
 

Accepted Manuscript

Data-free metrics for Dirichlet and generalized Dirichlet
mixture-based HMMs - A practical study.

Elise Epaillard, Nizar Bouguila

PII: S0031-3203(18)30311-X
DOI: https://doi.org/10.1016/j.patcog.2018.08.013
Reference: PR 6642

To appear in: Pattern Recognition

Received date: 17 February 2018
Revised date: 30 June 2018
Accepted date: 27 August 2018

Please cite this article as: Elise Epaillard, Nizar Bouguila, Data-free metrics for Dirichlet and
generalized Dirichlet mixture-based HMMs - A practical study., Pattern Recognition (2018), doi:
https://doi.org/10.1016/j.patcog.2018.08.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211520788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.patcog.2018.08.013
https://doi.org/10.1016/j.patcog.2018.08.013


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Proposition of a new similarity measure for Dirichlet and generalized

Dirichlet HMMs (two variants)

• Not trivial generalization of existing parametric similarity measure

• Proposition of quality scores for performance characterization of the sim-

ilarity measures

• Extensive experiments on synthetic data highlighting the performance on

different aspects of the newly proposed and state-of-the-art measures

• Illustration of newly proposed similarity measure performance on real-

world data sets
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Abstract

Approaches to design metrics between hidden Markov models (HMM) can be

divided into two classes: data-based and parameter-based. The latter has the

clear advantage of being deterministic and faster but only a very few similar-

ity measures that can be applied to mixture-based HMMs have been proposed

so far. Most of these metrics apply to the discrete or Gaussian HMMs and

no comparative study have been led to the best of our knowledge. With the

recent development of HMMs based on the Dirichlet and generalized Dirichlet

distributions for proportional data modeling, we propose to design three new

parametric similarity measures between these HMMs. Extensive experiments

on synthetic data show the reliability of these new measures where the existing

ones fail at giving expected results when some parameters vary. Illustration on

real data show the clustering capability of these measures and their potential

applications.
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1. Introduction and Related work

Hidden Markov models are generative models which first mathematical foun-

dations have been set off in the 1960’s [1] and that are since then widely used

in a variety of fields, from speech processing [2, 3] to image processing [4, 5],

video processing [6, 7], and pattern recognition [8, 9] to name but a few. First

developed and still mainly used for discrete and Gaussian data [10, 11, 12, 13],

learning strategies have now been proposed for multiple types of distributions

such as the Poisson [6], Student’s t [14], normal inverse Gaussian [15], con-

taminated Gaussian [16], Dirichlet [17], generalized Dirichlet (GD) [7], Beta-

Liouville [7], and mixed distributions [18]. An HMM model can be denoted

as λ = (A,C, π, θ), where A is the transition matrix defining the probability

of transitioning from one state to another and C is the mixing matrix (only

present when working with mixtures) defining the probability for each compo-

nent within each mixture model. π is the probability mass function for the choice

of the starting state and θ represents the parameters relative to the emission

probability distributions.

Comparing the similarity of two HMMs has been first studied in [10] where

a Kullback-Leibler (KL) divergence based on the limit of the log-likelihood of

an infinitely long data sequence generated by one HMM is proposed. A good

estimation is obtained when using a very long data sequence, which requires a

lot of computations for the log-likelihood estimation. In this paper, we carry

out a comparative study of parametric distances for Dirichlet, and general-

ized Dirichlet-based HMMs. The search of such distances relaxes many issues

encountered when using data dependent distances. Indeed, relying on data

provides a non deterministic distance while relying on parameters allows for

deterministic distances to be built. Moreover, the availability of data is not

granted in all cases, data generation can be difficult to achieve for some so-

phisticated distributions and is always time-consuming. Also, good accuracy

with data-driven metrics is achieved to the cost of the use of very long data

sequences. Finally, when working with distributions such as the Dirichlet and
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the generalized Dirichlet, the variance is often underestimated leading to peaky

distributions. The likelihood values of these distributions go then beyond 1. In

the forward algorithm used to estimate the HMM likelihood, these values are

multiplied multiple times and, when the data sequence grows longer, computa-

tional overflow is often reached, making this method complex to implement and

unreliable, as shown later in this paper.

The literature about the design of deterministic metrics for continuous HMMs

is scarce and most of the proposed distances or similarity measures require long

data sequences generated from or modeled by the HMM to be computed [19, 20,

21, 22, 23]. Very few papers define such distances that can further generalize to

mixture-based HMMs and all of them are defined in the context of the Gaussian.

To the best of our knowledge, the only current approaches fulfilling these re-

quirements are the approaches by Sahraeian and Yoon [24] and the approach by

Zeng et al. [25]. The former defines similarity measures based upon the ability to

match hidden states from the two HMMs and then measures the sparsity of the

obtained correspondence matrix. This implies the choice of a distance to com-

pare the emission probability distributions, taken as the KL divergence in their

study, which is transposed to a similarity measure by using its inverse or a neg-

ative exponential form of a multiple κ of it. How to tune this coefficient remains

unclear. The original approach by Zeng et al. [25] relies on the computation of

cumulative distribution functions for building a global cumulative function for

each HMM. These cumulative functions that are then compared over the range

of possible (or most probable) values for the observations. This metric, named

HSD, is thus constrained to be used for unidimensional observations only.

A true distance is expected to verify the 4 following conditions but when

working with sophisticated spaces, it is rather common to also define semi-

distances that only verify the 3 first conditions. Denoting (λ1, λ2, λ3), three

HMMs, ∀λ1,∀λ2,∀λ3:

• Non-negativity: dist(λ1, λ2) ≥ 0

• Identity: dist(λ1, λ2) = 0 ⇐⇒ λ1 = λ2, where the equality between two
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models is defined by the equality of all their parameters, allowing state

permutations.

• Symmetry: dist(λ1, λ2) = dist(λ2, λ1)

• Triangle inequality: dist(λ1, λ3) ≤ dist(λ1, λ2) + dist(λ2, λ3)

Furthermore we propose the following guidelines when designing a distance

to which one shall pay attention for the defined distance or semi-distance to be

useful and reliable:

• The distance shall evolve smoothly

• The distance shall be sensitive to the variations of any parameters (in the

case of the HMMs: the emission distributions parameters, the transition

matrix, and the mixing coefficients1)

In the specific case of the HMMs, and with respect to the fact that the data

likelihood is often used as a decision/classification threshold, we shall also pay a

special attention to how the distance behaves with respect to the KL divergence

as defined by Juang and Rabiner in [26]:

DKL(λ1, λ2) = lim
T→∞

1

T
(ln(p(OT |λ1))− ln(p(OT |λ2))) , (1)

where OT represents a time-series of T observations.

