
Short-lived signatures

Michael Colburn

A thesis in the

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfilment of the Requirements for

the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

August 28, 2018

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211520774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By : Michael Colburn

Entitled : Short-lived Signatures

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee :

Chair
Dr. Jun Yan

CIISE Examiner
Dr. Amr Youssef

External Examiner
Dr. Lata Narayanan

Supervisor
Dr. Jeremy Clark

Approved by
Dr. Chadi Assi
Graduate Program Director

2018.
Dr. Amir Asif
Dean of ENCS

ii

ABSTRACT

Short-Lived Signatures

Michael Colburn

A short-lived signature is a digital signature with one distinguishing feature: with

the passage of time, the validity of the signature dissipates to the point where valid

signatures are no longer distinguishable from simulated forgeries (but the signing key

remains secure and reusable). This dissipation happens “naturally” after signing a

message and does not require further involvement from the signer, verifier, or a third

party. This thesis introduces several constructions built from sigma protocols and

proof of work algorithms and a framework by which to evaluate future constructions.

We also describe some applications of short-lived signatures and proofs in the domains

of secure messaging and voting.

iii

Acknowledgments

First of all, I need to thank my supervisor Jeremy for taking a chance on me.

Without his support and guidance this thesis wouldn’t have been possible.

Many thanks go out as well to my friends near and far. With a special shout-out

to Allyson Schmidt. Without our adventures I don’t think I ever would have grown to

love Montreal the way I do. And another to Kimberly Sayson for being my sounding

board for practically everything. Thanks for putting up with me and keeping me in

line.

Finally, I’m eternally grateful to my family and especially my parents, Heather

and Glen, for their unconditional love and support even when I wasn’t quite sure

where my next steps might lead me. Thanks so much for everything. I miss you,

Dad.

iv

Contents

List of Figures v

1 Introductory Remarks 2

2 Preliminaries and Related Work 5

2.1 Proof Systems . 5

2.1.1 Proof Systems (without Zero-Knowledge) 5

2.1.2 Zero-Knowledge . 7

2.2 Sigma Protocols . 8

2.2.1 Interactive Sigma Protocols 8

2.2.2 Non-interactive Sigma Protocols 10

2.2.3 AND-Composition of Sigma Protocols 13

2.2.4 OR-Composition of Sigma Protocols 13

2.2.5 PoWorK . 15

2.3 Signatures . 15

2.3.1 Schnorr Signatures . 17

2.3.2 DSA . 18

2.3.3 Designative Verifier Signatures and Proofs 19

2.4 Other Building Blocks . 20

2.5 Other Related Work . 21

v

3 Short-Lived Signatures and Proofs 23

3.1 A folklore construction and an improvement 24

3.2 An initial attempt . 27

3.3 FS-Grind . 29

3.4 Workflow . 31

3.5 Carbon . 34

3.6 Security . 36

3.7 Evaluation . 38

3.8 Extensions . 42

4 Use Cases 45

4.1 Email . 46

4.2 Deniable Multiparty Messaging . 46

4.2.1 Background . 46

4.2.2 Using short-lived signatures 48

4.3 Voting . 49

4.3.1 Homomorphic tallying backbone 49

4.3.2 A solution based on DV proofs 50

4.3.3 Using short-lived proofs . 51

5 Concluding Remarks 52

Bibliography 52

vi

List of Tables

3.1 Progression from the original Folk construction to our enhanced short-

lived Folk+ construction. 24

3.2 A comparison of various short-lived signature constructions. 38

1

Chapter 1

Introductory Remarks

A digital signature is forever. Or at least, until the binding between key and identity

is no longer reliable, or the underlying signature scheme is broken. This is often in

contrast to what is strictly required in real world applications: a signature needs to

only provide authenticity for a few seconds to conduct an authenticated key exchange

or a few days for a signed email.

We might think this overreaching security does not matter. However, philosoph-

ically, it appears to violate the principle of least privilege if cryptographic proof

that two entities once formed a secure connection or exchanged emails lives on for

decades. Thus at best, such longevity is unnecessary. However in certain cases, we

may explicitly not want this information to survive.

The idea that message authentication should not be universally verifiable is called

deniability. Limiting who can verify messages could be done by limiting to a set of

participants identified with public keys (designated verifier signatures), or by limiting

in time (this work), or both. Achieving deniability could be an interactive process

(OTR messaging) or non-interactive (this work).

Our intuition for what deniability means might be stronger than the actual guar-

2

antee. Informally, deniability means there is no cryptographic proof that Alice sent a

particular message. There may still be circumstantial proof—logs or testimony—but

there will be no proof beyond what would exist had Alice simply sent the message in

plaintext with no message integrity.

A short-lived signature can be thought of as a proof of the following predicate:

either Alice signed this message or someone did a lot of work recently. The work in

the second clause can be done without Alice’s knowledge or involvement. The amount

of work can be considered to be d units of time, while recently can be considered to

mean that the work started no earlier than a certain time t. While the signature is

fresh, the difference between t and the present moment is smaller than d and thus

only the first clause can be true. After the passage of time, t becomes greater than

d time units ago and thus the second clause is potentially true. Losing the ability

to distinguish the truth of the first clause from the second leads to our notion of

deniability.

The fact that short-lived signatures provide deniability for the sender of a message

without the sender needing to know the receivers private key, nor without having

to interact with the sender, makes it uniquely qualified for achieving deniability in

several practical scenarios, including sending signed email to a set of individuals who

do not have known public keys. To our knowledge, ours is the first primitive to enable

this.

Contributions. Our primary contributions are as follows.

1. We propose four constructions for short-lived signatures, some of which are

compiled from a short-lived Σ-protocol.

2. We provide a framework for desirable properties for short-lived signatures, show-

ing that our four constructions offer different subsets, and that the discovery of

3

an ideal signature that achieves all is still an open problem.

3. We provide some improved protocols that use this primitive, including a voting

scheme.

4

Chapter 2

Preliminaries and Related Work

We consider in this section three types of related work: a set of building blocks we

will use to construct short-lived signatures, primitives that could be used to achieve

the same (or very similar) goals as a short-lived signature, and finally primitives

that use the same building blocks for orthogonal goals. All of our protocols will be

described using the discrete log setting but can be adapted to elliptic curves for faster

computation and more compact representations.

2.1 Proof Systems

2.1.1 Proof Systems (without Zero-Knowledge)

The traditional notion of a proof system is a method by which a prover convinces

a verifier of a claim. The prover provides evidence of their claim (this is called the

witness) and the verifier in a either accepts or rejects the proof as appropriate.

There is a lot of variation amongst different styles of proof systems. One major

distinction is whether the proof system is interactive or non-interactive. This basically

describes whether the verifier needs to participate in the generation of the proof or can

5

simply accept a completed transcript of the proof itself to validate. In an interactive

proof, the back and forth between prover and verifier is made up of a series of messages

consisting of commitments, challenges and responses.

Unlike the classic definition of a proof, where an accepted proof is absolute evi-

dence of the validity of a prover’s claim, the proof systems we consider are probabilis-

tic: with some negligible probability a prover may be able to construct a convincing

proof for a false claim. The degree to which a proof system lowers this probability

is called its soundness. For example, the soundness of the proofs we consider are

overwhelming, meaning 1 − ε where ε is a negligible probability in some security

parameter1. By contrast, some proofs might have less soundness: for example, cut-

and-choose protocols[EP84] might have soundness of 1
n

for some value n which are

highly, but not overwhelmingly, sound.

Another distinction is whether having unbounded computational abilities is of any

assistance at all to the dishonest prover in having unsound proofs be accepted by an

honest verifier. If computational abilities do not help, the proof is consider perfectly

(or unconditionally) sound. If soundness requires the prover to be computationally

bounded, it is called computationally sound (or an argument instead of a proof). We

do not try here to categorize all proof systems but focus instead on a particular subset

that is useful for cryptographic purposes called Sigma-Protocols (defined below). We

will make extensive use of a technique called the Fiat-Shamir heuristic which results

in a computationally sound proof. In this case, we assume a real-world entity cannot

not generate enough fake proofs that one will happen to accept at random.

In order to prove the soundness of a proof system, a typical approach is to show

that a dishonest verifier can extract the witness (or information equivalent to the

knowledge being proven) from an honest prover producing valid proofs in polynomial

1If ` is the security parameter, negl(`) ≤ 1
poly(`) .

6

time. Informally, the argument for why this works is as follows: if the witness can be

extracted, then the proof must be ‘aware’ of the witness whereas an unsound proof

would, by definition, not be aware of the witness. Of course, the prover may not

want the verifier to extract the witness which motivates the idea of a zero-knowledge

proof in the following section.

A proof system must also satisfy the property of completeness which essentially

says that is capable of producing a validating proof when the witness is actually

correct for the statement being proven. To have the completeness property, it should

be the case that given an honest prover and verifier, the prover should convince the

verifier of the validity of their claim with high or overwhelming probability.

2.1.2 Zero-Knowledge

A proof of knowledge on its own places no limits on what information the verifier

learns by executing the protocol. For example, to prove that a particular number

is composite, a prover could reveal the factorization of the number as part of their

proof. However there are situations where it is highly desirable to limit the amount of

information the verifier gains. On the extreme end, we can have zero knowledge proofs

of knowledge which reveal nothing about the prover’s claim aside from whether it is

true or false. Zero knowledge is shown by the existence of a simulator which, given a

claim, can produce an accepting transcript of the proof using only public information.

Like soundness, the zero knowledge property can be either computational or perfect

(i.e., no amount of computational power would allow a verifier to learn any additional

information).

7

2.2 Sigma Protocols

Proofs are define for a wide class of problems; indeed, a celebrated result shows

that any statement in PSPACE can be proven with an interactive proof (and these

can be made zero-knowledge under the assumption of a one-way function) [Sha92].

However these proofs are not necessarily, and often are not actually, efficient by

any means. Therefore cryptographers have proposed zero-knowledge proof templates

that are versatile for proving useful things but also efficient. The most well-studied

cryptographic zero knowledge proof is likely the proof of knowledge of a discrete

logarithm given by Schnorr[Sch91]. In fact, it is a special case of a general template

of proof called a Sigma protocol (or sometimes informally, this class of proofs are

called ‘Schnorr proofs’).

2.2.1 Interactive Sigma Protocols

Schnorr Proof of Knowledge of a Discrete Logarithm. Alice chooses secret

key x ∈ Zq for a prime-ordered multiplicative group of size q, computes public key y =

gx mod p for large safe prime p (where p = 2q+1) and generator g of Gq. Alice wants

to prove to Bob that she knows x without telling Bob anything about x beyond the

values of 〈p, q, y〉. Alice chooses random a ∈ Zq and sends b = ga mod p to Bob. Bob

chooses a random challenge c and sends it to Alice. Alice computes d = a+ cx mod q

and sends it to Bob. Bob accepts the proof as correct if gd
?
= b · yc mod p.

