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ABSTRACT 

 

Understanding Inquiry, an Inquiry into Understanding:  

a conception of Inquiry Based Learning in Mathematics 

 

Iulian Frasinescu 

 

IBL (Inquiry Based Learning) is a group of educational approaches centered on the 

student and aiming at developing higher-level thinking, as well as an adequate set of 

Knowledge, Skills, and Attitudes (KSA). IBL is at the center of recent educational research 

and practice, and is expanding quickly outside of schools: in this research we propose 

such forms of instruction as Guided Self-Study, Guided Problem Solving, Inquiry Based 

Homeschooling, IB e-learning, and particularly a mixed (Inquiry-Expository) form of 

lecturing, named IBLecturing. The research comprises a thorough review of previous 

research in IBL; it clarifies what is and what is not Inquiry Based Learning, and the 

distinctions between its various forms: Inquiry Learning, Discovery Learning, Case Study, 

Problem Based Learning, Project Based Learning, Experiential Learning, etc. There is a 

continuum between Pure Inquiry and Pure Expository approaches, and the extreme forms 

are very infrequently encountered. A new cognitive taxonomy adapted to the needs of 

higher-level thinking and its promotion in the study of mathematics is also presented. 

This research comprises an illustration of the modeling by an expert (teacher, trainer, 

etc.) of the heuristics and of the cognitive and metacognitive strategies employed by 

mathematicians for solving problems and building proofs. A challenging problem has 

been administered to a group of gifted students from secondary school, in order to get 

more information about the possibility of implementing Guided Problem Solving. Various 

opportunities for further research are indicated, for example applying the recent advances 

of cognitive psychology on the role of Working Memory (WM) in higher-level thinking. 
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1 INTRODUCTION 

“The voyage of discovery is not in seeking new landscapes but in having new 

eyes.” - Proust 

This research is the result of a relentless quest for meaning of Inquiry-based education, 

and aims at giving some sense and structure to the findings of a large number of 

researches on this approach to teaching.  

 During my review of the literature I noticed the insistence of international 

institutions and governments on the implementation of Inquiry-based learning (IBL) in 

public education and the fostering of higher-order skills and attitudes. There is a strong 

trend toward approaches by competencies in postsecondary education, which also drives 

the methodologies employed at secondary level. In 1997, OECD member countries 

launched the Programme for International Student Assessment (PISA) for monitoring the 

extent to which students near the end of compulsory schooling have attained the targeted 

competencies, and started the DeSeCo Project directed by Switzerland and linked to PISA 

for providing a conceptual framework that would help identify key competencies, define 

the goals for education systems, and strengthen international assessments (OECD, 2015): 

"A competency is more than just knowledge and skills... For example, the 

ability to communicate effectively is a competency that may draw on an 

individual’s knowledge of language, practical IT skills and attitudes towards 

those with whom he or she is communicating... In most OECD countries, 

value is placed on flexibility, entrepreneurship and personal responsibility. 

Not only are individuals expected to be adaptive, but also innovative, creative, 

self-directed and self-motivated... Coping with today’s challenges calls for 

better development of individuals’ abilities to tackle complex mental tasks, 

going well beyond the basic reproduction of accumulated knowledge. An 

underlying part of this framework is reflective thought and action. Thinking 

reflectively demands relatively complex mental processes and requires the 
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subject of a thought process to become its object. For example, having applied 

themselves to mastering a particular mental technique, reflectiveness allows 

individuals to then think about this technique, assimilate it, relate it to other 

aspects of their experiences, and to change or adapt it... Reflectiveness implies 

the use of metacognitive skills (thinking about thinking), creative abilities 

and taking a critical stance."  

 The reasons for this urge can be expressed in two words: Informational Age. 

Industrial revolution, an offshoot of Reformation, rationalism and positivism, brought 

about a society based on profit and productivity, but aroused a new anxiety among skilled 

workers: the risk of being replaced by machines. Eventually, production was assigned to 

machines or robots, and most of the workforce moved to services. Today, as artificial 

intelligence replaces human reasoning, there is only one way for the society:  up on the 

cognitive spectrum.  Authorities compel educational systems to change their curricula 

and teaching methods in order to promote higher-order thinking and to provide 

graduates with the set of Knowledge-Attitudes-Skills (KSA) required by the corporations:  

autonomy, ability to solve/to complete complex, poorly structured, open problems/tasks, 

lifelong training and self-improvement, reflectiveness, etc. 

 The “literacy” concept of OECD actually refers to “information literacy” and 

involves students’ capacity to pose, solve and interpret problems in a variety of subject 

matter areas. PISA assessments began with comparing students’ knowledge and skills in 

the areas of reading, mathematics, science and problem solving. Students have to acquire 

expertise in dealing with information: identifying the missing knowledge and searching 

for it, keeping the useful part and discarding the useless one, structuring, processing and 

communicating the information in an appropriate way. In order to develop such skills, 

learner-centered approaches such as IBL have to be used, since expository teaching 

generally aims at a quick delivery of a vast content to a larger audience and thus it cannot 

take care of each student's mental constructions and cognitive development.  



 

3 
 

 My interest in inquiry comes from secondary school and was elicited by the TV 

series “Connections”1 (by J. Burke). It demonstrated how various discoveries, 

technological advancements and historical events derive from seemingly unrelated 

events, actions or innovations, and may be triggered by casual happenings. The main idea 

is that we cannot understand the development of any concept, event, or of the society as 

a whole if we consider it in isolation. History and innovation are often driven by actions 

and motivations that would normally lead to different outcomes, by a “law” of hazard and 

unintended consequences. 

 I first encountered IBL in middle school, where the physics teacher employed an 

experiential/exploratory approach. His classes were very engaging, and for helping 

students remember the laws of physics he used funny acronyms. My first teacher in 

geometry had an easy-going but conceptual approach that helped students to get into a 

“flow”, as Csikszentmihalyi (1997) would say. The second teacher had an opposite 

approach and I got a falling grade on the first test since I did not justify much of my work. 

The teacher was surprised and asked me if in my native city geometry is taught without 

proofs. She required students to write two-column proofs following a prescribed format. 

So I had to learn such formal proving, which did not take much but inhibited the “flow” 

in a way. When reviewing students’ attempts at solving the problem presented in the 

section 3.5 of this thesis, I noticed that some of them, trying to use the Backward-

Forward technique of proving, got confused and produced circular reasoning. Thus, 

training students in writing the two-column proofs may perhaps be justified at a very 

basic level, but not later since formalism hinders intuition: 

"Intuition cannot give us exactness, nor even certainty... As certainty was 

required, it has been necessary to give less and less place to intuition… But   

we must not imagine that the science of mathematics has attained absolute 

exactness without making any sacrifice. What it has gained in exactness it 

has lost in objectivity. We can now move freely over its whole domain, which 

                                                 

111
 https://en.wikipedia.org/wiki/Connections_(TV_series)  

https://en.wikipedia.org/wiki/Connections_(TV_series)
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formerly bristled with obstacles. But these obstacles have not disappeared; 

they have only been removed to the frontier, and will have to be conquered 

again if we wish to cross the frontier and access the realms of practice…        

Pure logic cannot give us this view of the whole (structure); it is to intuition 

we must look for it… The chief aim of mathematical education is to develop 

certain faculties of mind and among these, intuition is by no means the least 

precious… It is by logic that we prove, but by intuition that we discover." 

(Poincaré, 1908, pp. 123-129) 

 I met the “DTPC” (definition-theorem-proof-corollary) approach at the university, 

but it was not purely expository since there were also practice hours (problem-solving 

sessions or tutorials). From a learner’s perspective, this approach provides more fluidity 

and flexibility by using gaps in proofs, but makes achieving understanding, operational 

skills and longtime retention more difficult. The main issue regarding purely expository 

teaching is that the teachers do not test students’ understanding or their “mental 

constructions” (in the sense of the constructivist framework) during lectures, so they 

cannot evaluate on the spot students’ learning and adapt their lecture to the development 

of students’ cognition. Thus, lessons may be simply recorded and used by the students or 

by other teachers. Moreover, it is less costly to teach online with such an approach, since 

there would be no overhead costs: classrooms, maintenance, etc. As a result, expository 

teaching is moving from classroom to the web and soon only some IBL courses will be 

given in the class. The change is striking in professional training, where e-learning 

thrives.  

 This thesis aims at reflecting on the possibility of incorporating some valuable 

elements of inquiry-based learning in the teaching of mathematics at postsecondary level, 

in order to induce and to stimulate students’ higher-order thinking and skills. Such 

elements are:  
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- Modeling by the teacher of the heuristics involved in building a proof or solving a 

problem; 

- Description of the approaches, strategies and thinking processes that lead to a 

successful resolution of the task; 

- Introduction of students’ inquiry phases with flexible guiding according to their needs; 

- Feedback from the teacher and classroom discussion; 

- Development of learning materials and evaluation tools that promote understanding 

and help students practice inquiry through gradual cognitive and metacognitive guiding.   

 I will also propose a conception of Inquiry-based Lecturing (IBLecturing) that is a 

compromise between two radically opposite approaches in the teaching of mathematics: 

- The DTPC approach, composed of definition-theorem-proof-corollary style expository 

lectures, standard exercises for homework and limited time (1 – 3 hours) tests and 

examination using questions also similar to those that students have seen before in class 

or online.  

- The pure IBL approach or inquiry-based learning, where lecturing is reduced to a 

minimum and students learn or invent new mathematics as they explore non-standard 

problems; assessment is based on reports from longer term projects or activities. 

 The DTPC approach, which belongs to the “tell and drill” teaching methodologies 

(Adler, 1993), has long been criticized for being ineffectual in terms of students’ learning: 

students can learn to solve the standard exam problems, but are often helpless when 

faced with new types of problems and there is little transfer from what they learn in one 

such course to another. On the other hand, pure inquiry approach is not realistic in 

mathematics because students are being prepared for knowing and applying advanced 

theories and techniques and, at the graduate level, even inventing new mathematics, and 

for that they have to be quickly acquainted with the preliminaries. Expository approaches 
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offer a low-cost solution but the trade-off is students’ poor training in high-level thinking, 

as well as a lack of integration, structure and reliability of their mental constructions.  

 In practice, purely expository or inquiry-based approaches are very seldom 

employed. Belsky (1971) replaced the binary classification of teaching approaches with a 

continuous range from 0% to 100% of inquiry activities for each of them:  

“…classroom presentations are not classified as exclusively representative of 

either ‘expository’ or ‘inquiry’ methods. Rather, a continuum is envisioned in 

which the method is evaluated as tending toward one or the other of these 

categories, based on the proportion of time the teacher resorts to one method 

or the other. It goes against common experience to believe that actual 

classroom activity can accurately be represented as exclusively the product of 

any system of methodology. Rather, all teachers alter their presentation 

styles.” (Belsky, 1971, pp. 10-11) 

 Belsky (p. 92) recorded the proportion of lesson time teachers spent on each of 

these approaches over a period of two months. Time spent in extraneous activities during 

the lessons was excluded from calculations and only the periods of effective learning were 

counted. Below are the results for the teachers who were not asked to change their 

behavior. Those who identified themselves as “Inquiry-oriented” had an average of 53.2% 

of the teaching time spent in inquiry approach according to their self-perception, but 

their observed average of inquiry learning was only 36.4%. Those who identified 

themselves as “Expository-oriented” had an average proportion of 74.5% of the time in 

expository teaching according to their self-perception, but their observed average of 

expository teaching was  90.2% . Those who were asked to change their approach from 

expository to inquiry estimated the proportion of time spent in inquiry approach, after 

the change, at 67.5%  on average; however, the observed proportion was only 46.8% . In 

conclusion, teachers that believe they follow IBL spend just a bit more than a third of the 

teaching time in inquiry approaches, and those who perceive themselves as expository 
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teachers increase the proportion of IBL in their lessons from 10% to less than 50% after 

being asked to change their method. 

 So there is a middle way. I propose to keep the lecturing by allowing it half of the 

lesson and enrich the exposition of the results of mathematicians’ research with elements 

of the inquiry that led to them, connections with other subjects and openings toward 

novel results. There would be standard homework exercises and exams, but also 

“challenges” where students would be given more time and could engage in inquiries of 

their own. 

 Teachers and institutions need some systematic way to plan their teaching and 

assess students’ learning. For the traditional expository teaching, a popular aid for these 

purposes has been a classification of cognitive learning objectives called Bloom’s 

taxonomy. Students have to become acquainted with some “Knowledge”; e.g., in 

mathematics, they have to know some definition. For example – the definition of a limit 

of a sequence. They must then develop some “Comprehension” of this knowledge.        

Further, they must be able to engage in an “Application” of this knowledge.  

 In the proposed IBLecturing approach, students observe and become familiar with 

the new content presented by the teacher. Such content is carefully selected by the 

teacher in order to allow students’ exploration and completion of omitted parts. For 

example, proofs can be presented in an abridged form, and the teacher asks students to 

complete the details as homework or in the classroom, in a team or under individual 

guidance. Alternatively, learners can be properly guided in the resolution of problems and 

the completion of proofs (which are also problems) by allowing them to try at first 

without any hint or help from the teacher. After each step of the exploratory phase, 

students ask and receive some individual or group scaffolding and feedback from the 

teacher, then continue their exploration and so on until completing the task. Such 

activities may take place in the math lab (physical or virtual) or in the classroom. In this 

way, students get a taste of the subject by “Operating” with it under the guidance of an 

expert. Guiding is partially provided in the form of teacher’s expository explanations of 
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his own inquiry or a heuristic approach (that is, modeling by an expert), partially via 

hints, suggestions and individual metacognitive feedback. The key element is to provide 

the right amount of guiding to each learner, in order to continually keep students “in the 

flow”. They are encouraged to pose questions and to seek an answer for themselves with 

gradual teacher’s help. As they progress, more complex or difficult tasks are given to them 

and the context or the form of the particular knowledge is modified in order to help them 

learn when it works and when it does not, in which situations it applies or does not apply, 

when and why one procedure is better than another, etc.  

 In Bloom’s taxonomy, the cognitive actions that students are expected to engage in 

are measurable: memorizing factual knowledge, understanding what it is/does, where and 

how it can be employed, applying it to given problems, etc. In IBLecturing, outcomes are 

measurable by using numerical scoring for standard assessment based on short answer 

questions and a set of performance criteria aligned with targeted outcomes 

(competencies) for inquiry tasks: projects, research reports, etc.  

 IBL aspires to engage students in cognitive actions that resemble more those of a 

research mathematician at work than a student preparing for an exam. IBLecturing’s 

ambitions are adapted to students’ knowledge, skills, and attitudes (KSA) but still, it is 

assumed that the lecturer would be able to convey the main elements of the 

mathematical inquiry. Naming and describing these elements and giving examples of how 

they can be interwoven in the lectures will be my way of presenting this approach. 

 The thesis is structured as follows. In Chapter II of my thesis, I present the IBL 

approach and the difficulties with its characterization on the one hand, and with its 

implementation on the other. Chapter III contains a description of the IBLecturing, with 

several illustrative examples. In Chapter IV, I offer some conclusions and reflect on 

avenues of further research.  
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2 CURRENT CONCEPTIONS OF IBL IN THE LITERATURE 

2.1 INTRODUCTION 

"There is a great satisfaction in discovering a difficult thing for one's self... 

and the teacher does the scholar a lasting injury who takes this pleasure from 

him. The teacher should be simply suggestive." - David Page (1847, p.85) 

“Children should be able to do their own experimenting and their own 

research. Teachers, of course, can guide them by providing appropriate 

materials, but the essential thing is that in order for a child to understand 

something, he must construct it himself, he must re-invent it. Every time we 

teach a child something, we keep him from inventing it himself. On the other 

hand, that which we allow him to discover by himself will remain with him 

visibly.”  Piaget (1972 a, p.27) 

 Curiosity is an essential human trait, and inquiry (investigation, exploration, quest, 

or research) is the natural expression of this mental drive. Although British English makes 

a distinction between "enquiry" (i.e. questioning, request for information) and "inquiry" 

(i.e. investigation), in American English these words have the same meaning. In science 

education, instructional tools such as investigation and questioning cannot be separated, 

because any research starts with one or several questions about the subject of 

investigation, and questioning is generally induced by the desire to understand 

something or by curiosity, as the first step of an investigation. Moreover, question 

generating is a main feature of inquiry learning. Hence, we may see scientific inquiry as a 

blend of receptive and active search for an answer, a fusion between questioning (seeking 

answers among familiar knowledge or available resources, including tutors) and 

exploration (seeking outside of readily available resources, venture into the unknown).  

 From the earliest age of humanity, questioning has been considered a main 

element of both formal and informal education. A classic example of questioning as a 
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teaching tool is Plato's "Meno", where a detailed account of the Socratic dialogue is 

presented.  

 Xun Kuang, a Confucian philosopher (312-230 B.C.), was an early promoter of the 

so-called "hands-on" or experiential approach in education: 

“Not having heard something is not as good as having heard it; having heard 

it is not as good as having seen it; having seen it is not as good as knowing it; 

knowing it is not as good as putting it into practice.” (Knoblock, 1990, p.81)  

The saying has been restated by Dr. Herb True as 

Tell me, and I’ll forget. Show me, and I may remember. Involve me, and I’ll 

understand. (True, 1978)  

 In this form, it became a slogan among education researchers, some of them 

wrongly citing Confucius (Hmelo-Silver et al. 2007, p. 105) or Benjamin Franklin as its 

originators. 

 Inquiry approaches in education have also been promoted by educationalists such 

as Comenius (1592–1670), Rousseau (1712–1778), Pestalozzi (1746–1827) or Dewey (1859–

1952).  

 Dewey was an early promoter of problem-based learning (PBL), as part of his 

student-centered, interactive, "hands-on" approach, which he called “learning by doing”. 

In particular, his emphasis on "experience" is in vogue again (EduTech Wiki, n.d.). Far 

West Lab's report on Experience-Based Career Education was one the first attempts to 

extend Dewey's method to a "hands-on, minds-on" approach, based on exploration and 

investigation (Johnson's 1976, p.140). Finally, the formula became "hands-on, minds-on, 

hearts-on" in a review of technical education in Singapore, indicating a holistic approach 

that provides motivation, assisted learning, and integral training for the students. The 

learners were expected to acquire strong technical skills, flexible and independent 

thinking and passion for what they do, as well as confidence and care for the community 

and society (Lee 2008, p. 126).  
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 Another type of inquiry instruction has been designed by Maria Montessori (1870-

1952).  It is a student-centered approach which generates individual learning 

opportunities and encourages child's involvement in the learning process, fostering his 

autonomy and motivation. Play, which allows children to conduct a thorough exploration 

of the world by self-directed and stimulating activities, has been strongly advocated by 

Froebel, the father of kindergarten, and by Piaget (Gallagher & Reid, 2002). Great 

education theorists and psychologists such as Pólya, Piaget, Ausubel, and Bruner, 

proposed a challenging and exploratory type of instruction, based on student's 

engagement in self-directed activities, problem solving and discovery (Maaß & Artigue, 

2013). Lakatos (1976) considered mathematical inquiry a cornerstone of mathematical 

practice. A convincing plea for inquiry has also been made by Papert (1990): "You can't 

teach people everything they need to know. The best you can do is position them where 

they can find what they need to know when they need to know it." 

 Colburn (2006) remarked that science education community has embraced no idea 

more than that called "inquiry", or "inquiry-based instruction". At the same time, 

discovery (a former label for inquiry learning) has been considered "one of the most 

advocated if not most popular teaching strategies of the past three or four decades" 

(Brooks & Shell, 2006). Yet, discovery has also been one of the most contested topics in 

science education (e.g. Ausubel, 1964; Novak, 1973; McDaniel & Schlager, 1990; Taconis et 

al., 2001; Mayer, 2004), and the controversy continues now regarding inquiry learning 

(Palmer, 1969; Rogers, 1990; Kirschner et al., 2006; Hmelo-Silver et al., 2007; Smith et al., 

2007).  

 In official frameworks and national standards, there are many calls for a greater 

emphasis on student inquiry in science education. Developing an inquiry-based science 

program is the central tenet of the National Science Education Standards for K-12 

education (NRC, 1996), but the stage has already been set by the Project 2061, a long-term 

initiative to reform U.S. school education (Bybee, 2000). The National Academy of 

Sciences, which shapes U.S. government policies in science education has stated that the 

main focus of science education should be inquiry (NRC, 1996). A large number of 
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government-sponsored programs and projects have been undertaken in North America, 

Europe and Asia in order to promote inquiry at all education levels: FIRST and POGIL 

projects in the U.S.A. (Ebert-May & Hodder, 1995; POGIL, 2015), CREST program in the 

U.K. and in Australia, Fibonacci, PRIMAS, and MASCIL in Europe (Baptist & Raab, 2012; 

Maaß & Artigue, 2013), High Scope Program in Taiwan (APSE, 2011), PBI@School in 

Singapore (Wong et al., 2012) and SEAMEO QITEP in Indonesia (SEAMEO, 2015).    

 The National Science Foundation supported a review on the role of inquiry in 

science teaching (Project Synthesis, concluded in 1981), which revealed that the term 

"inquiry" has been used by the education community in a variety of ways, either as 

content or as instructional technique, and thus a  confusion developed about the term's 

meaning (Bybee, 2000). Further, Hammer (2000) remarks that, as a general nicety, 

student inquiry seems a simple, desirable goal. Yet, implementing inquiry is not a simple 

matter at all. No one understands clearly how to discern and assess it, or how to 

coordinate such progressive agenda with the traditional one of covering the content. 

Moreover, this is not for lack of trying, since various attempts by philosophers of science 

to define what the specific method is - e.g. Popper (1963), or by educators to specify 

"process" skills as appropriate educational objectives - starting with Gagné (1965) - largely 

proved to be unsuccessful. According to Hammer (2000), if it is possible to capture the 

essence of scientific reasoning - and some authors contend that it is not, e.g., Feyerabend 

(1988) - such an attempt remains to be done.  

 This chapter tries to clarify in the first place the meaning of IBL by identifying the 

key features that distinguish it from traditional approaches and by providing a 

comparative survey of inquiry-based ways of teaching. It reviews the various 

implementations of IBL and exposes the benefits as well as the obstacles related to its use 

in school education. The final part is focused on the relevance of inquiry approaches in 

pure geometry, by pointing out the crucial role of proof and inquiry in this field and the 

benefits of using IBL in conjunction with geometry for developing students' higher 

cognitive skills. It reviews the research and the implementation of inquiry approaches in 
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teaching geometry, and presents several software and IBL textbooks that could be 

employed with school students. 

2.2 INQUIRY-BASED LEARNING – A CHARACTERIZATION 

2.2.1 What is IBL? 

“Every truth has four corners: as a teacher I give you one corner, and it is for 

you to find the other three.” – Confucius 

Providing a clear, thorough definition of IBL is a difficult task. Spronken-Smith (2007, p. 

4) contends that the nature of IBL is contested and any search for studies on this topic 

must include such terms as "inquiry" (or "enquiry"), "discovery learning", "research-based 

teaching", "inductive teaching and learning". Although the inquiry approach is becoming 

pervasive throughout all levels of education, there is a paucity of research that provides a 

clear overview and synthesis of IBL. While each author seems to choose his own working 

definition of IBL, there is a commonality of opinion about what it constitutes.  

 Discovery learning, the catchphrase of mathematics instruction in the years 1960s 

(Fey, 1969), has been the term of choice for inquiry education for almost thirty years, 

although nowadays it usually refers to investigations where a specific mathematical 

content has to be "discovered". By contrast, in open inquiry the teacher does not have 

such an agenda, and leaves to his students the freedom of exploration. Gagné (1966, p. 

135) characterized discovery learning as "something the learner does, beyond merely 

sitting in his seat and paying attention" - a very broad description, comprising all kinds of 

active learning and including inquiry. The recent prevalence of the term "inquiry" could 

be explained by the fact that minimally guided discovery has generally been discarded as 

ineffective in mathematics education (Kirschner et al, 2006, pp. 12-13; Sweller, 1999; 

Mayer, 2004), while strongly guided discovery may be too restrictive (Clark, 1988, p. 339). 

 Finley & Pocovi (2000) argue that scientific inquiry does not necessarily involve 

experimental discovery, since most of the greatest scientific accomplishments consisted 
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of describing, finding rules or laws, explaining and modeling various phenomenon. 

Indeed, in many cases (such as history, geology, astronomy, social sciences, etc.) 

experimentation may be impossible, and a scientific finding can only be validated by the 

accuracy of its predictions.  

 Hence, investigation skills are fostered not only in discovery, but in inquiry 

learning, too. As the label "discovery" gradually lost its appeal, IBL has come to designate 

open and guided inquiry, previously covered by discovery approaches.  

 Yet, the confusion between discovery and inquiry learning persisted, and not long 

ago there were still studies claiming that "one of the most advocated it not most popular 

teaching strategies of the past three or four decades has been discovery" (Brooks & Shell, 

2006) or asserting that "the nature of IBL is contested and even the term itself is not in 

widespread use throughout the educational literature" (Spronken-Smith, 2007). 

 Dorier & Maaß (2012) define Inquiry-Based Education (IBE) as a student-centered 

paradigm of teaching science, in which students are invited to work in ways similar to 

scientists' work. Students are guided to observe phenomena, ask questions, seek scientific 

ways of answering related questions (e.g. carrying out experiments, systematically 

controlling variables, drawing diagrams, looking for patterns and relationships, making 

conjectures and generalizations), interpret and evaluate their solutions, communicate 

and discuss these effectively. According to Hussain et al. (2012, p. 286), the term "inquiry 

mathematics" is often associated with Western reform movements from the 1980s 

onward. For instance, NCTM (1991) provided this description of IBL:  

"Students should engage in making conjectures, proposing approaches and 

solutions to problems, and arguing about the validity of particular claims…. 

They should be the audience for one another’s comments… . Discourse should 

be focused on making sense of mathematical ideas… and solving problems".  

 Wells (1999, p. 122) views inquiry as an active quest for knowledge that arises in 

activity, often collaborative investigative activity, in mathematics classroom: "[inquiry is 

a] willingness to wonder, to ask questions, and to seek to understand by collaborating 
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with others in the attempt to make answers to them”. A similar viewpoint has been 

adopted by Hussain et al. (2012): IBL involves a re-evaluation of the nature of 

mathematics, and could be seen as an "ethical consequence" of valuing students' 

mathematical investigations, so strongly promoted by the current reforms in education.  

 To distinguish among conceptions of IBL, some authors (Staver & Bay, 1987; 

Colburn, 2000; Ako, 2008) distinguished three levels of inquiry: 

- Structured inquiry (problem & method given) 

- Guided inquiry (problem only given) 

- Open inquiry (students formulate & solve the problems) 

 Characteristics of pure (open) inquiry are: 

1. students are involved in their learning, symptom of situational interest (Mitchell, 

1993) 

2. students pose/formulate questions (Bruce & Davidson, 1994; NRC, 1996; Alberta 

Education, 2004; Colburn, 2006; Beairsto, 2011; EduTech Wiki) 

3. students investigate widely (Alberta Education, 2004) 

4. the knowledge students build is new to them (Chan et al., 1997; Alberta Education, 

2004) 

5. students communicate their solutions to others (Alberta Education, 2004; 

EduTech Wiki) 

6. tasks given to students are open-ended (Colburn, 2006; EduTech Wiki) 

7. teaching is student-centered, implying student’s interest as person-object relation 

(Schiefele et al., 1979; Krapp et al., 1992; Bruce & Davidson, 1994; Hidi et al., 2004; 

Colburn, 2006) 

8. activities for students are hands-on  (Colburn, 2006; Bruce, 2008a; EduTech Wiki) 

9. students solve problems (Colburn, 2006; Beairsto, 2011) 

10. students develop their own ways towards solutions (Beairsto, 2011) 

11. students' questions should be scientifically oriented (NRC, 2000) 
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12. students give priority to evidence in responding to questions (NRC, 2000) 

13. students formulate explanations based on evidence (NRC, 2000) 

14. students connect explanations to scientific knowledge (NRC, 2000) 

15. students communicate and justify explanations (NRC, 2000) 

16. students create tentative generalizations (Colburn, 2006) 

17. students exercise reflective practice (Spronken-Smith, 2007) 

 The above characteristics have been organized according to the subject of their 

postulates:  the relation of students with their own knowledge; the students’ attitude 

towards mathematics (4, 10, 11, 17); students’ mathematical activities (5, 12, 13, 14, 15); 

students’ rapport with teachers (2, 3) and  teachers’ rapport with students (8); teachers’ 

rapport with mathematics (7, 9) (Figure 1).  

 

Figure 1. IBL characteristics on the didactic triangle 

 Lave and Wenger (1991) proposed a "situated learning" model, where learning 

takes place in a "community of practice." Wenger (1998) listed three modes of belonging 

to such a community:  

 engagement 

 imagination 

 alignment 
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 Wenger's ideas have been integrated by Jaworski into her vision of an "inquiry 

community", with a specific emphasis on the critical alignment of the participants, such 

that it is possible for them "to align with aspects of practice while critically questioning 

roles and purposes as a part of their participation for ongoing regeneration of the 

practice.” (Jaworski, 2006, p. 190) Critical alignment has also been identified as a main 

feature of inquiry learning in the study of Goodchild et al. (2013).  

 Vulliamy & Webb (1992) discuss the process-product distinction in collaborative 

inquiry, and show that in their teacher development programme the process has been 

rated as, or more, important than the product (the degree, etc.). Although teachers may 

have registered with certification in mind, the professional learning that resulted from 

their inquiry became more significant for many of them. In mathematics education, many 

such programs have reported the importance of process of engagement in research or 

inquiry for professional learning and development (e.g., Krainer, 1993; Britt et al., 1993). 

