comparing the TMY3 average and minimum temperature, higher total load and peak

demand load are expected for both scenarios.
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After obtaining both scenario’s typical usage behavior, a prediction model was trained

based on the fraction of each community group’s data. Figure 5-2, shows the design weather data,

TMY, and onsite measured weather data, while Figure 5-3 shows the demand heating profile for

these two scenarios.
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Figure 5-2: Outdoor Weather Data (Measured Year and Design Year)
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Figure 5-3: Predicted Demand Profile for Scenario I (November) & Scenario Il (February)

102|Page



Figure 5-3 shows the heating demand profile of Scenario I & II for the month when the
peak demand load occurred. The inference from the figure is that the peak-heating demand load is
977.3 kW (2.8 % higher compared to the onsite measured data) in the Scenario I, and 1189 kW
(25.1 % higher compared to the onsite measured data) for scenario I1. Note that, in Scenario 11,
the entire community was simulated assuming all units were conditioned using the thermostat
control (TTCU). It is also important to note that domestic hot water usage was constant for both
scenarios. Therefore, the 25.1% increase in peak demand load was associated only with the

community’s higher heating demand.
5.2. Energy Modeling

To predict the district’s energy demand profile and the interaction between its different
components, TRNSYS was used while the majority of district network components and their
interaction were defined. To represent other components, such as biomass boilers and building
stock, the existing component types in TRNSY'S were modified. In general, TRNSYS model has

three major loops:
5.2.1. Generation Loop

The first loop (generation loop) consists of the auxiliary gas, biomass boilers, a controller,
and a heat exchanger, which feeds energy into the system, as shown in Figure 5-4 and Figure 5-5.
Since no specific biomass boiler type exists in TRNSY'S, Type 700 was modified to represent the
biomass boiler by adjusting its efficiency, partial efficiency, and the control signal. After adjusting
the boilers’ type, two controllers were assigned to the generation loop to adjust the flow pattern
between the generation/consumption loops and the storage loop. The first controller compared the

network’s predicted demand load with the total capacity of the boiler house and the need for the
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thermal energy storage system as a backup. The second controller decides which boiler (biomass

or gas) should operate to provide the required energy.
5.2.2. Consumption Loop

The consumption loop was constructed with Type 682, which represents the demand profile
of all units, (Figure 5-3). This Type reads the predicted demand profile through an external link.

The distribution network heat loss was modeled using Type 952.
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Figure 5-4: Simultaneous charging and discharging configuration
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Figure 5-5: Step-wise charging and discharging configuration
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5.2.3. Storage Loop

The storage loop was formed with two different configurations. The first was modeled by

simultaneously charging and discharging the thermal storage as shown in Figure 5-4.

In other words, both the boiler house and distribution network was connected to the thermal energy
storage system. While the boiler house provided energy to the thermal storage system, the latter
supplied the energy to the distribution network. The second configuration was modeled using a
step-wise energy storing procedure (Figure 5-5). In this configuration, a controller monitored the
direction to the thermal storage tank (either charged or discharged). More detailed explanation on

the controller will follow in Section 5.3.

By comparing the preliminary results obtained from the total heat loss of the two
configurations (simultaneous and stepwise), it is inferred that the step-wise charging and
discharging configuration had the lower heat loss than simultaneous charging/discharging
configuration due to thermal system storage size and flow direction. Also, the step-wise charging
and discharging configuration has a higher overall energy efficiency compared with the
simultaneous charging/discharging due to on/off frequency of the generation loop in this
configuration (refer Figure 5-4 & Figure 5-5). More detailed explanations regarding the efficiency
of the system are given in the following sections. As a result, the second configuration is used as

a base for optimization.
5.3. Optimization Formulation

For the design stage, a dynamic multi-objective optimization method was chosen to size
the main components of the district network boiler house for the two defined scenarios. The model

was based on Mixed Linear Complementarity Problem (MLCP) to minimize the objective
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functions, life cycle cost (LCC) and CO» emission. The optimization analysis focused on the on-
site heat generation, but the option of purchasing auxiliary heating energy was also considered.
This is because the primary goal of optimization is to size the main components of the boiler house
to minimize the investment and operational costs over a thirty-year cycle. To account for the effects
of short-term load fluctuations on components’ optimal size, the optimization was conducted daily
with an hourly temporal resolution. To improve model accuracy, other input data and model
characteristics, including minimum and maximum output level constraints, and partial load
efficiencies, were defined on an hourly basis. The system operational and fuel costs were also
considered.

A controller type (Equa.-3 in Figure 5-5) was developed to compare the energy generated at each
time-step with that in the boiler house (Equa.-2 in Figure 5-5) in accordance with the network
demand load (Type 24)" and flow direction. By comparing the demand load and generation
capacity, controller fed the network first and then it decides whether to use the disparity between
generation and demand to charge or discharge the thermal storage system, Equation 5.1-5.4. This
implies that the controller regulates flow direction based on the general heat balance equation,
while other constraints (such as minimum operative temperature (7°_7'Sy))) were set for the thermal

storage (Equation 5.9) to ensure a minimum required temperature for DHW usage:

Yn=1Q_Gengny + Q_TSch ) — Q_TSpiscn(y = Q_Net Equ. 5-1
Q_Net(t) = Q_BLDG(t) + Q_LOSSGS(t) Equ. 5-2
If

15 Type 24 is the sum of heat loss of underground pipes obtained from Type 952 and the predicted demand load of
the buildings obtained from the simplified method and fed to the TRNSYS model as an external user file (Demand
Load)
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0 >0 QNet(t) - LOOPDN(t) e 53
= - u. 5-
Gen(tn) Net(@) QGen(t) - QNet(t) - QTSCh_(t) .
Qgen O Looppy )
< - Equ. 5-4
Qaen(eny < Qnet(e) Q-TSpisch.()! Qnet(,y ~ Qeenry = LOOPDN o

The general equations used for modeling thermal storage, such as total energy at different

time-steps and boundary conditions applied to it, are as below:

Qrsp;
Q_TSe) = Q_TS(e-1) + Q_TScn(y Nen. = Ursiossy = C ™ pis.cn) Equ. 5-5
Q_TS(t) =0 Equ. 5-6
QTSloss(t) = (T—TS(t) - T—OA(t))' U.A Equ. 5-7
QTS pisch.(e) /
i Q_TSch.(t)Nch.