Dirichlet and GD-based HMMs, denoted HMMD and HMMGD, respectively,

have only recently been proposed and applied to real-world situations. The

learning equations of the former have been derived in [17] in 2007 and applied

for the first time on a real-world data set for texture classification in 2014 [27]

and later for anomaly detection [7]. The latter has been proposed and applied

to action recognition in 2014 [28] and later to anomaly detection [7]. To the best

1The initial probability mass function π is not considered here as a parameter which vari-

ations should impact the distance measure. For any HMM, a stationary distribution can be

computed. In general, on the long run, the initial state pmf has little impact on the HMM

behavior.
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of our knowledge, no work on distances between these models has been done

so far and this is the first comparative study for parameters-base distances for

these models.

Our contributions are the following, (1) the replication of the results of [24]

with the addition of a third inner distance, the Probability Product Kernel [29]

as well as the replication of the results of [25] over Gaussian-based HMMs for

comparison and for highlighting their sensitivity limitations in Section 2 ; (2) the

non-trivial extension of the distance proposed in [25] to the multidimensional

case for the Dirichlet and the GD in Section 3 ; (3) the proposition of two variants

of a new similarity measures, robust to mixture shuffling and to component

shuffling for HMMD and HMMGD in Sections 4 and 5 ; and (4) a thorough

study of the behavior of the aforementioned measures with respect to variations

of all parameters and permutations of states and components, including pointing

out at the strengths weaknesses of some state-of-the-art similarity measures

with respect to each other through multiple experiments with synthetic data in

Section 6. We close this paper with an illustration of how the best proposed

similarity measure can perform for HMMs clustering in three scenarios taken

from real-world data sets in Section 7.

The overall goal of this comparative study is to give the option to anyone

working with these models to choose the similarity measure fitting their needs

the best and to know what to expect from each one of them, as well as the influ-

ence of the tuning parameters when there are some. This opens up possibilities

for using distance-based algorithms in the HMM space such as hierarchical clus-

tering (see Section 7.1), k-medoids (see Section 7.2), nearest neighbors, etc.

In Section 7, we apply some of these methods for clustering the HMM space

learned from video sequences from the domain of crowd anomaly detection and

surveillance and show that the clusters found are spatially relevant with respect

to the video frames.
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2. Preliminary results and problem setting

2.1. Brief recall about HMMs

HMMs are generative models used for statistically representing time-series

data. They are composed of a Markov chain of hidden states, which transition

between states is controlled by a transition matrix denoted A. The initial state is

controlled by a pmf denoted π. Each hidden state is associated with a mixture

of probability distributions, the weights being defined by a so-called mixing

matrix denoted C. The nature of the distributions can be defined with respect

to the data one is modeling via the HMM, and we use θ to denote the set

of parameters related to the distributions. All these parameters are typically

estimated from training data (or features extracted from training data) via a

Expectation-Maximization procedure called the Baum-Welch algorithm. We

refer the interested reader to [10] for the detail of the general learning equations

and to [17] and [7] for the equations specifically related to the Dirichlet and

generalized Dirichlet-based HMMs, respectively.

2.2. Preliminary study

In this preliminary work, we first re-implement and test the methods of [24],

adding a study of the Probability Product Kernel (PPK) from [29] as a distance

measure between distributions in their framework and study the influence of

the variation of each parameter in order to highlight an important limitation,

giving a motivation for our work. We refer the reader to the original paper for

the implementation details but recall the main steps here: a correspondence

between the states is obtained from a similarity measure between the emission

distributions of the HMMs. In the case of mixture-based HMMs, only the KL

divergence is proposed in the form of its inverse or in the form of the inverse of its

exponential multiplied by a factor κ. A sparcity score over the correspondence

matrix is computed as a reflection of the similarity of the HMMs (the scarcer

the matrix is, the more similar the HMMs are).

Following their work, we use 2-dimensional Gaussian HMMs. The transition

matrices are fixed at: A1 = A2 = T1 = [.6 .4; .4 .6] and the Gaussian means are
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set to µ1 = [1 1; 3 3] and µ2 = [1 3 − d; 3 1 + d], with d varying from 0 to 2.

Finally, the covariance matrices are set to the identity for the first dimension

and to C1,2 = [1 .3; .3 1] and C2,2 = [1 .1; .1 1] for the second dimension.

Figure 1a shows that, as expected, the similarity increases with d and that

the PPK similarity measure can be used in this framework if transformed into

a negative exponential form. This approach is thus sensitive to the variations

of the distributions’ parameters.

Second, we study the sensitivity to the variations in the transition matrix

while keeping the Gaussian parameters similar (but slightly different to avoid

divisions by 0). The parameters used are A1 = [.9 − d .1 + d; .9 − d .1 + d],

A2 = T2 = [.1 .9; .1 .9], µ1 = [1 1; 3 3], and µ2 = [1 1.1; 3 3.1]. The variances

are kept small and equal to 0.1 in order to have a clear difference between the

components of the HMMs. We vary d from 0 to 0.8 and report the results in

Figure 1b.

Only two PPK-based similarities give logical trends. This shows the method

to be in general non-sensitive to changes in the transition matrix in the multi-

dimensional Gaussian case. In [24], this sensitivity is only studied in the case

of discrete HMMs and the related figure already showed a low sensitivity. An

absence of sensitivity to changes in the transition matrix reduces HMMs to be

seen as mixtures models, discarding their essential dynamic properties.
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(a) Varying Gaussian means

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d

S
im

ila
rit

y 
sc

or
e

Multidimensional Gaussian HMMs − Varying transition matrix

 

 

1/KL
PPK
exp(−2*KL)
exp(2*PPK)
exp(−KL)
exp(4*PPK)

(b) Varying transition matrices

Figure 1: Varying parameters in 2-dimensional Gaussian HMMs.

Additionally, we study the influence of coefficient κ on the computed dis-
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tances by making it vary from 1 to 20 for the exponential forms of the approach

(using the same parameters as the ones used for Figure 1a). The results, in

Figure 2, pinpoint a major flaw of the approach. The final similarity measure

drastically varies, making the results non objective unless under a careful study

of this coefficient’s tuning.
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Figure 2: Varying κ with 2-dimensional Gaussian HMMs. Plain curves for PPK-based simi-

larity and dashed curves for KL-based similarities. κ varies from 1 to 10, κ = 1 for the lowest

curve of each network of curves.