Thus, engagement in individual inquiry for each teacher, results in knowledge growth 

that enhances that individual’s teaching." (Jaworski, 2003, p. 258) 

 The role of student's engagement and participation in challenging and meaningful 

activities was emphasized by many researchers. According to Bishop (1991), reform-

oriented approaches claim that doing mathematics should involve sense-making activities 

by using tasks that provide students with a variety of challenging experiences through 

which they can actively construct their mathematical meanings. Within this "active 

learning" approach, associated with experiential, collaborative and inquiry-based 

instruction (Anthony, 1996), students gain autonomy and take control over the direction 

of their learning. Research has shown that inquiry learning is positively correlated with 

students' goal-direction and satisfaction (Fresko et al., 1986). Bruce et al. (1994) claim that 

students' engagement in meaningful activities is the key to deep, effective learning:  

"Children are able to learn enormously complex things through immersion in 

the world, through their participation in meaningful activity. When they see a 

reason to participate, which depends in part upon an understanding of the 
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activity as a whole, their learning proceeds at an amazing pace. When they do 

not, major contortions in schooling practices are required to produce even 

minimal behavioral changes. Moreover, there is little evidence that the 

piecemeal learning that results from those contortions can be reintegrated 

into the whole activity later on.” (Bruce & Davidson, 1994, p. 9)   

 The importance of students' engagement has also been emphasized by Adler 

(1997), who used the term "participatory-inquiry approach" for IBL and stressed that it is 

often driven by the twin goals of: 1) moving away from authoritarian, teacher-centered 

approaches to learning and teaching and to mathematical knowledge itself, and 2) 

improving socially unequal distribution of access and success rates. In this approach, 

pupils are expected to take responsibility for their learning. Typically, they engage with 

challenging mathematical tasks, either alone, but more likely in pairs or small groups. 

The knowledge pupils bring to class is recognized and valued. Diverse and creative 

responses are encouraged, and justifications for mathematical ideas sought, often through 

having pupils explain their ideas to the rest of the class. The task-based, interactive 

mathematical activity that is provided in such a class offers learners a qualitatively 

different mathematical experience, and hence possibilities for knowledge development 

that extend beyond traditional "telling and drilling" of procedures (Adler, 1993).  

 In IBL, mathematics is seen as a practice (Adler 1997, p. 237). According to Adler, 

there is a bridge to cross between every day and school mathematical discourse, since 

"good mathematics teaching entails chains of signification in the classroom" (Walkerdine, 

1988).  

 Jaworski (2006) describes three types of inquiry practices:  

 inquiry in mathematics: students' learning of mathematics through exploration in 

classroom  

 inquiry in mathematics teaching: design of tasks for students by teachers and 

other educators 
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 inquiry in research: research of the inquiry process carried out in the first two 

levels 

 In the field of teachers' education, Jaworski (2003, p. 256) identifies inquiry with 

research and emphasizes the distinction between learning as a process and learning as a 

product, an issue already explored by Vulliamy et al. (1992). A similar distinction has been 

done   by Lakatos (1976, p. 42) regarding mathematics itself, since it develops as a process 

of "conscious guessing" about relationships among quantities and shapes, where proof 

follows a "zig-zag" path starting from conjectures and moving to the examination of 

premises through the use of counterexamples. This activity of doing mathematics is 

different from what is recorded once it is done: naive conjectures and their testing 

(validation or refutation) do not appear in the fully fledged deductive structure:                   

"The zig-zag of discovery cannot be discerned in the end product."  

 Regarding the deductive way in which mathematics is taught at all school levels, 

Pólya (1957, p. 7) said: "Mathematics 'in statu nascendi' - in the process of being invented 

- has never before been presented in quite this manner to the student, or to the teacher 

himself, or to the general public".  

 Lampert contends that  

"…the product of mathematical activity might be justified with a deductive 

proof, but the product does not represent the process of coming to know. Nor 

is knowing final or certain, even with a proof, for the assumptions on which 

the proof is based continue to be open to re-examination in the mathematical 

community of discourse. It is this vulnerability to re-examination that allows 

mathematics to grow and develop". (Lampert, 1990, p. 30) 

 It could be added that proofs themselves are continuously re-evaluated, improved 

or enriched, and the final product may include different proofs for the same theorem -    

each one having specific mathematical or pedagogical advantages. Likewise, Klein (1932, 

p. 208) remarked that "the investigator himself ... does not work in a rigorous deductive 

fashion. On the contrary, he makes use of fantasy and proceeds inductively, aided by 
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heuristic expedients". As a matter of fact, inquiry and inductive learning are so closely 

related, that the distinction between them is still debated. Lehrer et al. (2013) define 

induction as a new form of practice to students, one in which questioning was installed as 

a norm in the classroom.  

 An inductive, inquiry-based approach in mathematics education that would be 

more meaningful and could spark student's interest in proving has been proposed by 

 Moore (1903) in a speech before the Mathematical Association of America on 

December 29, 1902:  

"The teacher should lead up to an important theorem gradually in such a way 

that the precise meaning of the statement in question ... is fully appreciated ... 

and furthermore, the importance of the theorem and indeed the desire for 

formal proof is awakened, before the formal proof itself is developed. Indeed, 

much of the proof (of the theorem) should be secured by the research of the 

students themselves". (Moore, 1903, p. 419) 

 Teachers should put more emphasis on students' understanding of the process by 

which mathematical knowledge is generated, in order to promote their ability to 

recognize patterns and to find general rules:  

"In our mathematics classes we ought to concentrate less on covering a 

certain body of knowledge and more on thinking about what we have done, 

how that can be generalized and applied to other problems, and how to go 

about finding general principles." (Willoughby, 1963)  

 A gradual transition from particular to general, which would elicit students' desire 

to go on to the abstract level, has been suggested long time ago by Durell (1894) when he 

advocated the "New Education" in school mathematics - a label similar to the "New Math" 

from the 1960s:  
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"In each new advance, the student should begin with the concrete object, 

something which he can handle and perhaps make, and go on to abstractions 

only for the sake of realized advantages." (Durell, 1894, p. 15)   

 Pólya (1957) has underlined the importance of problem-posing, an activity closely 

related to questioning and specific to discovery/inquiry approaches:  

"The mathematical experience of a student is incomplete if he has never had 

the opportunity to solve a problem invented by himself."  (Pólya, 1957, p. 68)  

 The need to move towards an active, student-centered, and more stimulating way 

of teaching mathematics has been recognized for a long time: "... it is first necessary to 

arouse his (the student's) interest and then let him think about the subject in his own way 

(Young, 1911, p. 5). As stated by Ivey (1960, p. 152), "The premise here is that education has 

a great teaching facility which as yet is unused - the student."  

 The meaning of "active learning" in inquiry-based instruction is finding, generating 

and structuring the information. Therefore, investigative tasks have been classified by 

Calleja (2013) according to the degree of structure/guidance provided to students, the 

mathematics embedded within the task, and the time devoted for students’ activity:  

a. At the basic level, the investigations are structured tasks that lead students to 

mathematical discoveries. The given instructions guide students, who 

worked individually or in pairs, to use particular predetermined 

mathematical concepts and apply them to arrive at a solution.  

b. At the next level, the investigations are semi-structured. This means that 

they are either less structured or students are initially given some guidance in 

their work but later they are free to explore and engage with the task using 

their own conceptual mathematical understanding and reasoning. In order to 

benefit from discussing ideas and solutions when working on these more 

challenging tasks, the students are instructed to work in small groups of two 

or three.  
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c. At the third and higher level, the students encounter unstructured 

investigations that are more process-oriented activities. These required 

students to investigate the problem posed or the situation presented in as 

many different ways as they wished and through different methods. These 

investigations place greater demands on students to think through a 

solution, to make inferences and to test their own conjectures. As this type of 

investigation requires students to challenge, argue about and justify their 

reasoning, the unstructured investigations are set as a group activity 

involving three to four students.  

 Other than the level of structure, the investigations may be classified along the 

three "reality levels" identified by Skovsmose (2001). Skovsmose sees mathematical 

investigations as a landscape that ranges across the following levels of real-life contexts:  

i. pure mathematics which simply involves working with numbers or geometric 

figures;  

ii. semi-reality which refers to an everyday-life problem that is rendered artificial as it 

is tackled in a classroom situation where variables can be controlled;  

iii. real-life situations where students are directly involved in carrying out the exercise 

in the actual setting.  

 By combining these two classifications we get nine types of investigations (Calleja, 

2013, p. 166). 

 Observations of informal acquisition of knowledge and skills that occur outside of 

school settings, such as children learning to ride their skateboards with a group of friends, 

offer compelling models of learning that are not task-dependent, rather they are 

participant or learner-determined. Children can be seen to flourish within these forms of 

self-selected and self-directed experiential learning. The learning that occurs in student-

centered approaches is a form of playing around. It is socially valued and seen as 

worthwhile.  
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 The learners feel supported by a self-selected social group. They learn at their own 

pace, in their own time, and in a place of their choosing. Children are free to make 

mistakes which they accept as a natural and even humorous part of learning. They 

challenge each other to take risks, and they provide each other with informal feedback, 

helpful hints, and encouragement. They are free to discover and invent, they can start and 

stop whenever they like, and they gain intrinsic satisfaction from their growing 

accomplishments. Above all, the learning engages the whole child - the cognitive, 

affective, motor-sensory and social "self" (Walls, 2005).  

 Communication in the classroom under the form of questioning, answering, and 

presenting in a clear, rigorous way his own reasoning or ideas to the other participants is 

strongly promoted in inquiry learning. Also, team work is a key element in collaborative 

inquiry, even if it is not limited to inquiry approaches. As Ben-Chaim et al. (1990, p. 415) 

remarked, even if instruction tends to be more individual than collective, it does not 

occur in isolation but rather in interaction with the teacher and the peers. Lastly, 

creativity and critical thinking are essential skills for scientific inquiry, because they deal 

with the processes of generating and testing of hypothesis, respectively. "Good research is 

not about good methods as much as it is about good thinking” (Stake 1995, p. 19). 

 Pollard (1997, p. 182) describes how teachers might provide for negotiated 

curriculum, arguing that rather than reflect the judgments of the teacher alone, it builds 

on the interests and enthusiasms of the class and noting that “Children rarely fail to rise 

to the occasion if they are treated seriously. The motivational benefits of such an exercise 

are considerable”. According to Ernest (1991, p. 288), the role of the teacher should be to 

support this student-centered pedagogy, as manager of the learning environment and 

learning resources, and as a "facilitator of learning". Yet, the implied dichotomy between 

teaching and "facilitating" has been strongly contested by authors like Stewart (1993). 

Neyland (2004, p. 69) argues that a postmodern ethical orientation to mathematics 

education will shift the focus away from procedural compliance and onto direct ethical 

relationship between teachers and their students. In a participant-determined pedagogy, 

the learner would be seen as a growing and valued member of a local community, instead 
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of an educational product. Within such a discourse, mathematics education might 

embrace some of the following principles:  

1. mathematics curriculum is locally negotiated between schools, parents, and 

children  

2. flexible learning situations are collaboratively shaped between teachers and 

children  

3. learning situations are not constrained by specific learning outcomes – only broad 

goals are stated  

4. children engage in learning situations at their own pace and in a manner of their 

choosing  

5. children choose with whom to engage in the learning situations  

6. children seek information and assistance from a variety of sources, not just the 

teacher/textbook 

7. children assess their own learning according to collaboratively constructed 

assessment criteria  

8. all learning and assessment operates to enhance the physical and social well-being 

of children 

2.2.2 What IBL is not? 

“There ain’t no rules around here! We’re trying to accomplish something!” - 

Edison 

In traditional education, soft skills such as communication, collaboration, critical 

thinking and creativity (21st Century Skills), necessary for applying academic learning in 

real world contexts, are addressed only tangentially, if at all (Beairsto, 2011). The same can 

be said of higher-order skills in the revised cognitive taxonomy (Anderson et al., 2001).  
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 Although from the early 1900s the challenge of integrating thinking and content 

area knowledge concerned only elite education, currently it is expected that thinking and 

reasoning be included in all students' education (Kinder et al., 1991).  

 One aspect of higher-order skills is the organization of knowledge, notably the 

richness of connections: "The ability to access knowledge varies dramatically as a function 

of how well linked the knowledge is." (Prawat, 1989, p. 4) However, as indicated by 

Kinder et al. (1991, p. 207), most instruction does not provide indications, let alone 

specific instruction, to facilitate the linkage of knowledge. Inquiry-based approaches are 

powerful means for improving this situation, especially in mathematics education.   

 IBL stands in sharp contrast to the traditional approach, where teacher-initiated 

recall-type questions and I-R-F interactions (initiation-response-feedback) predominate 

and where pupils "go for an answer" (Campbell, 1986). Inquiry lessons are better 

described by pupils' "going for a question" (Adler, 1997, p. 243). In traditional classrooms, 

"pupils all do the same thing in the same way" (Adler, 1997, p. 236), while in IBL teaching 

and learning are differentiated, and the tasks are customized.  

 In Table 1 I summarize the main differences between traditional and inquiry learning:  
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Table 1. Comparison of traditional and inquiry approaches 

Traditional instruction Inquiry instruction  

1.     teacher-centered  

2.     information/procedures have priority 

3.     promotes knowledge volume  

4.     memorization/procedural skills are 

fostered 

5.    students learn by seeing 

6.     many students are not 

observed/supported in the  classroom, non-

participants are "left behind"  

7.     learning of recipes, rules and 

procedures  

8.     local/tactical thinking and perspective 

9.     communication is initiated/led by the 

teacher  

10.    students are receivers of the 

information dispensed by the teacher  

11.    teacher is the only source of relevant 

knowledge, only the information provided 

by him is required  

12.    the validity of knowledge is based on 

teacher's authority 

13.    promotes the basic 3 levels of Bloom's 

taxonomy 

14.    accurate recall of information and 

fidelity to the prescribed rules/procedures 

are the most desired outcomes  

15.    develops mostly hard skills  

16.    fosters cognition  

1. student-centered 

2. understanding has priority 

3. promotes knowledge depth 

4. reasoning/critical thinking skills are 

fostered 

5. students learn by doing 

6. every student is involved and each small 

group is observed/supported in 

cooperative inquiry  

7. learning of adaptive/flexible methods 

8. global/strategic thinking and perspective 

9. communication is initiated/led by the 

students 

10. students are posing questions, they are 

helped/guided by the pairs/by the teacher 

11. students construct/create their own 

knowledge, the teacher is a mentor/coach,  

providing expertise, modeling, guidance 

12. the validity of knowledge is based on 

evidence 

13. promotes the top 3 levels of Bloom's 

taxonomy 

14. creation of new and useful knowledge, 

invention, adapting/improving the 

available procedures are the most desired 

outcomes 

15. develops hard skills and soft skills 

16. fosters cognition and metacognition 
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17.    collaborative work is not encouraged 

18.    instruction follows a very precise 

schedule 

19.    linear teaching approach and 

curriculum 

20.   summative evaluation is done by 

traditional tests/exams, quizzes  

21.    promotes extrinsic motivation - 

teaching/learning to the test, grading is the 

main motivator 

22.   uniform tasks; low ability students get 

frustrated by lack of progress, gifted 

students become bored 

23. rigid, detailed and uniform curriculum 

17. team work and discussion are promoted  

18. instruction follows a flexible/adaptive 

schedule 

19. holistic teaching approach and curriculum 

20. assessment by creative tasks: projects, 

open tasks (requiring modeling, proof, 

inventing problems) 

21. promotes intrinsic motivation - challenge 

and curiosity are the main motivators 

22. open tasks, customized; the width and 

depth of student's work is according to 

his skills/drive 

23. advisory/flexible curriculum (it may be 

missing) 

 

Table 2. Comparison of common inductive approaches in education 

Feature IBL PBL POL CBL DL 

Questions or problems provide context for learning 1 2 2 2 2 

Complex, ill-structured, open-ended real-world problems 
provide context for learning  

4 1 3 2 4 

Major projects provide context for learning 4 4 1 3 4 

Case studies provide context for learning  4 4 4 1 4 

Student discover course material for themselves  2 2 2 3 1 

Primarily self-directed learning 4 3 3 3 2 

Active learning 2 2 2 2 2 

Collaborative/cooperative learning  4 3 3 4 4 

Note: 1 – by definition, 2 – always, 3 – usually, 4 – possibly 
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 Various features of the most common inductive approaches were presented by 

Spronken-Smith (2007) in Table 2 , adapted from Prince & Felder (2006). The acronyms 

in the first row have the following meanings: IBL = Inquiry Based Learning, PBL = 

Problem Based Learning, POL = Project Oriented Learning, CBL = Case Based Learning, 

DL = Discovery Learning. 

 The diagram in Figure 2 describes the mutual inclusions between IBL, PBL 

(Problem-based learning), CBL (Case-based learning), and Active learning. 

 

Figure 2. Relations between IBL, PBL, CBL, and Active Learning (Ako, 2008) 
 

 IBL falls under the realm of "inductive" approaches in education, which have the 

following features: they begin with a set of observations/data to interpret or a complex 

real-world problem, and as the learners study the data or the problem, they generate a 

need for facts, procedures and guiding principles.  

 Prince & Felder (2006, p. 123) state that inductive learning encompasses various 

teaching approaches, such as IBL, PBL, POL, CBL, and DL.  

 The timescale for IBL (over weeks or months) is typically much longer than for 

either PBL (hours to weeks) or CBL (minutes to hours). In PBL and CBL, the content and 

skills to be learned are usually far more thoroughly prescribed than in open inquiry; 

hence, they may be considered structured and guided forms of IBL (Ako, 2008).   



 

29 
 

 Maaß & Artigue (2013) identify IBL with discovery and distinguish it from PBL, 

when discussing about "more student-centered ways of teaching, such as inquiry-based 

learning or discovery learning, problem based learning, and mathematical modeling". 

Regarding IBL, DL, constructivist learning, problem solving or PBL, they say "all these are 

sometimes even said to be synonymous". 

 Most versions of inquiry learning see a continuing cycle or spiral of inquiry 

(Bruner, 1965). There is usually a strong caution against interpreting steps in the cycle as 

all being necessary or in a rigid order. In fact, inquiry learning is less well characterized by 

a series of learning steps than by the concept of situated learning (Lave & Wenger, 1991). 

This notion has been introduced by Lave & Wenger in order to emphasize that learning 

happens as a function of the activity, context and culture in which it occurs, rather than 

through abstract and decontextualized presentations. People learn through their 

participation in a community of practice, and learning is a social process of moving from 

the periphery of the community (apprenticeship) to its center (mastery). Most of this 

process is incidental rather than deliberate.  

 A five-steps cyclic model of inquiry learning has been proposed by Bruce & Davidson 

(1994) as shown in Figure 3: 
 

 

Figure 3. A cyclic model of inquiry (Bruce & Davidson, 1994) 
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 Actually, inquiry is not a sequential process. Two phases may interact even if they 

are not adjacent, and the influence may work in both senses when they are adjacent: for 

instance, preliminary findings (Create) may result in a decision to revise the original 

question (Ask) or to alter data collection procedures (Investigate). Therefore, non-cyclic 

models of inquiry have been proposed, e.g. by Krajcik et al. (2000, p. 284) as in Figure 4: 

 

Figure 4. A non-cyclic model of inquiry (Krajcik & al, 2000)  

 

IBL is manifested in a variety of curricular and instructional approaches, which can 

be roughly grouped according to the aspects of the inquiry cycle they emphasize:  

 Problem-based learning sets the formulation of questions as a task for the learner. 

An emphasis on rich, authentic materials for investigation can be seen in materials-based 

and research-based curricular approaches.  

 Project-based learning emphasizes the creative aspects of learning through 

extended projects and performances. Discussion and collaboration are important in 

cooperative learning and in much of the writing process work. Response-centered 

classrooms highlight the reflective and constructive aspects of meaning-making. (Bruce, 

2008a).  
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Various inquiry approaches and the stages emphasized by them are listed below: 

 Ask: open school; problem-based learning  

 Investigate: materials-based, open-world; resource-based learning; investigation-

based, research-based learning  

 Create: project-based learning  

 Discuss: cooperative learning; writing process 

 Reflect: constructivist learning; reader response; service learning   

 It seems appropriate to add an exploratory stage at the beginning of this cycle; 

such a stage would become the focus of the discovery learning, i.e. an inquiry approach 

"concerned with the initial development of understanding" (Beairsto, 2011).  

 Froyd et al. (2012) mention POL and PBL among the branches of IBL: "Inquiry-

based learning methods including problem-based and project-based learning (...) are 

products of research in cognitive psychology". However, Chan (2007, p. F3C-2) asserts 

that IBL is different from general PBL: "the former emphasizes the inquiry processes 

throughout the entire project while the later focuses on the development of the ultimate 

deliverables." Thus, IBL is a process-oriented approach, while POL is rather product-

oriented.  

 Additionally, Crick (2012, p. 689) claims that "some forms of project-based learning 

do not allow for this sort of enquiry at all if they begin with predetermined problems or 

questions which already have predetermined answers. The danger then is that the learner 

is more concerned with finding the right answer than formulating a solution."  

 The confusion involving IBL, POL, and PBL has not been cleared up by Allan 

(2007, p. 80), as well as Bransford & Stein (1993), when they described PBL as a  

"…comprehensive instructional approach to engage students in sustained, 

cooperative investigation. It is most commonly found in secondary education 

in the USA. It has been referred to also as problem-based learning and 
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inquiry-based learning. In the PBL approach, students are required to answer 

a question or develop a product for example. In doing this it is felt that they 

are able to take control of the learning environment and process, working in 

groups to complete a series of tasks to each the project outcome (Brogan 

2006). Because the project involves complex tasks, a range of inter-

disciplinary skills is developed as distinct from focusing on one aspect of 

knowledge or skill development – mathematics, for example (Blumenfeld et 

al., 1991)". (Bransford & Stein, 1993) 

 Gordon (2008, p. 24) agrees that "the distinction between inquiry based learning 

and other approaches to learning - such as problem based learning or project based 

learning - is in some respects quite fine." 

 The differences between several levels of inquiry and hands-on approaches have 

been presented by Bonnstetter (1998) in the form of the comparative Table 3. 

Table 3. Inquiry levels (Bonnstetter, 1998) 
 

 Traditional 
Hands-on  

Structured 
Inquiry  

Guided Inquiry Student Directed  

Inquiry  

Student Research 

Topic       Teacher Teacher Teacher  Teacher  Teacher/Student 

Question Teacher Teacher Teacher Teacher/Student  Student 

Materials Teacher Teacher Teacher Student  Student  

Procedure/ 

Design  

Teacher Teacher Teacher/Student Student  Student  

Result/Analysis Teacher Teacher/Student Student  Student  Student  

Conclusions Teacher Student  Student  Student  Student  
 

 

Teacher  Controlled ------------------------------------------------------------ Student Controlled    

Exogenous --------------------------Cognitive Development------------------------- Endogenous     

Focus on Teaching --------------------------------------------------------------- Focus on Learning 
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2.2.3 Implementation of IBL 

 Strategies of implementation 2.2.1.1

Maaß & Artigue (2013) classify the strategies employed in the implementation and 

dissemination of IBL into two main groups: Top-down approaches and Bottom-up 

approaches. 

 The top-down strategies are generally considered ineffective (Tirosh & Graeber, 

2003; Ponte et al., 1994). In Europe for example, an integration of IBL in science curricula 

has been achieved, but implementation of inquiry into school practice has not.  

 Bottom-up strategies, on the other hand, refer to groups of teachers working 

together, identifying their needs, developing their own questions, and dealing with them 

in a collaborative way (Joubert & Sutherland, 2009). These approaches risk neglecting 

organizational aspects of the change process and the planned expansion on a large scale. 

If they are conducted in isolation, school-based development is in danger of becoming 

introspective (OECD, 1998).  

 There is also a variety of combinations between these two main categories.  

 The implementation of IBL employs resources for the teaching, for professional 

development, and for assessment: videos of lessons, digital resources, curricular 

materials, etc. These resources are important for the dissemination of IBL, but they do 

not guarantee the success of such undertaking.  

 Another component of the transition to an inquiry approach is the training of 

teachers, including pre-service and post-service education (Ponte, 2008).   

 Typical strategies for implementing IBL are: 

- Project-oriented pedagogical approach 

- Cyclic inquiry model 

- Practical inquiry model 
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 Implementing investigative tasks essentially involves four-phases: tasks as planned 

and designed by the teacher; tasks as presented to the students; tasks as negotiated by 

students; and tasks as concluded by the students and the teacher (Ponte et al., 2003).  

 Some guiding principles for implementing inquiry (Ministry of Education Ontario, 

2013): 

 “start with questions and problems that students want to find out more about 

 place ideas at the center 

 work toward a common goal of understanding in the classroom 

 guide the inquiry toward valuable ideas, do not let go of the class 

 remain faithful to the student's line of inquiry when introducing him to new ideas 

 use expository teaching when needed, and inquiry approach when appropriate  

 Getting it started... 

 Make ideas the “central currency” of the classroom – the work of 

everyday teaching and learning. 

 Model classroom norms of respectful discussion. 

 Intervene to build momentum and to make sure all students 

understand and are invested in the ideas being discussed. 

 Build on spontaneous questions that cause students to wonder and to 

ask further questions. 

 Connect student questions and ideas to the big ideas of the 

curriculum. 

 Keep student thinking at the center by involving students in initial 

planning of the inquiry 
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Keeping it going… 

 Engage students in knowledge-building by bringing them 

together frequently to share thinking and 

 Discuss the big ideas of an inquiry. 

 Teach “on-the-spot” direct instruction mini-lessons when you 

see that students need to know certain pieces of information 

and have certain skills to move forward. 

 Balance content-specific language with everyday student talk. 

 Continually assess what’s happening in the inquiry to make 

judgments about when and when not to intervene. 

 Revisit initial theories and ideas about a question and reflect on 

the ways that the initial understanding differs from current 

understanding. 

  Reflecting on learning...  

 Explicitly teach students what metacognition or reflective thinking is – 

talk about how learning deepens when we plan for it, analyze it and 

monitor our progress. 

 Make sure students have time every day to practice metacognitive 

habits, such as reflecting on how they are progressing, how they are 

dealing with problems and how they are coming to new 

understandings. 

 Have students put the reflection questions into their everyday 

language to make them their own.” 

Several strategies have been proposed and tested in order to overcome the 

difficulties related to the scaling-up in the implementation and dissemination of IBL: the 
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Cascade Model, the setting up of local learning communities (e.g. networks of teachers 

with similar objectives), the setting-up of e-learning communities involving asynchronous 

communication through e-forums, etc.  

 Examples of successful implementation and dissemination projects from Europe:  

 Lamap ("La main à la pâte"), launched in 1996 by the French Academy 

of Science (http://www.fondationlamap.org ;  http://www.lamap.fr) 

 The national Austrian project IMST, launched in 1998 

(http://www.imst.ac.at) 

 PRIMAS, an international project launched in 2009 by the European 

Union (http://www.primas-project.eu) 

 Fibonacci, a project launched in 2010 by the European Union 

(http://www.fibonacci-project.eu) 

 Lamap aimed at promoting inquiry-based pedagogy in science education at 

primary school level. Its activities cover the whole country, thanks to a network of 20 

pilot centers having 3000 associated classes. In 2006, Lamap extended its activities toward 

junior high school.  

IMST (Innovations in Mathematics, Science and Technology Teaching) aims at 

implementing at nation-wide scale innovative teaching, including IBL.  

PRIMAS (Promoting Inquiry in Mathematics and Science Education) aims at a large-scale 

implementation of IBL within a funding period of 4 years. PRIMAS has a focus on pre-

service and in-service teachers’ development, with the participation of 14 universities 

from 12 countries. 

 Fibonacci’s duration was 38 months and it aimed at disseminating IBL through the 

development of twinning between Reference Centers (RC) and Twin Centers (TC), and 

the involvement of local community by creating a Community Board which would ensure 

the sustainability of developed actions. The project involves 25 members from 21 

http://www.fondationlamap.org/
http://www.lamap.fr/
http://www.imst.ac.at/
http://www.primas-project.eu/
http://www.fibonacci-project.eu/
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countries: Academies of Sciences, Universities, Teacher Education Institutions, etc. In 

2013, there were 60 centers participating (RC and TC).   

Several inquiry teaching approaches have been proposed and tested in the past in 

order to improve this situation, among them the renowned Moore method, implemented 

since 1911 by the professor Robert Lee Moore at the University of Pennsylvania in a strong 

form, and then at the University of Texas (Zitarelli, 2004) as guided discovery. Arguably, 

it was the most successful large-scale training for mathematics PhD ever used; however, 

the fact that only elite students participated, and even among them, only the most fitted 

were retained in the program, precludes any inference about the effectiveness of such 

approach in other contexts, especially with average students. It is a very student-centered 

approach in mathematics education. All the work is individual, guidance is minimal, and 

there is a fierce competition between students. Moore, himself, was highly competitive 

and felt that the competition among the students was a healthy motivator. In his classes, 

there was a limited to no use of books, only instructor notes were handed out throughout 

the semester. Such an approach is very research-intensive. Since research is the top level 

of inquiry (Bonnstetter, 1998), it requires a high degree of autonomy and proficiency in 

mathematical investigation from the student. The skills needed in order to operate at 

such level are acquired only after many years of training and are typically neglected in 

school education, up to graduate university level. Hence, Moore method (also called 

"Texas method") should be modified in order to be implemented in normal classrooms, 

and several versions of it have been proposed (e.g. Asghari, 2012; Mahavier, 1997; Chalice, 

1995; McLoughlin, 2008). In some of them, even small-group collaborative investigation is 

allowed (Davidson, 1971; Salazar, 2012).  