T =TT = NDis.Ch. Equ. 5-8
T TS = T_TS-1 < T L Srr—— qu
T_TS(t) =>70°C Equ. 5-9

After setting up the controllers, the optimization objective function Equation 5.10) was set
up with the aim of optimizing the size of the biomass boiler(s) and thermal storage system, and

minimizing the current net cost and CO2 emissions:
Min{Obj(C, E)} Equ. 5-10

where C and E are the cost and emission objectives. To make the objective function linear and to

simplify it from 2D to 1D, the optimization of was employed using the equation below:
: — o C E .

where a and [ are the cost and emission importance factor in the final objective function. The cost
associated function considers the entire C-DHS initial cost in addition to the present worth of the
life cycle operational cost. To define the initial cost (Equation 5.12), the main boiler house

equipment was divided into two modular modifiable parts (boilers and thermal storage system)
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and fixed non-modifiable equipment (pumps and underground distribution pipelines). Note that,
only the modular modifiable equipment cost was considered in the initial cost function and the
initial cost of fixed non-modifiable equipment was excluded, as it remains constant regardless of
the size of the modifiable equipment. For operational costs (Equation 5.13), the present fuel cost,
the selling price of energy, and the buyout price of energy for surrounding houses for a 30-year

period were considered using present worth method'®.
IC = N _,UCpp + LCp. ExCapy,)) + LCrs. Caprg Equ. 5-2

where /C is the linearized initial cost of the boiler house, ‘n’ is the number of years, FC is the fuel
costs of different boilers; ‘m’ is the boiler number, /N is the annual income from selling heat to
off-site users and Eux is the energy taxes. The initial investment cost includes the fixed and
proportional variable expenses. The fixed component included the market value of the smallest
size of the equipment available on the market, LC,, while the proportional cost was determined
by linearizing the extra cost associated with the higher capacity of the equipment, LC,,. ExCap,,. ,

Hereafter, in the text, IC,, and LC,,. ExCap,, 1s presented as A and BX respectively.

0C = (N1 =1 FCom- (1 4+ D7) = N1 IN.(L+ D7) + (Zrl\zl=1 Ym=1 Etaxym- (1 + i)_n)
Equ. 5-3

The cost function (C) is the summation of the initial and operational cost, (Equation 5.14)

C=1C+o0cC Equ. 5-4

1+i)"—-1
1 PVoc = OCannual-(( 2

respectively, and OCannual is the annual operation cost.

L1+ i)") where i and n are the annual interest rate and year number,
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The second objective function is defined to minimize the total CO> emission. The emission

associated function was calculated using the following equation:
E=3YN  ¥M  (Enm-Vum.PRFE, + IEq5. Vaux. PRFIE) Equ. 5-5

where E,m represents the fuel emissions (kg.CO»/kg.fuel) used for each boiler (n) in a year (m) of
the operation; IEaux is the emission of the imported energy fed to the system from outside in month,
(m,) of the operation (kg CO/kg fuel); PRFE, is the primary resource factor of the fuel; and Vim is
the fuel volume used in each month ‘m’ by the boiler ‘n’ . While calculating the costs, the wood
price was discounted in order to take into account the government incentive on the price of wood

pellets to encourage the small community to use biomass boilers.

To optimize the equipment size and to further minimize the overall costs, CO2 emissions
over the life cycle, the first step is to define the price and emissions level for the different type of
fuel. Table 5-1 represents the cost and CO; values for wood pellets and natural gas as the main

fuel type for the chosen district. Table 5-2 gives the initial cost of the major equipment.

Table 5-1: Energy cost & emission for different fuel types

Emission [kg CO2/kWh] £/kWh

Wood Pellets 0.039 0.061
Natural Gas 0.203 0.046
Buyout NA 0.12

Table 5-2: Investment costs

Fixed £ [A] £KW [BX] #£/m3

Wood Pellets Boiler 125,000 362%* NA
Gas Fired Boiler 132,000 180** NA

Wood Pellets Storage NA NA 670
Thermal Storage NA NA 1,100
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All costs are presented in A+BX; (refer Equation 5.12)
Installation and other costs were added separately

* The linearized part was added after first 250 kW

** The linearized part was added after first 200 kW

5.3.1. Optimization Results

As mentioned in Section 5.1, two different load scenarios were defined and served as a
basis of comparison within existing communities (Scenario I) or newly built communities
(Scenario II). Using the load demand profile for each scenario, the optimization process was

applied separately, and the equipment’s optimal size was determined.

5.3.1.1. Scenario I (Existing Community)

The Scenario I was defined based on the current situation of the H-CDHS regarding
occupants’ behavior. By keeping a similar occupancy distribution to that of a real case one, the
potential annual cost saving and CO; emission of the district over its life cycle was determined

using the optimal equipment size and flow control (7able 5-3).