With these results in mind, we study how the HSD approach [25] behaves

compared to the previously tested methods. As already said, its main limita-

tion resides in the fact that it only applies to unidimensional distributions. Its

efficiency giving coherent distances when the Gaussian parameters are changed

is clearly illustrated in the original paper and we only present the results for

variations in the transition matrix. The parameters used are A1 = [.9− d .1 +

d; .9 − d .1 + d], A2 = T2, µ1 = µ2 = [1; 3], and the variances equal to 0.10

and 0.11. Here and in all subsequent graphs, we plot the HSD distance ∆ as a

similarity score by computing exp(−∆), in order to be able to compare with the

other approaches. In Figure 3, the HSD metric perfectly grasps the variations

imposed to the transition matrix and, once again, the approach of [24], with

whatever inner distance setting, does not achieve to grasp these variations.

These results clearly show the need of designing new distances for multidi-

mensional continuous HMMs that exhibit a sensitivity in changes of the distri-

bution parameters, of the transition matrix, and of the mixing matrix. As most
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Figure 3: Varying the transition matrix for unidimensional Gaussian HMMs.

research is led on the Gaussian HMMs we shift the focus to the recent HMMs

designed for proportional data and relying on Dirichlet and GD distributions.

In the following, we extend the work of [25] to overcome the unidimensional

limitation of the HSD distance for the HMMD and HMMGD using some of

their mathematical properties. We also propose a similarity measure based on

several approximations of KL divergences at the level of the distribution, the

mixture, and the HMM. While many works make the assumption of mixtures

composed of fixed components, and/or of HMM with ordered states, we add

the steps to handle all sorts of permutations that can occur during the learning

phase, ending up with the most robust parametric similarity measure to the

best of our knowledge.

3. Extension of the HSD distance

A D-dimensional Dirichlet distribution is expressed as

p(x|α) =
Γ(
∑D
d=1 αd)∏D

d=1 Γ(αd)

D∏

d=1

xαd−1
d , (2)

with α = (α1, . . . , αD), αd > 0, and x = (x1, . . . , xD),
∑D
d=1 xd = 1. Γ(t) =

∫∞
0
xt−1e−xdx is the Gamma function.

Similarly, a D-dimensional generalized Dirichlet distribution is expressed as

p(x|α, β) =
D∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1
d (1−

d∑

r=1

xr)
νd , (3)
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with α = (α1, . . . , αD), αd > 0, β = (β1, . . . , βD), βd > 0, and x = (x1, . . . , xD),
∑D
d=1 xd < 1. νd is defined as νd = βd−αd+1−βd+1 if d 6= D and νD = βD−1.

The limitation of the HSD distance to unidimensional distributions is due

to the fact it relies on the computation of the cumulative distribution function

(CDF) of the distributions composing the HMM. The concept of CDF is un-

defined for multidimensional distributions, hence the distance cannot apply to

them. However, the GD distribution has the following property [30, 31]:

Property 1 : A D-dimensional generalized Dirichlet, GD(α1, ..., αD, β1, ..., βD),

is equivalent to a set of D independent Beta distributions with the same pa-

rameters (αn, βn), n = 1, . . . , D, in a particular transformed data space that is

reached through a bijection. The bijective function linking the two data spaces

is expressed as W = {Wn}1:D with:

Wn =





xn , for n = 1 ,

xn

1−∑n−1
i=1 xi

, for n ∈ [2, D] .
(4)

Beta distributions, are unidimensional by definition and their CDF is easily

computable. We can then make up a simple function that acts as an equivalent

of the CDF for multidimensional generalized Dirichlet distributions and keep

the rest of the distance computation untouched.

When working with the Dirichlet distribution, another transform is first

required to express it into a generalized Dirichlet form. Indeed, the Dirichlet is

a degenerate case of generalized Dirichlet [31].

Property 2 : AD-dimensional generalized DirichletGD(α1, ..., αD, β1, ..., βD),

which parameters verify βn = αn+1+βn+1, for n = 1, . . . , (D−1), is a Dirichlet

distribution with parameters Dir(α1, . . . , αD, βD).

Reversing this expression allows to express a Dirichlet distribution in the

form of a generalized Dirichlet one and thus to apply an extended form of the

HSD distance computation to it.

In summary, Beta distributions are used to characterize the HMM in a trans-

formed data space and the HSD measure can be deployed using them. The
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resulting distance is equivalent to the distance that could have been computed

in the initial space as these two spaces are connected through a bijection.

The computation of the HSD distance for multidimensional Dirichlet and

GD distribution-based HMMs follows the steps:

1. For each state of each HMM, express the Dirichlet distributions in their

GD form [31]: Dir(α1, ..., αD+1) ≡ GD(α1, ..., αD, β1, ..., βD), with βj =

αj+1 + βj+1 for j = 1, . . . , (D − 1) and βD = αD+1

2. Initialize the distance ∆ and the value x to 0, and the step size to s = 1/L

(hereafter, L = 100)

3. Iteratively do L times the following steps:

(a) For each state k, dimension d, and HMMs i = 1, 2, compute

BetaCDFi,k,d(αi,k,d, βi,k,d, x)

(b) For each state k of each HMM i, compute

CDFi,k =
∑D
d=1 BetaCDFi,k,d

(c) Compute the models’ CDFs using a dot product Fi = 〈Πs,i,CDFi〉
(d) Compute ∆ = ∆ + s× |F1(x)− F2(x)|
(e) Increment x by s

When the models are based on GD distributions, the first step is obviously

omitted. Experimental results for this distance are reported in Section 6.

4. Parametric KL-divergence for HMMD and HMMGD

We propose to derive a parametric similarity measure for HMMD and HM-

MGD under the assumption that mixtures are indivisible elements. This means

that either these mixtures have some physical representation and that their

components cannot be split up over different states, or that the components

found while initializing the HMM have been ordered following some heuristic

rules. The computation of this similarity measure needs to take into account the

potential permutation of the mixtures over the different states. The measure is

first derived as a KL divergence, and converted into a similarity measure at the

very last step.
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As we intend to compute a parameter-based metric similar in behavior to

the KL divergence, we start from its definition for two functions f1 and f2:

D(f1||f2) =

∫
f1 ln

(f1
f2

)
. (5)

When data samples X = {x1, . . . , xT } are available, a Monte-Carlo approx-

imation of Equation (5) gives:

D(f1||f2) ≈
1

T

T∑

t=1

(ln(f1(xt))− ln(f2(xt))) . (6)

For this approximation to be accurate, T needs to be large enough. In the case

of HMMs, f1 and f2 can be identified as the likelihood of the data with respect

to the HMMs λ1 and λ2, respectively. As T increases, the computation of these

quantities becomes heavier and at some point, even prohibitive2.