 Mahavier successfully used a modified Moore method for 15 years of teaching at all 

school levels, from fifth grade through college sophomore. He claims that "genuine Texas-

style teaching gets the student to achieve his maximum potential not only in 

mathematics course but beyond it as well, to appreciate the power of his own mind, and 

to recognize the beauty of learning". According to Mahavier (1999), three elements are 

crucial for the successful implementation of Moore method: caring about the students, 
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respect for learning, and enthusiasm in the classroom. In the period of writing his article, 

Mahavier employed Texas-rooted elements at a large, suburban, public high school. 

Students were generally of low economic status, and the results were encouraging, 

especially from the point of view of engagement and motivation. McLoughlin (2008) used 

this method for a long time at various undergraduate courses taught at Kutztown 

University of Pennsylvania, for example Introduction to Mathematics (given as a general 

education liberal arts course in mathematics, and required as a minimum level one). The 

results were rather mixed, and the author opines that even if it is more organic and 

natural to leave the student free to work on creating a proof or a counter-example and 

not be concerned with pace or how long a student takes to grasp a concept and produce a 

refutation, in practice such a thing is not possible and some scaffolding must be used.  

 Requirements  2.2.1.2

First of all, the implementation of IBL requires:  

 school's support for IBL (Adler 1997, p. 242) 

 teacher's skills in listening to, valuing, and pushing pupils in their 

interactions (Adler 1997, p. 243)  

 Regarding the students, researchers generally agree that:  

"(1) Inquiry skills often require some form of hypothetical-deductive reasoning 

as in Piagetian formal operations, and (2) students capable of using only 

concrete operational thought cannot develop an understanding of formal 

concepts. Thus, students lacking formal operational thinking abilities for a 

topic being studied in class will have a great deal of difficulty understanding 

inquiry-based activities related to the topic. The more familiar the activity, 

materials, and context of the investigation, the less likely students will have 

this difficulty. Students more easily learn observable ideas via inquiry-based 

instruction than theoretical ideas. For example, IBL is likely to be effective for 

showing many students that chemical reaction rates depend on the 
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concentrations of reactants. On the other hand, inquiry-based methods are 

poor as a means toward helping most students understand how scientists 

explain the phenomena, via the kinetic-molecular theory. Inquiry-based 

instruction is probably most effective in developing content achievement 

when the content is more concrete than theoretical." (Colburn, 2006) 

 Pólya and Lakatos identified two specific attitudes required from the students 

when performing a mathematical inquiry: courage and modesty. Pólya (1954) thought 

intellectual courage and modesty to be essential to the activity of acquiring mathematical 

knowledge. He asserted that the doer of mathematics must assume an "inductive 

attitude" and be willing to question both observations and generalizations:  

"In our personal life we often cling to illusions. That is we do not dare to 

examine certain beliefs which could be easily contradicted by experience, 

because we are afraid of upsetting the emotional balance. [In doing 

mathematics] we need to adopt the inductive attitude [which] requires a 

ready descent from the highest generalizations to the most concrete 

observations. It requires saying "maybe" and "perhaps" in a thousand different 

shades. It requires many other things, especially the following three:  

Intellectual courage: we should be ready to revise any one of our beliefs 

Intellectual honesty: we should change a belief when there is a good reason to 

change it 

Wise restraint: we should not change a belief wantonly, without some good 

reason, without serious examination" (Pólya, 1954, p. 7) 

 Pólya (1954) called these the "moral qualities" required in order to do mathematics 

and claimed that although examining one's assumptions is an emotionally risky matter, 

such an attitude is essential for the practice of good mathematics. Also, Lakatos (1976) 

argued that making a conjecture (i.e. "conscious guessing") involves taking a risk: it 

requires the admission that one's assumptions are open to revision, that one's insights 
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may have been limited, or that one's conclusions may have been inappropriate. Exposing 

one’s own conjectures to others' review increases personal vulnerability. Hence, in the 

midst of an argument among his students about a theorem in geometry, the teacher in 

Lakatos' book (1976, p. 30) announced: "I respect conscious guessing, because it comes 

from the best human qualities: courage and modesty."  

 Another requirement pertains to students’ cognitive skills. Kuhn et al. (2000, p. 

496) claim that the arguments supporting IBL merits rest on a critical assumption, 

namely that students possess the cognitive skills that enable them to engage in these 

activities in a way that is profitable with respect to the objectives identified previously. If 

students lack these skills, inquiry learning could in fact be counterproductive, leading 

learners to frustration and to the conclusion that the world, in fact, is not analyzable and 

worth trying to understand.   

 Mayer (2004) has shown the danger of equating a constructivist vision of active 

learning (i.e., the idea that deep learning occurs when students engage in active cognitive 

processing during learning) with a seemingly corresponding vision of active methods of 

instruction (i.e., instructional methods emphasizing learning by doing such as discovery 

learning). Mayer (2004, p. 15) refers to this confusion as the constructivist teaching 

fallacy, namely the idea that active learning requires active behavior. Instead, the goal of 

constructivist methods is to elicit appropriate cognitive activity during learning - a goal 

that does not necessarily require behavioral activity: 

 “The formula constructivism = hands-on activity is a formula for educational 

disaster.” Mayer (2004, p. 17) 

 In a review of constructivism (D'Angelo et al., 2009), Mayer argues that according 

to various studies pure discovery methods lead to poorer learning than guided discovery 

or direct teaching (Shulman et. al, 1966; Sweller, 1999; Brainerd, 2003; Kirschner et al., 

2006). Based on Sweller's (1999) cognitive load, Mayer (2001) thinks that discovery 

methods of instruction can encourage learners to engage in extraneous cognitive 

processing—that does not support the instructional goal. Because cognitive resources are 
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limited, when a learner wastes precious cognitive capacity on extraneous processing, they 

have less capacity to support essential cognitive processing (to mentally represent the 

target material) and generative cognitive processing (to mentally organize and integrate 

the material). Guidance (scaffolding, coaching, and modeling) and direct instruction are 

effective when they help guide the learner's essential and generative processing while 

minimizing extraneous processing. Discovery learning is particularly ineffective when 

students do not naturally engage in appropriate cognitive processing during learning, a 

situation that characterizes most novice learners.  

 Yet, other studies indicate that discovery may be useful as a first stage in 

knowledge-building (e.g., in primary education) and that it greatly enhances motivation. 

In general, similar arguments may be stated regarding open inquiry vs. guided inquiry or 

vs. direct teaching, which explains why pure inquiry is seldom encountered in education 

outside of science fairs.  

 Regarding teacher's abilities required in order to successfully implement IBL, 

Makar (2014, p.76) contends that a key element was "teachers' skill in provoking students' 

reasoning and developing a class culture which valued substantive conversation". A 

cultural/institutional element, which also involves teacher's ability and willingness to 

promote an inquiry environment for the instruction is the development of mathematical 

inquiry attitudes and norms in the classroom. Makar (2014, p. 66) emphasizes that the 

classroom culture was one in which the students repeatedly shared and discussed 

emerging ideas and were encouraged to debate and articulate their reasonings as they 

evolved. Cobb (1999) stresses that norms of collaboration and public debate are central to 

an inquiry-based environment. In Makar's experiment, students had been developing 

these norms through the year and this could be observed in the way they critiqued and 

probed each other's ideas, built their ideas on other’s and created new ways of talking 

about their emerging understandings that were “sensible”, “in the range” and “typical 

around the world” (Makar 2014, p. 75). In order to use effectively the inquiry approach, 

the teacher needs to be able to change their role "from an instructor to a facilitator", 

which is a challenging requirement and may explain why IBL does not seem to be 
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widespread in Europe (Maaß & Artigue, 2013). According to Schaumburg et al. (2009), 

successfully carrying out such a shift on a large scale requires supporting measures such 

as professional development courses, but these measures were not taken into account 

when IBL was being implemented in Europe.  

 Limitations/Obstacles in the implementation of IBL 2.2.1.3

A serious obstacle encountered when implementing IBL is the inherent complexity          

of genuine research and inquiry, which are quite similar to scientific investigation: 

"Inquiry activities targeted to young children may have simple goals that do 

not extend beyond description, classification, or measurement of familiar 

phenomena. However, inquiry activities designed for older children typically 

have, as their goal, the identification of causes and effects. The context is 

multivariate, and the goal becomes one of identifying which variables are 

responsible for an outcome or how a change in the level of one variable causes 

a change in the system. Equally important is the identification of non-causal 

variables. Are students of the elementary and middle school grades (in which 

inquiry activities are most commonly used) capable of inferring such relations 

based on investigations of a multivariable system? The literature on scientific 

reasoning indicates significant strategic weaknesses that have implications 

for inquiry activity (Klahr, 2000; Klahr et al., 1993; Kuhn et al., 1988, 1992, 

1995; Schauble, 1990, 1996). But the most critical aspect is that students at 

the middle school level, and sometimes well beyond, may have an incorrect 

mental model that underlies strategic weaknesses, and that impedes the 

multivariate analysis required in the most common forms of inquiry 

learning." (Kuhn et al., 2000, p. 497)  

 The "strategic weaknesses" mentioned above are essentially higher-order cognitive 

skills, which are not stimulated in secondary school and even beyond, at undergraduate 

level. Part of the difficulty students have with proof as a mathematical method may stem 

from its apparent redundancy: proof is often first emphasized in geometry, a field where 
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many proofs seem unnecessary because the visual representation itself makes the result 

so obvious. For instance, Healy (1993) recounted the story of his class in which groups of 

students presented their own experimental results and reasoning to the class and voted 

on whether or not to include these in a book representing the class's work over the year. 

de Villiers (1998) remarks that students' difficulty of perceiving a need for proof is well 

known to all high-school teachers and has been identified without exception in all 

educational research as a major problem in the teaching of proof. He argues: who has not 

yet experienced frustration when confronted by students asking: "Why do we have to 

prove this?" de Villiers, like many other researchers, explained this fact by the visually 

character of geometry, which makes many results seem obvious: "the students do not 

recognize the necessity of the logical proof of geometric theorems, especially when these 

proofs are of a visually obvious character or can easily be established empirically" 

(Gonobolin 1975, p. 61).  

 Further, Goldenberg et al. (1998) argue that in the most common curricula, both in 

and out of the U.S.A., geometry represents the only visually oriented mathematics that 

students are offered. Curricula tend to present an otherwise visually impoverished, nearly 

totally linguistically mediated mathematics, a mathematics that does not use, train, or 

even appeal to the "metaphorical right-brain", and this choice has significant side effects 

because visual thinking can play a key role in developing students' understanding (Tall, 

1991). Goldenberg et al. (1998, p. 5) mention that only 50% of U.S. students ever take high-

school geometry, and even within geometry more emphasis is put on verbal rather than 

on visually based reasoning.  

 Goodchild et al. (2013, p. 402) identified an obstacle for inquiry in the official 

mathematics syllabus prescribed for the course. The syllabus may lack challenge and 

could be boring, inadequate for investigation or discovery. For example, an introductory 

course in linear functions where the content has already been met before does not bring 

excitement and fails to provoke students' engagement. The task proposed to the students 

may be boring too, as was the case with the research conducted by Goodchild et al. (2013, 

p. 403). The teachers participating at the experiment chose a task that was artificial, not 
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challenging and unrelated to real world, so it did not make much sense for the students   

Moreover, the content to be learned may be unsuitable for open-ended tasks. Goodchild 

et al. identified a specific obstacle for IBL in students' inability to make links between 

related topics and to take knowledge from one task within a topic to another. Less 

specific obstacles are students' behavior (restlessness) and the lack of space within the 

classroom. Since investigations typically require a lot of persistence and reflection, such 

behavioral issues rule out prolonged inquiry tasks and hinder the implementation of IBL. 

 The lack of space within the classroom is an obstacle for all collaborative work and 

prevents experimenting with alternative forms of organization and grouping. A serious 

obstacle for inquiry learning is the pressure of standard evaluations or assessments, since 

students are mostly motivated by grades. As Goodchild et al. (2013) remarked, the 

curriculum hangs as a cloud over all thoughts of development because students must be 

prepared for their exams, and the teachers spend a substantial amount of time in 

preparations for these tests. Such focus on grades and exams has already generated a 

trend toward an extreme form of test-oriented instruction, also known as "teaching to the 

test". Actually, inquiry learning is a completely different paradigm from traditional 

instruction, and not just an alternative way of presenting the mathematics content - that 

is only the lowest form of inquiry! Inquiry learning requires a different curriculum and 

specific forms of assessment, so it is not compatible with traditional evaluations. Actually, 

the main obstacles for the implementation of inquiry are the presence of standard 

evaluations and the pressure of uniform tests at secondary level - which shape the entire 

mathematics education system. Higher order skills are desirable outcomes, but they are 

seldom tested in standard evaluation, and a basic principle in education says: that which 

is not assessed, is not learned (Bain, 2004). 

 Adler (1997, p. 242) describes two obstacles in the implementation of IBL: 

 broader schooling system where traditional approaches to 

mathematics teaching are dominant 

 canonical school  mathematics curriculum  
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 Bruce et al. (1994, p. 9) hold a similar view:  

"The curriculum must be student-centered in an Inquiry Model, because the 

meaningfulness of experiences depends on the student's own knowledge, 

values, and goals. Nevertheless, teachers have vital roles to play as supporters 

of inquiry and as experienced people engaging in inquiry themselves. The key 

question is: do the teacher's actions support the inquiry and open up 

possibilities, or do they establish constraints and limits?"  

 Nicol (1998) describes the challenges of questioning, listening, and responding 

that are met by teachers when they try to introduce IBL in their classrooms. She mentions 

the tensions often experienced by prospective teachers with the kinds of questions posed 

and the reasons for posing them, with what they are listening for, and with how they 

respond to students' thinking and ideas.  

 During the experiment performed by Nicol, some teachers displayed an 

inadequate scaffolding (forceful guiding), a lack of visualization tools (no diagrams to 

help understanding), or they missed the opportunities for discovery due to a 

misconception regarding IBL (a belief that the teaching is successful if the student 

manages to arrive at the desired result, even if this is done only with a strong support 

from the teacher, and that the teacher must keep a full control of  student's learning 

process). A too strong guidance has also been displayed in several instances during the 

experimental research of Elbers (2003). Since excessive scaffolding spoils the pleasure of 

discovery and decreases intrinsic motivation, too much guiding or teacher's inability to 

provide the right amount of guiding to the students represents an obstacle for the 

implementation of IBL.  

 Another issue revealed by the research of Nicol (1998) is teacher's lack of 

intellectual courage and honesty: even if the attempt to perform an inquiry-based lesson 

has been a total failure, the teacher evaluates their teaching in superlative terms, and 

congratulates herself for making a good-looking pedagogy. The lack of impartiality and 

the refusal to face her own errors and shortcomings are serious obstacles for an adequate 
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use of inquiry instruction. When introducing a new pedagogical approach, the teacher is 

also a learner; and in order to successfully learn anything we need to have an attitude of 

learners, not one of "knowers." Also, in the classroom, a teacher should display the 

appropriate attitude toward pupils - and not one of competitor, judge, etc. They should 

be ready to confront negative feelings about their competence, self-doubt, and a 

sentiment of inadequacy. The research of Nicol (1998) indicated that a main obstacle to 

the implementation of IBL is the teacher's aversion to the loss of control, which leads to a 

teacher-centered approach, incompatible with inquiry.  

 Zack & Graves (2002) indicate classroom size as an obstacle for IBL. They 

recommend a reduction of the classroom to only 12-13 students in order to make inquiry 

effective. Another obstacle that occurred in collaborative inquiry during their research 

was the problematic participation of a member of a team, namely when his participation 

dropped down dramatically. In general, one of the main problems in collaborative 

learning is the lack of involvement of some students. Hence, teacher's lack of skills in 

collaborative learning and an inadequate grouping of students may become significant 

obstacles for the successful implementation of collaborative inquiry.  

 Walls (2005, p. 754) emphasizes teachers' difficulty in passing from traditional to 

inquiry approach: 

"Although recent shifts in mathematics education have strongly encouraged 

teachers to select or design tasks for interest or relevance, and increasingly 

expect or even compel children to participate by sharing their thinking as they 

undertake these tasks, it is seldom considered essential that children are 

consulted about the context, content or efficacy of such tasks. Irrespective of 

how open or closed the tasks may be, task-oriented pedagogies construct 

mathematical learning as a form of compulsory labor divided into discrete 

units of work which must be at least attempted and preferably completed by 

the learners, and by which learners’ performances might be judged. 

International moves toward more expansive and connected mathematics 
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have been tempered by increasing specificity of learning outcomes. It is 

believed that armed with the correct training and diagnostic tools, teachers 

will be better able to make the most significant decisions about what 

mathematics their pupils will learn, when they will learn it, and how that 

learning will take place. Such approaches diminish opportunities for learners 

to select learning contexts and to direct their own learning, and overlook 

significant learning factors such as children’s social networks, first 

languages, current understandings of the world, sensitivities, interests, 

passions, and aversions."     

 Standard teaching practices are a huge obstacle when implementing IBL:  

"Data from different studies and reports show that highly structured teaching 

practices are dominant, to the detriment of student-oriented practices 

(OECD, 2009). These act as difficult obstacles to the introduction of 

interdisciplinary oriented tasks that follow an inquiry-based learning 

approach." (Maaß et al., p. 373) 

 Other challenges are common to many student-centered or collaborative 

pedagogical approaches:  

 issues of power and control (Adler 1997, p. 240) 

 teacher's dilemmas of mediation: listening to and validating diverse 

perspectives vs developing mathematical communicative competence; 

moving effectively between learners' informal  expression of their 

thinking and a more formalized mathematical discourse (Adler 1997, 

p. 241) 

 One initial obstacle to the adequate implementation of IBL in the classroom is the 

existence of a so-called "illusory zone of promoted action", defined by Blanton et al. 

(2005, p. 14) as "a zone of permissibility that the teacher appears to establish through 

behaviors and routines used in instruction, but in actuality, does not allow". A study by 
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Hussain et al. (2013, p.209) has revealed a teacher behavior that hinders the effectiveness 

of inquiry lessons: "In the early lesson what appears to be promoted (inquiry learning) is 

only realized at a surface level, such as students working in small groups... What the 

teacher appears to allow is not allowed in actuality."  

 Another issue when implementing inquiry instruction is the difficulty of extending 

students' Zone of Free Movements (ZFM) and Zone of Promoted Actions (ZPA), when the 

students have internalized an (old) ZFM/ZPA system which shapes their values, actions 

and expectations about mathematics and mathematics learning (Hussain et al., 2013). 

Such inertial forces manifest not only in students', but also in teachers' behavior.  

Therefore, teacher's deep-seated routines or habits, as well as their prior beliefs and 

misconceptions about what constitutes "good teaching" and what is inquiry learning, are 

serious obstacles for the implementation of IBL. Further, Hussain et al. (2013) remark that 

the crux of the problem is twofold: students need time/routines in order for their values, 

actions and expectations about mathematics and mathematics learning to be 

transformed, and the teacher has to extend the habitual ZPA and ZFM in the classroom. 

Hence, time constraints represent a major obstacle and a source of limitations for IBL: 

inquiry can only be implemented on a long term basis, since it attempts to build habits of 

mind (e.g. higher order thinking) and attitudes (e.g. autonomy, persistence, openness to 

criticism, investigative attitude). In contrast to theoretical and procedural knowledge, 

attitudes are the most difficult to shape or to change, therefore authentic inquiry learning 

requires a steady use of investigation in the classroom and, preferably, a school policy 

that encourages the use of inquiry instruction at all science classes. In this respect, Dorier 

& Garcia (2013) believe that factors present at the systemic level represent serious 

obstacles for the implementation of inquiry learning, and could explain the poor 

dissemination of IBL in Europe.  

 Since research has shown that inquiry is negatively correlated with speed and 

difficulty (Fresko & Ben-Chaim, 1986), teachers should not attempt to cover a large 

content area or to deal with difficult topics by using inquiry approaches. 
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 According to Goodchild et al. (2013), the use of inquiry starts off as a mediating 

tool in the practice (e.g., an inquiry-based task is used as a tool to engage students in 

mathematical thinking) and shifts over time to become an inquiry stance or an inquiry 

way of being in practice - when teachers and/or students become “inquirers” as one of the 

norms of practice. Goodchild et al. discuss about the necessary move toward an inquiry 

"way of being", and conclude: "inquiry is slow to develop, this we certainly learned". Thus, 

wholesale implementation of inquiry is a long term undertaking. Moreover, the teachers 

involved in the experiment realized that the exploratory approach was hugely demanding 

on their time, both in taking time for planning and in valuable classroom time. This is an 

additional obstacle related to IBL, namely the incertitude and the higher risk assumed by 

the teachers, compared to traditional instruction. Implementation of IBL has to be judged 

according to the ratio between the time/effort invested and the perceived pedagogical 

benefits, i.e. the "return on investment". In the experiment of Goodchild & al. (2013) the 

implementation was unsuccessful and the results were disappointing, mainly because the 

tasks presented to the students did not manage to elicit any excitement or interest from 

them. This situation emphasizes the importance of instructional design in IBL.  

 An example of successful implementation of inquiry, with an excellent choice of 

the tasks assigned to the students, is the experiment presented in Makar (2014). The 

researcher proposed a challenging, real-life, ill-defined, open-ended and authentic 

problem, which aroused children's interest and led to their engagement. Also, Elbers 

(2003) suggests that teachers should organize their inquiry lessons around problems 

which are topical and meaningful for the students. This requirement implies that 

teacher's lack of ability in choosing stimulating tasks would be an obstacle to the 

implementation of IBL, a fact which has been proven by the studies of Goodchild et al. 

(2013) and Makar (2014).  

 Hussain et al. (2013, p. 300) acknowledge that although Vygotsky's Zone of 

Proximal Development (ZPD) is widely recognized as an important construct, the 

practical use of this concept is somehow problematic because it is not possible to 

determine the limits of a learner's ZPD and thus, the limits of his ZPA or ZFM. Moreover, 
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ZPD can only be interpreted as an attribute of an individual; and classrooms have many 

individuals, with large differences between them from the point of view of skills, interests, 

self-drive, habits of mind and attitudes. As a possible solution, Hussain et al. suggest the 

use of Mercer's intermental development zone, a collective zone related to ZPD which 

may be useful for understanding how interpersonal communication can aid learning. 

There is still the danger, when dealing with ZPD, that the "object of knowledge" is viewed 

by the teacher as a static, acultural object, a sort of Platonic ideal form to be "transmitted" 

to students. Indeed, the ZPD is frequently thought of and applied in a one-sided manner 

that juxtaposes a more knowledgeable teacher or peer and a less capable learner (Hussain 

et al., 2013, p. 301). ZPD can be defined only for a maximum cognitive load that can be 

sustained by the learner over a given time frame, which in turn depends heavily on 

learner's motivation, personal interest in performing that specific task, and also on his 

compatibility (mental, emotional, etc.) with the more knowledgeable tutor. This obstacle 

concerns not only IBL, but all approaches where ZPD is employed.  

 Inquiry is inherently open-ended, therefore it is not possible to plan in detail 

anticipated trajectories of learning, as is commonly advocated for instructional design. 

Traditional lesson planning does not operate in an inquiry-based approach. In IBL, the 

teacher has to adopt an "opportunistic", adaptive, situated (i.e. context-dependent) 

strategy, and this is clearly a serious challenge for many teachers.   

 A significant difficulty related to the implementation of IBL is the scaling-up from 

school level to large-scale, especially when extending the action to international level 

(Maaß & Artigue, 2013).  

2.2.4 IBL in Geometry 

"A youth who had begun to read geometry with Euclid, when he had learned 

the first proposition, inquired: 'What do I get by learning these things?' So 

Euclid called his slave and said, 'Give him threepence, since he must make 

gain out of what he learns.'" - Stobæus (Gow, 1884, p. 195) 
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2.2.4.1 Geometry and proof, a historical perspective 

Since early antiquity, the great civilizations of Babylon, Egypt, China, India and Greece 

have used geometry for practical purposes such as the measuring of areas and volumes, 

civil engineering and religious activities. For thousands of years, geometry has been the 

main "applied science", but only the Greeks managed to develop a system of thinking 

based on abstract geometry. The axiomatic construction of classical geometry has been 

accomplished by Euclid in his work "Elements of geometry", which remained for two 

millennia the main textbook used by school students.  

3 Ptolemy Soter founded the great Library of Alexandria and probably personally 

sponsored Euclid is his mathematical activity. (Gow, 1884, p.195) He found 

Euclid's Elements too difficult, and asked if there were an easier way to master 

it. Euclid famously replied: "Sire, there is no Royal Road to geometry."            

(Proclus, 1970, p. 57) 

 Any philosopher of science had to acquire deductive reasoning proficiency by the 

thorough study of Euclid's "Elements", and some manuscripts even include the 

annotations of famous scientists such as Galileo Galilei (Euclid, 1558).  According to 

Grabiner (2015), Euclid's work is the earliest example we have of a systematic approach to 

geometry. The method consisted in proving statements (theorems) by deriving them 

from a set of obvious truths or axioms, through the use of logic. A modern expression of 

this approach is the rationalist belief of Descartes that if we start with self-evident truths 

and then proceed logically deducing more and more complex truths from these, then 

there's nothing we couldn't come to know. A contemporary of Descartes, Spinoza, wrote 

an Ethics Demonstrated in Geometrical Order where a discussion about God and the 

divine nature is led in the form of definitions, axioms, propositions and corollaries, with 

the Q.E.D. duly appended after the proofs. Newton demonstrated Euclid's influence too 

when he called his principles of motion "axioms" and deduced the law of gravity in the 

form of two mathematical theorems. He also stated that "it's the glory of geometry that 

from so few principles it can accomplish so much."  
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"I cannot say that I ever saw him laugh but once... It was upon occasion of 

asking a friend to whom he had lent Euclid to read: what progress he had 

made in that author, and how he liked him? He answered: (...) of what use 

and benefit in life that study would be to him? Upon which Sir Isaac was very 

merry." (Whiteside, 1974, p. XIII) 

 Even the politician Thomas Jefferson, who was not ignorant in mathematics, stated 

the American Declaration of Independence as the conclusion of a logical argument, 

where he employed formal expressions such as: "We hold these truths to be self-evident", 

"therefore...", and the word "prove" (Grabiner, 2015). 

 In Ancient Greece, geometry has been revered as the queen of sciences, a realm of 

perfection where beauty, order and truth come together. A distinctive trait of Greek 

geometry was that its goals were much broader than learning a specific content, or 

acquiring a needed tool for practical applications (such as engineering), as is the case 

nowadays. Geometry was regarded as the key for understanding harmony, beauty, and 

higher philosophy. In Pythagoras's School, apprenticeship was based on a thorough study 

of geometry, in order to achieve proficiency in logical reasoning and argumentation. For 

the Greeks, proof was a form of argument, and not a ritual as it is perceived now by many 

students (Lehrer & Chazan, 1998, p. x). In modern times, the outlook has become one 

determined by a kind of philosophical rationalism, with the formalist assumption that 

mathematics in general (and proof in particular) is absolutely precise, rigorous, and 

certain. Such a view is still dominant among mathematics teachers and mathematicians.  

 Hence, validation (verification, conviction) is often seen as the only role or 

purpose of the proof, which is narrowly regarded merely as a means to remove personal 

doubt or that of skeptics (de Villiers, 1998). With very few exceptions, teachers of 

mathematics seem to hold the naive view described by Davis & Hersh (1986) that behind 

each theorem there stands a sequence of logical transformations moving from hypothesis 

to conclusion. As pointed out by Bell (1976), this view avoids consideration of the real 
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nature of proof, because conviction in mathematics is often obtained by quite other 

means than that of following a logical proof.  

 Indeed, proof is not necessarily a prerequisite for conviction -   to the contrary, 

conviction is far more frequently a prerequisite for the finding of a proof. A 

mathematician simply does not think: "Hmm... this result looks very doubtful and 

suspicious; therefore, let's try to prove it." For what other reasons would we spend 

sometimes months or years to prove certain conjectures, if we weren't already reasonably 

convinced of their truth? (de Villiers, 1998, p. 375). Mathematicians usually make 

discoveries inductively, but prove them deductively:  

"Having verified the theorem in several particular cases, we gathered strong 

inductive evidence for it. The inductive phase overcame our initial suspicion 

and gave us a strong confidence in the theorem. Without such confidence we 

would have scarcely found the courage to undertake the proof which did not 

look at all a routine job. When you have satisfied yourself that the theorem is 

true, you start proving it." (Pólya 1954, pp. 83-84) 

 Absolute certainty is virtually missing in mathematical research, and a high level of 

conviction may be reached even in the absence of a proof. For instance, in support of still 

unproven twin prime pair theorem and Riemann hypothesis, the "heuristic evidence" is so 

strong that it carries conviction even without rigorous proof (Davis & Hersh, 1983, p. 369). 

Proofs themselves are not the absolute truth, as they may contain errors (sometimes even 

fatal). For instance, Arenstorf published in 2004 a purported proof of the twin primes 

theorem. Unfortunately, a serious error was found in the proof, so the paper was retracted 

and the twin prime conjecture remains fully open. A former editor of the Mathematical 

Reviews disclosed that half of the proofs published in it were incomplete and/or 

contained errors, although the theorems they were purported to prove were essentially 

true (Hanna, 1983, p. 71).  

 The fundamental issue with mathematical proving is not the risk of making errors, 

since wrong statements can be disproved relatively easy with counterexamples, but the 
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fact that gaps in demonstration cannot be detected by logical means. Indeed, if  A and B 

are both true, then A implies B is logically true and we can formally write  A → B , but 

this is not a mathematical proof by any means since it does not say anything about the 

path from A to B, how we get to B when we know that A is true. For example, if Fermat 

would have written the following "proof" of his last theorem: 1 + 1 = 2 implies the theorem, 

then from a logical point of view he would have been absolutely correct, since both 

statements (1+1 = 2, and Fermat's last theorem) are true, but from a mathematical point of 

view he would not have proven anything, as the path from 1 + 1 = 2 to the theorem is still 

missing, the gap remains the same.  