This template of a proof can be generalized into a Sigma protocol. A Sigma

protocol is a three move proof that takes its name from the shape of the flow of

communication, which resembles the Greek capital letter sigma. In the first stage,

the prover commits to a value and sends the commitment to the verifier. The verifier

then replies with a challenge. The prover uses this challenge to compute a response

8

for the verifier. Finally, the verifier checks if the response is correct and accepts or

rejects the proof accordingly.

We now illustrate some properties shown to be held by all sigma protocols; how-

ever we will illustrate them with the Schnorr ZKP specifically.

Public Coin. Since the verifier’s challenge need only be a random value (and not

of any particular structure or based on a secret that the verifier knows), we call it

a public coin protocol. If we had a source for public random numbers, the verifier’s

role could be eliminated (we return to this later with the concept of beacons).

Completeness. One can verify that Schnorr is complete from the provided descrip-

tion: indeed gd = b · yc mod p holds when the values are constructed according the

protocol using the actual x.

Special Soundness. Special soundness implies the existence of a polynomial time

knowledge extractor that, given two accepting transcripts (a, c, r) and (a, c′, r′) where

c 6= c′ and r 6= r′, allows recovery of the witness (or knowledge equivalent to it). In

the case of a Schnorr Sigma protocol, the exact formula to recover the witness is

x = r−r′
c−c′ .

Transferability. Given an accepting proof transcript between a prover and a ver-

ifier, is the verifier able to also convince a third party to accept the proof? We call

such a proof transferable if the verifier is able to do so (or non-transferable if not).

Honest Verifier Zero Knowledge. For the time being, we will make use of a

weaker form of zero knowledge called honest verifier zero knowledge (HVZK) which

assumes the verifier will always behave correctly and only achieves the zero knowledge

9

property in such a case. A dishonest verifier can make a transferable proof (e.g.,, using

Fiat Shamir below).

2.2.2 Non-interactive Sigma Protocols

Sigma protocols are interactive three move protocols. For many applications it is

useful to be able to convert these into non-interactive protocols. By using the Fiat-

Shamir heuristic, we are able to make Sigma protocols non-interactive. To preserve

the soundness property, the prover’s commitment value must be fixed before the

challenge is chosen so that a dishonest prover cannot construct a valid proof for

a secret they do not actually have knowledge of. To ensure the challenge value is

generated after the commitment is fixed, the Fiat-Shamir heuristic has the prover

hash the commitment using a cryptographic hash function and use the result as the

challenge value. For example, to make the Schnorr Sigma protocol non-interactive,

the value of c is computed as c = Hash(b) and when verifying, the verifier must also

check that the prover used the correct challenge (i.e., check that Hash(b) is actually

equal to c).

Weak vs. Strong Fiat-Shamir. There exist two variants of the Fiat-Shamir

heuristic, dubbed weak and strong [BPW12]. In weak Fiat-Shamir, the challenge

value is computed simply as the hash of the commitment value (i.e., c = Hash(b) for

a Schnorr proof). The strong variant of Fiat-Shamir also includes the statement to

be proven in the challenge computation (i.e., c = Hash(b, p, q, y) for a Schnorr proof,

which is the commitment and the public key). Strong Fiat-Shamir is necessary in

cases where the statement being proven can be adapted on the fly, so these values

must also be committed to somehow. For our purposes, which rely on identification

protocols, the weak version of Fiat-Shamir is sufficient to ensure the security of the

10

protocol.

Random Oracle Model. The Random Oracle Model is a way of modeling func-

tions (usually hash functions) as if they were truly random to facilitate security

arguments [BR93]. Given an input it has never seen before, the random oracle will

generate a value at random (e.g., from consecutive flips of a coin), record it and

output the value. If it receives the same input value at a later time, it will notice

it has seen this value before and return the same output value. It is possible to set

the output value for a particular input in advance of calling the random oracle on

that input value. This is called programming the random oracle. One paragraph.

It basically models a hash function is a formal way. You give a query to the oracle

(akin to the input to a hash) and it flips coins (for fixed lenght akin to output of

hash), tells you the value, and writes it down so if you ask the same query again, it

responds the same way. Random oracle in a proof can be programmed: choose the

output first (randomly!) and then you can give it out and say when a certain query

comes in, you will assign this random value to its output.

Completeness of Fiat-Shamir for Schnorr. To prove completeness, we need to

show that the following equation holds: gd
?
= b · yc mod p. Recall that b = ga and

y = gx, so we have gd
?
= ga · (gx)c mod p. We can further simplify the right-hand side

to gd
?
= ga+cx mod p and since we computed d as d = a + xc in the final step of the

protocol, we see that the original equation holds.

Soundness of Fiat-Shamir for Schnorr. To prove soundness, we assume an

honest prover that will produce accepted transcripts using the witness x as specified

by the protocol, and a malicious verifier called the extractor who will attempt to

extra-filtrate the value of x from the transcript. If the extractor is successful, the

11

proof is indeed based on x and thus is sound (an unsound proof would be a transcript

that accepts, is not based on x, yet in this case, it wouldn’t be possible to extract x

from it). At the same time, the extractor will use special powers real world adversary

do not: being able to program the random oracle, thus an extractor will not work

in real life when the random oracle is a real hash function. We will use the special

soundness property and the fact that two accepting transcripts 〈b, c, d〉 and 〈b, c′, d′〉

where c 6= c′ and d 6= d′ are sufficient to extract the witness x. The verifier lets the

prover issue a first transcript 〈b, c, d〉, it then rewinds the prover to the point in time

that it has chosen b but has not yet asked the random oracle for the hash of b to

generate c and it instructs the oracle to erase its value of b. Then the oracle will

pick a new random value c′, overwhelmingly likely to be different than the first c and

the prover will compute the corresponding d′. The extractor will use these values to

compute x.

Zero-Knowledge of Fiat-Shamir for Schnorr. To prove zero-knowledge, we

assume an honest verifier and a dishonest prover called the simulator. Because we

are in the random oracle model, the simulator is allowed to program the random

oracle. Its goal is to produce a transcript that is accepting to the honest verifier

without actually knowing the witness. If it can do this, the transcript must be zero

knowledge because it is possible to produce without knowing the witness. At the same

time, because it will be instantiated in the real world with a real hash function that

cannot be programmed, real provers have less power than the simulator and cannot

use this to break soundness. The simulation strategy is as follows: the simulator

chooses d ∈ Zq at random, it asks the oracle for a random output value for not-yet-

specified input and uses this as c, it computes b = gd · y−c mod p, and finally it asks

the oracle to program the output value it received as its response to the input b —

12

AND Composition (Chaum-Pedersen)

Proof
Input: public keys 〈g, p, q, y1 = gx〉, 〈h, p, q, y2 = hx〉 and signing key x.

1. Alice chooses t ∈r Z∗
p and uses it to compute a = gt and b = ht.

2. She computes the challenge value c = Hash(a, b).

3. Finally, she calculates r = t+ cx and outputs σ = 〈a, b, c, r〉.

Verification
Input: public keys 〈g, p, q, y1 = gx〉, 〈h, p, q, y2 = hx〉 and transcript σ.

1. The verifier checks that gr = ayc1 and hr = byc2. If both of these equalities are true, then the
proof is accepted.

Protocol 1: Non-interactive AND-Composed Proof of Equivalence of the Discrete
Logarithm [CP92]

thus when the verifier asks the oracle, Hash(b) = c.

2.2.3 AND-Composition of Sigma Protocols

Sigma protocols are fairly simple protocols but can be used as building blocks to

construct ones which are more complex. Conjunction (logical and) is fairly straight-

forward. The prover executes two Σ-protocol in parallel with a common challenge.

The verifier accepts only if they would accept both protocol runs individually.

It can be carried out in both interactive and non-interactive modes. We describe

the non-interactive version in Protocol 1. To make it interactive, the c challenge value

becomes a random value supplied by the verifier. This protocol is an example of an

and composition of two Schnorr proofs with different public keys. It is also know as

a Chaum-Pedersen proof of equivalence of the discrete log [CP92].

2.2.4 OR-Composition of Sigma Protocols

Disjunction (logical or), however, is more complicated.Trivially, this could be carried

out as in conjunction where the verifier accepts if either of the protocol runs is

13

OR Composition (Cramer-Damgard-Schoenmakers)

Proof
Input: public key 〈g, p, q, ya = gwa〉, signing key wa and second public key 〈g, p, q, yb = gwb〉.

1. Alice chooses ta ∈r Z∗
p and uses it to compute aa = gta .

2. Then she simulates a proof of knowledge of wb by choosing values eb, tb ∈r Z∗
p and computes

ab as ab = y−ebgtb and rb = ab + ebx.

3. She computes the challenge value c = Hash(aa, ab) and uses it to also compute ea = c⊕ eb
4. Finally, she calculates ra = aa + eax and outputs σ = 〈aa, ab, ra, rb, ea, eb, c〉.

Verification
Input: message m, public key 〈g, p, q, y = gx〉, and signature σ.

1. The verifier checks that gra = aay
ea
a , grb = aby

eb
b and that c = ea ⊕ eb. If both of these

equalities are true, then the proof is accepted.

Protocol 2: Non-interactive OR-Composed Schnorr Proof of Knowledge [CDS94]

true.The obvious drawback to this approach is that the verifier can now distinguish

which of the two statements is true. By taking a slightly more involved approach, it

is possible to structure a proof in such a way as to make it impossible for the verifier

to distinguish which statement the prover was able to successfully prove.

The prover wishes to prove knowledge of one of two witnesses: wa or wb. We

will assume the prover knows wa. He will first simulate a proof for wb to get ab,

eb, rb. He then computes aa as usual and sends both commitment values aa and ab

to the verifier. The prover receives random challenge c. However, this challenge is

not used in this form directly. Using it directly in the proof of knowledge for wa

would leak which witness the prover has knowledge of since it has no interaction

with the simulated proof yet. To connect it with the simulated proof, the prover

combines c and eb to get ea (for example, by computing the ⊕ of the two values).

The prover can now compute ra according to the protocol and sends ra, rb, ea, eb.

The verifier accepts if ra and rb equalities hold and ea ⊕ eb equals c. To make this

proof non-interactive, the challenge is changed to be the hash of the two commitment

values (i.e., c = Hash(aa, ab)). For an example using two non-interactive Schnorr

14

proofs of knowledge, see Protocol 2. Note that though Protocol 2 combines two

of the same Sigma protocol, this type of composition also supports combining two

different Sigma protocols. Another example of an OR composition is the protocol

from Cramer, Damg̊ard and Schoenmakers in [CDS94].

Though we lose the zero knowledge property through these types of composition,

honest verifier zero knowledge is preserved. Note that we described disjunction and

conjunction with only two witnesses, but since these properties can be composed

with each other it is possible to perform these operations with an arbitrary number

of witnesses.