[20] devised a method to approximate an upper bound to the KL divergence

for Dependence Trees and showed that it can be used for left-to-right HMMs,

which can be considered as a special case of dependence trees. Using the pro-

posed approximation, we write:

D(λ1||λ2) ≤
K∑

k=1

π′k1(D(aj ||ãj) +D(bj ||b̃j)) , (7)

where π′ is the stationary distribution of λ1. The stationary distribution of an

HMM is iteratively computed as proposed in [25], starting from the initial state

pmf π′0 = π and following the recursive equation:

π′t+1 = π′tA . (8)

Using Equation (7) implies that the distance does not take into account

the transitional phase of the HMM. However, our experiments show that even

2The computation of this quantity requires the sampling of data generated by the HMM

and the use of the forward-backward algorithm. Both have a complexity linear in T . The

computation needs to be repeated several times for accounting for the non-deterministic nature

of the distance and for reducing the variance. Moreover, for Dirichlet and GD-based models,

explosions of gradients in the forward-backward algorithm have been observed when sequences

become too long [7].

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for HMMs trained on short sequences, the similarity measure we are deriving

behaves as expected and gives good discriminative results (see Section 6).

As a side note, the only experiments carried out in [20] use a simple dis-

crete HMM (with pre-defined parameters), two states and tri-dimensional data.

Therefore, more extensive experiments with a similarly designed method are

needed to assess the potential discriminative performance of such parameter-

based approximation of the KL divergence.

In Equation (7), the term D(aj ||ãj) refers to the rows of the transition

matrices. Each row of a transition matrix is a probability mass function and

therefore the KL divergence can be easily computed. However, given that HMMs

do not have in general a left-to-right topology, we first need to pair up the

states of the two models. We propose to see this task as a linear assignment

problem and solve it using the Jonker-Volgenant algorithm [32], which provides

a faster implementation than the well-known Hungarian algorithm. The Jonker-

Volgenant algorithm provides a cost matrix for pairing up each state of λ1 with

each state of λ2, as well as the sequence of pairs that minimizes the assignment

cost. From this sequence of pairs, we build a permutation matrixR = ri,j , where

ri,j = 1 if state i of λ1 is optimally matched to state j of λ2 and 0 otherwise.

The transition matrix of the HMM λ2 is then permuted as Ã′ = RÃR. The

mixtures assigned to each state are permuted accordingly.

The second term of Equation (7), D(bj ||b̃j) refers to the emission probability

distributions assigned to each state which are, in our case, mixtures. The KL

divergence of mixture models does not have a closed form expression and then

requires to be approximated. Hershey and Olsen [33] proposed a full review of

techniques to approximate the KL divergence between two mixtures of Gaussian.

Studying the assumptions made, most of the approximations they proposed can

be applied to mixtures of Dirichlet and generalized Dirichlet without restriction.

The variational approximation they proposed is chosen here for the good results

it showed for the Gaussian case in [33], especially as the criterion used in that

study is the similarity to the classic data-based KL divergence estimation, which

is also one of our criterion for the design of this HMM distance.
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Denoting the mixtures as P1 =
∑M
m=1 w1,mp1,m and P2 =

∑M
m=1 w2,mp2,m,

the variational approximation is written as:

D(P1||P2) =

M∑

m=1

w1,m

∑M
a=1 w1,ae

−D(p1,m||p1,a)

∑M
b=1 w2,be−D(p1,m||p2,b)

. (9)

Equation (9) requires the computation of the KL divergence between two

Dirichlet (and GD) distributions. The KL divergence between two D-dimensional

Dirichlet distributions Dir1(~α1) and Dir2(~α2) can be expressed as:

KL(Dir1||Dir2) = ln(Γ(
D∑

d=1

α1,d))−
D∑

d=1

ln(Γ(α1,d))− ln(Γ(
D∑

d=1

α2,d))

+
D∑

d=1

ln(Γ(α2,d)) +
D∑

d=1

(α1,d − α2,d)Ψ(α1,d −Ψ(
D∑

j=1

α1,j)) .

(10)

Similarly, the KL divergence between two D-dimensional generalized Dirich-

let distributions GD1(~α1, ~β1) and GD2(~α2, ~β2) is expressed as [34]:

KL(GD1||GD2) =
D∑

d=1

ln

(
Γ(α1,d + β1,d)

Γ(α1,d)Γ(β1,d)

Γ(α2,d)Γ(β2,d)

Γ(α2,d + β2,d)

)

−
D∑

d=1

(α1,d − α2,d)

(
Ψ(α1,d)−Ψ(β1,d)−

d∑

s=1

(Ψ(α1,s + β1,s)

−Ψ(β1,s))

)
+

D∑

d=1

(ν1,d − ν2,d)
d∑

s=1

(Ψ(α1,s + β1,s)−Ψ(β1,s)) .

(11)

The steps of the KL divergences computation are given in Appendices A and B.

The set of Equations (7) to (11), allows to compute a measure between

two HMMD or HMMGD without the need to generate data of any kind. This

measure can be made symmetric using D(λ1, λ2) = (D(λ1||λ2) + D(λ2||λ1))/2

and transformed into a similarity measure by taking the inverse exponential

S = e−D(λ1,λ2). In Section 6, we show how well this similarity measure performs

on HMMs with randomly generated parameters, even when the HMM states

are permuted. Some sets of equations for training an HMM do not impose

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

any constraint upon how the initial mixture components found in the data are

assigned to the states [17]. In that case, the sole assumption of state permutation

is not strong enough. Therefore, there is a need to design a simple method

allowing for component permutation between mixture models. Such a method

is presented in the next section.

5. Extension of the proposed distance

HMMs based on mixtures of Dirichlet have been first introduced in [17] and

the ones based on generalized Dirichlet in [28] and [7]. The learning process

requires initial values for all HMMs parameters, including the emission distri-

butions. This initialization is based on a simple k-means clustering followed by a

moment matching procedure. The estimated distributions are then grouped into

mixtures depending on the chosen values for K and M . The k-means clustering

has no constraint on the choice of the seeds, so does the grouping procedure

and therefore, in general, HMMs trained from the same data will have different

mixtures (i.e., mixtures composed of different components) assigned to different

states. These HMMs are yet totally equivalent and will perform the same way,

with equivalent accuracies in classification tasks.

In these cases, the approach devised in the previous section does not make

sense as one of the assumptions made is not respected. In order to take into

account all the possible permutations, another quantity needs to be defined

that allows to find a distance measure close to 0 when HMMs are equivalent (or

similarity close to 1) even if their parameters, at first look, are different. The

natural KL divergence achieves it by looking at the likelihood values directly.