Table 5-3: Optimization Results for Scenario |

Scenario I
Parameters Existing Situation  Scenario I
Peak Heating Load (kW) 1100 978
Biomass Boiler (kW) 870 477
Auxiliary Boiler (kW) 1300 609
Thermal Storage (m3) 50 16.3
Biomass Boiler Size Compared to the Peak Load (%) 79.1 49
Coverage Percentage by Biomass and Thermal Storage (%) NA 95

The optimization results for this scenario shows a significant reduction in boiler capacities

(45% for Biomass boiler and 53% for the auxiliary boiler) compared to the existing situation.
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Considering that only one boiler operates at a time, this fact only achieved by utilizing a thermal
storage system, which balances the demand and supply heat between the generation and
consumption loops.

Comparing the optimized model results with field measurements show a dramatic drop in
CO; emission (171.9 tons of CO> /year or 23%), as well as a considerable reduction in the total
cost of the system (79,056 £/year or 17.6%). These cost and CO; reductions are partially due to
the lower efficiency of the oversized equipment working at a partial load while other parts can be

associated to the non-optimal control strategy of the system and missing thermal storage.

Since specific weather data and occupants’ behavior was considered in the
Scenario I (2016-17), the demand energy load of the community could change anytime based on
the number of tenants or weather conditions. Consequently, after optimizing the system and
determining the optimal equipment size, the sensitivity of the design to any change in community
demand load due to change in the users’ demographic distribution has been determined. To do
that, two new cases (High and Low usage) were defined. These newly defined cases included a
change in the fraction of occupants’ types'” in the community compared with the existing condition
obtained from clustering results. In the High usage case, the fraction of NTLU and NTMU users
dropped, were added to the NTHU and TTCU users to represent a higher demand load, see Table
4. In the Low usage case, the number of NTHU users dropped was added to the lower energy

consumers such as NTLU and NTMU, see Table 5-4

YNTLU, NTMU, NTHU, TTCU
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Table 5-4: Fraction of the Occupants’ Types in Different Scenarios

Sensitivity analysis scenarios

Low Usage Scenario 1 High Usage

NTLU 23% 16% 10%
NTMU 39% 24% 15%
NTHU 33% 53% 65%
TTCU 5% 15% 10%
Peak Load 884 kW 978 kW 1086 kW

By changing the fraction of occupants, the energy demand profile of the newly defined
cases was predicted and fed to the energy model (see Figure 5-5). The boiler house equipment size
remained similar to the Scenario I. After modeling these newly defined cases, the system
performance under new conditions was determined. Comparing the percentage of the biomass
boiler and thermal storage, which can cover the demand load of the community between the
Scenario I and High Usage Case (see Table 5-5), shows that in the High Usage Case with 12%

higher pick, the percentage coverage time by biomass boiler dropped by 1.1%.

Table 5-5: Performance of the Optimized System under New Demand Profile Load

Sensitivity Results
Technology Low Usage Scenario I High Usage

Peak Heating Load (kW) 884 978 1086

Biomass Boiler (kW) 477 477 477

Auxiliary Boiler (kW) 609 609 609

Thermal Storage (m) 16.3 16.3 16.3

Biomass Boiler Size Compared to the Peak Load (%) 54 49 44
Coverage Percentage by Biomass and Thermal Storage (%) 97.8 95.0 93.9
5.3.1.2. Scenario II (Design Stage)

In the Scenario II, the weather file was changed and the occupants’ distribution was altered
to the TTCU to represent the design criteria for the newly build buildings. Table 5-6 presents the

optimal equipment sizes, resulting from the optimization of the boiler house for the Scenario I1.
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Table 5-6: Optimization Results for the Second Scenario

Scenario 11

Technology Existing Situation Scenario I
Biomass Boiler (kW) 870 661
Auxiliary Boiler (MW) 1.3 0.738

Thermal Storage 50 m? 32.8 m’
Peak Heating Load 1100 kW 1189 kW
Bio. Percentage during Peak 66.9% 56%
Percentage from Bio. NA 98.8%
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Figure 5-6: Optimal Equipment Size, Size of the biomass boiler as a percentage of a peak load for different
annual % of energy from a biomass boiler

Similar to the Scenario I, the capacity of the boiler optimal size, biomass and auxiliary
boiler, used less than 60% of their capacity to respond to the peak demand load. In order to find
the optimal size of the equipment using the static optimized sizing tools such as Biomass Boiler
Sizing Tool (version 6.8.2), primarily the same annual biomass energy coverage (98.8%) was

determined. Using the same coverage percentage, the sizing tool suggests the biomass boiler with
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the capacity size of 62% of the peak load and 40.5 m® thermal storage tank (refer to Figure 5-6).

Table 5-7 and presents the equipment size and cost associated with each design method.

Table 5-7: Comparison of the Equipment Size, Cost for Different Design Strategies

Results Obtained from Different Design Strategies

Static Optimization Tool Pr(.)p (.)sed. Dynamic
. Optimization Process
Conventional
Size Size Reduction Size Size Reduction
[%o] [Yo]*
Biomass Boiler [KW] 870 737 15.3 661 24.0
Auxiliary Boiler [kKW] 1300 0.891 31.5 0.738 43.2
Thermal Storage [m’] 50 40.5 19.0 32.5 35.0
Cost 734,440 602,224 18.0 538,372 26.7