2.2.5 PoWorK

A PoWorK is a proof construction introduced in [BKZZ16]. These proofs are indis-

tinguishable proofs of work or knowledge (hence the name PoWorK). This means

that upon seeing a PoWorK transcript, the verifier is unable to determine whether

the prover actually had knowledge the witness, or instead carried out the necessary

amount of work. The authors provide a framework for combining a Sigma protocol

with a proof of work algorithm to achieve this goal. We will make use of one specific

instantiation of a PoWorK as the basis of one of our short-lived constructions later

on(see Figure 3.

2.3 Signatures

Digital signatures are a public key primitive used to bind an identity to a message.

A signature scheme is composed of a pair of algorithms: Sign(x, y) that takes a

message x, public key y and produces signature s, and Verify(m, s, z) which takes a

message m, signature s and public key z and outputs accept if s is a valid signature

15

Proof of Work or Knowledge (PoWorK)

Proof of Knowledge Mode
Input: public key 〈g, p, q, y = gx〉 and signing key x.

1. She selects a difficulty δ such that TimeEst(δ) corresponds to the length of time that the
proof should be valid. Let the output size of a collision-resistant hash function Hash() be λ
bits.

2. She chooses r ∈r Z∗
p and computes a = gr.

3. The challenge is constructed as follows: c0 = Hash(a) and c = c0 ⊕ c1, where c1 = (u, v, w)

as defined next. s← {0, 1}λ, u = LSBδ(Hash(s, w)), v ← {0, 1}λ2 −δ, w ← {0, 1}λ2 .

4. She finally computes d = a+ cx. She outputs signature σ = 〈a, c, d, s, u, v, w, δ〉.

Proof of Work Mode
Input: public key 〈g, p, q, y = gx〉.

1. At t̂0, Alice chooses d̂ ∈r Zp, and ĉ ← {0, 1}λ and computes â = gd̂yĉ, ĉ0 = Hash(â, m̂, bt̂0)
and ĉ1 = ĉ⊕ ĉ0.

2. She begins computing ŝ such that û = LSBδ(Hash(ŝ, ŵ)).

3. At t̂1 ≈ t̂0 + TimeEst(δ), Alice finds an acceptable ŝ. She outputs 〈m̂, σ̂, τ〉 with signature

σ̂ =
〈
â, ĉ, d̂, ŝ, û, v̂, ŵ

〉
and time information τ =

〈
t̂0, bt̂0 , δ

〉
.

Verification
Input: message m, public key 〈g, p, q, y〉, and signature with timing information 〈σ, τ〉.

1. At t1, Bob checks that t1 < t0 + TimeEst(δ).

2. He sets c0 = Hash(a) and c1 = (u, v, w).

3. He checks that c = c0 ⊕ c1 and u = LSBδ(Hash(s, w)).

4. He checks that gd = ayc. He outputs accept only if all checks hold.

Protocol 3: Non-interactive Proof of Work or Knowledge built from a Schnorr
proof [BKZZ16]

of m under public key z, or otherwise it rejects the signature. For the purposes of

this thesis we will focus on signatures based on identification protocols – interactive

proofs of knowledge that prove possession of a private key to a verifier – however

there are a variety of other methods of constructing digital signatures. The primary

property that defines a digital signature scheme is unforgeability. That is, without

prior knowledge of the private key, an attacker should not be able to create a signature

that verifies. There are various degrees of unforgeability a protocol may possess:

16

under universal forgery an attacker would be able to create an accepting signature for

any message, under selective forgery an attacker would be able to create an accepting

signature only for select messages, and finally existential forgery where an attacker is

able to create accepting signatures with no control the message which is signed. We

can consider unforgeability in a variety of different attack scenarios that determine

what other information the attacker has available: a known message attack where

they have some number of messages – not of their choosing – and their accompanying

accepting signatures, a chosen message attack allows the attacker to submit some

list of messages to be signed and receive their accepting signatures, and finally an

adaptive chosen message attack which is similar to a chosen message attack except the

attacker is allowed to alter their submissions based on the outcome of prior results.

Ideally a good digital signature scheme would be one that is existentially unforgeable

even under an adaptive chosen message attack. In [PS96], the authors first show

that the Schnorr signature scheme is secure against existential forgery in an adaptive

chosen message attack. They go on to extend this more generally to any signature

scheme made from an honest verifier zero knowledge identification protocol. The

computational complexity of such an attack against these signature schemes would

be equivalent to the underlying mathematically hard problem.

2.3.1 Schnorr Signatures

One of the simplest examples of a digital signature is a Schnorr signature. We can

construct it by taking the Schnorr proof of knowledge, applying the Fiat-Shamir

heuristic to it to make it non-interactive, and adding the message to the Fiat-Shamir

hash.

17

ElGamal
Input: message m, public key 〈g, p, y = gx〉 and signing key x.

1. Alice chooses random r, with 0 < r < p− 1 and gcd(k, p− 1) = 1.

2. She computes a = gr mod p.

3. She uses the Fiat-Shamir heuristic to calculate the challenge c = Hash(m).

4. Finally, she computes d = r−1(c− xa) mod (p− 1).

5. She outputs the signature σ = 〈m, d, a〉.

Schnorr
Input: message m, public key 〈g, p, q, y = gx〉 and signing key x.

1. Alice chooses random r, with 0 < r < q.

2. She computes a = gr mod p.

3. She uses the Fiat-Shamir heuristic to calculate the challenge c = Hash(m, a).

4. Finally, she computes d = a+ xc mod (p− 1).

5. She outputs the signature σ = 〈m, d, c〉.

DSA
Input: message m, public key 〈g, p, q, y = gx〉 and signing key x.

1. Alice chooses random r, with 0 < r < q.

2. She computes a = (gr mod p) mod q.

3. She uses the Fiat-Shamir heuristic to calculate the challenge c = Hash(m).

4. Finally, she computes d = r−1(c+ xa) mod q.

5. She outputs the signature σ = 〈m, d, a〉.

Protocol 4: Signature generation for ElGamal, Schnorr and DSA constructions.

Schnorr Signature. Alice chooses secret signing key x ∈ Zq and computes public

verification key y = gx mod p for large safe prime p and generator g of Gq. Alice

signs message m ∈ {0, 1}∗ by choosing random r and computing s = 〈s1, s2, s3〉 =

Signx(m, r) =〈s1 = gr mod p, s2 = H(m‖s1), s3 = r + s2 · x mod q〉. Bob verifies 〈m, s〉,

the signature on the message, by ensuring gs3
?
= s1 · ys2 and s2

?
= H(m‖s1).

2.3.2 DSA

DSA, the Digital Signature Algorithm, was specified as part of the Digital Signature

Standard (DSS) by NIST in 1994. Along with ECDSA, its elliptic curve variant,

18

DSA is one of the most commonly used digital signature schemes. A DSA signature

bears a strong resemblance to a Schnorr signature with one major change to the final

response step borrowed from the ElGamal signature scheme (see Protocol 4).

2.3.3 Designative Verifier Signatures and Proofs

Designated verifier signatures. With a designated verifier signature, the follow-

ing predicate is proven: either Alice signed this message or I know Bob’s private

key [JSI96]. Bob will believe the first clause since he knows Alice does not know his

key, however he cannot convince anyone else that the first clause is true since he can

make the second clause true. A designated verifier signature scheme can be built

from a Σ-protocol with the same property. Short-lived signatures are compatible

with designated verifier proofs/signatures and provide a different but complementary

notion of deniability: one that is time-based instead of person-based. In an event

when Alice knows Bob’s private key, she can limit verification of the signature to Bob

and for a period of time. When she does not know Bob’s private key, she can only

limit verification for a period of time.

A more minor practical concern is if Alice sends to multiple recipients, the size

of a short-lived signature is constant in the number of receivers, while a designated

verifier signature grows linearly in the number of receivers. For email, this likely

matters little, but for constrained one-way messaging like SMS, it might play a role.

Relation to designated confirmer signatures. With a designated confirmer

signature, signature verification is interactive rather than non-interactive. If the

entity verifying the signature (the confirmer) (i) responds only to certain people or

(ii) stops responding after a certain amount of time, the signature can no longer

be verified. DV signatures can be thought of a non-interactive version of (i), while

19

short-lived signatures are a non-interactive version of (ii). Non-interaction simplifies

the logistics of deniability considerably: Alice can send an email and go offline, and

the signature will expire without any future involvement from her.

2.4 Other Building Blocks

Moderately-hard functions. Computing a moderately hard function consumes

a certain amount of computational resources, which can be used to impose a price

or time delay on an entity. These are variably called pricing [DN92], timing [FM97],

delaying [GS98], or cost [GJMM98, Bac02] functions; and time-lock [RSW96, BN00,

MMV11] or client [JB99, ANL00, DS01, WR03, WJHF04, DMR06, TBFG07, CMSW09,

SKR+11] puzzles. Proof of work is sometimes used as an umbrella term [JJ99].

Among other applications, proof of work can be used to deter junk email [DN92,

GJMM98] and denial of service attacks [JB99, DS01, Bac02, WR03, WJHF04], con-

struct time-release encryption and commitments [RSW96, BN00], and mint coins in

digital currencies [RS96, Bac02, Nak08].

We consider a puzzle as three functions: 〈Gen, Solve,Verify〉. The generate func-

tion p = Gen(d, r,m) takes difficulty parameter d, randomness r, optionally a message

string m and generates puzzle p. The solve function s = Solve(p) generates solution

s from p. Solve is a moderately hard function to compute, where d provides an ex-

pectation on the number of CPU instructions or memory accesses needed to evaluate

Solve. Finally, verification Verify(p, s) accepts iff s is a correct solution to p.

Time-stamping and carbon-dating. Time-stamping is a mechanism to establish

a particular message is at least as old as a certain time. Time-stamping schemes use

trusted entities [HS90, BdM91, BHS91, BdM93, BLLV98, PRQ+98, MB02] and have

20

been standardized.2 Carbon dating [CE12, MMV11] is a trustless form of time-

stamping that uses a moderately hard puzzle. Specifically, if difficulty d is a quantity

of time, then publishing 〈p = Gen(d, r,m), s = Solve(p)〉 is proof that m is no newer

than d units of time in the past.

Random beacons. While time-stamping proves a message is no newer than some

past time, a random beacon [Rab83] provides a random number that is verifiably

no older than some past time. Beacons can be based on an unpredictable source of

randomness that is verifiable after the fact, such as financial data [WJHF04, CH10]

or Bitcoin’s blockchain [BCG15].

2.5 Other Related Work

The following are a few primitives and protocols that we do not make use of, however

are related somewhat to our results. We thus provide them to distinguish how our

results are different from them.

Deniable encryption. In deniable encryption schemes [CDNO97], message confi-

dentiality is inherent. Further the sender must know the receivers’ public key. With

short-lived signatures, message confidentiality is an orthogonal concern: signatures

can be applied to plaintext or ciphertext.

Time-lock encryption. In time-lock encryption [RSW96], an encrypted message

becomes decryptable after an investment of a configurable amount of work. Short-

lived signatures can be considered an analogue of time-lock encryption for signature

schemes.

