
 

 

 

Limited Lookahead Supervisory Control with Buffering in Discrete 

Event Systems 

 

 

Ehsan Ghaheri 

 

 A Thesis  

in the Department 

 of  

Electrical and Computer Engineering  

 

 

 

 Presented in Partial Fulfillment of the Requirements  

for the Degree of  

Master of Applied Science (Electrical and Computer Engineering) at  

Concordia University 

 Montréal, Québec, Canada  

 

August 2018  

© Ehsan Ghaheri, 2018 



 

 

CONCORDIA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

 

 

This is to certify that the thesis prepared 

 

By:   Ehsan Ghaheri 

  

Entitled: Limited Lookahead Supervisory Control with Buffering in Discrete Event 

Systems 

 

and submitted in partial fulfillment of the requirements for the degree of  

 

 Master of Applied Science (Electrical and Computer Engineering) 
 

complies with the regulations of this University and meets the accepted standards with respect to 

originality and quality. 

 

 

Signed by the final examining committee: 

 

 

 ________________________________________________ Chair 

  Dr. D. Qiu 

 

 ________________________________________________ External Examiner 

  Dr. Y. Zeng  

 

 ________________________________________________ Internal Examiner 

  Dr. A. Trabelsi 

 

 ________________________________________________ Supervisor 

  Dr. S. Hashtrudi Zad 

 

 

 

Approved by:  ___________________________________ 

 Dr. W.E. Lynch, Chair 

  Department of Electrical and Computer Engineering 

 

 

 

August 21, 2018 __________________________________ 

Dr. Amir Asif, Dean, 

 Faculty of Engineering and Computer Science 



iii 

 

Abstract 

Limited Lookahead Supervisory Control with Buffering in Discrete Event Systems 

Ehsan Ghaheri 

The Supervisory Control Theory (SCT) of Discrete Event Systems (DES) provides systematic 

approaches for designing control command sequences for plants that can be modeled as DES. The 

design is done "offline" (before supervisor becomes operational) and is based on the plant and 

design specification DES models. These models are typically large, resulting in DES supervisors 

that require large computer memory - often unavailable in embedded mobile systems such as space 

vehicles. An alternative is to use the Limited Lookahead Policies (LLP) in which only models of 

individual plant components and specifications are stored (which take far less memory). The 

supervisory control command sequences are then calculated "online" during plant operation. In 

this way, "online" memory requirement can be reduced at the expense of higher "online" 

computational operations. 

In this thesis, the implementation issues of LLP supervisors are studied. The design of LLP 

supervisors is based on assumptions some of which may not hold in practice. Notably it is assumed 

that after every event, the supervisory control command can be calculated and applied before the 

next event occurs. This assumption usually does not hold. To address this issue, a novel technique 

is proposed in which supervisory control commands are calculated in advance (and online) for a 

predefined window of events in the future and buffered. When the window starts, the commands 

would be ready after each event. This eliminates the delay due to online calculations and reduces 

the delay in responding to new events to levels close to those of standard supervisors (designed 

"offline"). 

In an effort to assess the proposed methodology and better understand the implementation issues 

of SCT, a two degree-of-freedom solar tracker with two servo motors is selected as the plant. 

Previously, a standard supervisor had been designed for this solar tracker to guide the tracker and 

perform a sweep to find a sufficiently bright direction to charge the battery and other parts of the 

system (from its Photo Voltaic cell). 

The design of the standard supervisor and its software implementation is improved and polished 

in this thesis. Next the LLP with buffering is implemented. Several experimental results confirm 



iv 

 

that the plant under the supervision of LLP supervisor with buffering can match the behavior of 

the plant under the supervision of standard supervisor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acknowledgments 

I would like to sincerely appreciate my supervisor Dr. Shahin Hashtrudi Zad for his support and 

advice throughout my research that always gave me the self-confidence to accomplish my goals. 

Furthermore, I would like to thank my family, especially my wife, who have encouraged me in 

this path. 

I dedicate this thesis to my son, Armin.  