* Reductions calculated comparing with conventional method

Considering that only one boiler operates at a time, 98.8% coverage by biomass boiler was
achieved using only thermal storage to balance between the generation and consumption loop. As
shown in Table 5-7, this solution can reduce the size of both auxiliary and main biomass boilers
into a fraction of their original size and, as a result, decrease the system heat loss while improving
the district energy efficiency. The reduction in major equipment size of the district using the
proposed dynamic optimization method caused a 196,068 £ or 26.7% drop only in the system
initial investment cost. Also, knowing the fact that the efficiency of the biomass boiler is lower
when operated partially, two scenarios could be assumed for a non-optimal size equipment: 1) the
biomass boiler works at its full capacity all the time while keeping the generation efficiency at
maximum value; this can result in generation of an excessive amount of heat, which eventually is
accounted as loss, and 2) the boiler works at partial load only to meet the network demand. This
decreases generation efficiency due to the boilers lower partial capacity efficiency [152]. In both

scenarios, the overall efficiency of the system drops.
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5.3.1.3. Impact of Dynamic Optimization in Determining the Operational Period of

the System

As mentioned earlier in Section 5.1, the main difference between the static and dynamic
optimization is in dependency of the decision-making process with respect to time. In other words,
dynamic optimization, by breaking the demand profile into smaller periods and determining a
solution for each period, considers the effects of demand at the previous hour on the optimal
solution. Table 5-5 (a), presents the charging/discharging profile of the thermal storage over the
10 days period in November, obtained from the Scenario I and Table 5-5 (b) represents the

thermal energy storage mean temperature and the district demand load.
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Figure 5-7: (a) Thermal storage energy level for a 10-day period in November; (b) Thermal storage
temperature and district demand load for the same 10-days (Bottom)
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In static optimization by only considering the peak demand in finding the optimal solution,
the effects of the energy demand at previous hours on determining the optimal solution will be
neglected. On the other hand, in dynamic optimization, by considering the effects of the demand
profile at a previous hour in determining the optimal solution can result in better utilizing of the
thermal storage and lower size of the equipment. For instance, as presented in Table 5-5, the
response of the system to an identical demand varied based on the energy demand of the previous
hours. In case of the first peak (shown in Table 5-5 (b)), due to the high demand of the system
prior to the peak, the thermal storage has been partially discharged, and as a result, the axillary
energy is required to respond to the energy demand of the system. On the other hand, due to lower
demand of the network prior to the second and third peak, the thermal storage is fully charged, and

no auxiliary energy is required.

Apart from determining the optimal size of the equipment, the optimal performance of the
system could be determined from the proposed dynamic optimization method. As shown in Table
5-5 (b), since the biomass boiler works constantly, the district demand load can be met by a nominal
size of the biomass boiler. However, when the demand load of the DHS is higher than the capacity
of the biomass boiler, the deficit energy is met from the thermal energy storage. On the other hand,
when the demand load drops, the surplus energy is stored in the thermal energy storage and the
energy storage level swiftly increases. In peak demand period, the instantaneous auxiliary system
(gas boiler in this case), along with thermal storage, provide required energy demanded by the
district network since the biomass boiler cannot provide enough energy for the system. Using this
strategy while running the biomass boiler constantly at full capacity for the optimized sized system,
step-wise charging/discharging the thermal storage can eliminate the need for the auxiliary energy

98.8% of the time while maintaining the system’s maximum overall efficiency.
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Chapter 6: Conclusion and Recommendations:

6.1. Summary and Conclusions:

The rapid increase in energy demand in multiple domains such as the building sector results
in fossil fuel overuse which is currently the most dominant energy source world-wide. In effect,
the overconsumption of fossil fuels in last decades has provoked the rise of CO2-equivalent
emission levels in the atmosphere which has led to the inevitability and irreversibility of global

warming.

Providing a secure and clean source of energy to respond to households demand is and will
continue to be an upmost fundamental challenge faced by energy planners. Different energy
conservation strategies have been applied at various levels, including in the arenas of energy
production, conversion, and, user-demand but the most promising solutions have reached a higher
level known as energy management. Hybrid Community-District Heating System (H-CDHS) is a
unique type of energy management integrating thermal storage within its renewable fed system.
Since energy generated by renewable sources is intermittent in nature, thermal storage allows the
system to regulate the demand. Indeed, the integration of thermal storage decreases the
dependence on non-renewable energies since it controls the system's energy flow. Obtaining an
accurate prediction of the heating energy demand profile of the system at small intervals (e.g., on

an hourly basis) is the first step in designing an efficient H-CDHS.

Establishing the hourly demand profile of the system allows the controllers to regulate the
supply and demand by storing and utilizing energy when there is excess or shortage respectively.
Due to lack of an easy to use and reliable tool, which could be used to predict the heating demand

profile of large-scale district networks (e.g., within the urban sector) in a timely manner and with

117 |Page



a high accuracy, designers have developed several simplified models. Most of these prediction
methods have been introduced mainly based on the assumption of the stand-alone building, barely
representing the complexity of an urban/district setting (e.g., unmeasured effects of the
neighborhood on buildings such as shared walls and also the solar blockage by the adjacent shadow

casted from other buildings).

Another drawback of these models is that they are not applicable to different types of
buildings and are mainly used for sole prediction of residential buildings’ heating demand. Also,
most of these existing methods focus on the building’s total energy consumption instead of its
energy profile. Finally, aside from the type of prediction, the accuracy of the existing models is
pre-dominantly low due to oversimplifying the process and use of scaling methods in their
prediction process, while more accurate models are not feasible for a larger scale community due

to level of information required for their modeling and their computational time.