2ISO IEC 18014-3; IETF RFC 3161; ANSI ASC X9.95

21

Timed commitments and signatures. Timed commitments are an analogue

of time-lock encryption for commitment schemes: a committed message becomes

unhidden after an investment of a configurable amount of work [BN00]. The authors

also extend their timed commitment construction to a ‘timed signature’ which likely

sounds like the same primitive we are defining. However their timed signature solves a

different problem relating to fair contract signing: a timed signature can be gradually

released, and an investment of an amount of work can recover the signature if such a

release is aborted early.

22

Chapter 3

Short-Lived Signatures and Proofs

A short-lived signature or proof is one whose truth erodes after a certain amount of

time. By integrating a proof of work, our short-lived protocols allow indistinguishable

forgeries to be created after an investment of time and resources. The motivation for

this was provided in Chapter 1.

We begin with a ‘folklore’ short-lived signature which is to sign a message with

a weak key. We improve this, combining existing primitives, to demonstrate that

short-lived signatures are possible following this paradigm but require some addi-

tional things beyond just using a weak key. Later, we ‘remix’ the elements of this

construction to build short-lived signatures in a more systematic way. Specifically,

we build them by first building a short-lived zero knowledge proof and then using the

Schnorr ZKP-to-Signature transformation to convert them into signatures. This is

more modular than the enhanced folklore construction, which starts with a regular

signature and ends up with a short-lived signature but cannot be used as a short-lived

proof. Further both short-lived proofs and short-lived signatures are useful indepen-

dently and we give example use cases in the next chapter that use one but not the

other.

23

Folk+ construction steps Improvement achieved

〈Signs̄k(m)〉 Original construction with weak key s̄k

〈Signsk(m),TREnc(sk)〉 Strong sk; time-release encryption

〈(sk, pk)← KeyGen(b, n), Signsk(m),TREnc(n)〉 Define earliest signing time〈
Signskl(sk, b), Signsk(m),TREnc(sk)

〉
Plug into PKI where skl is a long-term
signing key

Table 3.1: Progression from the original Folk construction to our enhanced short-
lived Folk+ construction. Across the constructions, different signing keys are used:
s̄k is a weak key, sk is full-strength key, and skl is a full-strength long-term key.

3.1 A folklore construction and an improvement

One folklore construction for short-lived signatures is often mentioned (although we

cannot find an authoritative reference for it): sign the message with a weak key.

By itself, this has numerous undesirable properties that we will sequentially explore,

while also fixing them (a summary is given in Table 3.1). The result is an improved

but impractical variant we call Folk+. Despite Folk+ being unwieldy, it serves as a

pedagogical example: it shows the building blocks that can be used to construct a

short-lived signature. In the next section, we start from scratch with these building

blocks to make more concise short-lived signature schemes.

The notion of using a weak key is also presented in the analogous work on time-

release encryption [RSW96] where the authors consider the idea of using a weak

symmetric key. The authors (Rivest, Shamir, and Wagner) dismiss this idea for two

reasons: exhaustive search is trivially parallelizable (a problem that we will revisit,

as it is difficult to avoid in some of our constructions, and we denote constructions

that achieve it as having puzzle sequentiality in Table 3.2) and the amount of work

is configured on expected running time which could vary from actual running time in

amounts that might make a practical difference. In the case of a signature scheme, this

second issue is exacerbated by the fact that exhaustive search is not the best known

24

algorithm for finding signing keys in most signature schemes, and the best known

algorithm could actually change based on the size of the key itself (e.g., factoring or

computing discrete logarithms). Thus determining an appropriate size for a weak key

is non-trivial, not well-studied, and sensitive to the signature’s setting and possibly

its public parameters. A better approach is to use time-release encryption itself—a

primitive designed for exactly what we want. The signer can sign the message with a

full strength key sk (instead of a weak signing key s̄k) and then time-release encrypt

the full-strength key, TREnc(sk), with the desired difficulty.

If a recipient of a message signed in such a fashion sees this pair of values, a signa-

ture and a time-release encryption, 〈Signsk(m),TREnc(sk)〉, two necessary conditions

exist for which this signature is a forgery: (i) the time-release encryption actually

contains the signing key sk and (ii) the signature has been seen for a sufficient amount

of time for sk to be released. As it stands, the first property (i) cannot be verified

a priori — the value might the time-release encryption of any value. Thus in an

improved version, we might want to achieve property that states that it should be

apparent from inspection of the signature that forgeries can be created after an in-

vestment of resources. We call this property releasability in Table 3.2. Releasability

may be possible to add to Folk+ with an involved zero-knowledge proof but we do

not pursue it here.

In terms of (ii), observe that there is no way to tell how long these values have

been observed. If you receive an email signed in this fashion with a time release

proportional to 1 day, it might be a valid message (i.e., not a forgery) from Alice or

it might be a just-completed forgery that Bob started creating yesterday. If we can

prove the signature is freshly generated, this resolves this issue. We can do this using

a beacon. Specifically we can incorporate a random value b from the beacon in the

signing key (by using a random nonce n we define next). Note that it is not sufficient

25

to incorporate b into the signature itself, the message being signed, or the plaintext

of the time-release encryption: since the signing key is time-released, once the key

is known, the adversary can sign any message (using any beacon value) following

any modified signature algorithm and re-encrypt it. The construction will appear as:

〈(sk, pk)← KeyGen(b, n), Signsk(m),TREnc(n)〉.

To complete this construction, we need a method for deriving a sk based on the

beacon value. Since sk will be released upon completing the proof of work on the time-

release encryption, it is not necessary that one can determine sk was derived from b

from inspecting pk (otherwise, we’d require a zero knowledge proof or something like

a verifiable random function). It will eventually become apparent, once sk is released,

whether b was used. The simplest method to achieve this is to generate a random

nonce n (of the same size as a signing key) and commit it with the beacon (e.g.,

by hashing the two together and mapping into the keyspace) and use this combined

value as the signing key sk = Hash(b, n). A verifier will repeat this process, once they

have recovered n from the time-release encryption, by recomputing sk and pk using

the asserted beacon value b and validating that these values actually produce the

keys that were used. Note that if b is not integrated into the key in some way that is

binding, then the beacon could be swapped out for a different value and this signature

ceases to be short-lived since the accepting period of time cannot established.

The final consideration is that such a signature burns the signing key sk. While

sk could be used a few times if messages were being sent from the same time interval,

it will expire rapidly. This creates a PKI problem because signing keys need to

be associated with identities through some mechanism, such as certificates. There

is at least one simple solution: Alice can maintain a longterm signing key skl and

certificate, and sign her ephemeral short-lived keys (Signskl(sk)) to chain them back

to her certificate. We consider this a necessary property of short-lived signatures,

26

which we call PKI compatibility in Table 3.2. This extra signature also gives us a

place to include the beacon that will not become compromised after the time-release

of the encryption as it is protected by the long-term key which is never released:

(Signskl(sk, b)). Thus b is no longer needed in (sk, pk) ← KeyGen(b) and the design

becomes cleaner.

This completes our Folk+ construction. The first observation is that it is quite a

long signature, involving two signatures and one encryption. Next, we will consider

more concise constructions. Folk+ also lacks a few properties we will see in our

next constructions, including the ability to generalize to a short-lived Σ-protocol and

the ability to use arbitrary proof of work schemes instead of being bound to ones

that admit time-release encryption. Finally, forgeries cannot be created until a valid

signature is first created. Thus seeing an expired Folk+ short-lived signature proves

that Alice signed at least one message after b was published; later constructions will

enable forgeries apropos of nothing.

3.2 An initial attempt

Given the length of Folk+ (two signatures and one encryption), we now consider how

we can ‘remix’ the elements of Folk+ (e.g., a beacon and proof of work) into a more

concise construction for a short-lived signature. To build a short-lived signature from

scratch, we consider first building a short-lived Σ-protocol and then transforming it

into a signature.

Recall for a proof of knowledge of some x ∈ L, a Σ-protocol is a three move

protocol where the prover sends a, receives c from the verifier, and responds with

z. Applying the Fiat-Shamir heuristic (c = H(L, a)), it can be compiled into a non-

interactive proof of knowledge. By binding the message to c (c = H(L, a,m)), it can

27

be transformed into a signature by the individual who knows x.

This attempt at a short-lived scheme is an adaptation of the idea for a ‘pricing’

or proof of work function proposed by Dwork and Naor[DN92]. They propose, as

a proof of work, using a Fiat-Shamir signature scheme where the moderately hard

problem is creating a forgery. To create a forgery, one can either find x or one can

simulate fake signatures until the Fiat-Shamir value happens to equate. The degree

to which the latter is possible is controlled by a security parameter t: the output of

c = H(L, a,m) is truncated to t bits.

In the scheme of Dwork and Naor, the fact that they use a signature instead

a Σ-protocol as the basis for their proof of work is incidental. The message being

signed plays no role in the Dwork-Naor construction so, with the hindsight of ensuring

research on Σ-protocols, we can simplify their construction to create a short-lived Σ-

protocol based on ‘grinding’ Fiat-Shamir (FS) values (hence the name of the next

scheme, FS-Grind, which evolved out of this first attempt). We simply truncate c to t

bits for a moderately sized value of t (e.g., t=40 bits). Thus an accepting Σ-protocol

transcript is due to either: the fact that it is a valid proof issued by a prover who

knows x or it is a forged proof issued by someone that solved the proof of work. For

now, there is no way to tell which is the case.

However if a verifier saw such a Σ-protocol transcript and knew it was ‘freshly’

generated—the elapsed time is less than the time required to solve the proof of work—

he could conclude it is a valid proof issued by the prover who knows x. As the

elapsed time grows, he can no longer conclude this and the proof’s validity becomes

uncertain (or in the signature case, the signature becomes deniable). The freshness

can be accomplished by incorporating a beacon value b, however we will discuss one

point further before specifying where to insert b.

The final step will be to transform this Σ-protocol into a signature. For a Fiat-

28

Shamir-based Σ-protocol, the transformation is to add the message to the hash used

to compute the challenge c. In our case, the truncation of c to allow grinding a

forged proof also impacts the collision resistance of the hash; specifically, the hash

is no longer collision resistant. This is a problem because collision resistance must

hold for both the message m and the beacon b (assuming b is added to this hash) —

therefore the transformation does not work in this, and it does not work for either

the signature scheme or the Σ-protocol. If the beacon can be integrated in a binding

way to a value other than c in the proof, this construction could possibly be repaired

to work for Σ-protocols, however we will fix it in a more thorough way that works

for both signatures and Σ-protocols in the next section.