 Moreover, the "acceptable" steps in a rigorous proof for a novice would be much 

smaller than for an expert, so the amount of details necessary to convince an audience of 

beginners must be far larger than at a mathematical congress. As a result, even correct 

proofs are seldom detailed and "complete" - complete simply means providing enough 

details to convince the intended audience (Davis & Hersh 1986, p. 73).  

 Attempts to construct rigorously complete proofs lead to such long, complicated 

demonstrations that their evaluation becomes impossible. Even the proof for the 

relatively simple theorem of Pythagoras would take up at least 80 pages, according to 

Renz (1981, p. 85).  

 To conclude, when the result is intuitively self-evident or supported by empirical 

evidence, proof is not concerned with "making sure", but rather with "explaining why". 

For most mathematicians, the clarification/explanation aspect of a proof is probably of 

greater importance than the aspect of verification (de Villiers 1998, p. 378). For instance, 

Halmos noted that although the computer-assisted proof of the four-color theorem 

convinced him that the theorem was true, he would still personally have preferred a 

demonstration which also gave an understanding (Albers, 1982). A "good" proof has been 

defined by Manin (1981, p. 107) as one which "makes us wiser" and by Bell (1976, p. 24) as 

one which conveys "an insight into why the proposition is true", therefore explanatory 

power is a good criterion for judging proofs.   
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2.2.4.2 Theoretical researches and models 

"It has often been said that geometry is the art of applying good reasoning    

to bad drawings. This is not a jest, but a truth which deserves reflection."    - 

Poincaré (1920, pp. 59-60) 

Although since the age of Euclid it had been widely acknowledged that geometry involves 

specific ways of thinking, there are few theoretical models for the geometric reasoning. It 

may be argued that part of geometry's specificity is that it deals with concepts and generic 

objects rather than with instances or particular cases of abstract notions. The saying of 

Poincaré highlights the fact that in geometry, when trying to build a proof, one must be 

careful not to be entrapped by some particularity of a "bad" drawing, which is not among 

the premises. Also, direct measurements on a drawing cannot be used in demonstrations.  

 The research about how children develop understanding in geometry has been 

rather limited, as compared with research involving other concepts, such as numbers. 

Even if Piaget and his coworkers published two significant studies relating to this area, 

The child's conception of space (Piaget & Inhelder, 1956) and The child's conception of 

geometry (Piaget, Inhelder, & Szeminska, 1960), little impact on classroom practice has 

resulted. Part of the problem lies with Piaget's questionable "topological primacy theory", 

around which it has proven difficult to build a school syllabus (Pegg & Davey, 1998, p. 

109).  

 The result of all these problems and of their own classroom experience has been 

the development by van Hiele of a theory describing students' growth in understanding 

geometry by means of five levels or stages, and proposing five corresponding teaching 

phases, such that instruction takes into account the development of student's thinking 

inside geometry, and not just his general cognitive stages (as prescribed by Piaget). 

Progression from one level to the next is not the result of maturation or natural 

development. According to van Hiele (1986, p. 41), "the levels are situated not in the 

subject matter but in the thinking of man", and it is not by exposure to a higher level 

content that students’ progress in their geometric thinking; rather, it is the nature and 
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quality of the experience in the teaching/learning process that influences a genuine 

advancement from a lower to a higher stage. Research has proven that van Hiele's stages 

are not always sequential and clear-cut, that growth in the period between two levels is 

somehow continuous, that students do not always have a fully developed set of objects at 

a given level before they move to the next, and that objects of an earlier level are not 

subsumed completely by a higher level (Pegg & Davey, 1998, p. 111).  

2.2.4.3 Implementation 

Despite its glorious past and perennial importance, dating back from the origins of 

civilization, and a recent resurgence as cutting-edge mathematics, geometry and space 

visualization in school are often compressed into a caricature of Greek geometry, 

generally reserved to the second year of high school (Lehrer & Chazan 1998, p. ix).  

 The result is not only an impoverished understanding of space, but also a general 

lack of mathematical reasoning, argumentation, and investigation skills among students 

and adults alike. Indeed, geometry has traditionally been considered the ideal field for 

acquiring and developing such skills, but formalist views of mathematics as a "game" in 

which abstract symbolism, algebraic shorthand and formulas are manipulated, prevailed 

in the second half of the 19th and the early part of 20th century. More recently, various 

education reforms have put exploration, sense-making, and empirical understanding of 

concepts in the center of mathematical instruction. As stated by Sanni (2007), learning 

geometry is an investigative rather than instructive process.  

 According to Lehrer et al. (2013, p. 366), geometry is a very promising site for 

inquiry learning because spatial reasoning supports the development of skills and 

attitudes that are essential for generating and revising mathematical knowledge. Moise 

(1975, p. 477) even claimed that traditional Euclidean geometry course is “the only 

mathematical subject that young students can understand and work with in 

approximately the same way as a mathematician”. Moise pointed out that 

mathematicians work deductively (actually, they prove and present mathematical 
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statements in this way) , and studying Euclidean geometry gives students a unique 

opportunity to experience deductive development of an axiomatic system.  

 Goldenberg et al. (2012, p. 3) hold that geometry can help students connect with 

mathematics, and geometry can be an ideal vehicle for building a "habits-of-mind 

perspective" (Goldenberg et al., 1998). Posing questions is an essential habit-of-mind in 

IBL, and its promotion through investigative geometry has been explored in a research by 

Lehrer et al. (2013). Their study shows that questioning is an often neglected aspect of 

mathematics, and that posing productive questions is a difficult task. As one student 

reflected, "asking good questions is hard".  

 A modern trend in mathematical storytelling focuses on applications - how a body 

of facts and ideas is used. Although most prevalent curricular story is a tale of logic, in 

actual implementation this tale is often so abridged that the original logic is apparent 

only to the teacher, not to the student. In such a story, mathematical facts and ideas are 

presented in a linear sequence, with each rung of the ladder building directly from the 

previous one. However, mathematical discoveries rarely occur in such an orderly fashion, 

nor does this logical sequence accord well with what is known about how students learn 

mathematics. How common it is to read a problem solution and feel, "What a clever trick 

to use here! Why, it makes things so simple, even I can understand it, but how on earth 

did anyone ever think of it in the first place?" (Goldenberg et al., 1998, p. 4).  

 Goldenberg et al. argue that a mathematics course should never neglect 

telling a story about thinking - powerful, mathematical thinking. Such an approach 

would help students acquire valuable "habits-of-mind", because mathematical ways of 

thinking have important application outside of mathematics as well as within it. For 

students to understand mathematics, they must learn how to think from a mathematical 

point of view. For those of them who pursue advanced mathematical study, they must 

spend some of their time learning to "think like the professionals". They claim that, 

within mathematics, geometry is particularly suitable for helping people develop these 

ways of thinking, being an ideal intellectual territory within which to perform 
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experiments, develop visually based reasoning styles, learn to search for patterns, and use 

these to spawn constructive arguments. It is also ideally placed for expanding a student's 

conception of mathematics, by virtue of its rich hooks or connections with the rest of 

mathematics, with other sciences, and with real-world. According to Goldenberg et al. 

(2012, p. 3), the study of geometry could help students connect with mathematics. It can 

be an ideal vehicle for building a "habits-of-mind perspective" (Goldenberg et al., 1998).  

 Such habits-of-mind that support inquiry and which could be developed through 

the study of geometry are generalizing, reasoning with relationships, and identifying 

invariants (Driscoll et al., 2007). For example, the distinction between a drawing, which 

exemplifies an instance, and a figure, which exemplifies a class with associated properties, 

suggests a pathway for seeking broader classes or patterns (Goldenberg & Cuoco, 2012). 

Generalization can be promoted by asking students to justify the grounds of a claim 

beyond a single instance (Ellis, 2011). As pointed out by van Hiele (1986), geometry is 

replete with visual concepts such as planar concepts and relations among them, such as 

congruency, that provide opportunities to construct relationships. This feature is better 

embodied through the dragging operation of dynamic geometry tools, but can also be 

visualized with traditional tools (Lehrer et al., 2013).  

 Lehrer & Chazan (1998) remark that spatial reasoning has been reintegrated into 

the mathematical mainstream and placed at the core of K-12 environments that promote 

learning with understanding. Traditional topics like measure, dimension, and form, are 

reinvigorated and receive increased attention by virtue of their connection with 

modeling, structure, and design. In order to successfully implement an investigative 

approach in school geometry, specific learning environments have to be designed. Some 

basic tips for implementing investigative geometry have been proposed by Hitchman 

(2015). The definite reference in this field has been the book of Lehrer & Chazan (1998, 

reprinted in 2012).  

 In order to support students' visualization of shapes and forms in a Cartesian 

framework, a prominent role has been assigned to technology - for example, the use of 
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computer algebra systems like Geogebra or Cabri. This trend has gained even more 

strength with the recent move toward investigative approaches in school mathematics, 

and the greater emphasis put on the study of geometry, starting from primary school, in 

the official curriculum. Chazan & Yerushalmy (1998) are among the authors who advocate 

the use of computers in the learning of geometry by inquiry. They justify such choice with 

the excitement of teachers and researchers alike for the opportunity to use geometry 

software as an effective instructional tool by proposing construction activities to the 

students. Moreover, such explorative tasks could be completed collaboratively. Students 

would have to invent a solution, test it, and justify it mathematically – in this way, both 

inductive and deductive reasoning are promoted and combined. This approach would 

help alleviate the current situation of high school geometry, where “students view 

themselves as passive consumers of others’ mathematics” (Schoenfeld, 1988). According 

to Schoenfeld, there has been “little sense of exploration, of the possibility that the 

students could make sense of the mathematics for themselves” (p. 18).  

 Goldenberg & Cuoco (1998) have presented a review of the development of 

dynamic geometry software. The authors use the term dynamic geometry in order to 

emphasize its distinctive feature with respect to other geometry software: the continuous 

real-time transformation often called "dragging".  Dynamic geometry establish an 

experimentation environment where the student performs some construction by drawing 

points, lines, curves, and polygons, then make observations about the result and 

conjecture about how their observations might be affected if the same construction was 

performed on another triangle, for example. For example, these operations can be done 

with the Geometric Supposer software, developed since 1983 by two pioneers of geometry 

experimentation environments, Schwartz and Yerushalmy. The greatest benefit arises 

when the students come to test their conjectures, because dynamic geometry allows them 

to see what seems like a continuum of intermediary states. It also helps generating the 

locus of some object as another is transformed in a continuous way, and conjecturing 

about it, while the final proof may invoke classical Euclidean methods. This is essentially 

an inductive way of learning mathematics, and its motivating quality is revealed by the 
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shock and delight that students often express at some unexpected behavior of the figure 

they are dragging.  

 Geometer's Sketchpad is a dynamic geometry software that could be very useful in 

fostering identification of patterns and geometric properties in shapes, a skill which is 

generally underdeveloped at young students. Many of them do not realize that a square is 

also a rectangle and a rhombus, or that all three are also parallelograms. Most have never 

heard of a "line of symmetry", and are unable to identify perpendicular lines (Olive, 1998). 

Geometer's Sketchpad has also been used successfully for exploring trigonometry 

(Shaffer, 1995).  

 Design software such as KidCAD is another promising tool for the implementation 

of investigative geometry in a computer-rich environment. It greatly helps develop spatial 

visualization, scale and proportional reasoning, measurement and unit conversion skills, 

and understanding isometries, via hands-on activities and real-world scenarios such as 

designing or rearranging the classroom (Watt, 1998).  

 A thorough discussion about spatial skills and how digital tools such as the 

Geographic Information Systems could be used in developing them through 

mathematical inquiry has been done by Hagevik (2003). 

 Unfortunately, in school education there is still a lack of connection between 

geometry and other subjects, such as physics. Raghavan et al. (1998) contend that despite 

recurrent calls in the official reform programs (for example, NCTM) to reinforce and 

exploit interdisciplinary connections, the mutual supportive nature of mathematics and 

science is often under-emphasized or even ignored in school curricula. They cite the issue 

of area and volume, which measure basic properties of matter and are central concepts in 

science and are commonly presented only in fifth and sixth grade mathematics classes. 

Moreover, instruction is mostly quantitative in nature, emphasizing rote application of 

formulas rather than fostering qualitative understanding that supports meaningful 

application of concepts within a variety of contexts. No explicit link is made to science 

concepts for which area and volume are components, such as surface force and mass. In 
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order to improve this situation, Raghavan et al. (1998) advocate the implementation of a 

computer-supported, integrated approach in learning science. In such a curriculum, 

labeled MARS (Model-based Analysis and Reasoning in Science), topics from physics, 

chemistry, biology, and earth science are introduced and revisited in successive years. 

This framework would allow students, for instance, to investigate the notion of volume by 

immersing objects and measuring the displaced liquid, or to relate concepts such as 

volume, surface area, weight, density, water pressure, and buoyancy by using firstly 

material cubes and prisms, and finally the computer model to draw boundaries within a 

container of liquid and to examine the forces exerted on bounded areas. Such an 

integrated inquiry approach in sciences would fit particularly well with the Realistic 

Mathematics Education (REM) system adopted in the Netherlands.  

 Geometry lessons are among the earliest opportunities for students to engage in 

modeling. As stated by the NCTM (1989), "geometric models can be applied to real-world 

problems to simplify complex situations, and many algebraic and numeric ideas can be 

fostered by looking at them through a geometric perspective. The complex spatial 

patterns of the real world can be simplified into component relationships such as points, 

lines, angles, transformations, similarity, and dimensionality, and these physically simpler 

(but cognitively more abstract) ideas can be operated on mentally - changed, recombined, 

transformed - whereas the physical objects themselves may not be" (Middleton & Corbett, 

1998). Modeling implies generalization and recognition of patterns in a process of solving 

real-world problems, not of developing a new theory, where exercises are a more useful 

tool. Freudenthal (1986) discussed this process as the mathematization of physical reality, 

holding that the development of students' knowledge of geometry reflects a tension 

between experience in an irregular world and the mathematical system that represents 

and explains physical reality in terms of abstract regularities.  

 A very effective implementation of inquiry into geometry via everyday situations 

has been used in the Netherlands. The idea behind such an approach is that students 

have a great deal of informal geometrical knowledge at their disposal, and even young 

children can model real life situations by using elementary geometry. The theoretical 
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framework of this approach is represented by the Realistic Mathematics Education 

(RME), a framework and a reform movement developed by a group of Dutch researchers 

according to the ideas of Freudenthal and van Hiele. The reform was started in part in 

response to critiques of Dutch mathematics curriculum, and particularly with the way 

Euclidean geometry was taught in the Netherlands. It brought about a radical break with 

the traditional teaching of Euclidean geometry, an approach whose shortcomings have 

been exposed by van Hiele and other Dutch researchers. This move toward a reinvention 

approach in geometry has also been advised by Freudenthal. Finally, implementation has 

reached an advanced stage, and present-day geometry education in the Netherlands is 

based on everyday scenarios involving reasoning about spatial relations. A slogan of 

Dutch reform in teaching geometry is “looking at the world from a geometrical 

perspective” (Gravemeijer 1998, p. 46). For example, as a preparation for the calculus 

course, students have to describe the variation of the shadow of a man walking away from 

a light pole at constant speed, or moving away from the pole in equal jumps. A physical 

device is used in order to show the change that occurs.  

 According to Freudenthal (1971), reflecting on geometrical aspects of everyday life 

situations is an important feature of a mathematical attitude. Such attitudes define the 

so-called “mathematical literacy”, which is usually described for number sense and 

statistics. Similarly, “geometrical literacy” would be indicated by a person’s ability to 

recognize geometric objects and relations behind common objects and contexts such as 

vision lines, shadows, side or top views, or maps. Freudenthal (1973) proposed a 

philosophy of “mathematics as a human activity”, centered on finding problems and 

solving them, but it is also an activity of organizing a subject matter. The matter can be 

theoretical, for example arising from mathematics itself, but it can also be a matter from 

reality. Such organizing activity could be labeled “mathematizing”, and according to 

Freudenthal mathematics education for young children should start with the 

mathematization of everyday reality. Freudenthal also endorsed a combination of 

activities and content learning in school mathematics, under the principle of guided 

reinvention. Such ideas could define a productive and effective way of teaching geometry 
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through inquiry, as proven by the Dutch education system which gradually introduced 

this approach after 1973 and has successfully employed it since then.  

 Activities are central to the process of learning geometry. Indeed, expository 

teaching is hardly compatible with this field, which involves specific skills that can be 

developed only by practice, i.e. "learning by doing". Therefore, constructivist approaches 

are to be employed in geometry. It could be also argued that no other subject in school 

mathematics has generated so much literature and practice regarding instruction through 

activities. Beyond the traditional tools (ruler, compass, straightedge, protractor), various 

physical and virtual educational resources, manipulative materials (games, puzzles, tiles, 

Logo), and computer software (Cabri, Geometer's Sketchpad, Geogebra) have been 

specifically designed for teaching and learning geometry. This situation shows that 

exploration and inquiry can play a key role in school geometry and confirms the 

assumption that investigative approaches are the natural way of instruction in this field. 

For example, building three-dimensional structures with cubes and describing such 

arrays is an effective way to develop spatial reasoning (Battista & Clements, 1996). Bar 

models of various materials (bamboo, rubber, foam, etc.) have been used in teaching 

stability/rigidity (Middleton & Corbett, 1998). Various curve-drawing devices are really 

helpful in learning analytic geometry through exciting hands-on activities and 

investigation (Dennis & Confrey, 1998).  Computer tools such as Geo-Logo have been 

successfully used for helping primary school students explore paths, polygons, turns, 

angles, and lengths (Clements & Battista, 1998). Such exploratory activities are an 

excellent opportunity for children to have a taste of scientific investigation, because they 

involve modeling, prediction, testing of hypothesis, cognitive conflict, reflection, trial and 

error (heuristics), and they also stimulate team working. According to Battista & 

Clements (1996), the account of such an activity "nicely illustrates the constructivist claim 

that, like scientists, students are theory builders. Cognitive restructuring is engendered 

when students' current knowledge fails to account for certain happenings, or results in 

obstacles, contradictions, or surprises. The difference between the scientist and the 

student is that the student interacts with a teacher, who can guide his or her construction 
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of knowledge as the student attempts to complete instructional activities" (Cobb, 1988, p. 

92).  

 An investigative curriculum in geometry could be developed around authentic 

problems and meaningful problem-solving situations, with realistic stories or scenarios 

acting as hooks - hence the term "anchored instruction" (Zech et al., 1998). 

Communication with the teacher and collaboration between the students could be 

improved by using online environments such as Math Forums with separate "rooms" for 

each class (Renninger et al., 1998). Online solutions also include Web-based instruction, 

which has been successfully tested in teaching geometry at 3rd to 6th grade (Chan, 2006).  

 Geometry is also the ideal site for conjecturing, and it connects the most 

elementary, visual objects (available to the youngest children) with abstract thinking. 

Visualization and visual thinking are at the heart of what makes geometry a special case 

within mathematics.  

 Proving is one of the highest-order mental skills (since it involves creativity) and 

one of the most neglected in school mathematics. By its very nature, synthetic geometry 

is based on proofs and heuristics; hence the only way it can be taught effectively is 

through inquiry. Euclid's "Elements" implicitly proposed such an approach, since a large 

part of its proofs are not provided, and have to be completed by the reader. Actually, this 

is the earliest known form of PBL, one of the most popular inquiry approaches. Proving 

and geometry are intimately connected; if other subjects in mathematics can be taught 

with  only few, easy proofs sketched by the teacher or with the statements justified 

intuitively, in geometry rigorous proving is a central part of any undertaking.  

 Geometry is essentially non-algorithmic, and almost any claim must be supported 

by some proof. This has a huge effect on the development of child's cognitive skills, but it 

is also very demanding - especially for the beginners. The student has to struggle with the 

assumptions and the conclusions of a theorem, until connecting them via mathematical 

deduction. It is a difficult task, especially if he has no prior experience with deductive 

reasoning, and it occurs frequently in inductive learning environments. That is one of the 
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reasons for the declining quantity and quality of geometry taught at all school levels in 

North America and U.K. McLoughlin (2008) claims that a mathematics student need to 

learn to conjecture and prove or disprove his conjecture. He argues that  

"Understanding mathematics - really understanding it - is not something that 

is learned through reading other people's work or watching a master teacher 

demonstrate his or her great skill at doing a proof (no errors, elegant, and 

complete). The student learns by getting his 'hands dirty' just as an 

apprentice plumber gets his hands dirty taking a sink apart, fixing it, and then 

putting it back together. He must explore the parts of the sink, learn how the 

parts interact, take things apart, put the part or the whole system together 

again, make mistakes, learn from the triumphs and mistakes (but most 

especially we learn from our mistakes). The nuts-and-holts of a skill can be 

taught; but initiative, discipline, imagination, patience, creativity, 

perseverance, and hard work cannot be taught - such must be nurtured, 

encouraged, suggested, and cultivated”. (McLoughlin, 2012, p. 2) 

 On the other hand, Goldenberg et al. (1998) point out that we cannot reasonably 

expect beginning students to become aware of the subtleties of mathematical proof 

before having experienced several refutations of their conjectures in order to feel a need 

for further analysis (beyond visual evidence). Middle school students are unlikely to 

behave like Lakatos's (1976) "advanced class", and for them proof might need to be 

motivated only by the uncertainties that remain without a mathematical justification, or 

by a need for an explanation for why a phenomenon occurs. Proof of something too 

obvious would likely feel ritualistic and empty for average students. Developing a 

questioning habit-of-mind, the desire to validate empirical results with mathematical 

proofs, and the ability to develop such creative proofs, is costly in terms of time and must 

start as early as possible, especially if mathematical proficiency is to be achieved by the 

student. Experimental research has shown that conjecturing tasks can be implemented in 

teaching and learning geometry from primary school level (Lin, 2013). Also, Kim & Ju 

(2012) conducted an experimental study involving investigative geometry and proof 
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learning in middle school.  As a result of the experimental instruction, the attitudes of the 

students toward mathematics ameliorated, their thinking and communication skills 

improved. They learned how to listen and how to verbalize their ideas smoothly. They 

displayed essential inquiry qualities such as courage and modesty. Kim & Ju consider their 

experiment a useful starting point for designing proof instruction by a persuasive, 

investigative approach. Combining inductive and deductive approaches in activities 

where students discover geometric properties and then prove them in a rigorous way is a 

promising instructional approach that could improve proving and conjecturing skills 

together, as shown by Fairbairn (2008). Diagrams are an effective tool that could be used 

in order to develop heuristic skills by inventing proofs and refutations (Komatsu, 2013). 

 A research of Zacharie (2009) has revealed that students emerge from proof-

oriented courses such as high-school geometry unable to construct anything beyond very 

trivial proofs; moreover, most university students do not know what constitutes a proof 

and cannot determine whether a purported proof is valid. As the author points out, when 

making a comparison between mathematics and other subjects, we can say with certainty 

that in mathematics things are proved, while in other subjects they are not. Indeed, in 

physics, in biology, and in other fields a theory is validated or rejected by experimentation 

and data evidence, while in mathematics claims are validated by rigorous proofs, which 

are the hard and ultimate evidence. Zacharie contends that students' difficulties related 

to mathematical proof manifest in three points: appreciation why proofs are important, 

the relation between verification and understanding, and proof construction. He remarks 

that it is common for undergraduate students to say that they like mathematics but they 

hate proofs. However, the ability to understand and construct proofs is transformative, 

both in perceiving old ideas and making new and exciting mathematical discoveries. In 

many cases, it appears that negative attitudes toward proofs result from certain teaching 

practices, the selection of statements to be proven, and from teacher's inability to explain 

conceptually difficult concepts in simple terms. These aspects have to be carefully taken 

into account when implementing investigative geometry instruction. In the research of 

Zacharie (2009), several prospective high school teachers from the Department of Pure 
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Mathematics were asked to reflect on their own experiences of learning proofs, and their 

answers reveal the critical role of the teacher in shaping students' attitudes toward proofs. 

 The comments indicate some common flaws, such as:  

- the teacher went too fast and did not know how to explain difficult concepts in simple 

terms; 

- I had a bad teacher, who admitted he disliked proofs; 

- the teacher did not give a reason why each step of a proof was correct;  

- most mathematics lessons were boring and made me asleep; 

- the teacher did not state all the theorems involved in the proof; 

- the teacher did not convince me about the necessity of the proofs. 

 An important group of abilities developed through investigative geometry is 

represented by the visual skills. Senechal (1991) emphasized the distinction between 

visualization, which brings inherently visible things to mind (e.g. spatial visualization) 

and visual thinking, which refers to a visual rendering of ideas that are not inherently 

spatial (e.g. the visual representation of geometric sequences, or diagrams in topology). 

While the first category is extremely useful in real life, and is traditionally promoted in 

geometry courses (but also in design or other non-mathematical courses), the last one is 

central to mathematical reasoning and can be cultivated through inquiry. Goldenberg et 

al. (2012) proposed the use of stimulating tasks such as drawing "impossible figures" in 

order to help students engage and develop spatial vision. This may involve a rich and fun 

combination of drawing, manipulating, imagining, paper folding, building, and using 

computerized enhancements or simulations. The activities may be physical, but the 

essential skills are mental. A very interesting and useful type of activities in geometry is 

the so-called "proofs without words", regularly presented in the Mathematics Magazine. 

One example is a geometric proof of formula for the partial sum of a geometric sequence, 
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by using right triangles. Other tasks presented by Goldenberg et al. (2012) involve fractals, 

billiards, infinite sums, and dynamic geometry tools.  

 Borasi (1992) conducted an instructional experiment in humanistic inquiry with 

two sixteen-year-old students from "School Without Walls", a second-rate alternative 

school in Rochester.  The official presentation mentions that it offers a "small school 

setting and project-based learning approach" where "all curriculum, courses, and student 

experiences are planned, developed, and implemented with the clear intention of helping 

students become self-sufficient lifelong learners". Such statements clearly indicate an 

inquiry-learning approach, supported by a small class setting and a non-traditional 

curriculum with more emphasis put on attitudes (autonomy, perseverance, broad 

outlook) and reasoning skills (reflection, critical thinking) than on procedural skills and 

content knowledge. Actually, the instruction in School Without Walls is very close to a 

PBL (Project-based learning) approach. Evaluation is conducted in an alternative way, 

with grades replaced by detailed individual reports on how each student is progressing. 

These reports are prepared jointly with the student after periodic teacher-student 

conferences.  

 The experiment conducted by Borasi consisted of a ten-lesson "mini-course" on 

mathematical definitions - mostly in geometry, but also in algebra. It involved a series of 

thought-provoking activities which helped the students appreciate some of the special 

characteristics of these definitions such as ambiguity or the difficulty to provide a "perfect 

definition". The instruction took place outside of regular mathematics courses, and 

resembled to a tutoring experiment. Taxicab geometry scenarios were used in order to 

challenge the participants and to encourage them to work with nonstandard 

mathematical situations, to manifest creativity, and to engage in genuine mathematical 

debate. Lakatos (1976) provided a theoretical background for the experiment of Borasi. 

Arguably, students' investigations were so strictly guided by the researcher,  that her 

study is of little use from the point of view of inquiry learning implementation.  
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2.2.4.4 Textbooks for investigative geometry 

 Clark’s IBL textbook for geometry 

Clark (2012) has designed a guide for teaching investigative Euclidean geometry, under 

the form of a short textbook. It does not have much graphics, except geometric figures 

and diagrams, and it uses a rather abstract language and way of presentation. Thus, it 

seems to target rather advanced students, who are more familiar with abstract thinking, 

formal logic, and proofs. The book has some similarities with the Elements of Euclid, by 

starting each section with a sequence of definitions and axioms, followed by propositions 

and theorems which have to be proved by the student. The difference is that Clark's book 

does not present any proof, but only hints (here and there) and problems (not exercises), 

as it follows an exploratory approach. It also has some guidelines for the instructor in the 

final section.  

 Overall, the book is useful for implementing inquiry-based axiomatic geometry, 

but rather as an auxiliary resource and not as a textbook. One of its greatest weaknesses is 

the absence of exercises and the abstract approach, with very few connections to real life 

applications or to other subjects. Another one is the lack of details regarding the steps of 

the investigations, or how to guide the students into the resolution of each problem. For 

these reasons, it has a limited pedagogical value and a reduced audience compared to 

widely acknowledged textbooks such as Discovering Geometry. 

 Serra - "Discovering Geometry: An Investigative Approach" 

The widely recognized textbook for learning geometry by investigation has been 

Discovering Geometry (Serra, 2008). According to Serra, the origins of his book date back 

to more than 35 years ago, during his first ten years of teaching. He believed that students 

learn with a greater depth of understanding when they are actively engaged in the process 

of discovering concepts and we should delay the introduction of proof in geometry until 

students are ready. Serra was also involved in a Research In Industry grant where he 

repeatedly heard that the skills valued in all working environments were the ability to 

express ideas verbally and in writing, and the ability to work as part of a team. Thus, he 
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wanted his students to be engaged daily in doing mathematics and exchanging ideas in 

small cooperative groups. Until Discovering Geometry, no textbook followed this 

philosophy, therefore Serra created his own daily lesson plans and a classroom 

management system. This led to the first edition of the book, titled Discovering Geometry: 

An Inductive Approach (1989). The title of third (2003) and fourth edition (2008), 

Discovering Geometry: An Investigative Approach, emphasized the inquiry approach by 

using the fashionable catchword "Investigation". It also avoids the controversial identity 

between inquiry and inductive approaches.  