Accordingly, this dissertation focused on the development of a simplified energy prediction
procedure, which could be used to accurately predict the detail HEDPs, ranging from mid to large
scale communities in a timely manner, with a least amount of the required information, and with
a high resolution accuracy. To do so, a procedure has been developed using two different
mathematical method MLR and MNLR. Then the proposed procedure has been validated at
different levels, including building level and community level, using both intermodal comparison

and measured data following the below steps:

e By adopting a clustering method and utilizing a prediction algorithm, the building
stock has been segmented into different archetypes. Segmentation of the building
stock model especially in the case of the communities with more diverse building

types, increased the accuracy of the prediction.
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e In order to find the optimal number of the cluster required for segmenting the
building stock model, Elbow method has been adopted. It will define the optimal
number of the cluster by comparing the difference between the within-cluster sums
of the square (WSS) of two consecutive cluster numbers.

e Unlike most present works, the proposed model do not use the scaling methods in
predicting the HEDP of the district, but it predicts the HEDP of every individual
units within the district.

e In order to predict the HEDP, the proposed method used basic physical and
geometrical properties of the units along with climatological information to
generate the input file for the model.

e Using the reference building of each cluster, the MLR/MNLR model has been
trained separately for each cluster. Each trained model has been used for predicting
the HEDP of all individual units within that cluster.

e The heat loss from of the distribution network has been predicted separately
presuming a linear relation between an average operational temperature of the

distribution network and the surrounding environment temperature.

The proposed procedure later has been validated at different level, e.g. building & district
level, using both intermodal comparison and the measured data obtained from a mid-size hybrid

district heating community. At first, intermodal comparison has been used:

e In order to validate the procedure at a building level, then HEDP of two mid-rise
residential buildings, R1 and R2, has been predicted using both MLR and MNLR

methods.
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One of the mid-rise residential buildings used for the inter-model comparison is
modeled based on the specification of the urban setting (R2), having a common
wall with other buildings, while the other building (R1) assumed to be a stand-alone
building.
MSRE of the prediction at a building level obtained about 11.7kW (8.48%) for the
R2 and 5.23kW (4.25%) for the R1.
In order to validate the procedure at a community level three different districts with
85-112 buildings were modeled using the random number and their HEDP
determined using both simplified procedure as well as a comprehensive simulation
using eQUEST.
For the proposed districts, the computational time required using the proposed
method is less than on tenth of the time required by comprehensive modeling,
eQUEST.
Since the only time consuming step in the proposed model is the training step, by
increasing the number of the units, the computational time saving percentage will
increase.
The accuracy of the prediction for three communities obtained to be:

1. Solely residential: R=0.9966 with an average error of 4.7%

2. Solely office building: R=0.9401 with an average error of 6.8%

3. Mixed community: R=0.9856 with an average error of 5.2%
Even though, in all three communities, predicted results show a high agreement
with the one obtained from comprehensive modeling, due to non-uniform daily

usage of the office buildings compared with residential buildings, the average error
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for district 2 in all office building, was slightly higher than the community with all

residential buildings (1.6%).

After performing the intermodal comparison, the proposed model validated using the

measured data:

At an early design stage, the community's heating demand profile was predicted
following a simplified model with an average national energy benchmark for
Scotland. The only adjustment made to the benchmark was a 20% reduction in the
overall energy consumption and peak demand to compensate for the occupants'
economic status. The results of this oversimplification was overestimating the peak
energy demand by a factor of 2.

The prediction shows high correlations between the predicted and actual profiles
even though the heating demand profile consist of both SH and DHW usage. The
suggested procedure captured the profile with an acceptable accuracy level 11.2%
in the annual RMSE, and 8.2% in the seasonal RMSE

Results shows that the prediction accuracy remains close both at the building and
community levels due to the models' flexibility in capturing the demand profile of
every individual unit. Unlike most existing models, which extrapolates the data
based on the number of the users or total floor area, this model predicts the

community load by envisaging that for every single user.

Considering the mentioned research gap, a dynamic optimization model that explores

optimal equipment size using the detailed demand profile has been developed. The developed

model predicts the detailed demand profile of the DHS and it uses it along with the detailed energy

model of the DHS, detailed model of the equipment and interaction between them to dynamically
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optimize the entire system and subsequently provide the optimal size of the equipment. The size

of the equipment obtained from the model is later compared with the one obtained from the

conventional methods, including the design day method, the static optimization tool, and Biomass

optimization tool. In this regard, data from an existing H-CDHS with an integrated thermal energy

storage system is used to optimize its boiler house to minimize its overall cost and CO» emission.

Optimization performed to calculate the overall size of the major energy generation and storing

equipment, and operational control strategy for the community under different scenarios.

In case of the existing community, Scenario I as the existing district, comparing
the optimal equipment sizes with the existing non-optimal equipment sizes, a
considerable difference was found for equipment sizes, including 45% smaller
biomass boiler, 53% smaller auxiliary boiler and finally 67% smaller thermal
storage size. This is mainly due to the fact that the existing boiler house has been
designed based on the conventional methods. Aside from the huge drop in the initial
cost of the system, (£267,716 or 38.1%), the annual life cycle cost and CO;
footprint of the district also dropped by £79,056/year (17.6%) and 171.9 tons of
CO; /year (23%), respectively. these drops are mainly results in a higher efficiency

of the system due to a full load operation of the equipment.

In case of newly build district, Scenario II as the newly built district, three different
design methods have been used to size the equipment, including conventional, static
commercial optimization tool and the developed dynamic optimization process.
The results indicate that initial cost of the system using the proposed dynamic
optimization method could drop by 26.7% comparing with conventional method

while using the static optimization tool could only result in 18% drop in the initial
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cost of the system. These facts emphasized on the importance of dynamic

optimization of the system in order to achieve a better optimal solution.

6.2. Future Works Recommendations:

The recommended future research work on the energy prediction and optimization of the

hybrid community district heating system are:

1.