 

 

 

 

 

 

 

  

 

 

  



vi 

 

 

List of Figures …………………………..….………………………….…………………..….. ix 

List of Tables …………………………………………………………………………………...xi  

Chapter 1: Introduction ............................................................................................................... 1 

1.1 Discrete Event Systems .................................................................................................... 2 

1.2 Supervisory Control ......................................................................................................... 3 

1.3 Limited Lookahead Policy ............................................................................................... 4 

1.4 Literature Review ............................................................................................................. 4 

1.4.1 Autonomous Systems................................................................................................ 5 

1.4.2 Supervisory Control .................................................................................................. 6 

1.4.3 Limited Lookahead Policy ........................................................................................ 9 

1.4.4 Implementation problems of SCT ........................................................................... 12 

1.5 Thesis Contributions ...................................................................................................... 15 

1.6 Thesis Outline ................................................................................................................ 16 

Chapter 2: Background .............................................................................................................. 17 

2.1 Discrete Events Systems ................................................................................................ 17 

2.1.1 Languages ............................................................................................................... 17 

2.1.2 Operations on Languages ........................................................................................ 18 

2.1.3 Automata ................................................................................................................. 19 

2.1.4 Operations on Automata ......................................................................................... 20 

2.2 Supervisory Control ....................................................................................................... 22 

2.2.1 Basic Supervisory Control ...................................................................................... 22 

2.2.2 Limited Lookahead Supervisory Control................................................................ 26 

2.2.3 State-Based Limited Lookahead Supervisory Control  .......................................... 32 



vii 

 

2.3 Discrete Event Control Kit (DECK) .............................................................................. 33 

2.3.1 Automaton............................................................................................................... 34 

2.3.2 Reach....................................................................................................................... 35 

2.3.3 Reachable ................................................................................................................ 35 

2.3.4 Trim......................................................................................................................... 35 

2.3.5 Product .................................................................................................................... 36 

2.3.6 Sync......................................................................................................................... 37 

Chapter 3: Two Degree-of-Freedom Solar Tracker ................................................................ 40 

3.1 Schematic Diagram ........................................................................................................ 41 

3.2 System Hardware ........................................................................................................... 42 

3.2.1 Battery ..................................................................................................................... 42 

3.2.2 PV Cell .................................................................................................................... 43 

3.2.3 Servomotors ............................................................................................................ 43 

3.2.4 RF module ............................................................................................................... 45 

3.3 System Software ............................................................................................................. 45 

3.4 Conventional Supervisor Implementation ....................................................................... 46 

3.4.1 Supervisor structure Implementation ...................................................................... 47 

3.5 System Discrete Event Model ........................................................................................ 53 

3.5.1 Battery ..................................................................................................................... 54 

3.5.2 PV Cell .................................................................................................................... 55 

3.5.3 Servomotors ............................................................................................................ 55 

3.5.4 Master Controller .................................................................................................... 61 

3.5.5 System Interactions ................................................................................................. 62 

3.6 Supervisor Design .......................................................................................................... 64 

3.6.1 Specifications .......................................................................................................... 64 



viii 

 

3.6.2 Supervisor ............................................................................................................... 67 

Chapter 4: Limited Lookahead Supervisory Control with Buffering ................................... 69 

4.1 Generating C Code for the Microcontroller ................................................................... 69 

4.2 Generating Code for Implementation of LLP in MATLAB .......................................... 72 

4.2.1 The Minimum Size of Lookahead Window............................................................ 75 

4.2.2 Plant Depth.............................................................................................................. 76 

4.2.3 LLP Computation Time .......................................................................................... 77 

4.3 Limited Lookahead Supervisory Control with Buffering .............................................. 80 

4.3.1 Extension of the Lookahead window size .............................................................. 80 

4.3.2 LLP with Buffering and Its Design Procedure ....................................................... 83 

4.3.3 Generating code for LLP with Buffering ................................................................ 87 

Chapter 5: Experimental Results .............................................................................................. 89 

Chapter 6: Conclusion ................................................................................................................ 93 

6.1 Summary ............................................................................................................................. 93 

6.2 Future Work ........................................................................................................................ 94 

References .................................................................................................................................... 96 

Appendix A : Full sweep specification model ..................................................................... 100 

Appendix B : List of customized C language files .............................................................. 101 

Appendix C : Communication between the microcontroller and the PC ........................ 102 

Appendix D : MATLAB Code ............................................................................................. 104 

Appendix E : Data sheets ...................................................................................................... 124 

 

 

 

 



ix 

 

Figure 1.1-1: A simple processing factory. ..................................................................................... 2 

Figure 1.1-2: Discrete Event model of plant in example 1.1. ......................................................... 3 

Figure 1.2-1: Closed loop Supervisory control block diagram. ...................................................... 3 

Figure 1.4-1: Architecture for the deductive controller in [6]. ....................................................... 6 