In order to devise a new relevant quantity, we get inspired by the initial-

ization process of the HMM learning algorithm as proposed in [7] that relies

of a k-means clustering among K ∗M clusters. As the subsequent grouping of

components into mixture models impacts the values of the transition matrix, of

the mixing matrix, and of the initial state probability mass function, we cannot

rely on these parameters as is. In order to see how close two HMMs are, we
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need to somehow revert this process i.e., combine these parameters in order to

decorrelate them from the mixture models. The procedure can be illustrated

with this question: What is the closest equivalent as a non-mixture HMM that

we can get from a mixture-based HMM? Obviously this will be a loose equiva-

lence and in no case a bijection. However, we propose here a quantity that we

call the flatten transition matrix that is simple and efficient enough to compute

discriminative distances as we show later on simple illustrations using real-world

data in Section 7.

Building the flatten transition matrix A′. - This quantity reflects what the tran-

sition matrix of a K-state mixture-based HMM with mixture of M components

flatten into a non-mixture HMM with K ∗M component would be equivalent to.

This approximation naturally depends on the transition matrix A = {aij}K×K
and the mixing matrix C = {cij}K×M of the HMM. Given that we work un-

der the assumption of stationary HMM, the initial state probability π is not

involved. The flatten transition matrix is expressed as:

A′=




a11c11 ... a11c1M a12c21 ... a1KcK1 ... a1KcKM

repeat over (M-2) rows

a11c11 ... a11c1M a12c21 ... a1KcK1 ... aK1cKM

a21c11 ... a21c1M a22c21 ... a2KcK1 ... a2KcKM

repeat over (M-2) rows

a21c11 ... a21c1M a22c21 ... a2KcK1 ... a2KcKM

...

...

aK1c11 ... aK1c1M aK2c21 ... aKKcK1 ... aKKcKM

repeat over (M-2) rows

aK1c11 ... aK1c1M aK2c21 ... aKKcK1 ... aKKcKM




. (12)

The repetition of lines is due to the fact the transition matrix of mixtures-based

HMMs only depends on the previous hidden state and not of the mixture com-

ponent by which the observation is actually modeled. Therefore, even though

we keep a square KM ×KM matrix to match the shape of an HMM transition
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matrix, there are actually only K2M different coefficients. All the rows sum up

to one and thus A′ is a valid transition matrix. There is no need for a mixing

matrix C ′ as no mixture are then involved, and an extended π′ initial pmf is

computed as follows:

π′ = (π11c11, . . . , π11c1M , π12c21, . . . , π1KcK1, . . . , π1KcKM ) (13)

We now approximated a non-mixture HMM from the original HMM. The

single distributions (mixture components) are assigned accordingly to the wayA′

is constructed. The approach devised in the previous section can be used with

HMMs flatten this way, by directly applying the linear assignment matching

algorithm at the component level (which are now the states of the flatten version

of the HMM).

One can note that the equations used to derive the proposed measure can

be applied to any HMM with or without mixtures and based on the Beta,

Dirichlet, or generalized Dirichlet distributions. It can also be generalized to any

distribution for which the KL-divergence can be computed or approximated.

6. Comparative study over synthetic data

In order to lead a comparative study of the different metrics, we lead sev-

eral series of experiments over randomly generated HMMs, making each set

of parameters vary independently from the others. The quantification of the

performance of the different similarity measures tested requires the definition

of quantities that are meaningful for this purpose. Indeed, when working in

a space where no natural physical distance exist but only artificially designed

ones, which reference to use to compare how well is a distance doing? It mostly

depends on the expectations of the person who uses it. For this reason, the

behavior of the distance has to be characterized under different aspects.

We propose to compute the following quantities:

• The correlation to the parameters average variation which quantifies how

close the variations of the measure and the individual parameters are.
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• The autocorrelation at lag 1 for a continuous variation of the parameters

which quantifies the smoothness of the measure with respect to the evo-

lution of the parameters. In the case of two models whose parameters

continuously go further away, a coefficient close to 1 means a very smooth

function, -1 means that the function is irregular/non-monotonic which is

not desirable.

• The average variation by unitary variation (for a variation of parameter d

equal to 1) of the parameters which quantifies of how discriminative the

measure is.

• The correlation to the KL divergence computed from generated data which

illustrates how the behavior of the parameter-based measures is compared

to the reference data-based one, especially in term of stability.

• The average distance to the KL divergence computed from generated data

which illustrates how the behavior of the parameter-based measures is

compared to the reference data-based one, especially in terms of discrim-

inability.

Among them, one has to note that the data-based KL divergence has some

limitations exhibited in [24]and in the experiments presented hereafter. How-

ever, we compute how close the tested distances are to the KL divergence as

it is usually taken as the reference for HMMs and generative models in gen-

eral [35, 23, 36]. When the correlation of the data-based KL divergence to the

parameters variation is not strong, points 4 and 5 are obviously not relevant

anymore. Therefore, points 1 to 3 are found to be the more reliable way of

comparing similarity measures.

Some of the compared works define distances, in which case the inverse

exponential of the distance is used as a similarity measure. The data-based KL

divergence is computed by generating a sequence of data of length T = 100 from

the reference HMM.

In the following experiments, all parameters are randomly drawn from uni-
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form distributions with Dirichlet and GD parameters in the range [0, 20]. There-

fore, the presented results are penalized by some occurrences or low discrim-

inability between some components that do not occur in real scenarios (as the

initial clustering would create a unique cluster for samples following this distri-

bution). The HMM parameters are fixed to K = 5, M = 2, D = 4, these values

are small enough to keep the component similarities occurrences low, and big

enough to have some of the measures failing. In the following experiments, the

sensitivity of the measures to the variation of each type of parameter is studied

separately for a clear illustration of the strength and weaknesses of each of them.

Experiment 1 - Sensitivity to variations of the distribution parameters. The

parameters of the Dirichlet/GD distributions of one of the HMMs are varied

by adding a constant d between 0 and 20 to the concentration parameters. We

expect the similarity measures to start from 1 and rapidly decrease to 0 as the

parameters variation is quite important, and the analysis, exponential. Tables 1

and 2 report the performance results of the approaches of [24], the proposed

extension of the HSD distance, the data-based Kullback-Leibler divergence, and

the proposed distance. Figures 4a and 4b show the results of a typical run of

the experiment (each set of experiments is repeated 20 times at least).3

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.70 0.68 -0.05 1 0

Ours -0.75 0.72 -0.05 0.99 0.06

HSD -0.86 0.72 -0.01 0.95 0.19

Sahr1 -0.74 0.66 -0.04 0.97 0.12

Sahr2 -0.08 0.64 ≤-0.01 0.48 0.17

Table 1: Comparative performance of similarity measures for variation of the Dirichlet distri-

butions parameters

Besides the Sahr2 similarity measure, all similarity measures are sensitive

to distributions parameters variations. However, the extended HSD and the

3For all experiments the labels have to be read as follow: DKL is the data-based KL

divergence. Sahr1 and Sahr2 are the methods of [24] with similarities computed as the

inverse of the distance and the inverse exponential, respectively. HSD is the extended HSD

distance presented in Section 3. Ours is the method proposed in Section 4.
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(a) Dirichlet (b) GD

Figure 4: Varying the distributions parameters between HMMs (typical run).