As mentioned earlier, based on the Lund classification [8], one of the main
distinguishing points between the 4" generation of the DHS compared to the earlier
generations, is in design of the system to provide both heating and cooling load by
utilizing the cold storage and centralized cooling plants, Figure 2-7. To this end,
predicting the Cooling Energy Demand Profile (CEDP) of the users is an essential
task worth studying. Do to the absence of the measured data for cooling load, and
the limitation of the current work, this study only focused on predicting the heating
demand load of the users, including both domestic hot water usage as well as space
heating.

While optimizing the system, the energy distribution network layout of the system
was not taken into account in the energy model and only the total heat loss of the
distribution network consider while predicting the HEDP. In order to have more
efficient district system, optimizing the energy distribution network layout and
studying the effect of the optimal layout on the overall performance of the system

could be done for a future works.
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Appendix A (MLR Method)

Regression coefficients obtained from training of the reference building:

Table A-1: Summary Output

Regression Statistics

Multiple R

R Square

Adjusted R Square
Standard Error

Observations

0.998307557
0.996617977
0.996612174
2.645153621

8757

Table A-2: Regression Coefficient

Standard Lower Upper

Coefficients Error t Stat P-value Lower 95% Upper 95% 95.0% 95.0%
Intercept -4.0896477 0.54333 -7.52707 0.00000 -5.15469 -3.02460 -5.15469 -3.02460
Load-1 1.4092226 0.01055 133.56586 0.00000 1.38854 1.42990 1.38854 1.42990
Load-2 -0.3713752 0.01782  -20.84614 0.00000 -0.40630 -0.33645 -0.40630 -0.33645
Load-3 -0.1085372 0.01048 -10.35315 0.00000 -0.12909 -0.08799 -0.12909 -0.08799
TD 0.0044513 0.00006  80.30940 0.00000 0.00434 0.00456 0.00434 0.00456
TD-1 -0.0057457 0.00009  -60.60852 0.00000 -0.00593 -0.00556 -0.00593 -0.00556
TD-2 0.0009605 0.00011 8.56908 0.00000 0.00074 0.00118 0.00074 0.00118
TD-3 0.0007492 0.00007  10.30722 0.00000 0.00061 0.00089 0.00061 0.00089
SD -0.0000077 0.00000 -22.40160 0.00000 -0.00001 -0.00001 -0.00001 -0.00001
SD-1 0.0000079 0.00000  15.09332 0.00000 0.00001 0.00001 0.00001 0.00001
SD-2 0.0000005 0.00000 1.00940 0.31281 0.00000 0.00000 0.00000 0.00000
SD-3 -0.0000022 0.00000 -6.38566 0.00000 0.00000 0.00000 0.00000 0.00000
IG 0.0401457 0.01972 2.03548 0.04183 0.00148 0.07881 0.00148 0.07881
IG-1 -0.0057327 0.03465 -0.16544 0.86860 -0.07366 0.06219 -0.07366 0.06219
1G-2 -0.1887608 0.03465 -5.44829 0.00000 -0.25667 -0.12085 -0.25667 -0.12085
1G-3 0.2289462 0.01946  11.76536 0.00000 0.19080 0.26709 0.19080 0.26709

TD: Thermal Dependence; SD: Solar Dependence; IG: Internal Gain
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Appendix B (ANN, MNLR Method)

The Artificial Neural Network (ANN) is as a data-driven approach, which predicts the
results using existing data history. The ANN, has the ability to approximate any linear or non-
linear complex relation which could not be obtained by other analytical approaches. Due to its
usefulness, this method has been used widely in order to predict the noisy values of multivariate

time series, using the time series history.

The ANN has been used for this study is the NARX, Nonlinear autoregressive model with
external Input, which predicts the series Y(t) given d past values of Y(t) and another series X(t),
method generated by Matlab Neural Network Fitting Tool, NNFT. The network has been used,
has a feedforward structure with 23 hidden units. The number of the hidden unites decided to be
23 based on Lu [33] suggestion who suggests, the best number of hidden units for the system is

equal with two times the number of input layer plus one.

For the purpose of the training, validation and testing, the heating energy demand profile
of the reference building has been obtained using comprehensive modeling. Having the input and
target data, the model has been trained and the used for prediction the heating energy demand
profile of the R1 and R2 buildings. Error! Reference source not found. and Error! Reference

source not found. present the nonlinear regression results obtained from ANN model.
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Figure B-1: Regression Results Obtained from ANN Model

Table B-1: Regression Results Obtained from ANN Model

R
Training 9.956E-01
Validation 9.951E-01
Testing 9.958E-01
All 9.957E-01
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Appendix C (Inter-Model Comparison)

For a purpose of the inter-model comparison, 289 simulations have been performed, using
a validated eQUEST model. The simulations were conducted over a range of buildings type,
residential and office buildings, by multiplying the selected input parameter(s) by a random
number within the predefined range. As mentioned in Section 4.1.2, the simulations were done by
changing a single parameter in 15% of the cases. While in remaining 85%, 2 parameters in 25%
of the cases, and 3 parameters in 60% of the cases were changed. Then the heating demand profiles
obtained from detailed simulation (¢QUEST) were used to obtain the total heating energy demand
profile of the district. Out of 289 buildings, 47 of them are 5 story office buildings including 37
buildings in District 2 and 10 buildings in District 3. Fifty seven 5-Story office buildings have

been simulated and 47 of them have been picked randomly to be used in District 2 & 3.