Figure 1.4-2: A controller and a Supervisor ................................................................................... 7 

Figure 1.4-3: Control System Architecture ..................................................................................... 8 

Figure 1.4-4: Supervisor with a controller framework ................................................................... 9 

Figure 1.4-5: Limited Lookahead Supervisory Control ................................................................ 11 

Figure 1.4-6: Inexact synchronization problem ............................................................................ 12 

Figure 1.4-7: Simultaneity problem .............................................................................................. 13 

Figure 1.4-8: The problem of choice in system under supervision............................................... 14 

Figure 2.2-1: Control feedback of supervisor ............................................................................... 22 

Figure 2.2-2: Limited Lookahead N-level tree ............................................................................. 26 

Figure 2.2-3: LLP supervisor block diagrams .............................................................................. 28 

Figure 2.3-1: Automaton G ........................................................................................................... 34 

Figure 2.3-2: Automaton H ........................................................................................................... 36 

Figure 2.3-3 : Automaton P .......................................................................................................... 37 

Figure 2.3-4: Automaton M .......................................................................................................... 38 

Figure 2.3-5: Automaton N ........................................................................................................... 38 

Figure 3.1-1: Solar Tracker schematic diagram ............................................................................ 42 

Figure 3.2-1: Azimuth and elevation with respect to the object ................................................... 43 

Figure 3.2-2: Azimuth and elevation servomotors of solar tracker .............................................. 44 

Figure 3.3-1: Offline supervisory implementation timeline ......................................................... 46 

Figure 3.4-1: Asymmetric feedback loop (left) and symmetric feedback loop (right) ................. 47 

Figure 3.4-2: Implementation flowchart for conventional supervisor in Solar Tracker. .............. 48 

Figure 3.4-3: Part of the supervisor automaton. ........................................................................... 52 

Figure 3.5-1: Battery model .......................................................................................................... 54 

Figure 3.5-2: PV cell model .......................................................................................................... 55 

Figure 3.5-3: Azimuth servomotor, motion model ....................................................................... 56 



x 

 

Figure 3.5-4: Elevation servomotor, motion model ...................................................................... 57 

Figure 3.5-5: Movement time interval model ............................................................................... 58 

Figure 3.5-6: Azimuth servomotor position model ....................................................................... 60 

Figure 3.5-7: Elevation servomotor position model ..................................................................... 61 

Figure 3.5-8: Master Controller (MC) model ............................................................................... 62 

Figure 3.5-9: PV cell interaction with battery SOC ...................................................................... 63 

Figure 3.5-10: Battery SOC and servomotors interaction ............................................................ 63 

Figure 3.5-11: Servomotors and battery SOC interaction ............................................................ 64 

Figure 3.6-1: Azimuth servomotor rotation specification ............................................................. 65 

Figure 3.6-2: Azimuth servomotor polling specification .............................................................. 66 

Figure 4.2-1: Schematic diagram of the solar tracker and control system .................................... 72 

Figure 4.2-2: Online LLP implementation flowchart ................................................................... 74 

Figure 4.2-3: An uncontrollable loop in the plant......................................................................... 75 

Figure 4.2-4: The order of sync operation to build plant expansion. ............................................ 78 

Figure 4.2-5: The order of calculation of specification ................................................................ 79 

Figure 4.3-1: LLP with extended window size ............................................................................. 81 

Figure 4.3-2: Tree expansion ........................................................................................................ 82 

Figure 4.3-3: Normalized LLP computation time and occurrence time of the events vs. the size of 

LLP extension ............................................................................................................................... 85 

Figure 4.3-4: Timeline of LLP computation with buffering ......................................................... 86 

Figure 4.3-5: Implementation of LLP with buffering flowchart ................................................... 88 

Figure 5-1: LLP implemented timeline......................................................................................... 91 

Figure 5-2: Occurrence time of events in LLP and conventional implementation ....................... 92 

  

 

 



xi 

 

Table 3.4-1: Priority of models in events detection ...................................................................... 49 

Table 3.4-2: Events and their timeline in the Full Sweep test. ..................................................... 52 

Table 3.5-1: Battery events list ..................................................................................................... 54 

Table 3.5-2: PV cell events list ..................................................................................................... 55 

Table 3.5-3: Azimuth servomotor, motion model events list ....................................................... 57 

Table 3.5-4: Elevation servomotor, motion model events list ...................................................... 58 