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.62 0.58 -0.04 1 0

Ours -0.67 0.64 -0.05 0.95 0.06

HSD -0.90 0.75 -0.02 0.86 0.18

Sahr1 -0.74 0.65 -0.04 0.94 0.13

Sahr2 -0.36 0.61 -0.01 0.80 0.19

Table 2: Comparative performance of similarity measures for variation of the GD distributions

parameters

proposed similarity measure are smoother in their evolution, Though the HSD

is more correlated to the variation of the parameters, its discriminative power

is weak compared to the standard data-based KL-divergence and the proposed

measure. These observations are valid for both the Dirichlet and the GD cases.

As the graphs of typical runs show, the proposed distance follows very well the

evolution of the KL divergence while being deterministic and not relying upon

any data.

Experiment 2 - Sensitivity to variations of the transition matrix. Randomly

drawing transition matrices T1 and T2, we make the transition matrix of the

second HMM vary from T1 to T2, while the transition matrix of the first HMM

remains equal to T1. The transition matrix of the second HMM is computed as

T d2 = dT2 + (1 − d)T1. We expect the similarity measures to start from 1 and

decrease as the transition matrices become less similar. Tables 3 and 4 report

the performance results in the same manner as in Experiment 1. Figures 5a

and 5b show the results of a typical run of the experiment. We note that as

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Dirichlet (b) GD

Figure 5: Varying the transition matrices between HMMs (typical run).

the mixtures of distributions are perfectly equal, the inverse-based similarity

measure of [24] is undefined.

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.27 -0.03 -0.03 1 0

Ours ≤-0.99 0.73 -0.28 0.26 0.04

HSD ≤-0.99 0.73 -0.04 0.28 0.03

Sahr2 -0.21 0.08 ≤-0.01 ≥0.01 0.09

Table 3: Comparative performance of similarity measures for variation of the transition ma-

trices for Dirichlet-HMMs

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.21 -0.06 -0.02 1 0

Ours ≤-0.99 0.73 -0.27 0.20 0.15

HSD -0.30 -0.05 -0.02 0.45 0.34

Sahr2 -0.04 0.04 0.00 -0.01 0.27

Table 4: Comparative performance of similarity measures for variation of the transition ma-

trices for GD-HMMs

Variations in the transition matrices are more subtle than variations within

the distribution parameters. Indeed, it only impacts the way the time-series are

ordered, not their potential values. The DKL and Sahr2 similarity measures

completely fail at detecting the slow drift of one HMM with respect to the other.

DKL could potentially detect it using a bigger T value. However, as said earlier,

this provokes overflow and make the distance slow to compute. This makes it an

unreliable metric to work with unless fine tuning of T is studied and a solution

to overflow found (a simple scaling not solving the issue as, other distribution
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(a) Dirichlet (b) GD

Figure 6: Varying the mixing matrices between HMMs (typical run).

then reach the machine precision and set most results to 0).

Both the extended HSD and the newly proposed distance perform well in

the Dirichlet case, being well correlated with the transition matrix variation and

smooth. However the HSD is far less discriminative than the proposed measure.

In the case of the GD, it fails and the proposed distance seems to be the only

reliable option.

Experiment 3 - Sensitivity to variations of the mixing matrix. Randomly draw-

ing mixing matrices R1 and R2, we make the mixing matrix of the second HMM

vary from R1 to R2, while the mixing matrix of the first HMM remains equal to

R1. The mixing matrix of the second HMM is computed as Rd2 = dR2+(1−d)R1.

We expect the similarity measures to start from 1 and decrease as the mixing

matrices become less similar. Tables 5 and 6 report the performance results in

the same manner as in Experiment 1 and 2. Figures 6a and 6b show the results

of a typical run of the experiment.

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.57 0.16 -0.11 1 0

Ours -0.97 0.71 -0.20 0.59 0.10

HSD ≤-0.99 0.73 -0.05 0.57 0.12

Sahr1 -0.98 0.72 -0.16 0.58 0.11

Sahr2 -0.45 0.49 -0.02 0.27 0.07

Table 5: Comparative performance of similarity measures for variation of the mixing matrices

for Dirichlet-HMMs
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Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.55 0.18 -0.23 1 0

Ours -0.97 0.71 -0.27 0.57 0.13

HSD -0.64 0.19 -0.05 0.69 0.14

Sahr1 -0.98 0.72 -0.14 0.59 0.14

Sahr2 -0.43 0.51 -0.01 0.35 0.48

Table 6: Comparative performance of similarity measures for variation of the mixing matrices

for GD-HMMs

Variations of the mixing coefficients have a similar action on the generated

data as a variation of the transition coefficients: it only impacts the way the

time-series are ordered but not their values. It is therefore not surprising to see

that the proposed approach allows good discrimination, good smoothness, and

good correlation with the variation of the mixing coefficients. The extended

HSD approach is valid here again in the Dirichlet case only but with a weak

discriminative potential. The Sahr1 similarity measure works surprisingly well

with just a bit less discriminative power than our proposed approach. However,

it still relies on the tuning of the κ parameter which is not straightforward.

Overall, only the proposed approach shows itself successful to detect and log-

ically reflect any kind of variation in the HMM model based on either Dirichlet

or generalized Dirichlet, without requiring any data not any parameter tuning.

The proposed extension of the HSD also reflects well the changes for Dirichlet-

based HMMs but does not perform equally in the generalized Dirichlet case

when the transition of mixing coefficients vary. Its discriminative power is lower

which can also be the reason why it cannot achieve good performance when

minor parameters of the HMMs vary. The discriminative power of this mea-

sure could be enhanced by adding a multiplicative coefficient when computing

the approximate CDF while making the distance performance dependent of the

tuning of that new parameter.

Beyond the actual performance results, this study over synthetic data clearly

shows that the similarity measures we test our methods against were lacking

some performance criteria. The proposed criteria address a range of character-

istics: correlation to the variation of the parameters, smoothness of the function,
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and discriminative power. These criteria are simple enough to be easily com-

puted and powerful enough to show the limitations of all the state-of-the-art

method for parametric distances between mixture-based HMMs.