3.3 FS-Grind

The main component of an FS-Grind signature is a modified Chaum-Pedersen pro-

tocol which is a proof of knowledge of the equality of two discrete logarithms (see

Section 2.2.3). The base of the first discrete logarithm is the public key, g, while

the second base is a hash h of the message and a random beacon value. The proof

will prove knowledge of x given 〈g, h, gx, hx〉. This allows us to incorporate b (and in

the case of a signature, both b and m) into the proof transcript with a full-fledged

collision-resistant hash function, repairing the issue with our previous attempt. Note

that for every proof (and signature), the value of h changes from signature to signa-

ture but the value of g and gx is always the same—since gx is the signer’s public key,

this means the signer can use the same key for multiple signatures which is important

for using an established PKI.

FS-Grind is given in Protocol 5. We specify the signature version (for a short-

lived Σ-protocol, m is dropped and the terminology shifts). The challenge value is a

29

FS-Grind

Signature
Input: message m, public key 〈g, p, q, y〉 and signing key x.

1. At t0, Alice obtains randomness bt0 = GenRand() from beacon.

2. She selects a difficulty δ such that TimeEst(δ) corresponds to the length of time that the
signature should be accepted.

3. She computes h = Hash(m, bt0), sets y1 = y and y2 = hx.

4. She chooses r ∈r Z∗
p, computes a1 = gr, a2 = hr, c = Truncδ(Hash(a1, a2)) and computes d =

r+ cx. She outputs 〈m,σ, τ〉 where signature σ = 〈h, y1, y2, a1, a2, c, d〉 and time information
τ = 〈t0, bt0 , δ〉.

Verification
Input: message m, public key 〈g, p, q, y〉, and signature 〈σ, τ〉.

1. At t1, Bob checks that gd = yc1a1, hd = yc2a2 and c = Truncδ(Hash(a1, a2)). He then checks
that VerifyPuz(GenPuz(b, δ), sb). Finally he checks that t1 < t0 + TimeEst(δ). He outputs
accept only if all checks hold.

Forgery
Input: a forged message m̂.

1. Selective Forgery: At t̂0, Eve computes ĥ = Hash(m̂, bt̂0), chooses y2 ∈r Zp, d̂ ∈r Zp and

ĉ ∈r Zp. She computes â1 = y−ĉ1 gd̂ and â2 = y−ĉ2 ĥd̂. She selects difficulty δ̂ and checks if ĉ =
Truncδ̂(Hash(â1, â2)). If this does not hold, she selects new random values and recomputes.
She will expect to repeat this for TimeEst(δ).

2. Completion: At t̂1 ≈ t̂0 + TimeEst(δ), Alice finds an acceptable ĉ. She outputs 〈m̂, σ̂, τ〉 with

signature σ̂ =
〈
ĥ, y1, y2, â1, â2, ĉ, d̂

〉
and time information τ =

〈
t̂0, bt̂0 , δ

〉
.

Protocol 5: Signature and verification for FS-Grind instantiated with Schnorr sig-
nature.

hash of the two commitment values, one using each base exponentiated to the same

randomness, the base which contains the hash of the message as well as that base

exponentiated with the signing key. Before use, the challenge is truncated to the

desired difficulty level which determines the validity period of the signature. The

final response is the same as a standard Schnorr signature.

The verification step of an FS-Grind signature also works much the same as in

a Schnorr signature except that the check has to be done against both bases. In

addition, the verifier should check that the correct challenge value was used.

30

To forge an FS-Grind signature, Eve selects a random challenge and response

value and uses these to calculate commitment values. She then checks if the random

challenge value matches the expected value from hashing the commitments. If not,

she can pick new random values and try again.

3.4 Workflow

The Workflow construction is quite similar to FS-Grind. They both admit forgeries

upon finding a certain hash output (where the size depends on a chosen difficulty

parameter). This hash value is used directly or indirectly as the challenge value in

a standard Σ-protocol, and thus both FS-Grind and Workflow can be used as short-

lived Σ-protocols or transformed into signatures using the standard transformation.

Both grapple with the issue that a full-size hash function is needed for security, while

finding a “correct” a truncation of the hash to δ bits enables a proof of work that

can be easily integrated into the protocol.

In FS-Grind, we move the message and beacon out of the challenge and into two

new values, linked by their discrete logarithm being the secret key, base the protocol

on the AND-composition within an Σ-protocol, and have the challenge be small. With

Workflow, we keep the message and beacon in the challenge but work on structuring

the challenge to be both (1) full length for collision resistance, and (2) accepting even

if only some subset of the challenge are ‘correct.’ We base Workflow on recent work

by Baldimtsi et al. [BKZZ16] on building indistinguishable proofs (or Σ-protocols)

of work or knowledge (which they call PoWorKs). PoWorKs and Workflow are very

similar with the following differences: Workflow is a signature, Workflow conforms to

being short-lived while PoWorKs are designed with a different application in mind

(see Section 2.2.5), and to realize the short-lived property, Workflow uses a beacon

31

value.

The intuition of Workflow is as follows: for Σ-protocols in general, if the proof

transcript is a forgery provided by a prover that does not know the witness, there

is generally only a single value from a large message space that will make the proof

accept. The job of the malicious prover is to find this value. Typically it cannot

be found directly, it can only be found through trial-and-error — in this case, it is

because the value is a preimage to a preimage resistant hash function. With Workflow,

the proof is set up as an OR (see Section 2.2.4): there are two sub-challenges that are

combined into a single challenge, and once one sub-challenge is programmed by the

adversary, the other sub-challenge has a fixed value that the prover needs to deal with.

To transform the proof into a signature, we use the same standard transformation

(Fiat-Shamir to make it interactive, and adding the message to the hash to make it

a signature).

In the proof of knowledge setting (i.e., when the prover actually knows the signing

key), the prover will generate a puzzle solution first and work backwards to derive

the corresponding puzzle. The puzzle is defined by the value of the work-side sub-

challenge, combined with the knowledge-side sub-challenge, and combined to form the

actual challenge in the proof/signature. Alternatively, in the proof of work setting

(i.e., when the signer is forging a signature), the knowledge-side sub-challenge is

chosen first and the commitment value is calculated from it. The puzzle-side sub-

challenge can now be calculated with both challenge values fixed, and the prover

begins to solve the proof of work to find the one value that will accept. The one

value that will accept is one value from a set of values defined by how many bits the

hash is truncated to.

The signature has been modified to be forgeable but it is not yet a short-lived

signature since it lacks any timing information to allow for expiration. As a final

32

Workflow

Signature
Input: message m, public key 〈g, p, q, y〉 and signing key x.

1. At t0, Alice obtains randomness bt0 = GenRand() from a beacon.

2. She selects a difficulty δ such that TimeEst(δ) corresponds to the length of time that the
signature should be valid. Let the output size of a collision-resistant hash function Hash() be
λ bits.

3. She chooses r ∈r Z∗
p and computes a = gr.

4. The challenge is constructed as follows: c0 = Hash(a,m, bt0) and c = c0 ⊕ c1, where c1 =

(u, v, w) as defined next. s← {0, 1}λ, u = LSBδ(Hash(s, w)), v ← {0, 1}λ2 −δ, w ← {0, 1}λ2 .

5. She finally computes d = a+ cx. She outputs 〈m,σ, τ〉 where signature σ = 〈a, c, d, s, u, v, w〉
and time information τ = 〈t0, bt0 , δ〉.

Verification
Input: message m, public key 〈g, p, q, y〉, and signature with timing information 〈σ, τ〉.

1. At t1, Bob checks that t1 < t0 + TimeEst(δ).

2. He sets c0 = Hash(a,m, bt0) and c1 = (u, v, w).

3. He checks that c = c0 ⊕ c1 and u = LSBδ(Hash(s, w)).

4. He checks that gd = ayc. He outputs accept only if all checks hold.

Forgery
Input: message m̂ for forged signature.

1. Selective Forgery:

At t̂0, Eve chooses d̂ ∈r Zp, and ĉ ← {0, 1}λ and computes â = gd̂yĉ, ĉ0 = Hash(â, m̂, bt̂0)
and ĉ1 = ĉ⊕ ĉ0. She begins computing ŝ such that û = LSBδ(Hash(ŝ, ŵ)).

2. Completion: At t̂1 ≈ t̂0 + TimeEst(δ), Eve finds an acceptable ŝ. She outputs 〈m̂, σ̂, τ〉 with

signature σ̂ =
〈
â, ĉ, d̂, ŝ, û, v̂, ŵ

〉
and time information τ =

〈
t̂0, bt̂0 , δ

〉
.

Protocol 6: Signature and verification for Workflow instantiated with Schnorr sig-
nature.

modification, we return to the challenge hash value and add a random beacon value

to the computation from the time the signature is being generated (or any time

earlier). This value will show that the signature could have been generated no earlier

than the time corresponding to the included beacon value. Combined with the time

requirement to solve the proof of work, this fixes a time after which this signature will

become indistinguishable from one which has been forged. For a detailed description

33

of Workflow signatures, see Protocol 6.

Finally, we identify and fix a small flaw in the original PoWorK proposal. In

Protocol 6, what we call v is chosen at random regardless of whether the signature

is a forgery or not. In the original paper [BKZZ16], this value v is chosen to be

an extension of the hashed bits comprising u when the PoWorK is knowledge-based

and it ends up (with overwhelming probability) being random when the PoWorK is

work-based. Thus knowledge/work is not truly indistinguishable.1

3.5 Carbon

Like our previous constructions, Carbon begins with a Schnorr Σ-protocol as a base.

However unlike in our earlier constructions, we will integrate the proof of work into

the commitment phase instead of the challenge phase of the protocol. This allows for

a greater degree of flexibility in choosing a proof of work protocol.

To generate a Carbon signature in the proof of knowledge setting, Alice will first

commit to a random value and use it to generate the proof of work puzzle. Upon

solving this proof of work, Alice can continue with generating the signature. She will

compute a hash of the message and a beacon value to form the challenge and fix

the beginning of the validity period of the signature. Lastly, she will calculate the

response value and output the signature information.

To forge a Carbon signature, Alice computes the challenge value as before and

generates a random response value. She uses these values to calculate what the

commitment should be so that she is able to generate the proof of work puzzle. Upon

1The exact issue arrises in the security proof of statistical indistinguishability within Theorem
2 of [BKZZ16]. The authors make the following statement: “it is obvious that Solve(1λ, h, puz))
outputs a random soln from the solution set of puz, which is identically distributed to the solution
soln in (puz, soln)← SampleSol(1λ, h, puz)).” However the authors do not prove they are identically
distributed, and indeed they are not.

34

Carbon

Signature
Input: message m, public key 〈g, p, q, y〉 and signing key x.

1. At t0, Alice chooses a ∈r Z∗
p and computes b = ga. Alice generates puzzle pb = GenPuz(b, δ)

with difficulty δ. She begins computing sb = Solve(pb).

2. At t1 � t0, Alice completes computation of sb.

3. At t2 ≥ t1, Alice obtains randomness rt2 = GenRand() from beacon. She generates c =
Hash(rt2 ,m) and computes d = a− cx. She outputs 〈m,σ, τ〉 where signature σ = 〈b, c, d, sb〉
and time information τ = 〈t2, δ〉.