Table 3.5-5: Movement interval events list .................................................................................. 59 

Table 3.5-6: Azimuth servomotor position events list .................................................................. 60 

Table 3.5-7: Elevation servomotor position events list ................................................................ 61 

Table 3.5-8: Master controller events list ..................................................................................... 62 

Table 3.6-1: The plant, specification and supervisor size ............................................................. 68 

Table 4.1-1: Execution time for the reach function with 100 transitions .................................... 71 

Table 4.2-1: LLP computation time .............................................................................................. 77 

Table 4.3-1: 𝐶𝑚𝑎𝑥  for 𝑛 = 1 𝑡𝑜 29 ............................................................................................ 84 

Table 4.3-2: 𝑇𝑚𝑖𝑛  for 𝑛=1 to 26 ................................................................................................. 85 

Table 5-1: LLP computation time and window size ..................................................................... 90 

Table Appendix C-0-1: List of packets in communication between the microcontroller and the PC.

..................................................................................................................................................... 103 



1 

 

 

The Supervisory Control Theory (SCT) of Discrete Event Systems (DES) provides systematic 

approaches for designing control command sequences for plants that can be modeled as DES. The 

design is done "offline" (before supervisor becomes operational) and is based on the plant and 

design specification DES models. These models are typically large, resulting in DES supervisors 

that require large computer memory -often unavailable in embedded mobile systems such as space 

vehicles. An alternative is to use the Limited Lookahead Policies (LLP) in which only models of 

individual plant components and specifications are stored (which take far less memory). The 

supervisory control command sequences are then calculated "online" during plant operation. In 

this way, "online" memory requirement can be reduced at the expense of higher "online" 

computational operations. 

In this thesis, we study the implementation issues of LLP supervisors. The design of LLP 

supervisors are based on assumptions some of which may not hold in practice. Notably it is 

assumed that after every event, the supervisory control command can be calculated and applied 

before the next event occurs. This assumptions usually does not hold. To address this issue, we 

propose a novel technique which we call Limited Lookahead Policy with Buffering. We show that 

using this method may eliminate the delay due to online calculations, and reduces the delay in 

responding to new events to levels close to those of conventional supervisors (designed "offline"). 

We demonstrate our methodology by implementing it on a two degree-of-freedom solar tracker. 

We start this chapter by reviewing discrete event models in Section 1.1, followed by the 

Supervisory Control Theory in Section 1.2. Then in Section 1.3, LLP will be outlined. Section 1.4 

surveys recent results in the literature. Then the thesis contributions and outline will be briefed in 

Section 1.5 and 1.6. 



2 

 

 

Discrete Event Systems (DES), by definition, have a discrete set of states and their evolution is 

described in terms of transitions among states called events. Thus a sequence of events from one 

state to another state of the plant describes a state trajectory. 

Example 1-1: Consider a processing factory shown in Figure 1.1-1. This plant includes a reactor, 

a pressure switch and a release valve. As long as the factory produces the final product, the plant 

is in normal operation (State: Normal in Figure 1.1-2). If the plant receives an emergency shutdown 

command activated by operator (Event: Emergency Push-button pressed), the plant will be steered 

to a shutdown state through some intermediate states (Intermediate 1 and 2) by receiving or 

activating relevant events: first opening a release valve (Event: Open release valve) to depressurize 

the reactor, a transition occurs from intermediate 1 state to the next state (State: Intermediate 2); 

then receiving low pressure signal as the next event (Event: Pressure low).  

 

 

Figure 1.1-1: A simple processing factory. 

The behavior of the plant is abstracted by a simple discrete-event model consisting of four separate 

states and three distinct transients. 



3 

 

 

Figure 1.1-2: Discrete Event model of plant in example 1.1. 

 

The role of Supervisory Control in DES is to prevent (disable) some events from happening in the 

plant to ensure its safe operation (i.e. to meet safety specifications) while guaranteeing the 

reachability of a designated set of states know as marked states (Figure 1.2-1). 

 

Figure 1.2-1: Closed loop Supervisory control block diagram. 

In the previous example, the safety requirement calls for the decrease of excessive pressure of the 

reactor in an emergency condition to a safe level while reaching the shutdown state. 

One can observe that the occurrence of some events such as "reading low pressure" is inevitable 

in some states and cannot be prevented directly by a supervisor. These events belong to the 

uncontrollable event set denoted as 𝛴𝑢𝑐.  