 The book is richly illustrated with images from real-world which exemplify and 

provide concrete meaning to the theoretical notions presented alongside. It manages to 

situate the concepts in their evolution, by including short historical remarks, and tries to 

do a work of popularization by explaining higher mathematical concepts in elementary 

and sometimes funny, everyday terms. It is a very friendly, humorous, and gentle 

approach to geometry, with lots of explanations and exercises. The geometry content is 

presented in a rather informal way, being more or less hidden in the tasks. It reveals itself 

little by little, as the student performs these activities and completes the exercises. 

Actually, every good teaching propose a specific sequence of examples, definitions, 

exercises, in a conceptual order. In Serra's book, not every step is inquiry but the 

sequence is. The exercises proposed are either computational (direct or indirect 

application of a formula, such as Ex. 1 and 4 at p. 37, respectively) or conceptual 

(connecting different concepts, such as Ex. 5 at p. 37). Computational exercises are 

algorithmic, while conceptual ones are not algorithmic but use definitions and properties 

of concepts.  

 Lessons usually start with a brief introduction, and continue either with some 

worked examples, or with a strongly guided investigation, where each step is clearly 

stated and intermediary questions are formulated. Each activity is followed by its 

discussion, followed by examples. There may be up to five investigation activities in a 

lesson, which concludes with a sequence of exercises. Some exercises may be activities or 

mini-investigations. Theoretical elements (concepts, rules, theorems, conjectures) are 
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formulated or disclosed only at the relevant point during or after an activity, when they 

naturally emerge - as the student has acquired an intuitive or empirical grasp of that 

notion or idea. There are also connection examples relating the content to other fields 

(science, technology, arts, history, career, and recreation), review exercises, and activities 

specially designed for improving algebra, reasoning, or visual thinking skills.  

 In order to deepen and to enrich students' understanding of the new content with 

conditional knowledge and connections with other content from geometry, the book 

proposes a series of open exercises titled "Take another look" and several projects, where 

the student has more freedom to experiment and can investigate further. Each chapter 

starts with the list of learning objectives and concludes with an account of the available 

tools for assessing what has been learned: update your portfolio, organize your notebook, 

write in your journal, performance assessment, write test items, and give a presentation.  

 Overall, Discovering Geometry is rightfully acknowledged as an outstanding 

textbook and the best available resource for introducing geometry by investigation at 

secondary or even elementary level. It could be also used as a model for developing 

investigative mathematics textbooks, in higher geometry or in other subjects.  

 From a researcher's point of view, there is still a lack of evidence regarding the 

better quality of learning acquired by using Discovering Geometry (and implicitly, the 

inquiry approach) with respect to traditional textbooks and approaches. One such 

comparative study was done by Koedinger, and it did not find any substantial difference: 

"Although it remains possible that a more complete and detailed quantitative 

analysis might yield some differences, we did not see the kind of qualitative 

differences that might be expected from the non-traditional approach of 

Discovering Geometry. This result should not be interpreted as critical of this 

particular text, as at least three mediating factors reduced the likelihood of an 

effect:  

a) greater teacher experience using the traditional text 
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b) great variability in the way different teachers implement the Discovering 

Geometry curriculum 

c) high variability and generally poor preparation of this urban student 

population.  

This result should be considered as evidence for substantial difficulties in 

implementing curriculum reform in a way that yields substantial student 

achievement gains. It takes much more than a textbook." (Koedinger, 1998) 
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3 A CONCEPTION OF IBL 

3.1 INTRODUCTION 

"These developmental years are not just a time to educate but they are your 

obligation to form a brain and if you miss them you have missed them 

forever." - Michael Phelps, co-inventor of the Positron Emission Tomography 

(CMA, 2015) 

When trying to understand inquiry, we encounter a major obstacle: the lack of an 

adequate model describing the cognitive processes that occur during this activity and the 

structure of cognition itself. Developing a theoretical framework that describes properly 

and completely the structure of knowledge remains a very challenging task, and it will 

remain a topic of much debate in cognitive psychology as well as in the theory of 

education.  

 Various models have been proposed for a specific use in education, e.g. assessment 

(Bloom, 1956), or even for broad “learning, teaching, and assessing” purposes (Anderson 

et al., 2001), but they are unsuitable for explaining the whole spectrum of understanding, 

from simple comprehension to illumination. This is especially true in mathematics, a field 

with a mainly vertical organization of knowledge. Bloom's cognitive taxonomy, famous 

but also contested (de Landsheere, 1975, pp. 73-94; Sugrue, 2002), was designed by a team 

of educational psychologists before the recent advances in cognitive psychology. 

Anderson et al. (2001) proposed an updated version of Bloom’s classification, by replacing 

nouns with verbs and Synthesis with “Creating”. The original Bloom's classification did 

not involve any visual representation, and the addition of a triangular diagram was just a 

convenient means to emphasize a hierarchical structure of thinking, namely the idea that 

each new, more complex level builds on top of previous, simpler ones: 
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"The triangle does not appear anywhere in either Taxonomy…. [Q]uite likely 

designed by someone as part of a presentation made to educational 

practitioners.... I believe that the triangular representation was developed in 

order to indicate that, in the original Taxonomy, the six categories formed a 

cumulative hierarchy. That is, it was believed by the authors of the original 

Taxonomy that mastery of each lower category was necessary before moving 

to the next higher category." (Anderson, 2017)  

 Even models specifically developed for describing the processes involved in 

mathematical inquiry such as the CPiMI (Model for Cognitive Processes in Mathematical 

Investigation) proposed by Yeo (2013; 2017) don’t deal with the vertical structure of 

mathematical knowledge and the multiple layers of understanding, except the basic one: 

understanding the task. This is why I had to develop a different model, with better 

explanatory power regarding essential processes in cognition such as inquiry, 

understanding and discovery.  

3.2 A TAXONOMY OF COGNITIVE PROCESSES 

"I have hardly ever known a mathematician who was capable of (dialectic) 

reasoning." - Plato  

Two aspects that distinguish the cognitive model proposed here from the original 

taxonomy of educational learning objectives designed by Bloom and his associates 

(Bloom et al., 1956) are: my model lists seven cognitive processes rather than six 

objectives and the processes resume in a spiral way after having reached the most 

advanced one. With respect to the revised Bloom’s taxonomy (Anderson et al., 2001) 

which also uses processes, there are also significant differences: my model lists seven 

cognitive processes rather than six and they are different in nature. 

For simplicity, a triangular representation of these processes is provided in Figure 

5 . 
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Figure 5. Cognitive processes in learning through inquiry 

 

 To name the cognitive processes involved in inquiry, we have used verbs: 

Inventing, Integrating, Operating, etc. We will use nouns such as Invention, Integration, 

Operation, etc. to refer to a phase in inquiry where the corresponding process is 

dominant, or to the product of this cognitive activity.  

 We will now describe each cognitive process in turn.  

3.2.1 Definitions of cognitive processes involved in inquiry 

 Recording  3.2.1.1

At this basic level, knowledge is acquired by simple observation through the use of senses 

(listening to a teacher's lecture, watching a demonstration for modeling purposes, etc.) or 

it is retrieved from the learner's memory. With each recall the knowledge is refreshed, 

until it expands into the unconscious, from which it may emerge via associations.  

Keywords: observation, memorization, data acquisition, recall. 
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 Operating 3.2.1.2

This process consists in active exploration, practical work and hands-on experience, 

where one learns the functional aspects of a subject by testing them in various contexts, 

for example performing a method in all kinds of situations in order to acquire empirical 

know-how and an awareness of its strengths and limitations. Procedural skills are 

typically promoted here; however, this process need not be triggered by drill. Drill does 

not allow for active exploration; it develops fast, automatic performance of routine tasks 

via repetition and memorization. 

Keywords: exploration, experiment, practice, procedure, application, classification, data 

mining, automatic translation.  

 Reasoning 3.2.1.3

This is the process of rationalization, whereby logical comprehension and basic 

discernment are attained. One is able to anticipate the direct outcome of an operation 

and of one’s acts in general. The learner can distinguish when a procedure can and when 

it cannot be used. At this level, learners can handle causality, logical implication 

(syllogism) and contradiction. They are able to follow, to check and to validate the logical 

correctness of a proof. They can use Mathematical induction as a method, a technique for 

proving a certain type of mathematical statements.  

Keywords: comprehension, logic, causality, implication, discernment, formal proof, 

contextual translation. 

 Targeting 3.2.1.4

In this process, chains of procedures targeting a specific outcome are generated, with 

each step getting closer to the final goal. The sequence of operations is straightforward, 

but the success is not ensured, and the attempt may lead to a dead end. If the target has 

not been reached, after a trial one may look further and build an additional chain that 

will hopefully achieve the desired outcome, and so on until a deadlock is met and the 

general strategy has to be revised. Designing a path towards a problem's solution by 
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choosing familiar procedures and combining them in an adequate sequence involves this 

process. Each procedure is selected from the available toolbox according to its 

effectiveness, familiarity and easiness. Thinking is focused on the final goal and the 

resolution path is targeting it, but there is a risk of falling into a "tunnel vision" and lack 

of perspective as a result of a focused, uni-dimensional view. At this stage, one is able not 

only to comprehend demonstrations but also to build simple proofs. Yet, more difficult 

proofs may involve higher levels.  

Keywords: focused vision, foresight, analytical/convergent thinking, gazing, aiming. 

 Integrating 3.2.1.5

This is the processes where associations, links and connections inside and outside of a 

subject are developed. In contrast to the linear, sequential thinking of the Targeting 

process, here the mind may jump from one piece of knowledge to another without the 

presence of a deductive chain as required in formal logic, but by similarity and analogy. In 

this way, relations are built in all directions until they form a multidimensional structure 

like a neural network. This applies not only to static knowledge but also to processes, 

principles or approaches - which may be “recycled” and used in a new context. At this 

level, thinking has a holistic quality but without adequate control it entails the risk of 

distraction from the goal, lack of focus, dissipation in unproductive directions, confusion. 

Ramanujan, “the man who knew infinity”2, appeared to engage in the processes of  

Integrating and Inventing in their highest form. 

Keywords: global vision, holistic/divergent thinking, joining, comparing, connection, 

association, classification, network, similarity, analogy, allegory, metaphor, synthesis.  

 Structuring 3.2.1.6

After having integrated the available knowledge, a complete evaluation is performed and 

all the inessential information is discarded. If a structure becomes visible, a simplified 

                                                 

2
 Reference to a film under this title, about Ramanujan: 

https://en.wikipedia.org/wiki/The_Man_Who_Knew_Infinity_(film)  

https://en.wikipedia.org/wiki/The_Man_Who_Knew_Infinity_(film)
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model may be designed. The model is tested, evaluated, validated or possibly rejected and 

replaced according to new information, as in Bayesian statistics. Approaches, strategies 

and knowledge are subjected to a comprehensive judgment here, after proper treatment 

at lower cognitive stages. Gaps in knowledge or in a model's structure are also identified, 

which may lead to the discovery of new knowledge or to invention. If the lowest level of 

understanding can be described as a puzzle or totally unstructured information, complete 

understanding or insight is reached when all the knowledge has been integrated and the 

whole structure with its internal and external connections is revealed, like a relief map. 

Keywords: evaluation/judgment, weight of evidence, hypothesis, to understand/to realize, 

wisdom, modeling, structure, organization, system, scheme, abstraction, symbol. 

 Inventing 3.2.1.7

New, distinct knowledge is born by means of this process, through creative thinking, by 

inventing tools, techniques/approaches, objects, structures, concepts, etc. The knowledge 

may not be new for others, but since it has been unknown for the inventor it motivates 

him or her to start a new seven-step cycle of cognitive processes: Recording, Operating, 

etc. Creativity may be expressed by inventing strategies for solving a problem or for 

completing a task, or more powerfully by designing new tools and novel approaches, 

models or structures. For example, in his periodic table, Mendeleev combined a 

horizontal linear structure defined by the atomic mass of elements with a vertical 

grouping based on their similar physical and chemical properties. Regarding the various 

types of creativity, Arnold contrasted the approaches of the Soviet Union’s most famous 

mathematicians Gelfand and Kolmogorov: 

“Suppose they both arrived in a country with a lot of mountains... 

Kolmogorov would immediately try to climb the highest mountain.       

Gelfand would immediately start to build roads.” (Chang, 2009) 

Keywords: creation, discovery, originality, illumination, enlightenment, revelation, 

inspiration, insight, idea. 
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3.2.2 A hierarchy among the cognitive processes 

The Québec school system has adopted a classification of knowledge in three categories 

(MELS, 2007, p. 6): 

- Declarative   

- Procedural   

- Conditional  

 Declarative knowledge refers to the information that a person records in her mind,       

and that can be spoken or written (theoretical knowledge). Learning declarative 

knowledge corresponds to Recording. Procedural knowledge, which corresponds to 

Operating, comprises information on how to do something or how to perform the 

procedural steps that make up a task, and the ability to actually perform that task (know-

how, practical knowledge). Conditional knowledge, which corresponds to Reasoning, 

refers to the awareness about when to use a procedure or when not to, information as to 

why and under what conditions a procedure works, in addition to why one procedure is 

better than another (Tardif, 1992). So, pre-university education targets only the three 

basic layers of cognition: Declarative, procedural and conditional knowledge naturally 

correspond to the three basic cognitive processes: Recording, Operating and Reasoning. 

This justifies the grouping of the lower cognitive stages into a single category, Knowledge. 

Higher education aims at developing deeper understanding (less observable), with 

invention as its visible, ultimate outcome.  

 My teaching practice with science classes at top level colleges in Bucharest and 

Montreal confirmed the structure of basic knowledge in three layers and their hierarchy: 

students acquire procedural skills and speed of execution before achieving discernment, 

which includes the ability to distinguish the contexts where a procedure can be applied 

from those where it can not. They often manifest a tendency to automatically perform 

familiar procedures without a basic understanding of their meaning and opportunity.  
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 For example, at a final test administered to a class of students, most of them 

proficient in Differential Calculus, one of the questions asked to evaluate the limit at 2 of 

the function  𝑓: ℕ → ℕ,  given by 𝑓(𝑥) = 𝑥2 + 2.  All the class computed it by substituting 

2 for 𝑥 in the expression above, neglecting the fact that a limit is defined only in an 

accumulation point of a set.  

 Other students, at the end of their one-term course in Differential Calculus, were 

unable to give a definition of the derivative, although they had acquired some skill in the 

calculation of limits and derivatives. In order to introduce L'Hôpital's rule, I showed them 

a simple indeterminate form, lim𝑥→0
sin𝑥

𝑥
 , which also happens to define the derivative at 

zero of a familiar function. Even after being told that the limit can be written 

lim𝑥→0
sin𝑥−sin0

𝑥−0
, which is the derivative of sine function at zero, they were still unable to 

recognize in the next example, lim𝑥→0
𝑒𝑥−1

𝑥
, the derivative at zero of the exponential 

function. Maybe, after having learned L'Hôpital's rule, students will use it to calculate 

lim𝑥→0
sin𝑥

𝑥
  as well, since they have not realized the sequence of knowledge, where the 

derivative of sine function in zero is found by means of areas from the start, and thus it 

would be circular reasoning to use the value of a derivative in order to compute the 

derivative itself.  

 This supports the idea that Reasoning is a cognitive process of higher level than 

Operation or application of rules and procedures, which can be executed more or less 

blindly - with little awareness or discernment regarding what is behind them. On the 

contrary, genuine comprehension of a method requires a lot of practice and experience in 

order to know exactly how it works in various contexts and to employ it efficiently; also, 

hands-on experience is an essential component of reliable knowledge according to Dewey 

(1938), Kolb (1984), and other educationalists. Active exploration, experimentation and 

practice are related and comprised in Operating, which follows and expands Recording: 

"The teacher and the book are no longer the only instructors; the hands, the 

eyes, the ears, in fact the whole body, become sources of information, while 
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teacher and textbook become respectively the starter and the tester. No book 

or map is a substitute for personal experience; they cannot take the place of 

the actual journey." (Dewey, 1915, p. 74)  

 The above structure is also justified by the traditional sequence of teaching a 

procedure: 

- Presentation of some relevant examples, in order to show the utility of the procedure  

- Execution of the procedure by the teacher, followed by its detailed description  

- Execution of the procedure by the students: first step by step, then completely, and drill   

- Displaying various examples, with instances when the procedure can or cannot be used. 

 Drill, which is the automation of a procedure, relates to Sfard's interiorization and 

Dubinsky's process stage (Tall, 1999), the first step toward reification (Sfard, 1991) and 

encapsulation (Dubinsky, 1986 & 1991), respectively. It allows a learner to treat a sequence 

of operations as a single large operation and to foresee its outcome, thus being able to 

choose instantly between several procedures that could complete a given task.  

 In conclusion, we can group the cognitive processes in two categories:  

 Knowledge : Recording, Operating, Reasoning  

 Understanding : Targeting, Integrating, Structuring, Inventing   

 Knowledge forms the basis of school education and involves a procedural way of 

reasoning. By contrast, higher layers require searching for and trying different strategies 

and there is no guarantee that they will work.  

 At the undergraduate level, Targeting is often involved. Master's level typically 

requires  Integrating or Structuring activity (project, thesis, etc.) and creative work at 

Invention stage is usually required only at a doctoral level. Invention is an expression of 

deepest understanding, acquired via enlightenment or revelation, as Piaget (1972 b, p. 20) 

said: 
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"To understand is to discover, or reconstruct by rediscovery, and such 

conditions must be complied with if in the future individuals are to be formed 

who are capable of production and creativity and not simply repetition."  

 It should be remarked that Inquiry, which essentially means Research, is much 

more than simple exploration of available information, classification and data mining, 

often labeled as Investigation. Such processes would be more properly assigned to 

Operation and Reasoning stages of cognition. Inquiry starts when there is no obvious 

path, made up of familiar procedural steps, to the target. This initially occurs in 

Targeting, when a procedural chain leads to a dead end, and the person is wondering 

what other method to employ in order to finally reach the target. Therefore, IBL 

addresses Understanding layers starting with Targeting and proceeding up to Inventing. 

 Depending on the difficulty of the task, the amount of time available, and the 

knowledge, skills or cognitive development of the learner, inquiry may require more or 

less guiding or scaffolding. However, Structured inquiry (problem & method given) 

naturally involves Reasoning, and Open inquiry (students formulate & solve the 

problems) expects students to engage in Structuring and Inventing. Guided inquiry 

(problem only given) may involve any cognitive process beyond Reasoning, from 

Targeting to Inventing. Rusu (1972) proposed a self-study by problem solving that allows 

learners to decide when to access guiding. 

3.2.3 Higher-order cognitive processes require probabilistic rather than deterministic thinking 

"For every complex problem, there is a solution that is clear, simple and 

wrong." – H.L. Mencken 

At the three basic stages of cognition, Recording, Operating and Reasoning, learners 

operate inside their safety zone since they are dealing only with tasks that can be 

completed by following a procedure or an obvious sequence of standard operations. In 

such cases, when an algorithm or a recipe is available, successful completion of the task is 

ensured and there is no risk of failure: one does not break away from a deterministic 
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cognitive framework, also known as "deterministic thinking", in contrast to the 

"probabilistic thinking" (Bolisani et al., 2018, pp. 86-88). Newton learned the hard way 

this difference when he lost a fortune after venturing in the stock market (Holodny, 2017). 

 Beyond those Knowledge stages, one deals with approaches that may or may not 

be successful rather than with methods where the success is certain when they are 

properly used.  

 Starting with Targeting, we can only talk about perceived probability of success: 

several strategies or approaches may be available, and one will choose the easiest one, the 

most familiar, or that which is most likely to succeed. Hence, at these stages we deal with 

probabilistic thinking or "plausible reasoning" described by Pólya (1954), which is far 

more sophisticated, flexible and difficult to master than the deterministic thinking 

usually met in school and in the society. The command-and-control, deterministic 

mindset of the industrial management means order and discipline, and it provides some 

major benefits: efficiency, predictability, reliability. However, deterministic thinking 

dramatically reduces organizational entropy, diminishing the potential of creativity and 

innovation (Bolisani et al., 2018).  

 The difficulty of breaking away from a deterministic mindset and dealing with the 

unknown instead of rejecting or just ignoring it via explicit or implicit assumptions 

respectively can be illustrated by the famous controversy involving indeterminacy 

principle in quantum physics. A probabilist may be amused by Einstein's apparent 

misunderstanding of probabilities when he argued that "God does not play dice with the 

universe", because randomness involves our lack of information, not God's! Probability is 

the "proportion" or a measure of the unknown and it specifies the degree of certainty of 

an event: from 0 (improbable) to 1 (certain). It is a completely subjective and relative 

concept, since what is perceived as probability prior to knowing the result of an event 

becomes certainty afterwards. A person who plays dice may use a probabilistic model 

based on symmetry, agreeing that while it is impossible to predict the result of an 

individual dice rolling, when the number of rollings is very large each face of the dice will 
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be up in roughly the same proportion. The lack of information is almost total, but when 

the dice is regular there is still some uniformity and a "statistical" degree of predictability, 

valid only for huge numbers of similar trials. In contrast, if a person would know all the 

factors influencing a particular rolling, she would be able to predict its result with 

absolute certainty (Laplace, 1902, p. 4). When quantum mechanics has shown that we 

cannot determine both the position and the momentum of an atomic particle, 

Heisenberg (1927, p. 197) declared the final failure of classical causality and determinism:  

“But what is wrong in the sharp formulation of the law of causality, ‘when we 

know the present precisely, we can predict the future’, it is not the conclusion 

but the assumption that is false. Even in principle we cannot know the present 

in all detail.” 

 The difference between deterministic and probabilistic thinking is just the 

admission of the unknown in one's representations. A higher stage of probabilistic 

mindset is reached when algorithms and models themselves are subjected to correction 

or reform once new data or information contradicts the current representation, as in 

Bayesian probabilities.  A model or a representation (which may involve an approach) will 

be seen as a hypothesis with some degree of likelihood, hence Pólya’s "plausible 

reasoning". It also relates to the heuristic approach or "educated guessing", which 

hopefully leads to a solution or to discovery and thus it reaches the Structuring level. 

Actually, the word "heuristic" derives from the Greek εὑρίσκω ("I discover"), recalling 

Archimedes' legendary exclamation “I found (it)!” (εὕρηκα) when he discovered his 

principle in hydrostatics.  

 Probabilistic thinking is an important aspect that distinguishes inductive from 

deductive reasoning. Inductive thinking is a way of constructing general propositions 

by deriving them from specific examples. This reasoning is probabilistic: it only states 

that, given the premises, the conclusion is probable. It may be correct, incorrect, correct 

to within a certain degree of accuracy, or correct in certain situations. The degree of 

confidence may be increased through testing, or by additional observations. By contrast, 
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in deductive reasoning specific examples are derived from general propositions, and the 

conclusion is always true when the premise is true. Two important categories of inductive 

reasoning are employed in Integration: associative thinking - based on associations and 

connections, and analogical thinking - based on analogies and similarities.      

 As already shown, prominent figures in the area of mathematics education, such as 

Klein (1932, p. 208) and Pólya (1954, pp. 7 & 83-84), asserted that mathematicians think 

inductively, but prove their results deductively. Induction in mathematics labels both a 

method and a way of thinking, but these involve different cognitive levels. The method   

of mathematical induction is a form of deduction and only involves Knowledge processes, 

since a sample plus a rule about the unexamined cases actually give us information about 

every member of the set (Chowdhary, 2015, p. 26). By contrast, inductive thinking begins 

when the rule is not yet proven or certain, but just a plausible hypothesis. So, for 

example, a problem such as, “Prove that the number of diagonals in a convex n-gone is 

(𝑛−3)𝑛

2
.” will trigger the “Knowledge” processes; there is a chance that the problem 

“Conjecture a formula for the number of diagonals in a convex n-gone and prove it.” will 

engage some students in the “Understanding” processes.  

 A different way of thinking, abductive thinking, is developed and employed in 

the process of Structuring. It starts from a set of observations then seeks to find the 

simplest and most likely explanation. It is involved in the formation of hypothesis and 

model building in applied mathematics, where models are judged according to their 

explanatory power and simplicity. By using criteria of simplicity and elegance, Abduction 

relates to Ockham's razor principle in heuristics. The concept of abduction was 

introduced by Peirce and included in his methodology of inquiry that inspired Peirce's 

student, Dewey and the book Logic: The theory of inquiry (Dewey, 1938). According to 

Peirce (1976, pp. 62-63), a hypothesis is judged and selected for testing when it offers to 

quicken and to reduce the "cost" of the inquiry process towards new truths: 

 "Methodeutic (Speculative rhetoric) has a special interest in Abduction,        

or the inference which starts a scientific hypothesis. Any hypothesis which 



 

86 
 

explains the facts is justified critically. But among justifiable hypotheses we 

have to select that one which is suitable for being tested by experiment." 

 Abduction is a step further from inductive thinking to approaches that define 

Structuring, and which are often called structural and conceptual thinking. Structural 

thinking would try to simplify, to organize and to reveal the underlying structure of the 

information already interconnected in Integration.   It also adjusts the existing mental 

model when necessary as new knowledge is acquired and tested. Critical reasoning is a 

prerequisite, but structural thinking goes far beyond it by using holistic thinking and 

abduction for detecting the hidden order. Conceptual thinking uses abstraction and 

conceptualization for building general models, theories and frameworks that explain and 

give meaning to information, these constructions becoming themselves objects of study. 

Such ways of thinking were powerfully displayed by Riemann in his notion of variety and 

Grothendieck in his concept of schemas. 

 Many students don't really understand the principle of induction but they apply it 

as a method, successfully when the context allows doing it easily and unsuccessfully when 

it does not. Informal evidence from the 1990s revealed that among pre-service teachers of 

mathematics at a Canadian university (personal communication), only half managed to 

understand mathematical induction, and the others eventually learned it as a more or less 

magic rule. However,   the idea of induction toward infinity is deeply ingrained in human 

mind, for example the concept of natural numbers is an infinite construction: one, two, 

three... infinity. This is a dynamic, transcendental step that cannot be performed by 

computers, which by their nature operate only with finite sets and processes. Ancient 

Greeks were confronted themselves with the issue of distinguishing between "potential 

infinity" i.e. the mental abstraction of a dynamic process, and "actual infinity", defined by 

its intermediary, finite stages, as in the well-known Dichotomy paradox of Zeno. The 

notion of infinity illustrates the difference between algorithmic and conceptual thinking, 

between artificial and human intelligence. Another obstacle encountered by computers is 

to imitate the “reasoning by contradiction”, which means trying to reach a contradiction 

by starting from a false assumption. This is a non-algorithmic task, very difficult to 
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implement on a computer.  No wonder that from the sample of pre-service teachers 

mentioned above, only half managed to understand the reasoning by contradiction. 

 Pólya (1957; 1981), Engel (1999), Posamentier (2015) and other authors tried to 

classify the various strategies used in problem solving, many of these involving inductive 

thinking. Engel, who developed a very effective way of teaching heuristics and problem 

solving by training students in the main principles of mathematical thinking, argued that: 

"A successful research mathematician has mastered a dozen general heuristic 

principles of large scope and simplicity, which he/she applies over and over 

again. These principles are not tied to any subject but are applicable in all 

branches of mathematics. He usually does not reflect about them but knows 

them subconsciously." (Engel, 1999, p. 39) 

3.2.4 A summary  

"For the mind does not require filling like a bottle, but rather, like wood, it 

only requires kindling to create in it an impulse to think independently and an 

ardent desire for the truth. Imagine, then, that a man should need to get fire 

from a neighbour, and, upon finding a big bright fire there, should stay there 

continually warming himself; just so it is if a man comes to another to share 

the benefit of a discourse, and does not think it necessary to kindle from it 

some illumination for himself and some thinking of his own, but, delighting in 

the discourse, sits enchanted; he gets, as it were, a bright and ruddy glow in 

the form of opinion imparted to him by what is said, but the mouldiness and 

darkness of his inner mind he has not dissipated nor banished by the warm 

glow of philosophy."- Plutarch (1927, p. 259) 

In Table 4: Cognitive stages, mindset and thinking we review the 

classification of cognitive processes and their specific ways of thinking, with 

some examples of methods or approaches typically used.  
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Table 4: Cognitive stages, mindset and thinking 

 

 
Phase Layer Mindset 

Reasoning 
Thinking 

Examples 

Knowledge 
 

Recording 

Deterministic 

- 
 
 
 

Operating - 

 
 
 
 

Reasoning Deductive 

           
             - Syllogisms 
 

  - Method of mathematical induction:  
    forward, backward 
 
  - Reasoning by contradiction 
 
  - Checking and following proofs  
                   

Understanding 

Targeting 

Deterministic 
steps/tactics 

 
 

Probabilistic 
path/strategy 

Deductive  

 

- Building proofs of the statements            
 
- Choosing the most plausible path  
  towards a solution                                               
 
- Selecting the most adequate method 
 

Integrating 

Probabilistic 

Inductive 

 Associative thinking: combining   
 various approaches such as   
 algebraic, geometric  or arithmetic 
  
 Analogic thinking: “recycling”    
 proofs, finding invariants 
 

Structuring 

Abductive  
 

Reflexive/ 
Contemplative 

 

 
 Heuristics as “educated guess” 
 
 Structural thinking: developing 
 models, conjecturing on the structure,   
 making hypothesis 
 
 Conceptual thinking: thinking in    
 terms of concepts; abstraction,   
 conceptualization 
 

Inventing Faith Fiery/Sparkling 

 

Combinatorial thinking 
 

Enlightenment/revelation 
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3.3 EXAMPLES OF IBLECTURES  

“A person who can, within a year, solve 𝑥2 − 92𝑦2 = 1 is a mathematician.” 