Verification
Input: message m, public key 〈g, p, q, y〉, and signature with timing information 〈σ, τ〉.

1. At t3, Bob checks that b = ycgd. He checks rt2 = GenRand(t2) and checks that
c = Hash(rt2 ,m). He then checks that VerifyPuz(GenPuz(b, δ), sb). Finally he checks that
t3 < t2 + TimeEst(δ). He outputs accept only if all checks hold.

Forgery

input: timing information τ and forged message m̂

1. Selective Forgery: At t̂0, Eve chooses d̂ ∈r Zp and generates ĉ = Hash(rt2 , m̂). She computes

b̂ = yĉgd̂. Eve generates puzzle p̂b = GenPuz(b̂, δ) with difficulty δ. She begins computing
ŝb = Solve(p̂b).

2. Completion: At t̂1 � t0, Eve completes computation of ŝb. She outputs 〈m̂, σ̂, τ〉 with

signature σ̂ =
〈
b̂, ĉ, d̂, ŝb

〉
and same time information τ = 〈t2, δ〉.

Protocol 7: Signature, verification and forgery of Carbon.

completion of the puzzle, Alice can output an accepting but forged Carbon signature.

For a full description of both of the signature modes and verification, see Protocol 7.

Carbon features two main drawbacks. The first is that upon witnessing a fresh,

valid signature, Bob may be able to prevent the signature from expiring naturally by

continuing the proof of work (the others do not have this drawback and schemes that

do not are considered Persistent in our comparison below).

The second drawback is that in order to generate a valid signature both the

legitimate prover and the forger have to carry out the full proof of work (while the

verifier does not). This proof of work can be pre-computed (it does not depend on

the signing key or message) and multiple messages might be batched together with

35

one-precomputed puzzle, however this is a significant drawback. In our comparison

below, we say Carbon does not achieve No pre-computation as a result. The trade-off

is PoW-independence where Carbon can use any proof of work scheme that provides

the carbon-dating property.

3.6 Security

The protocols Carbon, FS-Grind and Workflow are very similar to each other. We

outline some differences below. However to prove they are proper signatures, we use

FS-Grind as a representative on the family of protocols. We first prove it a short-

lived Fiat-Shamir-based Σ-protocol and then we rely on the standard Σ-protocol-to-

signature transformation for constructing a signature (we do not prove this transfor-

mation and instead refer the reader to [Sch91]).

Completeness. To prove completeness, we need to show that the following two

equations hold: gd
?
= yc1a1 mod p and hd

?
= yc2a2 mod p. Beginning with gd, recall

that a1 = gr and y1 = gx, so we have gd
?
= gr · (gx)c mod p. We can further simplify

the right-hand side to gd
?
= gr+cx mod p and since we computed d as d = r+cx in the

final step of the protocol, we see that the original equation holds. Now for hd, recall

that a2 = hr and y2 = hx, so we have gd
?
= gr · (hx)c mod p. We can further simplify

the right-hand side to hd
?
= hr+cx mod p and since we computed d as d = r + cx in

the final step of the protocol, we see that the original equation holds.

Short-lived Special Soundness. To prove soundness, we assume an honest prover

that will produce accepted transcripts using the witness x as specified by the protocol,

and a malicious verifier called the extractor who will attempt to exfiltrate the value of

x from the transcript. If the extractor is successful, the proof is indeed based on x and

36

thus is sound (an unsound proof would be a transcript that accepts, is not based on

x, yet in this case, it wouldn’t be possible to extract x from it). At the same time, the

extractor will use special powers real world adversaries do not: being able to program

the random oracle, thus an extractor will not work in real life when the random oracle

is replaced by a real hash function. We will use the special soundness property and

the fact that two accepting transcripts 〈a1, a2, c, 〉 and 〈a1, a2, c
′, r′〉 where c 6= c′ and

r 6= r′ are sufficient to extract the witness x. The verifier lets the prover issue a

first transcript 〈a1, a2, c, 〉, it then rewinds the prover to the point in time that it has

chosen a1 and a2 but has not yet asked the random oracle for the hash of a1 and a2

to generate c and it instructs the oracle to erase its value of a1 and a2. Then the

oracle will pick a new random value c′, overwhelmingly likely to be different than the

first c and the prover will compute the corresponding r′. The extractor will use these

values to compute x as x = s−s′
c−c′ .

Non-interactive Zero-Knowledge. To prove zero-knowledge, we assume an hon-

est verifier and a dishonest prover called the simulator. Because we are in the random

oracle model, the simulator is allowed to program the random oracle. Its goal is to

produce a transcript that is accepting to the honest verifier without actually knowing

the witness. If it can do this, the transcript must be zero knowledge because it is

possible to produce without knowledge of the witness. At the same time, because

it will be instantiated in the real world with a real hash function that cannot be

programmed, real provers have less power than the simulator and cannot use this to

break soundness. The simulation strategy is as follows: the simulator gets a value

bt0 from the beacon, computes h = Hash(bt0) and chooses y2, d ∈ Z∗p at random, it

asks the oracle for a random output value for not-yet-specified input and uses this

as c, it computes a1 = gd · y−c1 mod p and a2 = hd · y−c2 , and finally it asks the oracle

37

Se
tt
in

g
in

de
pe

nd
en

t

PK
I co

m
pa

tib
ili

ty

A
llo

ws
Σ-p

ro
to

co
l

PoW
-in

de
pe

nd
en

t

N
o

pr
e-
co

m
pu

ta
tio

n

N
o

pe
rs
ist

en
ce

R
ele

as
ab

ili
ty

K
ey

-o
nl

y
fo

rg
er

ies

Puz
zle

se
qu

en
tia

lit
y

M
od

ul
ar

ex
po

ne
nt

ia
tio

ns

Folk • • • 1

Folk+ • ◦ • • • 3

FS-Grind • • • • • • • 2

Workflow • • • ◦ • • • • 1

Carbon • • • • • • 1

Table 3.2: A comparison of various short-lived signature constructions.

to program the output value it received as its response to the input (a1, a2) — thus

when the verifier queries the oracle, c = Hash(a1, a2).

3.7 Evaluation

No short-lived scheme we have described possesses all of the properties listed here

and they each offer a different subset allowing them to be useful in a variety of

situations. This list is not exhaustive and there may be other useful properties we

have overlooked in our evaluation.

Setting independent. Constructions achieving this property are those which do

not require a specific mathematical setting (e.g., discrete log, RSA) in order to func-

tion. This allows our constructions to adapt to future advances in cryptographic

attacks against digital signatures.

All of our protocols were described generically (in the case of Carbon, Folk) or

using the discrete log setting for the sake of consistence and readability (FS-Grind,

and Workflow). The discrete log constructions can be adapted to other settings, such

38

as using elliptic curves, as necessary. Though Folk+ was also described generically,

in order to satisfy the puzzle sequentiality property as well it must be in the RSA

setting.

PKI compatibility. Most uses of digital signatures today rely on the TLS public

key infrastructure or the PGP web of trust. Ideally any short-lived signature con-

structions should be compatible with these (i.e., they make use of long term signing

keys).

All of the short-lived signature schemes we describe, with the exception of the

basic Folk construction, allow for these long term keys to be used for signing.

Allows Σ-protocol. We defined our short-lived constructions as signatures, how-

ever we have identified use cases which would rely on short-lived proofs instead. It

would be preferable if our constructions support both of these modes, signature and

proof.

Neither of the folklore constructions (Folk, Folk+) are capable of being used in a

proof mode. FS-Grind, Workflow and Carbon can be used in a proof mode, however,

as they are built from Sigma protocols. To do so, the only necessary change is to

omit the message m from the protocol (and for interactive proofs, the challenge value

may be provided by the verifying party).

PoW-independent. Constructions with this property do not prescribe a particular

proof of work algorithm and will work with a variety of them.

Folk requires exhaustive search on a key. Folk+, meanwhile, can use any time-

release encryption scheme. However, we only assign ◦to Folk+ due to its unique ability

to satisfy the puzzle sequentiality property. In order to achieve puzzle sequentiality,

the proof of work algorithm must be carefully chosen. A Carbon signature can be

39

made using any non-interactive proof of work. FS-Grind specifies grinding a specific

hash or hash image prefix. Workflow is described using a similar proof of work to

FS-Grind, however a generic definition is also given by [BKZZ16] that will work for a

short-lived signature as well.

No pre-computation. To what degree, if any, is pre-computation required for a

particular short-lived scheme. Constructions with this property allow for faster and

more frequent signature generation.

With the exception of Carbon, none of the other short-lived signatures we de-

scribed require any computation to be carried out in advance.

No persistence. Since our short-lived constructions integrate a proof of work into

a signature (or proof), it may be possible to extend the lifetime of a signature slightly

beyond what was intended by continuing the proof of work. We call this persistence

and consider it undesirable.

None of Folk, Folk+, FS-Grind or Workflow allow for signature persistence. Car-

bon is the only one of our constructions missing this property. Upon witnessing an

accepting Carbon short-lived signature, the verifier can prevent it from expiring by

continuing the proof of work. However, once even a Carbon signature expires it cannot

be made to appear fresh again.

Releasability. Consider a short-lived signature σ on message m as 〈m,σ,∆t, b〉

where ∆t is the time (or work) required to create forgeries and b is the beacon value

or freshness of the signature. If a short-lived signature is releasable (•), it should be

clear from the inspection σ itself that the asserted values of ∆t and b are the values

actually used in the construction of σ. If the fact that one or both of the asserted

values ∆t and b are known to be used only after completing a proof of work, it is

40

said not to be releasable (but it is still a short-lived signature). If the assertions can

never be established, it is not a short-lived signature.

In the case of Folk+, there is no guarantee that the time-released signing key will

actually produce valid signatures when used until after the work has been completed.

All of the other proposed short-lived schemes do not make use of signing keys in order

to execute forgeries, relying solely on the proof of work instead so seeing one of these

signatures assures releasability.

Key-only forgeries. How much does the adversary have to see before she can

generate a forgery? By allowing forgeries without a valid signature having ever been

created, the signer is afforded a slightly greater degree of deniability.

For Folk+, a public key and at least one valid signature is necessary. In addition

to a valid signature, Folk also requires the release of the private signing key. Our other

constructions, FS-Grind, Workflow and Carbon, allow forgeries with just knowledge of

the public key.

Puzzle sequentiality. Short-lived signatures blend together the human and com-

putational notions of time. Inherently sequential proof of work algorithms are those

for which future steps of the puzzle rely on past intermediate results. This allows

for better bounds on time estimates as it will limit parallelizing the computation of

proofs of work.

We only know of sequential puzzles for time-release encryption, and thus Folk+.

Modular exponentiations To compare the complexity of each of the short-lived

constructions, we can consider the number of modular exponentiations required to

generate a fresh signature (rather than a forgery, which is an inherently expensive

process) as this is likely to be the mostly computationally intensive step of each

41

construction.