On the other hand, some events such as "opening the release valve" are issued by the supervisory 

control system and could be enabled or disabled (prevented). These events are referred to as 

controllable events. The set of controllable events is 𝛴𝐶. 



4 

 

As mentioned before, some states are marked. These states are important for instance completion 

of a task.  In Example 1.1, the shut down state is marked (double circled in Figure 1.1-2) and the 

supervisor must be designed to guarantee that there is at least one trajectory from the initial state 

to a marked state. 

 

In plants with an enormous amount of components (each with some states and transitions), the 

computation and the onboard storage of the conventional supervisory control becomes impractical 

if not impossible because of the state explosion phenomenon. For this reason, to decrease the 

onboard computer memory required for supervision, Limited Lookahead Policy (LLP) may be 

used. In an LLP approach to supervision, only models of individual plant components and 

specifications are stored (which take far less memory). The supervisory control command 

sequences are then calculated "online" during plant operation by considering future plant behavior 

over a limited horizon from its current state (Effectively, a sub-plant is to be supervised based on 

the design specifications of the system.) In this way, "online" memory requirement can be reduced 

at the expense of higher "online" computational operations. 

 Another case in which LLP may be preferred to conventional supervisor design is in plants in 

which the behavior of components varies from time to time and computing the supervisory control 

action is not possible when the entire plant model is not available at the time of supervisor design.  

Therefore, LLP provides a synthesis method to not only mitigate the state space explosion problem 

but also to deal the unavailability of the complete plant model at the time of computation [1]. 

This thesis is on the implementation of LLP. We start by reviewing the research results that are 

relevant to our work. 

 

Since there has been a tremendous interest in supervision and control in autonomous systems, a 

brief overview of studies in this field with emphasis on space applications is presented in Section 

1.4.1. A literature review for SCT and LLP are provided in Sections 1.4.2 and 1.4.3 and some of 

implementation issues of SCT are explained in Section 1.4.4. 



5 

 

 

Autonomous systems in which decision making is done without any human involvement [2] have 

been deployed over the past two decades especially in space explorations. The first spacecraft to 

test such systems was Deep Space 1 [3,4,6]. The necessity to make decisions in a time frame less 

than the communication latency between ground station and spacecraft makes space applications 

a great opportunity for the deployment of autonomous systems. 

Applying computational intelligence has been studied by many especially for space exploration. 

The combination of Information Technology and Artificial Intelligence to guarantee stable 

autonomous operation while considering resource limitations was studied in [3]. This paper 

follows the concept of virtual presence in space and outlines the development of a system for 

autonomous operations whose successful operation in space (without human supervision) was 

confirmed later. 

Model-based generation of computer code for supervisory control and decision making based on 

appropriate synthesis approach has been examined in [4] and [6]. In particular, the requirements 

for on-board decision making needed in case of unpredictable failures during various mission 

phases has been managed following a Lookahead Policy. A controller is provided in the software 

Remote Agent and Livingstone [4] which relies on discrete models of spacecraft components. 

In [5] a Finite State Machine (FSM) model is used to build a virtual environment to test spacecraft 

protection system (since a rigorous verification of potential faults before and after launch is not 

plausible). [6] addresses the issue of insufficient modularity and the property of robustness, 

especially in space applications, and outlines a model-based programming framework in which 

models of plant components are used for code generation. [6] proposes a “Deductive Controller” 

(Figure 1.4-1) to determine the current state of the plant by observing data from sensors and 

performing mode estimation by computing the likelihood of the current state as belief state. Based 

on this information, control commands are issued to system components to follow a suitable 

sequence towards the configuration goals (by mode reconfiguration). 



6 

 

 

Figure 1.4-1: Architecture for the deductive controller in [6]. 

In order to define a formal method to check software used in space applications and to overcome 

testing complications, [7] presents a new method based on automaton models. The approach is 

applied in the development of functional levels of robotic systems facilitates software verification. 

 

The theory of supervisory control (SCT) of discrete event systems was introduced by Ramadge 

and Wonham in [8], [9]. In this framework, the plant behavior is assumed to be described in terms 

of states and events of an automaton. The states change upon the occurrence of events. The events 

are partitioned into controllable and uncontrollable. Moreover, some events are observable by the 

supervisory system while others are unobservable. This also leads to two disjoint set of observable 

and unobservable events [10]. 

The role of a supervisor is to restrict the occurrence of controllable events in order to not only 

ensure system safety (as stated in system specifications) but also to guarantee accessibility to 

marked states.  