Brahmagupta (598-668 CE) 

The teacher shows the students how mathematicians conduct their inquiries. Every proof 

is the result of an inquiry. We remark the “creative load” of the problems presented.  

3.3.1 Lecture 1: Backward induction – Principle of infinite descent (Fermat) 

While mathematical induction is a common method used for proving positive statements, 

backward induction is rarely encountered, and employed almost exclusively for proving 

negative propositions. Backward induction, first used by the Pythagoreans and called 

Infinite descent by Fermat (1659) who rediscovered it, reduces a statement depending    

on the natural number n to a similar proposition where n is replaced by a smaller value. 

By repeating this procedure, either we end up with a basic set of values of n for which the 

property has been tested (and thus we can state with certainty if it is true or false), or we 

get an infinite chain of decreasing natural numbers, which is impossible and thus the 

initial statement must be false. Backward and forward induction are equivalent and they 

can be reduced to proofs by contradiction by choosing the whole number n minimal such 

that the statement to be proved does not hold. Fermat used infinite descent to prove his 

last theorem for n = 4, Euler for n =3, Legendre and Dirichlet for n = 5, and Lamé for n = 7. 

The same method was used to easily prove Sylvester's line problem in Euclidean spaces. 

Backward induction has been revived by von Neumann (1944), who used it as an essential 

tool in game theory. In finance, the pricing of American options is based on this method. 

Next, I will present some examples of the way mathematicians think when solving 

problems and how the cognitive processes are involved.  

 Problem 6 of IMO 𝟏𝟗𝟖𝟖 (Stephan Beck, Germany) 

Let 𝑎 and 𝑏 be positive integers such that 1 + 𝑎𝑏 divides  𝑎2 + 𝑏2. Prove that 
𝑎2+𝑏2

1+𝑎𝑏
 is the 

square of an integer.  
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This was the most difficult problem at the IMO 1988 (Knežević et al., 2013): only 11 

of the 268 competitors completely solved it. It became a famous challenging problem, 

widely used for training students in backward induction and for exercising creativity.   

The standard proof presented online or in the books on “the art of problem solving” is not 

very insightful and does not allow any generalization. It uses some tricky operations 

involving a second degree equation with integer coefficients and roots.  

Solution 1 (standard) 

 If  
𝑎2+𝑏2

1+𝑎𝑏
= 𝑘 ∈ ℤ, with 𝑎, 𝑏 ∈ ℕ\{0}, then 𝑘 ≥ 1. Fix 𝑘 ∈ ℕ\{0} and define 

𝑀 ∶= {(𝑎, 𝑏) ∈ ℕ2|
𝑎2 + 𝑏2

1 + 𝑎𝑏
= 𝑘;  1 ≤ 𝑏 ≤ 𝑎 }. 

 

Let (𝛼, 𝛽) ∈ 𝑀 such that 𝛽 is minimal. Then we have 𝛼2 − 𝑘𝛼𝛽 + 𝛽2 − 𝑘 = 0, i.e. 𝛼 is a 

root of the quadratic equation 𝑋2 − 𝑘𝛽𝑋 + 𝛽2 − 𝑘 = 0. Let  𝛼1 be the other root; we get by 

Viète relations  𝛼1 = 𝑘𝛽 − 𝛼 ∈ ℤ  and  𝛼𝛼1 = 𝛽2 − 𝑘. If 𝛼1 > 0, since 𝛽 ≤ 𝛼 we have 

𝛽𝛼1 ≤ 𝛼𝛼1 < 𝛽2, which implies 𝛽𝛼1 < 𝛽2, i.e. 𝛼1 < 𝛽, contradicting the minimality of 𝛽. 

Therefore, 𝛼1 ≤ 0. We have: 

 𝛼(𝛼1 + 1) =  𝛼𝛼1 + 𝛼 = 𝛽2 − 𝑘 + 𝑘𝛽 − 𝛼1 ≥ 𝛽2 − 𝑘 + 𝑘𝛽 = 𝛽2 + 𝑘(𝛽 − 1) ≥ 1,  

which implies 𝛼1 + 1 > 0 i.e. 𝛼1 > −1. We conclude that 𝛼1 = 0, hence 𝛽2 − 𝑘 = 0 

and 𝑘 = 𝛽2. 

 We can model the process of building this solution by the sequence of mental 

activities detailed in the left column of Table 5. For each activity, the outcome and the 

cognitive process involved are indicated in the middle and the right column, respectively.  

Such tables will not be used in actual IBLectures, but are presented here only for purposes 

of research. 
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Table 5. Cognitive analysis of the standard solution to IMO 1988 Problem 6. 

 

Description of the mental 
activity 

 

Outcome 

Type of 
cognitive 
process 

involved 

Reading the problem statement Memorization of the content Recording 

Trying various arithmetic and/or 
algebraic methods 

No successful approach, dead end Targeting 1 

Comparing the form of the 

expression 
𝑎2+𝑏2

1+𝑎𝑏
 with familiar 

functions 

The expression is a rational function, 
symmetric in 𝑎 and 𝑏. The numerator and the 
denominator are second and first degree 
polynomials, respectively 

Operating 3 

Deriving implications of the 
symmetry in 𝑎 and 𝑏 of the 

expression 
𝑎2+𝑏2

1+𝑎𝑏
 

Finding that 𝑎 and 𝑏 are interchangeable and 
that we may suppose without loss of generality 
that 𝑎 ≥ 𝑏. Alternatively, we may suppose 
without loss of generality that 𝑏 ≥ 𝑎. 

Reasoning 5 

Idea coming up: transforming 
the expression in order to use 
the properties of second degree 
functions 

Reducing the problem to a second degree 
equation with root : 𝑋2 − 𝑘𝑏𝑋 + 𝑏2 − 𝑘 = 0. 
Consider the other root of the equation, 𝑎1. 

Inventing 6 

Trying the “root flipping” 
approach 

Viète’s relations 𝑎 + 𝑎1 = 𝑘𝑏 and 𝑎𝑎1 = 𝑏2 − 𝑘 
are found, also the fact that 𝑎 and 𝑎1 are 
interchangeable and that  𝑎1 = 𝑘𝑏 − 𝑎 ∈ ℤ. 

Targeting 1 

Deriving implications of the 
Viète relations     

The relation  𝑎𝑎1 < 𝑏2 is obtained. Reasoning 5 

Evaluating the relation 𝑎1 <
𝑏2

𝑎
 Understanding that the relation 𝑎𝑎1 < 𝑏2, 

rewritten as  𝑎1 <
𝑏2

𝑎
, implies a very simple 

relation: 𝑎1 < 𝑏, if  𝑎 ≥ 𝑏. 

Structuring7 

Recalling the symmetry in 𝑎 and 
𝑏 of the initial expression  

We may suppose without loss of generality 
that  𝑎 ≥ 𝑏 

Recording 

Supposing that 𝑎 ≥ 𝑏, which 
implies 
 𝑎1 < 𝑎, and selecting a useful 
method 

Finding that backward induction can be used 
in this case, since 𝑎 and 𝑎1 are 
interchangeable 

Targeting 2 

Supposing that 𝑎 ≥ 𝑏, and using 
backward induction   

Defining 𝑀 ∶= {(𝑎, 𝑏) ∈ ℕ2|
𝑎2+𝑏2

1+𝑎𝑏
= 𝑘;  1 ≤ 𝑏 ≤

𝑎 },  (𝛼, 𝛽) ∈ 𝑀 such that 𝛽 is minimal  

Operating 4 
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The reasoning used for 𝑎, 𝑏 and 
𝑎1 is followed for 𝛼, 𝛽 and 𝛼1 

Finding that 𝛼 is root of  𝑋2 − 𝑘𝛽𝑋 + 𝛽2 − 𝑘 =
0. Considering the other root of the 
polynomial, 𝛼1. The relation 𝛼1 = 𝑘𝛽 − 𝛼 ∈ ℤ 
is found. Deduction of the fact that  𝛼1 ≤ 0 . 

Reasoning 5 

Resolving the case  𝛼1 = 0, by 
using the fact that 𝛼1 is root of 
the polynomial 

  𝑋2 − 𝑘𝛽𝑋 + 𝛽2 − 𝑘 

We get 𝑘 = 𝛽2, and the problem is solved in 
this case. 

Reasoning 5 

Trying to solve the case  𝛼1 < 0 
by reaching a contradiction. 
Using for this purpose the 
knowledge already found that 
𝛼1 ∈ ℤ. 

We get  𝛼1 + 1 ≤ 0 in this case. Also, we find   
0 ≥ 𝛼(𝛼1 + 1)= 𝛼𝛼1 + 𝛼 = 𝛽2 − 𝑘 + 𝑘𝛽 − 𝛼1 >
𝛽2 − 𝑘 + 𝑘𝛽 = 𝛽2 + 𝑘(𝛽 − 1) ≥ 1, 

which is a contradiction. 

Targeting 2 

 

(1) This has been classified as Targeting because the problem solver tries various 

approaches, strategies, methods in order to get closer to the solution. 

(2) This has also been classified as Targeting because the solver tries one method knowing 

that it might not apply (tentative approach). 

(3) Here the solver classifies the expression using familiar categories. 

(4) The solver uses backward induction as a standard method. 

(5) This action has been classified as Reasoning because it is just deriving conclusions 

from given premises (syllogism). 

(6) This action has been classified as Inventing because the problem solver thinks outside 

of the box and introduces a new variable 𝑘, which connects the numerator and the 

denominator into a second degree polynomial. 

(7) Here the solver evaluates the outcome of a previous action and decides on which 

direction to continue further.   
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Solution 2 (alternative):  

Since 
𝑎2+𝑏2

1+𝑎𝑏
 is symmetric in 𝑎 and 𝑏, we may suppose without loss of generality that 

 𝑎 ≥ 𝑏. Then we can write 𝑎 = 𝑏𝑐 + 𝑟 for some integers   𝑐 and 𝑟, with 0 ≤ 𝑟 < 𝑏. We get: 

𝑎2+𝑏2

1+𝑎𝑏
= 

(
𝑎

𝑏
)2+1

𝑎

𝑏
 + 

1

𝑏2

 =
𝑐2+2

𝑐𝑟

𝑏
 + 

𝑟2

𝑏2 +1 

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

= 𝑐 + 
𝑐𝑟

𝑏
− 

𝑐

𝑏2 + 
𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

= 𝑐 + 
𝑐

𝑏
(𝑟−

1

𝑏
)+ 

𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

   

We show that  𝑐 − 1 < 𝑐 + 
𝑐

𝑏
(𝑟−

1

𝑏
)+ 

𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

< 𝑐 + 2. This is equivalent to  

−(𝑐 + 
𝑟

𝑏
 +  

1

𝑏2) <
𝑐

𝑏
(𝑟 −

1

𝑏
) + 

𝑟2

𝑏2  + 1 < 2𝑐 + 
2𝑟

𝑏
 +  

2

𝑏2 , i.e. 

−𝑐𝑏 − 𝑟 − 
1

𝑏
 < 𝑐 (𝑟 −

1

𝑏
) +

𝑟2

𝑏
+ 𝑏 < 2𝑐𝑏 + 2𝑟 +

2

𝑏
 .  

The left inequality is equivalent to 0 < 𝑐 (𝑟 + 𝑏 −
1

𝑏
) +

𝑟2

𝑏
+ 𝑏 + 𝑟 +

1

𝑏
 ,  

which is true since 𝑏 ≥ 𝑟 + 1 ≥ 1. 

The right inequality is equivalent to  𝑐 (2𝑏 − 𝑟 +
1

𝑏
) − (𝑏 − 𝑟) + 𝑟 −

𝑟2

𝑏
+

2

𝑏
> 0, 

which can be rewritten (𝑐 − 1)(𝑏 − 𝑟) + 𝑏𝑐 + 𝑟(1 −
𝑟

𝑏
) +

𝑐+2

𝑏
> 0, true since 0 ≤ 𝑟 < 𝑏. 

Since 
𝑎2+𝑏2

1+𝑎𝑏
∈ ℤ, we must have then 

 𝑐 + 
𝑐

𝑏
(𝑟−

1

𝑏
)+ 

𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

∈ {𝑐, 𝑐 + 1}.  

Case a):  𝑐 + 
𝑐

𝑏
(𝑟−

1

𝑏
)+ 

𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

= 𝑐, i.e. 
𝑐

𝑏
(𝑟 −

1

𝑏
) + 

𝑟2

𝑏2
 + 1 = 0, that is 𝑐(1 − 𝑏𝑟) = 𝑟2 + 𝑏2. 

This is only possible if  𝑏𝑟 < 1, but 𝑏 ≥ 1, and thus 𝑟 = 0. We get  𝑐 = 𝑏2, perfect square. 
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Case b):  𝑐 + 
𝑐

𝑏
(𝑟−

1

𝑏
)+ 

𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

= 𝑐 + 1, i.e.  
(
𝑎

𝑏
)
2
+1

𝑎

𝑏
 + 

1

𝑏2

=  
(𝑐+

𝑟

𝑏
)
2

+1

𝑐+
𝑟

𝑏
+

1

𝑏2

= 𝑐 + 1, equivalent to  

𝑐+1

𝑏2 +
𝑟

𝑏
+ 𝑐 =

𝑐𝑟

𝑏
+  

𝑟2

𝑏
2  + 1, i.e. 

𝑐+1

𝑏2
+ 𝑐 + 1 =

(𝑐+1)𝑟

𝑏
+ 

𝑟2

𝑏2
− 2

𝑟

𝑏
+ 2. This is rewritten:  

(𝑐 + 1) (1 −
𝑟

𝑏
+ 

1

𝑏2
) =

𝑟2

𝑏2
− 2

𝑟

𝑏
+ 2,  i.e.  𝑐 + 1 =

𝑟2−2𝑟𝑏+2𝑏2

𝑏2−𝑟𝑏+1
=

(𝑏−𝑟)2+𝑏2

1+𝑏(𝑏−𝑟)
, which is of 

the same form as 
𝑎2+𝑏2

1+𝑎𝑏
 but with smaller sum of variables: 

 (𝑏 − 𝑟) + 𝑏 < 𝑎 + 𝑏, unless 𝑎 = 𝑏; in that case, 
𝑎2+𝑏2

1+𝑎𝑏
 =

2𝑎2

𝑎2+1
= 2 −

2

𝑎2+1
, so if it is 

integer we must have 𝑎2 + 1 ≤ 2 i.e. 𝑎 = 1, hence 𝑏 = 1 and  
𝑎2+𝑏2

1+𝑎𝑏
= 1, perfect square.  

If  𝑎 > 𝑏, by mathematical induction on 𝑎 + 𝑏 we reach the desired result.  

Remark: By backward induction on 𝑏 = min{𝑎, 𝑏}  we get the same result since 

  𝑏 − 𝑟 < 𝑏, unless 𝑟 = 0. But in such case,  𝑐 + 1 =
2𝑏2

𝑏2+1
 , which cannot be an integer 

unless 𝑏 = 1, as we have shown above, and if  𝑏 = 1 we get  𝑐 + 1 = 1, i.e. 
𝑎2+𝑏2

1+𝑎𝑏
= 𝑐 = 0, 

contradiction. 

 The cognitive processes involved in the above alternative solution are detailed in 

Table 6: 

.  
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Table 6. Cognitive analysis of the alternative solution of IMO 1988 Problem 6. 

Description of the mental 
activity Outcome 

 

Type of 
cognitive 
process 

involved 

Reading the problem 
statement  

Memorization of the content 
Recording 

Comparing the form of the 

expression 
𝑎2+𝑏2

1+𝑎𝑏
 with 

familiar functions 

The expression is a rational function, symmetric 
in 𝑎 and 𝑏  

Operating 

Trying to solve the problem 
by arithmetic means  

No successful approach, dead end Targeting 

 Evaluating the structure of 

the expression 
𝑎2+𝑏2

1+𝑎𝑏
 

Realization of the fact that the numerator has 
one degree more than the denominator in each 
variable and for large values of 𝑎 or 𝑏 it could be 
approximated by a first degree function 

Structuring   

Supposing that 𝑎 ≥

𝑏,estimate 
𝑎2+𝑏2

1+𝑎𝑏
 by using the 

division of a by b with 
remainder 

Without loss of generality, suppose 𝑎 ≥ 𝑏 and 
then put 𝑎 = 𝑏𝑐 + 𝑟 for some whole numbers 𝑐, 𝑟 

with 1 ≤ 𝑐 and 𝑟 < 𝑏. Express 
𝑎2+𝑏2

1+𝑎𝑏
 as a rational 

function in c 

Inventing 

Reflecting on the form of the 
rational function 

𝑐2+2
𝑐𝑟

𝑏
 + 

𝑟2

𝑏2 +1 

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

 in 𝑐 

The expression can be related to a rational 
function asymptotically close to 𝑐 from 
differential calculus 

Integrating  

Estimating the rational 
function in 𝑐 

Conjecturing that the rational function in 𝑐 is 
very close to 𝑐 

Structuring  

Testing how far from 𝑐 can 
the rational function go by 
forcing 𝑐 out of it and by 
estimating the residual 

 

𝑐

𝑏
(𝑟−

1

𝑏
)+ 

𝑟2

𝑏2 +1

𝑐 + 
𝑟

𝑏
 + 

1

𝑏2

 found to be in the interval (−1,2) 
Targeting  

  Evaluating the first degree 
equation in 𝑐 obtained after 
simplifications 

The linear equation  𝑟2 = 𝑐 + 1 + 𝑏(𝑐 − 1)(𝑏 − 𝑟) 
suggests expressing it in 𝑐 + 1, 𝑐  or  𝑐 − 1  

Structuring 

For the two possible values 
of 𝑐, solving the first degree 
equation in 𝑐  

Case a) solved. Case b) leading to a dead end 
when trying to factor 𝑐 − 1. Calculation error 
identified and corrected at Case a) 

Targeting 
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Reflecting at the resulting 
form of 𝑐, solution of the 
linear equation 

A similarity with the initial expression 
𝑎2+𝑏2

1+𝑎𝑏
 is 

identified, only the “+” sign in the numerator 
expression changed to “−“.This suggests that 
backward induction is somehow involved 

Integrating 

Evaluating the structure of 

the expression 
𝑎2+𝑏2

1−𝑎𝑏
 

Conjecturing that backward induction can be 
used for solving the more general problem: 
𝑎2+𝑏2

1+𝑎𝑏
∈ ℤ, with  

𝑎, 𝑏 ∈ ℤ. By replacing 𝑏 with – 𝑏, the problem  for 
𝑎2+𝑏2

1−𝑎𝑏
∈ ℤ and that for 

𝑎2+𝑏2

1+𝑎𝑏
∈ ℤ in the general 

case  𝑎, 𝑏 ∈ ℤ  are shown to be equivalent 

Structuring 

Returning to the initial 
rational fraction in 𝑐 in 
order to factor 𝑐 + 1 

The relation 𝑐 + 1 =
(𝑏−𝑟)2+𝑏2

1+𝑏(𝑏−𝑟)
 is obtained Targeting  

Reflecting at the form of the 
above expression in 𝑏 and 𝑟 

The analogy with the initial problem is identified. 
Backward induction can be employed at Case b)  

Integrating 

Completing, checking and 
writing the proof 

A formal proof is obtained and written down Reasoning 

 

 After completing the proof, I continued my inquiry by formulating questions or 

conjectures about the possible generalizations and by trying to prove or to reject them. 

The result of this additional research, which states the initial problem as an open task 

(unstructured inquiry) and leads to other research questions, is presented in Table 7: 

. 
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       Table 7. Cognitive analysis of the generalization of the IMO 1988 Problem 6. 

Description of the mental 
activity 

Outcome Type of 
cognitive 
process 

involved 

Evaluating the structure of 
the initial problem’s solution 

The solution is based on the reduction of the 

problem to a linear equation in 𝑐 ∶= [ 
𝑎

𝑏
 ] ∈ ℕ\{0} 

, with coefficients that are second degree 

expressions in  𝑥 ∶=
𝑎−𝑏𝑐

𝑏
∈ [0,

𝑏−1

𝑏
]  

Structuring 

Based on the evaluation of the 
existing solution, constructing 
related expressions of 
arbitrary degree, for which a 
similar solution could be built 

A general expression, related to the initial one, is 

obtained:  
𝑎𝑛+𝑏𝑛

1+𝑎𝑛−1𝑏+𝑎𝑛−2𝑏2+⋯+𝑏𝑛−1𝑎
 , 𝑛 ≥ 2. 

Integrating 

“Recycling” and adapting the 
proof of the initial problem 
(𝑛 = 2) for the general case 

A first step toward a solution when  𝑛 ≥ 3 is 
obtained. The problem is reduced to a single 
equation of degree 𝑛 − 1 in 𝑐, with coefficients 

polynomials of degree 𝑛 in 
𝑟

𝑏
, where  𝑟 =  𝑎 − 𝑏𝑐.   

Targeting 

“Recycling” and adapting the 
proof of the initial problem 
(𝑛 = 2) for 𝑛 ≥ 3 

Complete solution for the case 𝑛 = 3. Dead end 
encountered when trying to solve the general 
case. 

Targeting 

Recalling the results of 
previous evaluation of the 
initial problem’s solution 

The conditions imposed to the rational 
expression in 𝑎 and 𝑏 such that the initial 
solution may be adapted and reused are recalled. 

Recording 

By using the results of this 
evaluation, building related 
expressions of arbitrary 
degree, for which a similar 
solution could be developed 

A general expression, related to the initial one, 
but with non-homogenous numerator, is 

obtained:  
𝑎𝑛+𝑏𝑛+𝑎𝑛−2𝑏𝑛−2−1

1+𝑎𝑛−1𝑏𝑛−1 
 , 𝑛 ≥ 2. 

Integrating 

Trying to solve the new 
problem in the general case  

Problem solved successfully by employing, for 
the first steps, a similar approach to that used for 
the initial problem, and a combined arithmetic-
algebraic approach for the last steps.  

Integrating 

Completing, checking and 
writing the proof 

A formal proof is obtained and written down. Reasoning 

Based on the evaluation of the 
existing solution, constructing 
related expressions of 
arbitrary degree, for which a 
similar solution could be built 

A general expression, related to the initial one, is 

obtained:  
𝑎𝑛+𝑏𝑛

1+𝑎𝑏(𝑎𝑛−2+𝑏𝑛−2−1)
 , 𝑛 ≥ 2. 

Integrating 
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“Recycling” and adapting the 
proof of the initial problem 
(𝑛 = 2) for the general case 

A first step toward a solution when  𝑛 ≥ 3 is 
obtained. The problem is reduced to a single 
equation of degree 𝑛 − 1 in 𝑐, with coefficients 

polynomials of degree 𝑛 in 
𝑟

𝑏
, where  𝑟 =  𝑎 − 𝑏𝑐.  

Targeting 

Trying to complete the last 
steps of the general case by 
using an arithmetic-algebraic 
approach.  

Algebraic approach is unsuccessful for  𝑛 ≥ 3 . By 
using a combined arithmetic-algebraic approach, 
a complete solution for 𝑛 = 3 is obtained. For  

𝑛 > 3, it leads to a relation 𝑐 =
𝑏𝑛+𝑟𝑛

1+𝑏𝑒
 for some  

𝑒 ∈ ℕ\{0}, wrongly seen as similar to initial one 
and allowing backward induction. Mistake due 
to fatigue.  

Integrating 

Checking, completing and 
writing the proof 

Error found in the case of  𝑛 > 3. This step 
cannot be completed. Complete solution only for 
 𝑛 = 3. 

Reasoning 

 

3.3.2 Lecture 2: Proving the irrationality of  𝝅 by zooming into the number line 

The following example illustrates how a creative approach used in a particular proof can 

be “recycled” via inductive thinking and used as a more general approach in research.  

Below is a sketch of the Niven’s (1947) proof of the irrationality of  𝜋. 

 Irrationality of  𝝅 (Niven) 

Suppose  π =
𝑎

𝑏
  with  𝑎, 𝑏 ∈ ℕ. Define, for every positive integer n: 

𝑓(𝑥) =  
𝑥𝑛(𝑎 − 𝑏𝑥)𝑛

𝑛!
 

and  

𝐹(𝑥) = 𝑓(𝑥) − 𝑓(2)(𝑥) + 𝑓(4)(𝑥) + ⋯+ (−1)𝑛𝑓(2𝑛)(𝑥) 

Note that  𝑓(𝑥) and its derivatives 𝑓(𝑗)(𝑥) have integral values for 𝑥 = 0. This is also true  

for  𝑥 = 𝜋 =
𝑎

𝑏
 , since 𝑓(𝑥) = 𝑓(

𝑎

𝑏
− 𝑥). 

We have  
𝑑

𝑑𝑥
(𝐹′(𝑥) sin 𝑥 − 𝐹(𝑥) cos 𝑥) = 𝐹′′(𝑥) sin 𝑥 + 𝐹(𝑥) sin 𝑥 = 𝑓(𝑥) sin 𝑥 

whence  ∫ 𝑓(𝑥) sin 𝑥 d𝑥
𝜋

0
= (𝐹′(𝑥) sin 𝑥 − 𝐹(𝑥) cos 𝑥)|𝜋

0
= 𝐹(𝜋) + 𝐹(0) ∈ ℤ. 
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But for  0 < 𝑥 < 𝜋  we have  0 < 𝑓(𝑥) sin 𝑥 <
𝜋𝑛𝑎𝑛

𝑛!
 ,  which tends to zero as 𝑛 approaches 

infinity, so ∫ 𝑓(𝑥) sin 𝑥 ⅆ𝑥
𝜋

0
 is a whole number that tends to zero as  𝑛 → ∞, contradiction. 

 

Remark: In the above proof, there is no hint about the way Niven arrived at these specific 

forms of the functions 𝑓  and 𝐹, and how everything fits perfectly in order to give the 

desired result. After having read it, my feeling was that something is missing and I tried 

to really understand what’s behind this trick, to uncover its heuristics and to make sense 

of Niven’s approach. Now I will recall my own inquiry that ensued at that point. 

 After reflecting on the meaning of  𝜋, how it occured in history and how it is 

introduced in elementary mathematics (and thus engaging in the process of Structuring), 

I concluded that  𝜋 is defined by means of integration, namely by calculating the length of 

a circle or the area of a disc. By recalling from high school (Recording) the construction of 

circular trigonometric functions via radian measure by using the length of a circle in 

order to derive the length of an arc, it became clear to me (Structuring) that saying “𝜋 is 

the first positive zero of sine function” is equivalent to saying that the length of a 

semicircle is  𝜋, or that the integral of sine between 0 and 𝜋 is 2. It is natural to combine 

in a single expression (Integrating) the two functions that cancel in 0 and  𝜋, namely 

 𝑓 = 𝑓𝑛 and sine, in order to get the expression 𝑓𝑛(𝑥) sin 𝑥, whose integral from 0 to 𝜋 

obviously tends to zero as   𝑛 → ∞ . 

 Also, choosing  𝑓𝑛(𝑥) =  
𝑥𝑛(𝑎−𝑏𝑥)𝑛

𝑛!
  is natural, because it uniformly tends to zero on 

any interval and all its derivatives in 0 and  
𝑎

𝑏
 are integers (Reasoning using mathematical 

induction). One step remained obscure (Structuring): how did Niven “guess” that the 

primitive of  𝑓𝑛 involves such a nice combination of  𝑓𝑛 ’s derivatives, namely 𝐹(𝑥)? The 

primitive can be computed via repeated integration by parts (Reasoning: mathematical 

induction), but the calculations are longer than the proof itself (Structuring: evaluation), 

perhaps that’s why Niven preferred to skip the heuristics and only provided the clean, end 

product (Structuring: conjecturing). By such reflections, I started to get some 

understanding (Structuring) into the deeper meaning of the result.  
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 At that point, I decided to go straight to the core of the property and to clean the 

proof of all the artificial tricks in order to make it more insightful and to include it in my 

research for the thesis, if possible. I thought initially that the proof was just a brief and 

imperfect translation of the ideas developed in the article of Niven (which I had not read) 

and that it might be reformulated in order to be more accessible to high school students. 

I started from the integral and by trial and error looked for a nice function, similar to 𝑓, 

that would cancel along with its first 𝑛 derivatives at the ends of the integration interval 

(Targeting). For reasons of symmetry (Integrating stage: similarity), I replaced the limits 

of the integral with  ±
𝜋

2
 , sine function with the even function cosine, and changed the 

integrand with the even expression  ( 
𝜋2

4
− 𝑥2)

𝑛

. Two integrations by parts provided me   

a recurrence of integers, which after a simple transformation led to the desired result 

(Targeting). A sketch of the final proof is presented below: 

 Irrationality of  𝝅 (alternative proof) 

Suppose  
𝜋

2
 =

𝑎

𝑏
  with  𝑎, 𝑏 ∈ ℕ, and let   𝐼𝑛 ∶=  ∫ ( 

𝜋2

4
− 𝑥2)

𝑛

cos 𝑥
 𝜋 2⁄

− 𝜋 2⁄

 ⅆ𝑥,  where  𝑛 ∈ ℕ.  

Repeated integration by parts gives us for  𝑛 ≥ 2 :        

 𝐼𝑛 = 2𝑛(2𝑛 − 1)𝐼𝑛−1 − 2𝑛(2𝑛 − 2)
𝜋2

4
𝐼𝑛−2 = 2𝑛(2𝑛 − 1)𝐼𝑛−1 − 4𝑛(𝑛 − 1)

𝑎2

𝑏2 𝐼𝑛−2 , 

and by taking   𝐽𝑛 ∶= 𝐼𝑛
𝑏𝑛

𝑛!
   ∀ 𝑛 ∈ ℕ  we get  𝐽𝑛 = 2𝑏(2𝑛 − 1)𝐽𝑛−1 − 4𝑎2𝐽𝑛−2  , ∀ 𝑛 ≥ 2. 