Table C-1: Range of the Buildings Parameters

5-Story Office Buildings

Parameters District 2 District 3
Number 37 I 10
Area [ft] 110-140K I 110-150k
Aspect Ratio 0.7-2.5 1 0.7-2.5
Win/Wall 25-45% i 25-45%
Occupancy Density [ft*/ person] 85-110 I 85-110
Orientation with South 0-90° 1 0-90°

Table C-2: Distribution of the 5-Story Office Buildings with 3, 2, 1 parameters changed in each District

Distribution of the Varied Parameters

District 2
3-Parameters 60% 22.2 22
2-Parametes 25% 9.25 9
1-Parameter 15% 5.55 6
Total 37 37
District 3
3-Parameters 60% 6 6
2-Parametes 25% 2.5 3
1-Parameter 15% 1.5 1
Total 10 10
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Table C-3: Detail Description of a Simulated Buildings

District 2: Solely Commercial [5S-Office]

Area . Aspect Dimensions . . .
Name Stories . Win/Wall | Orientation | Int. Note
[sq.ft] [sq.m] Ratio | xyif] Xifm] Y1[ff] Y1[m] FIr-FIr[ftf  Flr-Fir[m]

Base5S § 12500000 11642.88 7 5 1 100 | 158.10 48.19  158.10 48.19 13.00 3.96 30% 3 Noth 1 1 1 0
Base55-1 ; 110000.00 10219.33 § 5 1 100 § 14830 4520  148.30 4520 13.00 396 1 30% 1 North g 1 j IE
Base55-2 | 140000.00 1300643 § 5 1 100 | 16735 5101 16735 51.01 13.00 396 1 30% V North o1} 2
Base 55-3 | 125000.00 1161288 | 5 |} 060 | 12245 3732  204.10 62.21 13.00 396 1 30% ) Noth } 1} o0
Base 55-4 | 125000.00 11612881 5 1 080 | 14140 4310 176.80 53.89 13.00 396 0 30% )} Noth ) 1} IE
Base 58-5 | 125000.00 1161288 1 5 1 120 17320 5279 14435 44.00 13.00 396 1 30% )} Noth ) o1} 1w
Base 55-6 | 12500000 11612.88 1 5 | 150 |1 193.65 59.02  129.10 39.35 13.00 396 1 30% | Noth } 1§ 2
Base 557 § 12500000 1161288 1 5 1 100 115810 4819 15810 48.19 13.00 396 1 20 ) North 1} o0
Base 55-8 | 125000.00 11612.88 1 5 1} 100 ) 15810 4819 158.10 48.19 13.00 396 0 25% ) Noth )1} 2
Base 55-9 | 125000.00 1161288 ] 5 | 1.00 | 158.10 48.19  158.10 48.19 13.00 396 1 3% 1 Noth 1} 1w
Base 5S-10 | 125000.00 1161288 § 5 § 150 § 43301 13198 288.68 87.99 13.00 396 4 30% 4 Souh 4 1 j 0
Base 55-11 | 136000.00 1263481 § 5 | 100 } 36878 11240 36878 11240 13.00 396 1 30% i Eat | 1 j IN
Base 55-12 | 125000.00 1161288 § 5 | 250 | 559.02 170.39 2236l 68.16 13.00 396 1 30% 4 West 1 1 4 2
Base 55-13 i 150000.00 13935‘465 5 i 1.00 i387.30 118.05 38730 118.05 14.00 427 i 30% i North i 2 i gs
Base 55-14 | 14200000 1319223 1 5} 100 !37683 11486 37683 114386 15.00 457 1 0% 1 Norm )2 loams
Base 55-15 | 11700000 10869.66 | 5 | 1.80 | 45891 139.88 254.95 77.71 13.00 396 1 30% 1 North 1} 1w
Base 55-16 | 132000.00 1226320 § 5 |} 090 | 34467 10506 382.97 116.73 13.00 396 ) 30% ) Noth |} 1] 2
Base 55-17 | 125000.00 11612.88 } 5 1 1.00 |} 35355 10776 353.55 107.76 13.00 396 } 23% } North |} 1 | 1w
Base 55-18 | 125000.00 11612.88 } 5 | 1.00 | 35355 10776 353.55 107.76 13.00 396 ) 28% } Noth | 1} 2
Base 55-19 | 125000.00 11612881 5 1 1.00 |} 35355 10776 35355 107.76 13.00 396 1 30% )} SouthEast ] 1 | 1sw
Base 55-20 | 125000.00 11612881 5 1 1.00 |} 35355 10776 35355 107.76 13.00 396 1 30% ) Nothwest | 1} 2
Base 5S-21 | 125000.00 11612.88 } 5 | 1.00 | 35355 10776 353.55 107.76 13.50 411 ) 36% |} Noth |} 2 | IE
Base 55-22 | 125000.00 11612.88 } 5 1 1.00 |} 35355 10776 353.55 107.76 14.50 442 ) 28% ) Noth |} 2} 2
Base 55-23 | 12500000 11612.88 ] 5 | 130 | 403.11 12287 310.09 94.51 13.00 396 1 45% 1 North 2 | 1w
Base 55-24 | 113000.00 10498.04 ] 5 1 085 30992 9446  364.61 111.13 13.00 396 1 25% 1 Noth 1§ 2 | 2
Base 55-25 | 135000.00 1254191} 5 | 200 | 519.62 15838 259.81 79.19 13.00 396 ) 30% )} Noh | 3 | IE
Base 55-26 | 125000.00 11612.88 } 5 | 070 | 29580 90.16  422.58 128.80 13.00 396 ) 3% ) Noh | 2 | IE
Base 5527 | 116000.00 1077675 } 5} 090 | 323.11 9848  359.01 109.43 13.00 396 ) 28% } Nomh | 1} 2
Base 55-28 | 138000.00 12820.62 1 5 1 085 | 34249 10439 402.93 122.81 13.00 396 ) 32% 1} Noth } 1} 2
Base 55-29 | 112000.00 10405.14 ] 5} 095 |32619 9942 34336 104.66 13.00 396 1 40% | Southwest } 1} 1SE
Base 5S-30 | 13200000 1226320 } 5 1 120 |397.99 12131 33166 101.09 13.00 396 )} 40% ) NorthWest | 1 | 2
Base 55-31 | 146000.00 1356384 1 5 1 1.00 }382.10 11646 382.10 116.46 13.30 405 V 4s% b Noth } 21 o
Base 55-32 | 118000.00 10962561 5 1 070 | 28740 87.60 41057 125.14 13.70 418V 30% ) Noth } 2} 2
Base 5S-33 | 122000.00 11334.17 } 5 | 1.00 | 34928 10646 349.28 106.46 13.00 396 ) 36% } North |} 1 ) 1w
Base 5S-34 | 127000.00 11798.69 } 5 | 1.00 | 35637 108.62 356.37 108.62 13.00 396 ) 4% ) Bast |} 1} 1w
Base 5S-35 | 110000.00 1021933 } 5} 150 | 40620 12381 270.80 82.54 13.00 396 1 30% ) North |} 1} 1w
Base 55-36 | 116000.00 10776.75 } 5 | 1.00 | 34059 103.81  340.59 103.81 13.00 396 ) 25% 1 South } 1} 2
Base 55-37 | 130000.00 1207740 ] 5 1} 1.00 |} 36056 10990 360.56 109.90 13.50 411V 30% ) Neth 1} oo
Base 55-38 | 146000.00 13563841 5 1} 080 |34176 10417 42720 130.21 13.00 396 0 3% ) Noth )1} o
Base 55-39 | 131000.00 1217030 ] 5 |} 130 ) 41267 12578 31744 96.76 13.00 396 0 30% ) west )1} N
Base 55-40 | 116000.00 10776751 5 1 1.80 |} 45695 13928 253.86 77.38 14.00 427V 25% b Neth 1} o
Base 5S-41 | 13500000 1254191 } 5 | 060 | 28460 8675 47434 144.58 13.00 396 1 30% ) North |} 2 | 1w
Base 55-42 | 118000.00 10962.56 } 5 | 150 | 42071 12823 280.48 85.49 14.50 442 ) 30% ) West |1} 2
Base 55-43 | 115000.00 10683.85 } 5 | 1.00 | 339.12 10336 339.12 103.36 13.00 396 }  30% |} SouthEast } 3 | 2
Base 55-44 | 116000.00 10776.75 } 5 1 120 }373.10 11372 31091 94.77 15.00 457 ) 30% ) Noth )} 2 | 1w
Base 55-45 | 140000.00 1300643 ] 5 1 1.00 | 37417 11405 374.17 114.05 13.00 396 0 25% )} Noth ) 3} o
Base 55-46 | 125000.00 11612.88 } 5 1 250 | 559.02 17039 223.61 68.16 13.00 396 ) 32% ) NorthWest | 1 | 2
Base 55-47 | 121000.00 1124127 ] 5 } 070 |} 29103 8871 41576 126.72 13.00 396 ) 40% )} Noth )1} o
Base 55-48 | 125000.00 1161288 1 5 1 100 |35355 10776 35355 107.76 15.00 457V 3% b Noth ) 3} o
Base 55-49 | 125000.00 11612.88 } 5 | 140 | 41833 12751 29881 91.08 13.00 396 ) 28% ) SouthWest | 1 ISW