In the case of full event observation (which is explored in this thesis), it is shown in [8] that an 

optimal (minimally restrictive) supervisor exists and is characterized by a supremal controllable 

sublanguage of the legal (safe) marked behavior of the plant. 

Many studies have been done on using SCT in the real world. Some problems have been 

encountered in the implementation of this theory to control industrial systems. There is a 



7 

 

conceptual difference between a controller and a supervisor, as shown in (Figure 1.4-2). A 

controller receives signals from the plant and sends unique commands to actuators (e.g. valves, 

motors) while a supervisor receives events from the plant and prevents (by disabling) controllable 

events which may lead to violation of design specifications. 

 

Figure 1.4-2: A controller and a Supervisor 

Other solutions have been proposed for the issue of choice. In [13], costs are to all supervised paths 

to marked states and then the path with minimum cost is found to settle the issue of choice. The 

procedure is only suitable for models with acyclic graphs. 

SCT presents a formal method for designing control and many researchers have explored the use 

of SCT as a general technique for industrial control systems. In [14] an automated small-scale 

assembly line is selected for SCT implementation. In this work, the selection of one controllable 

event from a set of eligible controllable events is done using an ad hoc manner. 

In [15], a hybrid Compositional Interchange Format (CIF) model (in which interoperability of 

different systems is possible) is used to not only deploy untimed automata of DES but also use 

variables, differential equations, and conditions to overcome the time consuming and complicating 

design of some high-tech part of an MRI (Magnetic Resonance Imaging) scanner. Next the 

designed model in CIF is converted to PLC (Programmable Logic Controller) language for the 

purpose of controlling the associated part of the MRI system. It should be noted that there were 

some problems in this transformation which made the resulting code unstable. 

Many researchers have favored the idea of model-based programming to obtain a uniform platform 

for all control systems. For this approach, SCT is an appealing candidate. In [16] a baggage 

transport system in an airport is chosen as the test bed. The objective of this project is to implement 



8 

 

the resulting controller code in a real-world controller (e.g. PLC). In [17] a method is proposed to 

coordinate equipment operation in a flexible manufacturing system. In this paper, to use SCT in 

industrial/manufacturing applications, procedures are introduced to convert the designed 

supervisor DES model to PLC code. 

The control system architecture in [18] is used to implement SFC (Sequential Function Chart) 

language in PLC. As one can see in Figure 1.4-3, the modular supervisor is in the top of control 

system hierarchy in which states are updated according to events received from product system 

and some events become disabled too. The product system which includes a complete model of 

the plant executes the received commands from the supervisor and also changes the states to keep 

them in sync with the physical system by receiving responses from operational procedure 

accordingly. The operational procedure which is an interface between real signals from hardware 

to higher control level interprets these signals as events. 

 

Figure 1.4-3: Control System Architecture 

In [19], one of the reasons for unsuccessful use of SCT in industry is outlined as the high effort to 

model the system which results in high cost of design phase in factory automation applications. 

The solution containing a controller and a supervisor as depicted in Figure 1.4-4 is proposed. In 

this framework, supervisor prevents the sending of unsafe operator commands when interlocks are 



9 

 

bypassed, and also avoids unsafe controller command (which can be issued in complex interlock 

systems).  The focus here is on safety property since it is argued that the states which are marked 

do not necessarily have to be reached. Therefore, nonblocking is not a concern. The events are 

classified as (1) sensor events from input signals (uncontrollable), (2) operator events from the 

controller output signals (controllable), and (3) forcible events to prevent the occurrence of some 

events in certain states. 

  

 

Figure 1.4-4: Supervisor with a controller framework 

 

 

Limited Lookahead Policy (LLP) was introduced in [1] to tackle some of the issues of the 

conventional SCT. In the conventional design, the design is done "offline" (before supervisor 

becomes operational) and is based on the plant and design specification DES models. These 

models (e.g. in [20]) are typically large resulting in DES supervisors that require large computer 



10 

 

memory - often unavailable in embedded, mobile systems such as space vehicles. An alternative 

is to use the Limited Lookahead Policies (LLP) in which only models of individual plant 

components and specifications are stored (which take far less memory). The supervisory control 

command sequences are then calculated "online" during plant operation. In this way, "online" 

memory requirement can be reduced at the expense of higher "online" computational operations. 