7. Illustration with real data

The extension of the method, as presented in Section 5 is valid for HMMs

that are trained as described in [17] and [7], using a component by component,

k-means based initialization. As no bijective transformation is known between

mixture-based HMMs, experiments validating our approach for the case when

all components are assigned to different states are not possible with synthetic

data.

We present hereafter, some illustrations of use of this metric through cluster-

ing operations. A main constraint for clearly illustrating the proposed measure

behavior is that, HMMs seldom represent something concrete that is itself mea-

surable by a distance. Indeed, HMMs are most of the time trained over abstract

features extracted from some data, and once trained provide a very high-level

representation of these data. Images appear to be a good way of getting some

visual assessment of the performance. Therefore, we study the behavior of the

designed similarity measure with respect to HMMs trained over the UCSD Ped1

and Ped2 data sets [37] and over a sea surveillance footage [38], following the

method presented in [7]. The video sequences of the data sets are divided into

3D volumes. As the camera capturing the sequence is still, each volume rep-

resent a fixed spatial area of the camera field i.e., grass, trees, walkway with

pedestrians, sea, pier, sky. An HMM is trained over each 3D volume location

thus, we expect our designed metric to show high similarity between HMMs

trained at locations with similar content (e.g., volumes representing trees) and

lower similarity between HMMs representing volumes featuring trees versus the

walkway for example. In this application we have K = 3, M = 2, and D = 12

and use spatio-temporal gradient-based features. We refer the interested reader

to [7] for the details of the approach.
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Working with real-data requires a few adjustments. First of all, for the

Dirichlet case, the parameters resulting from a training algorithm are often-

times very high because of the variance which is badly estimated. In order to

counter this artifact involved by some training methods, we use the mean of the

Dirichlet (which is the normalized concentration vector) and rescale it in the

range [0, 20]. 4

After dividing the frame space into 77 overlapping patches (50% overlap) and

training one HMM per location, we propose to compute the similarities between

these HMMs (building a 77x77 similarity matrix) to unravel major patterns in

the frames.

7.1. Hierarchical clustering over the UCSD data sets

We apply hierarchical clustering using our proposed similarity measure over

the UCSD data sets. The camera field for these data sets are reported in

Figure 7. We expect to find two clusters, one across the walkway, and one

across the vegetation. This is a reasonable expectation as the spatio-temporal

features used for the training take into account both the appearance and the

dynamics of the scene, and that pedestrians only walk on the walkway in the

training video sequences. We report hereafter in Figures 8 and 9, the 2 main

clusters found across the trained Dirichlet and generalized Dirichlet HMMs,

respectively.

The proposed similarity measure allows the clustering of the two main zones

of the camera field, the walkway versus the trees and grass where no dynamic

action takes place for both Dirichlet and GD-based HMMs. We can see that

the clustering results are somehow different on Ped1 but still make sense as

4There is no risk of confusion with potential estimation of Dirichlet with parameters below

1, as Dirichlet distribution with such parameters exhibit several peaks on the ”border” of

the space they belong instead of a unique strong peak. The initial clustering performed for

initializing the HMM naturally prevents this case to happen, as a distribution exhibiting two

peaks would rather by approximate by two distributions with one peak each (minimizing the

intra-class variance).
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(a) UCSD Ped1 (b) UCSD Ped2

Figure 7: Camera field for the UCSD Ped1 (left) and Ped2 (right) data sets
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(b) UCSD Ped2

Figure 8: Two main clusters found in the UCSD Ped1 (left) and Ped2 (right) data sets,

Dirichlet-HMM case.
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(b) UCSD Ped2

Figure 9: Two main clusters found in the UCSD Ped1 (left) and Ped2 (right) data sets,

GD-HMM case.
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(c) GD

Figure 10: Sample of the pier surveillance sequence (a) and the three main clusters found with

Dirichlet (b) and GD (c) based HMMs.

the front view reduces the movements amplitudes, especially in locations that

are far from the camera. It tends to show that the features used to train

the models in this approach are more sensitive to movement than appearance.

On the Ped2 data set, very similar results are found. However, one patch of

the busy walkway in the Ped2 frames is clustered with the patches where no

dynamical action takes place. In a real setting, this could draw the attention of

the experimenter for further checking whether the HMM corresponding to this

location has been correctly estimated or not. Also, in an approach including

contextual information, the context could be better define using such a similarity

measure than merely taking neighboring patches.

7.2. k-medoids partitioning over a pier surveillance video

As a second illustration of usage of the proposed distance, we use a pier

surveillance footage part of the Anomalous Behaviour data set [38] on which

HMMs have been proven to have good modeling abilities in [7]. A typical train-

ing frame is reported in Figure 10 (left). The training frames of this video

sequence can be described as three main elements: the sky, the sea, and the

pier. Using a k-medoid partitioning from the 77x77 distance matrix (as imple-

mented at [39]), we find for both Dirichlet and GD-based HMMs three clusters

representing the three main elements. However, one can see in Figure 10 that

in the GD case some patches modeling the sky are partitioned with the patches

modeling the pier and the sea, unraveling potentially inaccurate models.
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8. Conclusion

We proposed the first parametric similarity measures for the recently pro-

posed Dirichlet and generalized Dirichlet-based HMMs (and by extension, Beta-

based). We overcame the main limitation of the HSD distance proposed in [25]

by extending it to the multidimensional case. Though behaving as expected

for variations in the distributions and transition parameters, it failed at detect-

ing changes in the mixing matrix. The new approach we proposed, showed a

great ability to detect any change in any of the HMM parameters, with good

discriminative ability and without requiring any data. Its good correlation to

parameters’ variations as well as its smoothness makes it a distance of choice for

these models. The extensive experiments carried out over synthetic data as well

as the practical comparative performance for 5 similarity measures allows one

to knowingly choose right metric for their case of study. The extension of the

proposed distance to models trained by component, illustrated with real-data,

showed coherent results and exemplified how one can explore the HMM data

representation in order to detect erroneous models or to refine the concept of

neighbor in some approaches that use contextual information.
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Appendix A. Appendix: KL divergence between two Dirichlet dis-

tributions

Hereafter are shown the steps to derive the KL divergence between two

multidimensional Dirichlet distributions. We use the usual notation KL(p||q)
for the divergence between a distribution p and another distribution q.
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We denote p(x|α) and q(x|a) as two D-dimensional Dirichlet distributions

as defined in Equation (2) and derive the following quantity

KLdir(p||q) =

∫
p(x) ln

(p(x)

q(x)

)
dx . (A.1)

We typically recognize the expression of an expectation with respect to p

and introduce the following notation for it

KLdir(p||q) =

〈
ln

(p(x)

q(x)

)〉

p(x)

= 〈ln(p(x))− ln(q(x))〉p(x) . (A.2)