Folk only requires a signature with a weak key, requiring one modular exponen-

tiation. Folk+ requires one for each of the two signatures, as well as one more for

the time-release encryption for a total of three exponentiations. FS-Grind, which is

built from the parallel composition of two signatures, requires two exponentiations.

Workflow and Carbon both each only require a single modular exponentiation.

3.8 Extensions

Fine-grained difficulty. In FS-Grind and Workflow, the difficulty of the puzzle

consists of finding a pre-image that produces a specific hash output that is truncated

to δ bits. The probability of a hash output matching is thus 1/2δ. An increase or

decrease in δ by 1 will double or halve the difficulty. We would like finer-grain control

where the difficulty can be set to an exact amount. We illustrate a transformation

on Workflow (and the same principle can be applied to FS-Grind).

The crux of Workflow is computing the value LSBδ(Hash(s, w)) such that it equals

a given value u. To allow finer grained control, we were permit hash outputs that

are both exactly u and also close to u as defined by some distance. For example,

LSBδ(Hash(s, w)) should be in the interval [u, u + γ] (technically u + γ mod δ). In

this case, the probability is γ/2δ which can take on any probability given a choice

of both γ and δ. To preserve indistinguishability, when an honest signer is produc-

ing an accepting signature, they will compute u = LSBδ(Hash(s, w)) and instead of

outputting u itself, they will construct the interval [u, u+ γ] and choose a uniformly

random value in this interval as u.

Designated verifier. In addition to regular digital signatures, short-lived signa-

tures can also compliment designated verifier (DV) signatures in some situations. DV

42

Alice

Carol
Bob

t0 t1 t2

Designated Verifier (DV)
Short-Lived (SL)

SL+DV

Figure 3.1: Comparing the properties of short-lived signatures with designated verifier
signatures. Specifically, which parties are able to verify a signature over time.

signatures limit verification to a subset of people while short-lived signatures allow

anyone to verify within a specific timeframe.

A short-lived signature has no problems scaling to an arbitrary number of verifiers,

while a DV signature size will increase as the set of verifiers grows, making these

signatures unwieldy for groups larger than a few participants. DV signatures also

require the verifier to have a public key and for the signer to be aware of it at the

time of signature generation. Whereas for our short-lived signatures the signer does

not need to know who will be verifying the signatures, let alone their public keys.

Though we contrast short-lived signatures with designated verifier signatures here,

they do serve different purposes and it would not be simple or make sense to replace

a DV signature with a short-lived signature in certain cases. In such a scenario they

could actually be combined to produce a short-lived designated verifier signature

which would limit both the scope of verifiers as well as the timeframe in which they

are able to undeniably verify the signature (see Figure 3.1).

43

Estimating time. A short-lived signature could find use in practically any situa-

tion a conventional digital signature is used. The shorter the required validity period,

the better. This is due to how we define time in our protocols. There is no obvious

way to integrate real world time so we use expected computation time as an analogue.

In practice this will vary based on the resources available to the forger. Since most

of the proof of work algorithms used by our protocols are not inherently sequential,

the completion of the puzzles can be sped up by parallelizing the computation across

more CPU cores. How to mitigate this problem, either through inherently sequential

proofs of work or better guidelines for choosing a work factor δ, remains an open

problem.

44

Chapter 4

Use Cases

In this chapter, we provide a few use cases for short-lived signatures (deniable email

and instant messaging) and short-lived Σ-protocols (coercion-resistant, end-to-end

verifiable voting).

Recall in Section 1 we briefly mentioned the principle of least privilege. There is

little to be gained from allowing signatures to be attributed to a signer for longer than

is strictly necessary. Traditional digital signatures already have a de facto expiration

date that coincides with the expiration of the signing key. However these timelines

for expiry are usually measured in years and are universal across all signatures made

by a signing key. Most signatures only need to last a few seconds (in an interactive

setting like a TLS handshake or instant messaging) or a few days (for non-interactive

settings like email). By utilizing short-lived signatures with a suitable work factor

as a drop in replacement for traditional digital signatures, we are able to facilitate

deniability with minimal overhead.

45

4.1 Email

One of the simplest applications of a short-lived signature is email. Most scenarios

in which a person would desire the security provided by a PGP signed or encrypted

email are sensitive in nature and affording some deniability after the fact is likely to

also be a desirable property.

By utilizing short-lived signed email, for example, a whistleblower would be able

to reach out to a journalist such that the journalist can trust they’re communicating

with the same source, but after the fact the signatures on received messages are no

longer trustworthy. A complementary approach, designated verifier signatures, would

also allow for this type of deniability but require advanced knowledge of the receivers

public key, which may not be known at the outset of an exchange. Once a public key

has been exchanged, however, a short-lived DV signature could be used to further

limit the verifiability of the signature to one or more parties as well as for a limited

time.

4.2 Deniable Multiparty Messaging

4.2.1 Background

Off the record messaging (OTR) is an instant messaging protocol for end to end

encrypted conversations between two parties. It aims to provide similar security

properties to a private, in-person conversation, hence the name. In addition to con-

fidentiality and authentication that other messaging protocols commonly provide,

OTR also affords deniability.

In a face-to-face private conversation between two or more parties, once the con-

versation has ended neither party can prove that any particular statement was or was

46

not made or that the conversation even took place. In electronic protocols, signatures

are often used to provide message integrity and to authenticate the sender. However,

this leaves no room for deniability after the fact short of publishing the private keys,

an approach we have already dismissed as unable to scale.

To permit deniability, OTR makes use of message authentication codes (MACs),

a symmetric key primitive that verifies the integrity of a message. In a two party

protocol like OTR, since MACs make use of symmetric keys they also authenticate

the sending party of a message, much like a digital signature. If Alice sees a message

with a valid MAC that she did not send, she knows it must have come from Bob

since he is the only other person who knows the MAC key.

Unfortunately, since MACs can only provide authentication in this two party

setting, there has been no obvious way to scale OTR to a group or multi-party

setting. By using a short-lived signature instead of a MAC it could be possible to

construct a multi-party OTR protocol in which the messages expire after an agreed

upon amount of time.

There have been several attempts to define a multi-party version of OTR such

as [BST07][GUVGC09]. [BST07] requires one user to act as a virtual server. This

user, Alice, is trusted to act as a router for messages between all other parties and all

of the other users, Bob and Carol, negotiate a MAC key with her. When sending a

message to the group, Bob uses the MAC key he established with Alice and sends the

message to her. Alice decrypts the message, and re-encrypts with MAC key for her

and Carol before forwarding the message on to Carol as well. The amount of trust

placed in the user chosen as the virtual server creates a massive power imbalance and

the protocol can fall apart if this user acts dishonestly.

A more equitable approach is [GUVGC09]’s mpOTR, which makes use of ephemeral

signing keys that are revealed at the end of every conversation. The authors also in-

47

troduced several useful sub-protocols for performing key exchange and agreement in

a deniable fashion. The drawback to this approach is rooted in how the protocol

defines the ending of a conversation. A user joining or leaving a conversation, at the

protocol level, triggers a shutdown of the old conversation and creation of a new one

with this user added or removed. In a high traffic chat room this may lead to keys

being rotated far too frequently.

4.2.2 Using short-lived signatures

To adapt OTR short-lived signatures we could modify the mpOTR of protocol [GUVGC09]

to make use of short-lived signatures instead of traditional signatures. This would

remove the need for ephemeral signing keys in the protocol altogether since short-

lived signatures do not require the private key to be released to allow forgeries to be

created.

Recall that mpOTR also requires tearing down and setting up a new conversation

whenever the set of participants in a group conversation changes. By using short-

lived signatures instead, key rotation is no longer necessary and this overhead can be

significantly reduced.

It is important to note that this produces a slightly different result than in other

OTR protocols (two-party or the other multi-party proposals). In the other protocols,

until the MAC (or ephemeral signing) key is leaked only the parties in the conversation

can verify the authenticity of the message. Our short-lived approach also eliminates

the need to explicitly leak the keys, though while the signature is valid there is no

restriction on who is able to verify signatures. Practically this should not be of great

concern since OTR is an interactive protocol. The parties communicating can use

very short time periods to reduce the chances of a third party being able to verify a

signature they were not intended to.

48

4.3 Voting

End-to-end verifiable (E2E) voting systems were introduced by Chaum in 1981 [Cha81].

These are voting systems that provide a universally verifiable proof that the tally

was computed correctly and a voter verifiable proof that no ballots were modified

or dropped. The challenge with these systems is protecting the ballot secrecy from

the tallying authority, and further, preventing the voter from being able to prove to

someone else how they voted.

4.3.1 Homomorphic tallying backbone

Consider the following template for an E2E scheme that is the backbone of dozens of

schemes in the literature. A voter wishes to cast a vote for Alice in an election. To do

this, she uses a voting machine that generates an encryption of Alice: JAK. Assume

the encryption scheme is additively homomorphic; that is, Jm1K · Jm2K = Jm1 + m2K

for some efficient operation · such as multiplication. Exponential Elgamal [CGS97]

and Paillier [Pai99] are examples of such a scheme. Assume the decryption key is

shared amongst a set of n trustees (that are mutually distrustful) such that any

m ≤ n of them can come together to decrypt a ciphertext encrypted under this

shared key [Ped91]. For example, m = 3 and n = 5.

Assuming Alice can successfully get an encryption of the candidate she chooses

(the critical issue we will return to) then the votes can be added up under encryption

using the homomorphic property. In the simplest case of a two party race, votes for

Alice might be encoded as 1 and votes for Bob as -1. The homomorphic property

is used to sum up the encryptions and then the trustees convene to decrypt only

this final summation of votes. A portion of the voting literature has been devoted to

extending this idea to more than two candidates [HS00, Hir01, PAB+04, KY02]. Any

49

member of the public can validate that the individual encrypted votes sum to the

same value that is decrypted, and the trustees can prove in zero knowledge that they

are performing the decryption operation correctly without changing the value [Ped91].

The final question is how the voter can be confident that when she asks the voting

machine for an encryption of Alice, it actually encrypts Alice and not Bob. Any proof

she receives should be non-transferrable — that is, she should not be able to show it

to Mallory as proof that she voted for Alice less Mallory be able to coerce her vote

or to purchase it for money.

4.3.2 A solution based on DV proofs

The following system is a simplification of several ideas in the literature (cf. [MN06,

DLM12]), put into terms of designated verifier proofs (see Section 2.3.3). Imagine the

voter enters the voting booth with a keypair 〈sk, pk〉. Both keys might be printed as

QR codes on a piece of paper. She scans the code for pk and asks for an encryption

of Alice. The voting machine prints out JAK (where A is the encoding of Alice) which

it asserts is correct. It then prints out a designated verifier zero knowledge proof,

using pk, that has the following semantics: either JAK is an encryption of A; or I

(the voting machine) know sk; or both. Since the voter has not revealed sk to the

voting machine, she believes the first clause to be true. The voter then scans sk. The

voting machine responds with a second proof of the following form: either JBK is an

encryption of B; or I know sk; or both. The voter knows the first clause cannot be

true, given the first proof, and therefore the second clause is true.