Another benefit of LLP is in those cases in which the behavior of the plant is not completely known 

at the design stage (e.g. in [21], [22]). 

In a nutshell, only a portion of the plant (Nw events into the future from current state, known as 

LLP window) is considered for calculating control commands rather than the entire plant model. 

Then after any LLP computation (online) by choosing one of those enabled events by LLP (𝜎 in 

Figure 1.4-5) the control action will be taken. Two attitudes as “optimistic” and “conservative” are 

considered to address uncertainty of the plant behavior outside of the window under investigation. 

The attitude will affect the resultant supervisor’s size. In cases where the time-varying plant cannot 

be defined a priori due to lack of enough information, a class of dynamic DES is defined in [24] 

to optimize online control. The growth in the size of lookahead tree is in form of exponential or 

polynomial [23]. In [24] a method is introduced to estimate the state space of the lookahead tree 

which grows exponentially, based on the window size, Nw selected by designer. One of the key 

aspects of LLP is the minimum window length to guarantee results (control commands) identical 

to those of a minimally restrictive offline supervisor. Although LLP requires less computer 

memory for the states of the plant which results in less, the computation time (online complexity) 

increases which is the main concern in LLP since the result of the supervisor must be available 

online after the execution of each event. Therefore, the size of the window size (Nw) and online 

constraints of the system such as response time to events will determine the efficiency of LLP in 

comparison to a conventional supervisor. 



11 

 

 

Figure 1.4-5: Limited Lookahead Supervisory Control 

In [25] a recursive computational method, based on backward dynamic programming, is shown 

which uses previous window results for current window computation in order to reduce 

computation time. In [26] a forward calculation method is used to make control decision 

unambiguous which may need less than N-level tree size; therefore the size of lookahead window 

can be variable (Variable Lookahead Policy, VLP). Since the computation may terminate before 

the boundary of the N-level tree, VLP is a more efficient than the LLP method. 

In the previously mentioned works, there is an assumption of the knowledge of events in the future 

steps and their conformance with respect to the legal behavior; but supervisor does not use the 

information about the state of the system, and because of that, the lookahead window is represented 

by an N-level tree. In [27], a supervisor with state information was studied which adds the state of 

the system for the computation of Variable Lookahead Policy (VLP-S).  Using this method makes 

the computations simpler because in practice, the total number of the states in the lookahead 

window is less than the event-based LLP. Furthermore, repeated state and loops are no longer 

expanded in the N-level window. Moreover, in the case of plant with uncontrollable events loops, 

in event-based LLP, the minimum length of the window to have an optimal supervisor is infinite 

whereas in state-based LLP, the window size is bounded by the number of states of the plant times 

the number of states of the specification model. 



12 

 

 

Moving from SCT framework (which is asynchronous and event-based) to practice (with 

synchronous environment (cyclic execution of program) and signals) usually has some problems 

which need to be addressed. [28] considers Programmable Logic Controller (PLC) as a platform 

to implement SCT and examines major problems of implementation. Some of these issues are not 

encountered in microcontroller-based systems (e.g. avalanche). In this thesis, our focus is on the 

implementation of SCT on embedded systems and therefore we discuss the problem of inexact 

synchronization, simultaneity and choice which may occurred in any systems. 

 

In any type of SCT implementation, it is assumed that the state of the plant is tracked (implicitly 

or explicitly) by the supervisor. However, the tracking may not be done completely due to 

inaccurate modeling of the plant or undetected uncontrollable events. Hence, inexact 

synchronization problem happens when the plant model inside the controller may be out of phase 

with physical plant because of undetected uncontrollable event. For instance, let e_uc be an 

uncontrollable event (input signal) and e_c be a controllable event (output signal) in a plant 

depicted in Figure 1.4-6. Suppose in state 1, the supervisor enables e_c but before e_c issues, e_uc 

happens. Therefore, the supervisor sends e_c to the plant, while the plant changes state from 1 to 

3 and then by receiving e_c command to state 4. The supervisor may mistakenly assume the plant 

has moved to state 2.  

 

Figure 1.4-6: Inexact synchronization problem 



13 

 

 

Control system typically polls their inputs (from the plant) to detect events. This may lead to two 

issues referred to as simultaneity problem. First issue is when the order of detected events is not 

the same as the order of their. The second problems happens when an input signal (event) appears 

between two instances of polling and goes undetected. 