Base 5S-50
Base 5S-51
Base 5S-52
Base 5S-53
Base 5S-54
Base 5S-55
Base 5S-56
Base 5S-57

110000.00
135000.00
125000.00
120000.00
125000.00
115000.00
150000.00
125000.00

10219.33
12541.91
11612.88
11148.36
11612.88
10683.85
13935.46
11612.88

LS IV B B Y Y Y )

0.80
1.00
1.20
2.50
0.60
1.10
1.00
1.50

296.65
367.42
387.30
547.72
273.86
355.67
387.30
433.01

90.42
111.99
118.05
166.95

83.47
108.41
118.05
131.98

370.81
367.42
322.75
219.09
456.44
323.33
387.30
288.68

113.02
111.99
98.37
66.78
139.12
98.55
118.05
87.99

13.00
14.00
13.00
15.00
13.50
13.00
14.50
13.20

3.96
4.27
3.96
4.57
4.11
3.96
4.42
4.02

35%
30%
25%
20%
45%
30%
22%
32%

North
South
West
North
East
North East
South West
North

N = = = = W

S DN o oo

Int.: Internal Generation Schedule; Note: number of common walls and their location
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Appendix D (WWH Community Profiles)

Prediction vs. Measeurments
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Figure D-1: Model prediction (Blue) vs. measured energy demand (Orange) for Tower # 2; December 2016
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Figure D-2: Model prediction (Blue) vs. measured energy demand (Orange) for Tower # 2; last 6 days of
December 2016
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Figure D-3: Predicted Energy Demand of different Units Tower # 2; December 2016
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Appendix E (Optimization)

Scenario 1
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Figure E-1: Predicted Demand Profile for the Scenario I; November 2016
Scenario 11
Scenario Il [Feb.] Weather DD Feb ~ «eeeeeeee Poly. (Scenario Il [Feb.])
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Figure E-2: Predicted Demand Profile for the Scenario II; February
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