Using Equations (2) and (A.2), we get

KLdir(p||q) =

〈
ln

(
Γ

( D∑

d=1

αd

)
−

D∑

d=1

ln(Γ(αd))

)
− ln

(
Γ

( D∑

d=1

ad

)

+
D∑

d=1

ln(Γ(ad))

)
+

D∑

d=1

(αd − ad) ln(xd)

〉

p(x)

, (A.3)

which can be simplified as

KLdir(p||q) = ln

(
Γ

( D∑

d=1

αd

)
−

D∑

d=1

ln(Γ(αd))

)
− ln

(
Γ

( D∑

d=1

ad

)

+
D∑

d=1

ln(Γ(ad))

)
+

D∑

d=1

(αd − ad)〈ln(xd)〉p(x) . (A.4)

With the Dirichlet distributions parameters known, the only quantity which

needs to be evaluated is 〈ln(xd)〉p(x). Making use of Equation (2),

〈ln(xd)〉p(x) =

∫
p(x) ln(xd)dx

=
Γ(
∑D
d=1 αd)∏D

d=1 Γ(αd)

∫
ln(xd)

D∏

d=1

xαd−1
d dx . (A.5)

Using the property ln(x)xt =
d

dt
(xt) (and the fact the αi’s are independent)
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along with the Leibniz integral rule,

〈ln(xd)〉p(x) =
Γ(
∑D
d=1 αd)∏D

d=1 Γ(αd)

∫ ∂

∂αd

( D∏

d=1

xαd−1
d

)
dx

=
Γ(
∑D
d=1 αd)∏D

d=1 Γ(αd)

∂

∂αd

∫ D∏

d=1

xαd−1
d dx . (A.6)

Using the fact that by definition the integral of the Dirichlet distribution is

equal to 1, we obtain

〈ln(xd)〉p(x) =
Γ(
∑D
d=1 αd)∏D

d=1 Γ(αd)

∂

∂αd

[ ∏D
d=1 Γ(αd)

Γ(
∑D
d=1 αd)

]
. (A.7)

By recognizing the typical form of the logarithm function derivative and the

digamma function expression, we find

〈ln(xd)〉p(x) =
∂

∂αd

[
ln

( ∏D
d=1 Γ(αd)

Γ(
∑D
d=1 αd)

)]

=
∂

∂αd

[
ln

( D∏

d=1

Γ(αd)

)]
−

∂

∂αd

[
ln

(
Γ

( D∑

d=1

αd

))]

=
∂

∂αd
[ln(Γ(αd))]−

∂

∂αd

[
ln

(
Γ

( D∑

d=1

αd

))]

= Ψ(αd)−Ψ

( D∑

d=1

αd

)
. (A.8)

in which we made use of the fact that the αi’s are independent variables. This

last equation used in Equation (A.4) leads to the expression of Equation (10).

Appendix B. Appendix: KL divergence between two GD distribu-

tions

Hereafter are shown the steps to derive the Kullback-Leibler divergence be-

tween two multidimensional generalized Dirichlet distributions. The notations

hereafter are the same as in Appendix A.
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We denote p(x|α, β) and q(x|a, b) as being two D-dimensional generalized

Dirichlet distributions as defined in Equation (3) and derive the following quan-

tity

KLGD(p||q) =

∫
p(x) ln

p(x)

q(x)
dx . (B.1)

We recall the expression of the GD distribution p:

p(x|α, β) =

D∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1
d

(
1−

d∑

s=1

xs

)νd
, (B.2)

with νd defined as in Equation (3) and denoting its equivalent in q as cd.

Using Equation (B.2) in Equation (B.1), we get

KLGD(p||q) =

〈
ln(

p(x)

q(x)
)

〉

p(x)

=

D∑

d=1

ln

(Γ(αd + βd)Γ(ad)Γ(bd)

Γ(α)Γ(β)Γ(a+ b)

)
+

D∑

d=1

(αd − ad)〈ln(xd)〉p(x)

+
D∑

d=1

(νd − cd)
〈

ln

(
1−

d∑

s=1

xs

)〉

p(x)

. (B.3)

It would be possible to derive the full expression of this KL divergence by

using steps similar to the ones presented in the case of the Dirichlet. However,

the presence in this case of a second expectation makes this method being heavy

in computation and we prefer using the following routine that is less straight-

forward, but less heavy to write to find the expressions of the two expectations

left in Equation (B.3).

We start by computing the derivative of a GD distribution with respect to

all its parameters.

∂p(x)

∂αd
= p(x)

[
Ψ(αd + βd)−Ψ(αd) + ln(xd)− ln

(
1−

d−1∑

s=1

xs

)]
, (B.4)

is valid for all d ∈ [1, D] if we define the last term as equal to 0 in the case d = 1.

Similarly,

∂p(x)

∂βd
= p(x)

[
Ψ(αd+βd)−Ψ(βd) + ln

(
1−

d∑

s=1

xs

)
− ln

(
1−

d−1∑

s=1

xs

)]
, (B.5)
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is valid for all d ∈ [1, D] if we define the last term as equal to 0 in the case d = 1.

Integrating Equations (B.4) and (B.5) using the Leibniz rule and identifying

the expectation expressions, we get the following system of equations:




Ψ(αd + βd)−Ψ(αd) + 〈ln(xd)〉p(x) − 〈ln(1−∑d−1
s=1 xs)〉p(x) = 0 ,

Ψ(αd + βd)−Ψ(βd) + 〈ln(1−∑d
s=1 xs)〉p(x) − 〈ln(1−∑d−1

s=1 xs)〉p(x) = 0 ,

(B.6)

which is valid for all d ∈ [1, D], with the last term of the left hand side being

equal to 0 for d = 1.

This system of equations can recursively be solved and lead to the solution:



〈ln(1−∑d−1

s=1 xs)〉p(x) = −∑d
s=1(Ψ(αs + βs)−Ψ(βs)) ,

〈ln(xd)〉p(x) = Ψ(αd)−Ψ(βd)−
∑d
s=1(Ψ(αs + βs)−Ψ(βs))

(B.7)

Using Equation (B.7) in Equation (B.3), we obtain the final expression:

KLGD(p||q) =

D∑

d=1

ln

(Γ(αd + βd)Γ(ad)Γ(bd)

Γ(αd)Γ(βd)Γ(ad + bd)

)

−
D∑

d=1

(αd − ad)
(

Ψ(αd)−Ψ(βd)−
d∑

s=1

(Ψ(αs + βs)−Ψ(βs))

)

+
D∑

d=1

(νd − cd)
d∑

s=1

(Ψ(αs + βs)−Ψ(βs)) . (B.8)
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