If the voter shows these proofs to Mallory, the proofs claim she voted for Alice

and that she voted for Bob, and both are of the exact same form! Mallory cannot

distinguish which is ‘real.’ The only distinguishing feature is the timing of the pro-

cedure. The ‘real’ proof is the one given to the voter before revealing sk. Since she

50

is in the voting booth at this time, only she knows which is ‘real.’

4.3.3 Using short-lived proofs

The designated verifier scheme has one major drawback. Voters have to prepare a

keypair to take into the booth. On paper, this may seem largely inconsequential. But

in a real election with a wide range of voters — many of which are non-technical and

may not own a computer or smartphone — we could expect a number of accessibility

and usability issues. Voters may be unable to generate the keypair, may enter sk

at the wrong time, enter sk instead of pk, etc.. It is also important that sk is truly

secret or the voting machine could cheat.

We propose to simplify this scheme further with short-lived proofs. The basic

voting procedure is largely the same as in the designated verifier scheme. The voter

receives an encryption (asserted to be) of JAK. This is printed on a sheet of paper

that also includes the current time. The voter must confirm that the time is correct

using her watch or smartphone. The voting machine immediately prints a short-lived

zero knowledge proof (say that expires in 60 seconds) that JAK is an encryption of

A. After 60 seconds, it prints a second proof (incorrect and simulated due to the

expiration) that JAK is an encryption of B.

Once again, the voter has two contradicting proofs: one that shows a vote for Alice

and one for Bob. The proofs are of exactly the same form and the only distinguishing

feature is the timing of the proofs. The ‘real’ proof is the one that was issued within

60 seconds of the correct time and the ‘fake’ one(s) were issued afterward.

51

Chapter 5

Concluding Remarks

In this thesis, we introduced a new variety of digital signatures which only retain the

non-repudiation property for a pre-determined amount of “time”. We described four

different short-lived schemes, one built on top of an existing digital signature scheme

and three additional more concise constructions. We identified several desirable prop-

erties and evaluated our short-lived schemes against them. No one scheme managed

to attain all of these properties, so it is likely that all of our proposed short-lived

signatures will excel in different scenarios. As well as being a drop-in replacement

for conventional digital signatures in most cases, we also described several potential

use cases including two in instant messaging and voting that are uniquely suited to

short-lived signatures and proofs.

Finally, our work blends the notion of real world time together with that of com-

putational time. Much of the future work pertaining to short-lived signatures, such

as preparing guidelines for how to choose an appropriate δ, is likely to rely on a better

understanding of this interface.

52

Bibliography

[ANL00] T Aura, P Nikander, and J Leiwo. DoS-resistant authentication with

client puzzles. In Security Protocols, 2000.

[Bac02] A Back. Hashcash: a denial of service counter-measure, 2002.

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a

public randomness source. IACR Cryptology ePrint Archive, 2015:1015,

2015.

[BdM91] J Benaloh and M de Mare. Efficient broadcast time-stamping. Technical

Report TR-MCS-91-1, Clarkson University, 1991.

[BdM93] J Benaloh and M de Mare. One-way accumulators: a decentralized

alternative to digital signatures. In EUROCRYPT, 1993.

[BHS91] D Bayer, S A Haber, and W S Stornetta. Improving the efficiency and

reliability of digital time-stamping. In Sequences, 1991.

[BKZZ16] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng

Zhang. Indistinguishable proofs of work or knowledge. In International

Conference on the Theory and Application of Cryptology and Informa-

tion Security, pages 902–933. Springer, 2016.

53

[BLLV98] A Buldas, P Laud, H Lipmaa, and J Villemson. Time-stamping with

binary linking schemes. In CRYPTO, 1998.

[BN00] D Boneh and M Naor. Timed commitments. In CRYPTO, 2000.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to

prove yourself: Pitfalls of the fiat-shamir heuristic and applications to

helios. In International Conference on the Theory and Application of

Cryptology and Information Security, pages 626–643. Springer, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In Proceedings of the 1st

ACM conference on Computer and communications security, pages 62–

73. ACM, 1993.

[BST07] Jiang Bian, Remzi Seker, and Umit Topaloglu. Off-the-record instant

messaging for group conversation. In Information Reuse and Integra-

tion, 2007. IRI 2007. IEEE International Conference on, pages 79–84.

IEEE, 2007.

[CDNO97] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deni-

able encryption. In Annual International Cryptology Conference, pages

90–104. Springer, 1997.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of

partial knowledge and simplified design of witness hiding protocols. In

CRYPTO, 1994.

[CE12] Jeremy Clark and Aleksander Essex. Commitcoin: Carbon dating com-

mitments with bitcoin. In International Conference on Financial Cryp-

tography and Data Security, pages 390–398. Springer, 2012.

54

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A se-

cure and optimally efficient multi-authority election scheme. In EU-

ROCRYPT, 1997.

[CH10] Jeremy Clark and Urs Hengartner. On the use of financial data as a

random beacon. In EVT/WOTE, 2010.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[CMSW09] L Chen, P Morrissey, N P Smart, and B Warinschi. Security notions

and generic constructions for client puzzles. In ASIACRYPT, 2009.

[CP92] David Chaum and Torben Pryds Pedersen. Wallet databases with ob-

servers. In CRYPTO, 1992.

[DLM12] Jérôme Dossogne, Frédéric Lafitte, and Olivier Markowitch. Coercion-

freeness in e-voting via multi-party designated verifier schemes. In

EVOTE, 2012.

[DMR06] S Doshi, F Monrose, and A D Rubin. Efficient memory bound puzzles

using pattern databases. In ACNS, 2006.

[DN92] C Dwork and M Naor. Pricing via processing or combatting junk mail.

In CRYPTO, 1992.

[DS01] D Dean and A Subblefield. Using client puzzles to protect TLS. In

USENIX Security, 2001.

[EP84] Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied

Mathematics, 7(3):285–296, 1984.

55

[FM97] M K Franklin and D Malkhi. Auditable metering with lightweight se-

curity. In Financial Cryptography, 1997.

[GJMM98] E Gabber, M Jakobsson, Y Matias, and A Mayer. Curbing junk e-mail

via secure classification. In Financial Cryptography, 1998.

[GS98] D M Goldschlag and S G Stubblebine. Publicly verifiable lotteries:

Applications of delaying functions. In Financial Cryptography, 1998.

[GUVGC09] Ian Goldberg, Berkant Ustaoğlu, Matthew D Van Gundy, and Hao

Chen. Multi-party off-the-record messaging. In Proceedings of the 16th

ACM conference on Computer and communications security, pages 358–

368. ACM, 2009.

[Hir01] Martin Hirt. Multi-Party Computation: Efficient Protocols, General

Adversaries and Voting. PhD thesis, ETH Zurich, 2001.

[HS90] S Haber and W S Stornetta. How to time-stamp a digital document.

In CRYPTO, 1990.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on

homomorphic encryption. In EUROCRYPT, 2000.

[JB99] A Juels and J Brainard. Client puzzles: A cryptographic defense against

con- nection depletion attacks. In NDSS, 1999.

[JJ99] M Jakobsson and A Juels. Proofs of work and bread pudding protocols.

In Communications and Multimedia Security, 1999.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated

verifier proofs and their applications. In EUROCRYPT, 1996.

56

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot

secrecy. In PKC, 2002.

[MB02] P Maniatis and M Baker. Enabling the long-term archival of signed

documents through time stamping. In FAST, 2002.

[MMV11] M Mahmoody, T Moran, and S Vadhan. Time-lock puzzles in the ran-

dom oracle model. In CRYPTO, 2011.

[MN06] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting

with everlasting privacy. In CRYPTO, 2006.

[Nak08] S Nakamoto. Bitcoin: A peer-to-peer electionic cash system. Unpub-

lished, 2008.

[PAB+04] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and Byoungcheon

Lee. Multiplicative homomorphic e-voting. In INDOCRYPT, 2004.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT, 1999.

[Ped91] Torben Pryds Pedersen. A threshold cryptosystem without a trusted

party. In EUROCRYPT, 1991.

[PRQ+98] B Preneel, B Van Rompay, J J Quisquater, H Massias, and J S Avila.

Design of a timestamping system. Technical Report WP3, TIMESEC

Project, 1998.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature

schemes. In International Conference on the Theory and Applications

of Cryptographic Techniques, pages 387–398. Springer, 1996.

57

[Rab83] Michael Rabin. Transaction protection by beacons. Journal of Com-

puter and System Sciences, 27(2), 1983.

[RS96] R L Rivest and A Shamir. PayWord and MicroMint: two simple micro-

payment schemes. In Security Protocols, 1996.

[RSW96] R L Rivest, A Shamir, and D A Wagner. Time-lock puzzles and timed-

release crypto. Technical Report TR-684, MIT, 1996.

[Sch91] C P Schnorr. Efficient signature generation by smart cards. Journal of

Cryptography, 4, 1991.

[Sha92] Adi Shamir. Ip = pspace. Journal of the ACM (JACM), 39(4):869–877,

1992.

[SKR+11] D Stebila, L Kuppusamy, J Rangasamy, C Boyd, and J M Gonzalez

Nieto. Stronger difficulty notions for client puzzles and denial-of-service-

resistant protocols. In CT-RSA, 2011.

[TBFG07] S Tritilanunt, C Boyd, E Foo, and J M Gonzalez Nieto. Toward non-

parallelizable client puzzles. In CANS, 2007.

[WJHF04] B Waters, A Juels, J A Halderman, and E W Felten. New client puzzle

outsourcing techniques for DoS resistance. In CCS, 2004.

[WR03] X Wang and M K Reiter. Defending against denial-of-service attacks

with puzzle auctions. In IEEE Symposium on Security and Privacy,

2003.

58

	List of Figures
	Introductory Remarks
	Preliminaries and Related Work
	Proof Systems
	Proof Systems (without Zero-Knowledge)
	Zero-Knowledge

	Sigma Protocols
	Interactive Sigma Protocols
	Non-interactive Sigma Protocols
	AND-Composition of Sigma Protocols
	OR-Composition of Sigma Protocols
	PoWorK

	Signatures
	Schnorr Signatures
	DSA
	Designative Verifier Signatures and Proofs

	Other Building Blocks
	Other Related Work

	Short-Lived Signatures and Proofs
	A folklore construction and an improvement
	An initial attempt
	FS-Grind
	Workflow
	Carbon
	Security
	Evaluation
	Extensions

	Use Cases
	Email
	Deniable Multiparty Messaging
	Background
	Using short-lived signatures

	Voting
	Homomorphic tallying backbone
	A solution based on DV proofs
	Using short-lived proofs

	Concluding Remarks
	Bibliography