Since  𝐽0 = 2  and   𝐽1 = 4𝑏,  we get   𝐽𝑛 ∈ ℤ ,  ∀ 𝑛 ∈ ℕ.  

Moreover,  0 < 𝐼𝑛 ≤ ∫ (
𝑎2

𝑏2
)
𝑛

= 2 (

𝑎
𝑏⁄

−𝑎
𝑏⁄

𝑎

𝑏
 )

2𝑛+1
,  ∀ 𝑛 ∈ ℕ, hence  0 < 𝐽𝑛 → 0 as  𝑛 → ∞, 

which is impossible because  𝐽𝑛 ∈ ℤ ,  ∀ 𝑛 ∈ ℕ. 
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 We remark that it is a proof by contradiction (Reasoning), and the details of the   

so-called "repeated integration by parts" are not provided, but the procedure to be used is 

clearly stated and "completing the dots" only requires basic skills in integration and 

accurate calculations (Operating). A mathematical induction step is implicit when saying 

that we get  𝐽𝑛 ∈ ℤ , ∀𝑛 ∈ ℕ (Reasoning: mathematical induction). Also, the final 

step,  𝐽𝑛 → 0 𝑎𝑠 𝑛 → ∞ , is not justified in this sketch of proof, but can be completed by 

using familiar procedures, namely by breaking the process into several elementary 

operations indicated by general rules and principles of  calculus (Operating).  

 Thus, completing the proof only involves Knowledge phase and is usually “left to 

the reader”. So, this task would not be considered a challenging question in IBLecturing 

approach. In order to connect the defining property of  
𝜋

2
  as the first positive zero of 

cosine function and the supposition that it is rational, which means it is a zero of a proper 

linear function with integer coefficients, I built a combination of suitable functions that 

are canceled by it (Integrating). Employing a recurrence of integrals that are positive 

integers and converge to zero, in order to get a contradiction, is an approach seldom 

used; but given the mathematical culture of Niven suggested by his expertise in number 

theory (Structuring: conjecturing), probably he had seen it elsewhere; otherwise, he must 

have invented it by some amazing inspiration. In any case, Integrating and Structuring 

skills are necessary but not sufficient in order to construct this proof: creativity 

(Inventing) is strongly required. The fact that such a simple demonstration has not been 

devised for about two hundred years and that all the proofs available until 1947 were   

very complicated and technical, requiring sophisticated tools from higher mathematics, 

certifies the difficulty of performing at the Invention level and the unpredictable working 

of creativity.  

 On the other hand, the task of proving the irrationality of 𝑒 by using a strategy 

similar to that used for 𝜋 is a challenging question because we meet several issues and a 

deep understanding (Structuring) of the Niven's method is necessary in order to make the 

necessary adjustments. Firstly, 𝑒 can be defined as a zero of various functions, but all are 
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unsuitable for a good recurrence of integrals (Targeting: reaching a dead end). Then, an 

exponential could be employed in order to get such a recurrence, but the exponent and 

the integrals must be multiplied by some factors if we want to keep them as integers 

(Structuring). By heuristic means (Targeting: trial and error/educated guess), I found a 

suitable form of the integrand, 𝑓𝑛(𝑥) = 𝑒𝑎𝑥 ( 
1

𝑒2
− 𝑥2)

𝑛

. Below is the result, in the form of 

a formal proof (Reasoning). 

 Irrationality of  𝒆 

 Suppose 𝑒 =
𝑎

𝑏
  with  𝑎, 𝑏 ∈ ℕ\{0}, and let  𝐼𝑛 ∶=  ∫ 𝑒𝑎𝑥 ( 

1

𝑒2 − 𝑥2)
𝑛 1 𝑒⁄

− 1 𝑒⁄

d𝑥 , where  𝑛 ∈ ℕ.  

Repeated integration by parts gives us for  𝑛 ≥ 1, since  𝑒𝑎𝑥 =
𝑑

𝑑𝑥
(
𝑒𝑎𝑥

𝑎 
), 

𝐼𝑛 = 
2𝑛

𝑎
∫𝑒𝑎𝑥𝑥 ( 

1

𝑒2
− 𝑥2)

𝑛−1

d𝑥

1
𝑒

−
1
𝑒

  

 

     = −
2𝑛

𝑎2
∫ 𝑒𝑎𝑥 [( 

1

𝑒2
− 𝑥2)

𝑛−1

− 2(𝑛 − 1)𝑥2 ( 
1

𝑒2
− 𝑥2)

𝑛−2

] d𝑥     (for 𝑛 ≥ 2) 

1/𝑒

−1/𝑒

 

 

and we get   

 

𝐼𝑛 = −
2𝑛

𝑎2 [2(𝑛 − 1)𝐼𝑛−1 + 𝐼𝑛−1 −
2(𝑛−1)

𝑒2 𝐼𝑛−2] =  −
2𝑛(2𝑛−1)

𝑎2 𝐼𝑛−1 +
4𝑛(𝑛−1)

𝑒2𝑎2 𝐼𝑛−2 ,    ∀ 𝑛 ≥ 2  (*) 

 

By defining   

𝐽𝑛  ∶=  
𝐼𝑛
𝑛!

∙
𝑎2𝑛

2𝑛
 > 0      ∀𝑛 ∈ ℕ, 

we get the recurrence 

𝐽𝑛 = −(2𝑛 − 1)𝐽𝑛−1 + 𝑏2𝐽𝑛−2 
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for any  𝑛 ≥ 2 (since 𝑒2𝑎2 = 𝑏2), with 

𝐽0 = 𝐼0 =
𝑒𝑏 − 𝑒−𝑏

𝑎
 , 𝐽1 =

2

𝑎3
[(𝑏 − 1) (

𝑎

𝑏
)
𝑏

+ (𝑏 + 1) (
𝑏

𝑎
)
𝑏

  ] . 

 

By taking  𝐶 ∶= 𝑎3(𝑎𝑏)𝑏  we get  𝐶𝐽0, 𝐶𝐽1 ∈ ℤ  and thus  𝐶𝐽𝑛 ∈ ℤ, ∀𝑛 ∈ ℕ  because the 

sequence (𝐶𝐽𝑛)𝑛≥0 satisfies the same recurrence  (*) as (𝐽𝑛)𝑛≥0 . 

Since 𝐽𝑛 > 0  ∀𝑛 ∈ ℕ, we have then 

0 < 𝐶𝐽𝑛 = 𝐶
𝐼𝑛
𝑛! 

(
𝑎2

2
)

𝑛

→ 0   as   𝑛 → ∞, 

because 

 0 <  𝐼𝑛  ≤  ∫ 𝑒𝑎𝑥 ( 
1

𝑒2
)
𝑛

 1 𝑒⁄

− 1 𝑒⁄

d𝑥 ≤ ∫ 𝑒𝑎𝑥  d𝑥

 1 𝑒⁄

− 1 𝑒⁄

= constant (bounded) 

and we have a contradiction.  

 Such proof, which uses analogy (Integrating), holistic thinking (Integrating) and 

evaluation (Structuring) in order to build upon the ideas of Niven, involves in a much 

lesser degree the Inventing stage, but still requires a good understanding of the approach 

employed for 𝜋 in order to make it effective in a different setting. Showing the 

irrationality of 𝑒 in this way may be considered useless from a mathematical point of 

view, since an almost trivial demonstration could be done through a serial expansion of 

the exponential function, yet it is very useful from the point of view of the cognitive 

approach in pedagogy because it shows not only some valuable techniques, but also the 

functioning of inductive thinking, and how a rewarding idea could be adapted and 

"extrapolated" or “recycled” in various mathematical contexts. 

3.3.3 Lecture 3: A classical geometric puzzle 

The following problem will illustrate the thinking processes and the cognitive stages 

involved in an attempt to find a solution. Rusu (1970, p. 18) proposed it at a summer 
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training program to a group of sixty in-service teachers of mathematics, and none of them 

was able to solve it immediately. After its publication in 1962, purely geometric proofs 

were given by Rusu, Coxeter (1967) and it was also generalized (Tudor, 2009, pp. 225-226).  

 Problem: Let ABC be an isosceles triangle with AB = AC and the angle   𝐵𝐴�̂� of   20°. 

Let M and N be on the sides AC and BC respectively, such that   𝐴𝐵�̂� has 20° and   

𝐴𝐶�̂�  has 30°. Find the measure of   𝐵𝑀�̂�.  

 Figure 6. Problem statement 
 

 In Figure 6, all the data provided in the problem's statement have been entered.  
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 Looking at the drawing, we realize there is no familiar method that could give us 

the result (Reasoning), and we cannot see any sequence of procedures that would lead us 

closer to the target (Targeting). Therefore, we have to identify the connections between 

the various knowledge available (Integrating). The first step involves breaking the content 

into small pieces, comprehending the information at hand and that which can be 

acquired via routine operations or procedural chains (Reasoning) and selecting the useful 

one. We find that   𝐵𝐶�̂� and   𝐵𝑁�̂� have both 50°, thus ∆𝐵𝐶𝑁 is isosceles with BN = BC. 

Also, 𝑀𝐵�̂� has 60° and  𝐵𝑀�̂� has 40°. All this information is entered in Figure 7.                                         

 

 Figure 7. Simple deductions from the givens 
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 Here we get to the Integrating stage, where associations and connections are done. 

We have the isosceles triangles NBC and BMA. Thus, BC is connected with BN, and 

similarly BM is connected with MA. But we cannot solve the problem with the knowledge 

available at this stage. So, we go up to the Structuring level where we systematize the 

knowledge that has been gathered, in order to make an evaluation or a judgment 

regarding it. Here, we infer that some construction has to be done, since nothing valuable 

can be stated further by using only the current configuration. There are several angles 

whose measures are known, but we don't have any specific property for an angle 

of 20°, 40° or 50°.  

 An angle of 30° has such property, but it requires a right triangle, and since it is 

missing here it should be constructed. Yet, such a construction would complicate the 

figure without revealing anything useful, at least at first sight. In conclusion (Structuring), 

the most suitable strategy is to employ an angle of  60°, which can be used not only in 

combination with a right angle but in isosceles triangles as well, since an isosceles 

triangle with an angle of  60° must be equilateral. 𝑀𝐵�̂� has 60° and it is placed inside 

𝑁𝐵�̂�, with BC = BN. Then, if we take, on the side BM, a segment BP = BC, it connects with 

both BC and BN, so we get three isosceles triangles with a common vertex in B, since     

BP = BC = BN (Figure 8). 
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 Figure 8. Insight 
 

We employ familiar procedures (Operating) and chain reasoning (Targeting) in order to 

determine the angles that arise. Careful evaluation of the drawing (Structuring) suggests 

us to extend the segment CP until it cuts AB in a point Q in order to get additional 

information. The main knowledge available now is entered in Figure 9 
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. 
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 Figure 9. Solution 



 

110 
 

 By the general symmetry of the configuration made up by the points 

𝐴, 𝐵, 𝐶, 𝑃,𝑀, 𝑄 (Integrating) we get that 𝑃𝑄𝑀 is an isosceles triangle with an angle of 60°, 

hence equilateral. 𝑃𝑁𝑄 is an isosceles triangle, too, since 𝑁𝑃�̂� and 𝑁𝑄�̂� are both 40°. 

Thus, the triangles 𝑀𝑁𝑃 and 𝑀𝑄𝑁 are congruent and 𝑃, 𝑄 are symmetric with respect to 

𝑀𝑁, which proves that 𝑃𝑀�̂� is 30°, since 𝑃𝑀�̂�  is 60°. The details of the proof can be 

completed by using only familiar procedures, for example in order to show rigorously that 

∆𝑃𝑄𝑀 is isosceles we develop a chain reasoning (Targeting) as follows: the triangles 𝐴𝑀𝐵 

and 𝐴𝑄𝐶 are congruent since their angles are the same and 𝐴𝐵 =  𝐴𝐶, hence 𝐵𝑀 =  𝐶𝑄; 

but 𝐵𝑃 =  𝐶𝑃 in the equilateral triangle 𝐵𝐶𝑃, so we get 𝑃𝑀 =  𝑃𝑄.  

 Another way to solve the problem by using the property that isosceles triangles 

with an angle of  60° are equilateral is to construct the angle 𝑁𝐵�̂� of 60° inside 𝐴𝐵�̂� as in 

Figure 10Figure 9: 
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 Figure 10. Alternative solution 
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 After entering the main information into the figure, we find that 𝐵𝑁𝑃 is an 

equilateral triangle with 𝐵𝐶 = 𝐵𝑃 = 𝐵𝑁 = 𝑁𝑃; moreover, 𝑀𝐵�̂� and  𝐵𝑀�̂� are both 40°, 

hence BMP is an isosceles triangle with 𝑀𝑃 = 𝐵𝑃. This implies 𝑀𝑃 =  𝑁𝑃, and the 

triangle 𝑁𝑀𝑃 will be isosceles with 𝑁𝑃�̂� of  40°, therefore 𝑁𝑀�̂� has 70° and the angle 

𝑁𝑀�̂� will be of  30° (Targeting – because a choice of the angle to look for was made), 

which completes the proof.  

 We remark that, once we have built the appropriate angle of 60° inside 𝐴𝐵�̂�, 

everything flows easily and only requires using logical deduction (Reasoning) or 

generating chains of procedures that aim at finding the measure of  𝐵𝑀�̂� (Targeting). But 

for discovering this construction (Inventing), we need first to combine (Integrate) and 

then to evaluate (by Structuring) all the information that has been found by using 

familiar operations and sequences of procedures. Then, after carefully selecting the 

relevant information among the data already acquired, we have to organize it (Structure) 

with the help of valuable tools such as visual diagrams. At this point, much reflection is 

necessary in order to achieve deep understanding (through Structuring) and thus to be 

able to reach the highest cognitive layer, creation (Invent), i.e. to generate new, 

distinctive knowledge through invention.  

 For the problem presented above, the segment 𝐵𝑃, constructed with the same 

length as both 𝐵𝐶 and 𝐵𝑁 at an angle of  60° from one of them, is an ad hoc tool created 

by us (Inventing stage) in order to connect some parts of the geometric configuration and 

thus to open a novel path towards a solution. 

3.4 EXAMPLE OF A CHALLENGING QUESTION FOR STUDENTS 

In order to see if the cognitive stages that I have assumed in my model and that I have 

identified through introspection mainly appear also in the solutions of more challenging 

questions by the learners, I gave such a problem to twenty secondary school students 

participating at a mathematical circle in Braşov, Romania. Most of them were from grade 
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7 and grade 8, they mastered the basic procedures of plane geometry and thus were able 

to solve the problem by synthetic means. There were only two grade 9 students in the 

group, they had asked me the permission to participate and I accepted them in order to 

get a sample of more mature thinking (Structuring), even if they had the advantage of 

more advanced tools at their disposal such as trigonometry, Cartesian coordinates and 

complex numbers.  

The task consisted in proving a plane geometry property, a maximum time given for 

completing it was around one hour and a half and there was no minimum time, so they 

could leave immediately if they found the problem too difficult. However, there was a 

reward for the best productions and the students were acquainted with challenging tasks, 

so I did not expect them to quit immediately. After explaining the purposes of this test, I 

asked them to write down not only the operations performed but also their thinking in 

the attempt to solve the problem, since my research focuses on it. I also specified that the 

description of student’s own thinking will be taken into account at the evaluation. The 

analysis of students’ metacognition is an important source of valuable information, which 

could lead to novel findings in cognitive psychology and education.  

 Each student received a copy of the problem statement with a Geogebra diagram 

that included the grid, similar to a drawing on mathematics grid paper (Figure 11). The 

goal was to provide some guiding to the students, in order to facilitate the discovery of a 

certain structure in the drawing and to help them find a synthetic solution by inventing a 

construction made by using grid nodes. 
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 Figure 11. The challenging problem statement 
 

 In Table 8, I present students’ comments on their solutions and my assessment of 

the cognitive level they represent in terms of the highest level of processes the student 

seems to have reached.  
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Table 8. Cognitive analysis of students’ solutions 

Label 
of the 

student 
Approach 

Cognitive 
stage 

Student’s comments and my remarks on the student’s solution 

A 

 

 

 

 

Using the cosine 
theorem (Solution 1) 

 

 

 

 

 

Using sine formula 
for the area of a 
triangle (Solution 2) 

Targeting 

“1. Since I had previously done similar problems, the solution came 
to me instantly. I did not have other ideas for trial, since the 
problem can always be solved in this way and the method is more 
general than a geometric trick which would not work for an angle of, 
say 17.5°. 

3
 

 [Remark: correct and complete proof.] 

2. A second way of immediately solving the problem, similar to the 

first, is to compute the scalar product of the vectors 𝑂𝐻⃗⃗⃗⃗⃗⃗  and 𝑂𝐴⃗⃗⃗⃗  ⃗ . 
These two approaches are the first that I thought about, because 
they always lead to the result. If the problem was more difficult, I 
would have also used a rotation of the triangle, but since the 
problem is simple, it was not necessary.  

Another immediate proof is using the property that for similar 
triangles of ratio 𝑘, the ratio of their heights is also 𝑘. (If 𝑋 is the 
intersection of 𝐴𝐸 and 𝐶𝐻), by the similarity of ∆𝐴𝑂𝐻 and ∆𝑋𝑂𝐶 we 
get the ratio of their heights 𝑙1 and 𝑙2 (from 𝑂). But 𝑙1 + 𝑙2 = 2, so 
we can find the area of ∆𝐴𝑂𝐻 and thus the angle by the sine 
(formula for area).”  

[Remark: on his draft, the student almost found the similarity ratio 
to be  3/2.] 

B 
Trying to use 
similarity 

Targeting 

“I thought that I could use similarity: extending 𝐻𝐶 until it cuts 𝐸𝐷 
in 𝑀, hence ∆𝐴𝑂𝐻~∆𝐸𝑂𝑀. My first idea was to employ the 
fundamental theorem of similarity. We use it for ∆𝐴𝑂𝐶 and  ∆𝐻𝑂𝐸.”  

[Remark: by using ∆𝐴𝑂𝐶~∆𝐻𝑂𝐸, she found that 𝑂𝐴 = 2/3 𝑂𝐸 and 
𝐻𝐶 = 5/2 𝑂𝐶. After finding the lengths of 𝑂𝐶, 𝐻𝑀 and 𝑂𝐻, complete 
deadlock. The student has not noticed that by knowing 
∆𝐴𝑂𝐻~∆𝐸𝑂𝑀and 𝐻𝑀, we can find 𝐻𝑂 and 𝐴𝑂 (after calculating 
𝐴𝐸), so the triangle 𝐴𝑂𝐻 is completely determined.] 

C 

 

Making a suitable 
construction 

 

Targeting 

“Teachers train you to think of just one method when dealing with a 
problem. Right triangle is the method of which you think when 

hearing about 45°, and from that derive sine, cosine, tan, cotan”.  

[Remark: the student constructed ∆𝑂𝐶𝑀 with 𝑀 ∈ 𝑂𝐸 such that 

𝑂𝐶�̂� has 90° and tried to prove that it is isosceles by taking 𝑂𝑃 and 
𝑀𝑁 altitudes in ∆𝐴𝑂𝐶 and ∆𝐴𝑀𝐶, respectively. He proved that 

𝑂𝐶�̂� ≡ 𝐶𝑀�̂�, then invoked “ruler” (measurement) for the critical 
step 𝐵𝑃 = 𝑀𝑄 in order to show that ∆𝐶𝑂𝑃 ≡ ∆𝑀𝐶𝑁, which solves 
the problem. Proving that  𝐵𝑃 = 𝑀𝑄 (which is true) is not trivial, it 
could be done by calculating 𝐶𝑃 and 𝑂𝑃 by using ∆𝐴𝑂𝐶~∆𝐻𝑂𝐸 and 
∆𝐶𝑂𝑃~∆𝐶𝐻𝐴, then using ∆𝐶𝑀𝑁~∆𝐻𝐶𝐴 and ∆𝐴𝑂𝑃~∆𝐴𝑀𝑁 in order 
to get an equation in 𝑥 ∶= 𝑀𝑄. Inadequate proof, the path is very 
unlikely to be completed by an 8

th
 grade student.] 

                                                 

3
 My translation from Romanian. 
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D 

 

 

Making a suitable 
construction 

 

Targeting 

“We take M (on the line HC) such that 𝐸𝑀𝑂 ̂ = 45° ” 

[Remark: the student constructed the altitude 𝐸𝑀 in ∆𝐻𝑂𝐸 and 

tried to prove that  ∆𝐸𝑂𝑀 is isosceles. It is 𝑂𝐸𝑀 ̂ not 𝐸𝑀𝑂 ̂ that is 45°. 
Being a 7

th
 grade student, she did not have enough knowledge for 

making any progress and finally used direct measurements of 𝐸𝑀 
and 𝑂𝑀 (and also of some angles), in order to justify the result: “We 
proceed by observations… We measure with the protractor”. 
Insufficient Knowledge does not allow the student to reach a 
solution, in spite of engaging in higher level cognitive process. 

E 

 

 

Making a suitable 
construction 

 

Targeting 

“We consider altitude 𝐸𝑀 in ∆𝐻𝑂𝐸, {𝑁} = 𝐶𝐷 ∩  𝑀𝐸  and 
{𝑃} = 𝐵𝐺 ∩ 𝑂𝐻”. 

[Remark: the student proved that 𝑁 is the middle of 𝐶𝐷 by using  

∆𝐸𝑁𝐷 ≡ ∆𝐻𝑃𝐺, then tried to derive the measure of 𝐴𝑂𝐻 ̂ by flipping 
other angles and concluded: “The idea was not good”. She built 
parallels from 𝐶 to 𝐴𝐸 and from 𝐴 to 𝐻𝐶, finding that: “Again we do 
not have enough elements to reach the desired result.” Finally, she 
used the protractor for measuring the angle. It looks like 7

th
 grade 

students learned somewhere to use the “observation method” i.e. 
making measurements if all other methods fail.] 

F 

Calculating lengths  
and using inverse 
trigonometric 
functions 

 

Structuring 
(a little) 

 

“∆𝐴𝑂𝐻 seems to be right isosceles, but it is not. All the triangles 
formed here are ordinary. I am not able to find any theorem that I 
could use. I do not know well enough trigonometry, which could be 
used almost everywhere in the configuration given here. I cannot 
find any helpful construction. What I could use: I remark that all the 
sides of the squares are equal, so we can compute the diagonals (of 
all rectangles) and there are many similar triangles.”  

[Remark: the 7
th

 grade student found that tan 𝐴𝐶�̂� =1/2, tan  𝐴𝐸�̂� 
=1/3, and mentioned “from these, we can find the angles by using a 
calculator”. He even wrote the inverse function (maybe with some 

help): “tan−1  
1

2
 = 27°, tan−1  

1

3
 = 18° “, mentioning that he found 

these values “by using the protractor on the drawing”. In Romania, 
inverse trigonometric functions are studied only in grade 10.] 

G 

Using the law of 
cosines 

 

Targeting 

“I tried to use generalized Pythagorean theorem… We try to find all 
the angles.”  

[Remark: since  ∆𝐴𝑂𝐶~∆𝐸𝑂𝐻 and by calculating 𝐴𝐸 and 𝐻𝐶 with 
the help of the Pythagorean law, she got a first degree equation in 
𝐻𝑂 and another one in 𝐴𝑂 that allowed her to find 𝐻𝑂 and 𝐴𝑂. We 
notice even in good students’ a lack of training in using the 

properties of proportions. Finally, cos 𝐴𝐶�̂� was determined by 
employing the cosine law in ∆𝐴𝑂𝐻, but the lack of skills in 
calculations and in checking the accuracy of operations (the 
“numerical common sense”) led to a wrong result.] 

H 

 

Using inscribed 
quadrilaterals 

 

Integrating 
(a little) 

 

[Remark: the student considered 𝐴𝑂 ∩ 𝐵𝐻 ={𝑃}, 𝐴𝑂 ∩ 𝐵𝐺 ={𝑅}, 
𝐻𝑂 ∩ 𝐵𝐺 ={I} and 𝐻𝐶 ∩ 𝐸𝐷 ={L} in order to prove that 𝐵𝑂𝐼𝑃 is an 

inscribed quadrilateral: “Since 𝐻𝐵�̂� has 45°, we have to prove that 
∆𝐼𝑂𝑅~∆𝑃𝐵𝑅.” The 7

th
 grade student realized that solving the 

problem has been reduced to proving that 𝐴𝑃�̂� ≡ 𝐵𝐼�̂�. After rightly 
considering the altitude 𝐻𝐻’ in ∆𝐴𝑂𝐻 and finding 
that ∆𝐴𝐻𝐻′~∆𝑅𝐴𝐵, she met a deadlock. She did not notice that all 
the sides of ∆𝐻𝐻′𝑃 can be (painfully) determined now, in order to 
show that ∆𝐻𝐻′𝑃 ~∆𝐻𝐺𝐼, which solves the problem.] 
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I 
Making a 
construction 

Targeting 

[Remark: the 7
th

 grade student considered the altitude 𝐴𝑆 in ∆𝐴𝑂𝐻, 
and simplified the problem: “We have to prove that ∆𝐴𝑂𝑆 is 
isosceles”, then she met a dead end due to lack of skills. She 
concluded: “We look after angles of 30° and 60° in a right triangle, 
and we cannot find.”]  

J 
Measuring the 
lengths 

Operating 
[Remark: the 7

th
 grade student thought that using squared paper for 

the drawing was an invitation to employ the measuring i.e. the 
“observation method”. ] 

K 

 

No systematic 
approach 

 

Targeting 

“I cannot compute 𝐻𝐴�̂� and 𝐴𝐻�̂� (I would need a trigonometric 
table).”  
  

[Remark: the 10
th

 grade student knew how to calculate the height in 
a right triangle by using area. Lack of structure and strategy.] 

L 

 

Three approaches: 
trigonometric, 
Cartesian, and via 
inscribed polygons 

 

Structuring 

1. Trigonometric solution: “We have 3 squares of equal sides in 
which two lines are taken, so with the Pythagorean theorem we can 
find any length and by using trigonometric functions we can find the 
measures of angles. The target angle is 45°, so we will use the 
trigonometric functions since the final values will be exact. If the 
target angle was e.g. of 65°, we would have met an obstacle.”  

[Remark: the student employed the formula for the sine of a sum to 

get sin 𝐻𝐴�̂� by expressing it in function of sine and cosine of 𝐶𝐻�̂� 

and 𝐸𝐴�̂�, found by using Pythagorean theorem.] 

2. Analytic approach: “Since we have some data about 𝐴𝐸 and 𝐻𝐶, 
we can calculate their slopes, and thus we can find the angle 

between them, 𝐴𝑂�̂�.”  

[Remark: the 9
th

 grade student did not know the tangent formula 
for the angle between two lines with known slopes. It seems he did 
not know yet the formula for the tangent of a sum of angles. He 
found the coordinates of 𝑂 (the intersection of lines), which he used 
to get 𝑂𝐴 and 𝑂𝐻, then by employing the law of cosines he found 

𝐴𝑂�̂�.] 

3. Classical geometry: “We have a square in which two adjacent 
vertices must form a 45° angle with a point from the same half-
plane.”  

[Remark: in order to prove that 𝑂 is on the same circle as 𝐴, 𝐵, 𝐺, 𝐻 
he considered {𝑅} = 𝐴𝐺 ∩  𝐵𝐻, the center of the circle and reduced 
the problem to calculating 𝑅𝑂. Via Cartesian coordinates, 
completing this final step would be an easy task.] 

M 
Trying to use 
similarity 

Targeting 

“Initially, I tried to get some measure of an angle via trigonometry, 
but I did not find anything useful. Also, I thought about solving the 

problem by using ∆𝐺𝐴𝐸~∆𝑂𝐻𝐸, since 𝐴𝐺�̂� has 135°, and in order to 

have 𝐴𝑂�̂� of 45°, 𝐻𝑂�̂� must have 135°, too. Thus, I tried to get 
equal ratios in order to prove the similarity.”  

[Remark: the 8
th

 grade student found the ratio between 𝐴𝐸 and 𝐻𝐸, 
and reduced the problem to finding 𝑂𝐸. She did not notice that 𝑂𝐸 

can be determined by using ∆𝐴𝑂𝐶~∆𝐸𝑂𝐻, and compared 
𝑂𝐸

𝐺𝐸
 instead 

of  
𝐺𝐸

𝑂𝐸
  with 

𝐴𝐸

𝐻𝐸
 , reaching the wrong conclusion that if 𝐴𝑂�̂� was 45°, 

the height from 𝑂 in ∆𝐴𝑂𝐶 would be  
𝐴𝐻

3
, which is not true (checking 

via measurement). “Tunnel vision” by focusing too much on a 
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useless construction; also, poor control / validation, so lack of 
Structuring.] 

N 
Trying to use 
similarity 

Reasoning [Remark: lack of mental vision (Targeting) ] 

O 

Express triangle’s 
area in two ways in 
order to find the 
sine 

 

Integrating 

“I thought of using  ∆𝐴𝑂𝐶~∆𝐸𝑂𝐻. I had to find 𝐴𝑂, 𝑂𝐸 in function 
of 𝐴𝐸, and 𝐻𝑂, 𝑂𝐶 in function of 𝐻𝐶.”  

[Remark: the 8
th

 grade student correctly determined 𝐴𝑂, 𝑂𝐸, 𝐻𝑂, 
𝑂𝐶, and the ratio between 𝑂𝐸 and 𝑂𝐹. She expressed the area of 
∆𝐴𝑂𝐻 in two ways: by using sine, and with Heron formula. It only 
remained to plug in the values of the sides, but she did not finish the 
calculations. Lack of skills in transforming proportions, but solved 
them via linear equations.] 
 

P 

No systematic 
approach 

 

Reasoning 

“We notice that no triangle is isosceles. We cannot use the 
Pythagorean theorem since we don’t have the lengths of the sides”.  

[Remark: poor mental vision (Targeting). The 8
th

 grade student 
seemed to be “overtrained” on procedures where the lengths are 
given (in a right triangle) and even if she noticed the largest number 
of useful similarities of triangles, she was unable to get anything out 
of them.] 

Q Trying to use angles  Reasoning 

“We notice that 𝐺𝑂�̂� = 90°.”  

[Remark: this has to be proved, the problem is solved if we do this. 
The 8

th
 grade student seems to have “noticed” it and other details by 

measurements on the drawing. Tunnel vision (focus on angles) or 
lack of training in using other methods. ] 

R 

Express triangle’s 
area in two ways in 
order to find the 
sine 

  

Targeting 

“The obstacle that I encounter is the asymmetry of the 
configuration”.  

[Remark: the 8
th

 grade student built the altitude 𝐴𝑇 in ∆𝐴𝑂𝐻 and 
wrote the area of ∆𝐴𝑂𝐻 in two ways, by using sine and by using 𝐴𝑇, 
which is useless since it is equivalent to expressing sine in a right 
triangle in function of its sides. He tried to make a construction, but 
used symmetry instead of parallels when extending the drawing. 
Deadlock encountered.] 

S 

Expressing all the 
angles and lengths 
in function of two 
angles 

 

Targeting 

“By denoting  𝑚(𝐴𝐻�̂�) = 𝑥 and  𝑚(𝐻𝐴�̂�) = 𝑦, some angles become 
𝑥 or 𝑦. In several right triangles we apply sine and cosine of 𝑥 and 𝑦 
and we get ratios of sides that can be plugged into those obtained 
via similarities.”  

[Remark: many angles are  𝑥 or 𝑦 or their complementary. But no 
similarity ratio with a simple value was noticed by the student. The 
approach is not systematic or clear and cannot lead to the result.] 

T 

Trying to prove that     
a right triangle is 
isosceles, by 
calculating its sides 

Targeting 

[Remark: the 8
th

 grade student correctly calculated 𝐴𝐸, 𝐻𝐶 and the 
height from 𝐴 in ∆𝐴𝑂𝐻, but missed the direction and did not notice 
that she only needed to find 𝐴𝑂, which can be determined easily by 
using ∆𝐴𝑂𝐶~∆𝐻𝑂𝐸. A typical source of circular reasoning: writing a 
targeted result as a side note, not clearly separated from the proof 
itself, and then mixing it up. ]   
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 The participants worked between 50 and 80 minutes on the task, so the average 

was about one hour. The two students that had complete and correct solutions, were 9th 

grade students who participated in the final stage of the national mathematical contest, 

and the difference of skills, maturity of thinking and depth of understanding between 

them and the other students was really striking. No student was able to provide a purely 

geometric proof via a construction or by using inscribed quadrilaterals, but the best 

performer specified the first steps of such a solution.  
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4 DISCUSSION AND CONCLUSIONS 

 

“I hate books, for they only teach people to talk about what they don’t 

understand” - Jean Jacques Rousseau 

This research has tried to propose IBLecturing, the most “expository” teaching approach 

from a larger set of IBL approaches, labeled IES (Inquiry Enriched Schooling/Study) and 

which comprise among others: 

 GSS – Guided Self-Study 

 GPS – Guided Problem Solving 

 IBH – Inquiry Based Homeschooling 

 IB e-learning 

 IBLecturing 

 IES is the core of the IBL (Inquiry-Based Learning) framework and aims at 

developing students’ higher-level thinking, which involves the higher cognitive processes 

in the taxonomy proposed in the section 3.2 of this thesis. A triangular representation of 

this taxonomy has been provided in order to highlight in an intuitive way the fact that 

each stage is built on the basis of lower stages and if the foundation is not large enough, it 

is not possible to construct a high edifice when no external support (guiding/scaffolding) 

is provided. But in this case, when the support is removed, the construction becomes 

precarious and risks to collapse when challenged. Moreover, as we mount the triangle, 

each level is smaller, and the final one is a small fraction of the base. Edison has already 

shown that: “None of my inventions came by accident. I see a worthwhile need to be met 

and I make trial after trial until it comes. What it boils down to is one per cent inspiration 

and ninety-nine percent perspiration.” (Newton, 1987, p. 24), and an outcome of such an 

attitude is the reliability of Edison’s products (Paoletti, 2018).  
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 While other approaches and even some inquiry-based methodologies such as PBL 

(Problem-Based Learning) try to focus on problem solving, comprehensive IBL equally 

targets problem posing skills and attitudes, which overlap with the much promoted (at 

least, formally) “Critical thinking”. The “art of problem posing”, at least under the form   

of generalizations or by “recycling” ideas from proofs, can be supported by teacher’s 

modeling as shown in Section 3.3 would add “The art of building insightful proofs”, which 

is an essential skill for IBLearning. 

 This thesis has shown that inquiry is inherent in any non-routine task, and 

students’ attempts to solve the problem from Section 3.4 confirmed the importance of 

“divergent thinking” when dealing with challenging problems. The excellent research of 

Belsky (1971, p. 49) recalls the studies of Gallagher et al. (1967), based on Guilford’s (1956) 

analysis of intellectual operations, which consist of:  

 1) Cognitive memory  

 2) Convergent thinking    

 3) Divergent thinking 

 4) Evaluative thinking 

 5) Routine categories (a catch all of miscellaneous verbal activity) 

 When I found Belsky’s work, the Chapter 3 and Table 4 of this thesis were already 

completed and I was pleasantly surprised to find a confirmation of my ideas about the 

different categories of thinking, especially “Structural reasoning” and Abduction, which 

are strongly related to the Evaluative thinking mentioned by him. Moreover, Belsky as 

well as many other researchers insist on the importance of Divergent thinking as a main 

element of creativity. I would like to call it “Combinatorial thinking”, but since the pair 

Divergent - Convergent thinking is very well-known I used it. However, it would be 

interesting to see if there are specific features of Combinatorial thinking with respect to 

the more general Divergent thinking, in order to distinguish further the various 

subclasses of Divergent thinking. Another confirmation of the importance of “divergence” 
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which may manifest through unconventional attitudes or ways of life at highly creative 

persons such as Galois, considered an anarchist (Taton, 1947), Grothendieck (whose 

parents were anarchists), or von Neumann who could not create unless there was much 

noise, loud German march music, agitation, parties. Einstein was highly exasperated by 

this behavior, as he lived in the same house at Princeton and needed a lot of tranquility in 

order to reflect, since he was a contemplative scientist and listened to classical music. So 

there must be opposite or at least very different types of thinking at higher levels, 

especially Invention. My conjecture is that persons with strong Combinatorial thinking 

need first to demolish a structure in small pieces in order to recombine them in a new, 

original and often more useful structure, which immediately results in Inventing.  

 By analyzing students’ attempts at solving the problem from Section 3.4 I found 

that my cognitive taxonomy is largely confirmed, especially regarding the Targeting level, 

which could be also called “Aiming”. It has been quite difficult to find groups of students 

able to solve challenging problems in geometry - or at least to have a chance at solving 

them - even in the best schools. This is why I had to use a bit of scaffolding by giving 

them a drawing on squared paper; nevertheless, no student was able to use it for finding a 

purely geometric proof by construction, and some were even entrapped by such “hint” 

since they tried to use the “measurement method”. Otherwise, I was very fortunate to 

meet such a group of gifted students; they only need more metacognitive and inquiry 

modeling in order to fulfill their potential. Anyway, it is clear that their 1-2 hours 

attendance each Saturday at the University in the Mathematics circle sessions was very 

helpful for their development of higher-level thinking and skills.  

 The importance of the Structuring phase (which includes Bloom’s Evaluation) as a 

stage of deep understanding and thus a prerequisite for Inventing, was confirmed by my 

own metacognitive recall of finding novel solutions through inquiry in Section 3.3 and 

also by other examples from mathematics: for instance, Lagrange reached this stage in the 

problem of finding the roots of polynomials via formulas involving radicals when he 

remarked that the theory of permutations is the “true philosophy of the whole question”, 
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then Galois upgraded to Inventing level by finding a solution to the problem following 

Lagrange’s “guidance” (Lagrange died when Galois was about one year old).  

As also suggested by A. J. Green, "America's top SAT tutor" according to Business 

Insider, Guided Self Study (GSS) could be one of the most effective approaches (Green, 

2016). It is much more complex than giving a hint, a strategy often used in problem books 

for reducing the “creative load” of a difficult problem. In my view, GSS should be based on 

materials that allow students to gradually access the guidance, according to their skills 

and needs. Ideally, there should be as many guiding stages as possible, but the highest 

number that I found in the literature was only three, in the excellent book of Rusu (1972): 

 “How we think” (Heuristics) 

 “Idea” 

 (Complete) “Solution” 

 Another outstanding book from the same category of GSS “textbooks” is the 

famous “Problem solving strategies” of Engel (1999), where the author remarks that: 

"Problem solving can be learned only by solving problems. But it must                    

be supported by strategies supplied by the trainer.” (Engel, 1999, p. 1) 

 To this point of view I would add that metacognitive support, including modeling 

by the teacher, is extremely important since not only strategies but also attitudes and 

“setting dispositions”/mindsets can be modeled or demonstrated by the trainer. The 

advantage of using small groups of students for IBL has been illustrated by the 

experimental research of Borasi (1992), which I mentioned in Chapter 2.   

 A deficiency of most experimental researches in education is the fact that the 

teachers are not replaced after a while, in order to compare the efficiency of each teaching 

approach. At least, if teachers would be permutated from a group to another for a period 

of, say, one semester, the results would be more reliable since they would eliminate the 

distortions brought by teachers’ abilities and student groups’ average skills. This issue has 

been emphasized by Belsky (1971, pp. 7-8): 
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“There are two basic reasons why the innumerable studies comparing one 

teaching method with another fail to provide the reliable data which is 

needed. First, Metcalf's argument (1963 , p. 937) that the issue will remain 

unresolved until research records both the degree to which the method is 

applied and the quality of its employment appears justified. The second and 

related reform that is necessary lies in the area of research design. Most 

research has failed to specify the behavior of teachers that falls within the 

method being investigated (Wallen et al., 1963, p. 485), to observe directly 

whether such behavior does in fact take place and, only then, to relate the 

differences in the characteristics measured to the change in student 

achievement (Medley et al., 1963, pp. 249-250).” 

 Literature review revealed that a common misconception among teachers is the 

confusion regarding the meaning of the constructivist slogan: “an instructor does not 

teach the student a syllabus, but facilitates students’ learning”. When implementing IBL, 

facilitating student’s learning should not be understood as facilitating their task! It is 

essential to let student struggle for a while, otherwise there is no IBL.  

 Some students/teachers think that what suits them suits all. Expository teaching is 

easier for teachers, but students don’t enjoy it and become less motivated. Implementing 

and conducting IBL sessions is quite demanding for a teacher, but enjoyable and highly 

motivating for the students. Since inquiry promotes motivation through challenge and 

autonomy, this thesis provides practical solutions for implementing the ideas of Deci and 

Ryan regarding self-determination and intrinsic motivation (Ryan & Deci, 2000; Deci,  

2015, 2016, 2017). I propose employing the concept of optimal challenge from the flow 

approach (Csikszentmihalyi, 1997) for the best results in IBL. Another issue involves the 

inductive strategy of Generalization. There is a danger that such strategy employed for 

complex problems such in real life e.g. in Social Sciences or in applied mathematics may 

lead to faulty models since they are built by destroying a more complex structure and by 

overlooking the subclasses, the differences and the specificities of various groups or 

individuals.  
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 I made a distinction between Knowledge and Understanding groups of processes. 

However, in common language the distinction between the words labeling these two 

complementary phases is minor - for example the fact that only the understanding can be 

“deep”, and not the comprehension. In any case, such labels must not be regarded as 

completely describing these categories.  

 In any case, a distinction must be made because Anderson’s taxonomy and the 

CPiMI (Model for Cognitive Processes in Mathematical Investigation) proposed by Yeo 

(2013; 2017) equate Understanding with Bloom’s “Comprehension” of the task or of the 

method. I would argue that there is a world of difference between comprehension in 

Bloom’s sense of Fermat’s last Theorem statement and its deep Understanding in the 

sense of the conception proposed here. Perhaps due to such confusion between the 

simplicity of a statement and its deepness or difficulty there were so many attempts at 

solving it by more or less elementary means. When Wolfskehl offered in 1908 a large prize 

for its solution, there were 621 supposed solutions sent to the Göttingen Academy in the 

first year alone, and the total amount of wrong proofs received until Wiles won the prize 

has been estimated at over 5000. (Barner, 1997) 

 For the implementation of IBL, and especially of IES, I suggest the use of Collins et 

al.’s (1980, 2009 a, 2009 b) ideas and principles. Also, Chazan et al. (1998) is a good guide 

for designing geometry instruction. Serra (2008) has been the best available textbook in 

IBL learning of geometry, and should be definitely used as a reference. 

 I suggest the use of such inquiry-intensive subjects as Ancient history, archeology, 

economy/finances, forensic science/literature, games such as Go, chess, puzzles involving 

combinatorial thinking, Scrabble,  Sokoban, etc. “The Art of Game Design” by Shell 

(2008) is an excellent reference for employing games in IBL. Countries like South Korea 

have achieved strong results in the promotion of higher-level thinking through the use of 

games (Go) and the intensive study of mathematics.  

 As a research opening, there is the also the involvement of other cognitive layers in 

each single phase, as I have noticed in Introduction. It has been acknowledged that each 
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level requires the assistance of lower levels, but what is less known is the involvement of 

higher layers in the processes occurring at a particular layer.  

 One of the questions for future research is the connection between the highest and 

the lowest cognitive layers, namely, Invention and Recording. Another aspect that needs 

to be emphasized is that, at any stage, the other stages are more or less present, even if 

insignificantly or in a latent form. For example, Operating involves some reasoning, since 

usually it is not 100% robotic. Also, the Targeting phase involves some Integrating, 

Structuring, and Inventing when designing the deductive chain, otherwise there would be 

only chaotic trials, as in the work of many participants in the quiz presented in Section 

3.4.  For a long-term recording of information, it has to be integrated and structured, 

which requires reflection and time.  

 Quick learning is the enemy of reliability, since the learner does not have the time 

to make the necessary connections in his or her mind. If the content is too structured, the 

student will not learn how to structure the information, and will also be untrained in 

making connections (Integrating level). Regarding education, it has been argued that 

“One only has to be fast when catching flees.” (Gelfand, n.d.). This is why expository 

teaching leads to unreliable, short-term learning, which, coupled with ‘learning to the 

test’ and infrequent evaluation leads to deplorable educational results. There is the 

exception of photographic memory, but even persons with such an ability often have 

extremely powerful high-level thinking, for example Euler who at age 70 could recite the 

whole text of Virgil’s Aeneid by specifying the first and last sentence on each page of the 

edition he owned, or the amazing von Neumann (Macrae, 1992), who memorized in 

“image format” and forever whatever he saw, including entire telephone books or 

encyclopedias of 21 volumes; he also did not see any value in programming languages, 

since he could do everything in machine code (Lee, 1995).  

Yet, there must be several types of long-time memory in the same brain, since von 

Neumann could barely remember a visitor’s name - therefore he was not using names in 

introducing people (Life, 1957). In public education speed must be adapted to a lowest 



 

127 
 

common denominator, but gifted students understand very fast and become easily bored.    

There are also different ways of high-level thinking - for example, although Einstein and 

von Neumann worked near each other in the same building, they were not intimate and 

never formally collaborated: 

"Einstein’s mind was slow and contemplative. He would think about 

something for years. Johnny’s mind was just the opposite. It was lightning 

quick – stunningly fast. If you gave him a problem he either solved it right 

away or not at all. If he had to think about it a long time and it bored him, his 

interest would begin to wander. And Johnny’s mind would not shine unless 

whatever he was working on had his undivided attention"(Life, 1957) 

 However, the problems von Neumann did care about, such as his “theory of 

games”, absorbed him for much longer periods. Partly because of this quicksilver quality 

von Neumann was not an outstanding teacher to many of his students. But for the 

advanced students, who could ascend to his level he was inspirational. His lectures were 

brilliant, although at times difficult to follow because of his rush. (Life, 1957) This 

suggests that motivation is the main element of learning, and it has been proved that in 

this aspect IBL gives the best results.    

 Regarding the speed of thinking at Invention level, just after the death of von 

Neumann, a second edition of “How to solve it” was published, where Pólya said:  

"(von Neumann was) the only student of mine I was ever intimidated by. He 

was so quick. There was a seminar for advanced students in Zürich that I was 

teaching and von Neumann was in the class. I came to a certain theorem, and 

I said it is not proved and it may be difficult. Von Neumann didn't say 

anything but after five minutes he raised his hand. When I called on him he 

went to the blackboard and proceeded to write down the proof. After that I 

was afraid of von Neumann."- Pólya (1957, p. xv) 

 Another topic for future research involves the use of IBLecturing for teaching 

proving and also for learning through insightful proofs, according to the ideas of Moore:  
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"The teacher should lead up to an important theorem gradually in such a way 

that ... the desire for formal proof is awakened, before the formal proof itself is 

developed. Indeed, much of the proof (of the theorem) should be secured by 

the research of the students themselves". (Moore, 1903, p. 419) 

 A very productive direction of research would be to integrate the most advanced 

results of cognitive psychology into the theory and the implementation of IBL, for 

example the recent findings regarding the role of Working Memory (WM) in the mental 

processes involved in high-level thinking. The main hints for this field are provided by the 

works of Mammarella et al. (2013, 2017) and Geary et al. (2017). 

IBLecturing tries to combine the best aspects of Expository and Inquiry 

methodologies into a single approach, where the proportion and the timing of lecturing 

and research phases are adjustable according to students’ preliminaries and their 

feedback: 

 

Expository advantages 

- Content acquisition  

- Modeling by an expert 

 

IBL advantages 

- Motivation 

- Individual feedback and guidance  

- Higher order thinking 

In order to optimize learning, each IBLecturing session should end with an open 

task proposed to the students as self-study or homework to be completed until the next 

meeting. The task should involve inquiry into the topic which will be addressed by the 

trainer in his next lecture and will be done individually outside of the classroom because 

it is time-consuming; nevertheless, students may use online communication with the 
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trainer in order to request and to get suitable guiding, according to their needs and 

wishes. This is the most student-centered phase of IBLecturing, and it not only motivates 

students for the topic which will be presented by the teacher but also helps them acquire 

some basic, intuitive perception of its meaning through exploration and personal 

involvement (by getting their hands “dirty”); such activity is similar to a good preparation 

of the soil for seeding by a farmer. For example, a teacher may propose to his students an 

open task involving global and instant variation of a continuous function in order to build 

an intuitive basis before introducing the notion of derivative. The task may follow the 

historical development of the concept to be introduced or it may involve some relevant 

applications or connections with real life.  

Open tasks have the advantage of allowing each student to go as far as he can 

without any pressure to achieve a definite task until the deadline and even without formal 

assessment. Alternatively, the teacher may reward via formal grades the best researches in 

order to stimulate students’ involvement, but the goal should always be a preparation for 

deeper understanding of the subject and not the attainment of some performance 

standards.  

At the next gathering, the class starts with a group discussion of the various 

approaches, ways of thinking, mistakes and findings occurring in students’ attempts to 

solve the task. Only when he clarified all these issues and after having derived the suitable 

conclusions, the trainer starts his lecture and presents the new content.     

IBL mainly deals with causes (WHY?) and conjectures (WHAT IF?) rather than 

effects/correlations (SINCE/AS X HAPPENED, Y OCCURRED) or data (WHAT? WHEN? 

WHERE?), on which expository approaches are mainly focused. 

The main limitation is a lack of validation via standard qualitative and quantitative 

methods due to the significant obstacles regarding the completion of such tests or 

interviews, especially in grade school. 

The main contributions of this thesis are: a systematization of IBL methodologies, 

a practical classification of the cognitive processes involved in learning and doing 
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mathematics, and the proposal of a novel approach, which would combine inquiry and 

lectures: IBLecturing.  

This approach is quite realistic when correctly implemented by competent 

teachers. Modeling by an expert is an essential part of IBLecturing, so the instructor must 

have cognitive and metacognitive proficiency. Appropriate timing and duration of each 

phase are essential for successful implementation of IBLecturing: keeping students “in the 

flow”!  

IBLecturing is de facto already implemented in many schools by the splitting of 

mathematical instruction in two phases: laboratory and lectures. Unfortunately, 

laboratory period is seen by many teachers as just an exercise and drill session and thus 

inquiry is more or less ignored.  

The triangular model of cognitive processes could be validated by group testing of 

secondary, undergraduate and graduate students as in Section 3.3  (the challenging 

problem administered to twenty students from secondary school) - supplemented with 

individual testing as well, but following the standard rules of quantitative and qualitative 

scientific research.  

This research is a bottom-up initiative, supported by several strategies, at 

implementing IBL. It is centered on the easiest and the most acceptable step available for 

public education, IBLecturing. Three institutional forces are shaping the reform of public 

education worldwide: PISA quantitative research - by far the most important due to its 

over exposure in media (Sjøberg, 2017; Baroutsis et al., 2018), TIMSS assessment in science 

education, and DESECO - the only study that specifically targets higher order thinking 

and inquiry.  

PISA was initiated by OECD and only evaluates 15 years old students' skills at 

applying basic knowledge from primary and middle school. TIMSS tests science 

knowledge and skills of grades 4 and 8 children in a larger set of countries, some of them 

not members of OECD; TIMSS Advanced evaluates students in the final year of secondary 
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school. DESECO is an OECD general statement of educational goals for the future, with 

no details regarding the practical way of achieving them in public schools. 

Any improvement in a certain direction requires, if the instruction time remains 

unchanged, reducing the amount of time available for the development of other 

knowledge or skills. For instance promoting students' skills at applying knowledge in 

real-life contexts (aimed by PISA) is generally done by showing them various practical 

examples and by a thorough training in the translation of elementary real-life problems 

into mathematical language; the trade-off is that the time available for developing 

theoretical skills and even higher-order thinking will be reduced correspondingly. It is 

not possible to achieve both PISA and DESECO requirements without expanding the 

instruction time or the amount of homework, or both - as it happens in many Eastern 

Asian countries.  

In contrast to conventional education, IBL is not so much about building a CV and 

acquiring diplomas, but about acquiring vital skills in our age of information, 

manipulation and social marketing. Moreover, IBL is not about quantity, but about 

quality of learning and understanding. Many researches into the effectiveness of IBL have 

missed important issues:  

- IBL and expository instruction cannot replace one another but are 

complementary 

- Inquiry is time-consuming, so most of it should be done outside of the classroom 

as self-study, team work or homework 

- Modeling and guidance are very necessary and have to be provided by the 

instructor  

- Guidance has to be well-balanced, customized and adaptive in order to keep each 

student "in the flow"  

- Inquiry should involve the main concepts targeted by the curriculum, in order to 

motivate learners in mastering them. 
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In the past, such requirements were very difficult to fulfill, but now modern 

technologies allow distant learners to show their work and to receive individual guidance 

from an instructor upon request, via online communication. There is still an issue with 

the choice of suitable tasks for inquiry, due to a lack of inquiry-based textbooks in all the 

branches of mathematics except geometry. Experienced teachers have already built a 

personal "database" of good problems for introducing the main concepts from the 

curriculum, and it can be expanded further by using the various collections of challenging 

problems and strategies for solving them, published recently.  

This thesis has started as a research into the possible implementation of IBL in the 

study of geometry via Computer Algebra Software (CAS), but new findings such as the 

cognitive structure involved in mathematical thinking as well as the role of modeling and 

guidance provided by an expert trainer in IBL eventually led to a larger perspective, where 

IBLecturing would integrate these results into a practical and effective teaching approach 

for any branch of mathematics education. Still, geometry has been and remains the 

natural field for implementing IBL and for promoting higher-order thinking; not only that 

Euclid's “Elements” were designed with such vision in mind 23 centuries ago, but recent 

textbooks such as Serra's “Discovering geometry” went even further with the promotion 

of inquiry and successfully helped introducing IBL in school teaching of mathematics. 

Moreover, geometry is the most suitable field of school mathematics for calling up 

students' higher-order skills such as Structuring and Inventing, so I chose an elementary 

geometry task in order to identify the upper levels of the cognitive model proposed in 

Chapter 2.   

One of the simplest and most common ways of introducing inquiry into expository 

teaching is via properly designed "gaps" in the proofs or in the problems' solutions. 

Students are required to complete these gaps at home, until the next meeting. Some 

advantages of this approach are: the presentations are more fluid and the main ideas are 

more visible; precious classroom time is saved by the teacher and more content can be 

presented in a similar amount of time; students practice inquiry. A trade-off is that part of 

the training is transferred to homework and the teacher must be available for some 
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guidance beyond classroom hours, which may increase institutional costs. In order to 

save teacher's time, such homework could be used as part of students' summative 

evaluation - even without percentage grades, such as in the evaluation of graduate 

students' research (projects, thesis, etc.) If there is no guidance at all, many students will 

work in teams or will ask for guidance from the best achievers among their colleagues - if 

available, which may reduce the quality but also the institutional cost of their training. 

This approach can be used with any group of students, starting in high school. With 

gifted students, it can be employed even earlier. The only initial requirement from the 

learners is to be able to understand a proof intuitively, for example a property justified on 

a drawing in basic geometry.  

A second way of introducing inquiry in traditional settings is IBLecturing, which is 

an improvement with respect to the previous approach since it includes modeling by an 

expert, in addition to the guidance. The number of participants at the expository lessons 

is not limited, in principle; however, in order to obtain efficient, customized and adaptive 

guiding from the trainer, group size should be minimal. From my experience, it would be 

very difficult to implement properly any form of guided inquiry with groups larger than 

20 students. The degree of challenge has to be balanced by a suitable amount of 

individual guidance - according to each student's skills, in order to keep him "in the flow"; 

nevertheless, the tasks should not require too much scaffolding, otherwise students may 

feel they had no significant contribution to the solution, which will reduce their 

motivation and learning.  

In conclusion, IBLecturing does not require gifted students, but the tasks should 

be accessible with a reasonable amount of guidance. A common approach used when 

presenting sophisticated, more involved proofs or solutions, is to break them into several 

steps or stages. Additional guidance can be provided at each step, at student's request. 

For example, solving the general second degree equation is an excellent task for all 

students and it only requires an initial hint, except the final discussion regarding the 

existence of real solutions; on the contrary, solving the general third degree equation 

requires several stages and more guidance. Open problems are very suitable tasks, and 
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can be given at the end of each meeting; ideally, they should prepare the field for 

introducing the content of the next meeting. The best achievements may be considered in 

the overall summative grading of students; alternatively, the teacher may use such tasks 

only for training, as formative assessment. A final project involving higher-order skills 

could be proposed, to be assessed as an essay: for example, presenting Cavalieri's 

principle in high school or Michelson's measurement of the speed of light. Masterful 

lessons consisting of inquiry-enriched presentations have been given by Tom Leighton at 

MIT and are available online, for example Leighton (2010 a; 2010 b). While such lectures 

don’t comprise a modeling of mathematicians’ thinking when trying to solve challenging 

problems, they demonstrate the effectiveness of introducing inquiry in the teaching of 

mathematics and may be used as a valuable reference when designing IBLectures.  

Several undergraduate programs focused on research in mathematics have already 

been implemented successfully with small groups of students by the professors Gallian 

from the University of Minnesota - Duluth (Gallian, 2015) and Hildebrand from the 

University of Illinois (Hildebrand, 2018). 

When I administered the quiz presented in Section 3.4 to the group of gifted 

students, I did not know much about their skills, except that they had been more exposed 

to challenging problems than other students of their age. The problem had already been 

chosen, and I tried at first to propose it to a regular class from my former high school but 

teachers were reluctant to collaborate. They maintained that since classical plane 

geometry is studied in grade 7, followed by space geometry in grade 8 and vectors in 

grade 9, students quickly forget plane geometry after passing to grade 8 and thus I should 

target middle school classes for such quiz. Moreover, I was advised to choose gifted 

students for solving it, since school standards dropped very much in the last years and 

proposing such a problem in a secondary school would lead to failure. In order to make 

the task more accessible, the drawing was done on squared paper; however, this 

scaffolding was not useful for the participants, who were not able to find a suitable 

construction. I also remarked that contrary to teachers' remarks, 8th grade students 
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performed better than 7th grade students, and the two 9th grade students were far above 

their younger fellows with respect to higher-order thinking, and especially Structuring.  

This suggests that maturity of thinking is much more important than the freshness of 

knowledge and that around the age of 15 higher-order thinking can flourish suddenly if 

properly stimulated. Students were really involved in the challenging task proposed to 

them, and I felt that IBLecturing would help them greatly in developing strategic 

thinking, holistic view, structuring skills and creativity at this critical age. Unfortunately, 

they lack modeling and individual guidance; even in mathematical circles, lessons are 

given in an expository way due to the time available and the volume of content. Inquiry is 

only present as self-study and when solving challenging problems proposed as homework, 

but teacher's monitoring and feedback would be extremely useful. In order to assess the 

effectiveness of IBL for all students (not only for the gifted ones), specific testing, aiming 

at higher-order thinking, should be designed. Much of IBL value is the promotion of 

specific attitudes and metacognitive skills, which need a lot of time to develop (e.g., the 

probabilistic mindset). If IBL is used only in mathematics, and the other school 

disciplines are taught and evaluated in conventional, expository ways, the desired 

attitudes and mindsets are not allowed to grow and the benefits of such narrow 

implementation of IBL are really small.  
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