 For example, consider the sampling time (red bars) and changes of input signals “a” and “b” as it 

is shown in Figure 1.4-7. The system cannot detect the first occurrence of the event “a” and 

therefore, detects a “b” after the second polling. Later “a” and “b” occurs after the third and fourth 

polling but the order (“ab” or ”ba”) is unknown. 

 

Figure 1.4-7: Simultaneity problem 

 

Although previous problems are associated with constraints in the hardware such as sampling 

period, the problem of choice is related to the implementation of the theory of supervisory control. 

Suppose that at a given state of plant more than one controllable event is in the enabled events set 

of the supervisor and no uncontrollable is enabled or occurs at the state. Then a controllable events 

has to be issued to the plant. As far as the supervisor is concerned, any of the two evens may occur. 

But the system requires a rule to decide which of the controllable events has to be activated. This 

is known as the choice problem. 



14 

 

The choice problem becomes problematic when it causes a blocking in a nonblocking system. For 

example, the system in Figure 1.4-8 is nonblocking, but always choosing 𝛼 between 𝛼 and 𝛽 in 

state 3 results in system getting trapped in the loop between states 2 and 3 and never reaching 4. 

 

Figure 1.4-8: The problem of choice in system under supervision. 

In [12] some the issues of implementation such as communication and determinism (also known 

as choice) are discussed. The first problem is related to receiving controllable and uncontrollable 

events at the same time by the supervisor. The second problem is associated with choosing among 

more than one controllable event in a set of enabled events. Giving higher priority to uncontrollable 

events at the same time of their detection (compared with controllable events) is their solution for 

the first problem; and they propose an algorithm to check nonblocking of the system under 

supervision (to deal with the problems resulting from the issue of choice). 

In [29] a method is tested to maintain nonblocking property of the supervised system. The method 

is based on random selection of two controllable events. However, the proposed method does not 

have solid formal proof to address this problem generally.    

In [19] the authors proposed to use a separate deterministic controller over the supervisor to 

generate output signals to prevent the choice problem. However, by introducing forcible events 

this problem arises whenever one of the several forcible events in a state must be picked up 

arbitrarily. 



15 

 

 

In this thesis, the implementation issues of LLP supervisors are studied. The design of LLP 

supervisors is based on assumptions some of which may not hold in practice. Notably it is assumed 

that after every event, the supervisory control command can be calculated and applied before the 

next event occurs. This assumption usually does not hold. To address this issue, a novel technique, 

referred to as LLP with buffering, is proposed in which supervisory control commands are 

calculated in advance (and online) for a window of events in the future and buffered. Once the 

window starts, the commands would be ready after each event. This eliminates the delay due to 

online calculations, and reduces the delay in responding to new events to levels close to those of 

standard supervisors (designed "offline"). 

In an effort to assess the proposed methodology and better understand the implementation issues 

of SCT, a two degree-of-freedom solar tracker with two servo motors is selected as the plant. 

Previously, a standard supervisor had been designed for this solar tracker to guide the tracker and 

perform a sweep to find a sufficiently bright direction to charge the battery and other parts of the 

system (from its Photo Voltaic cell). 

The design of the standard supervisor and its software implementation is improved and polished 

in this thesis. Next the LLP with buffering is implemented. Several experimental results confirm 

that the plant under the supervision of LLP supervisor with buffering can match the behavior of 

the plant under the supervision of standard supervisor. 

To our knowledge, this is the first implementation of LLP on a real-world system.  

In summary, the main contributions of this thesis are as follows: 

1. The introduction of Limited Lookahead Policy with Buffering and the corresponding design 

process to eliminate the delay caused by online LLP calculations of control commands. 

 2. Improving and polishing the implementation of the conventional SCT. 

3. Implementing LLP with Buffering policy on the solar tracker and performing experimental 

evaluations. 



16 

 

 

The outline of the thesis is as follows.  In Chapter 1, a brief introduction of supervisory control 

was provided and the related research was reviewed. Background information on supervisory 

control and the notation used throughout the thesis is discussed in Chapter 2. Details of the solar 

tracker system and the offline method of SCT design and implementation along improvements are 

explained in Chapter 3. The novel method of Limited Lookahead Policy with Buffering and its 

implementation are set out in detail in Chapter 4. Chapter 5 presents the implementation results of 

LLP with Buffering and compares them with the theoretical analysis of Chapter 4. Further the 

results of LLP with Buffering is also compared with those of the conventional supervision of 

Chapter 3. Chapter 6 discusses our conclusions and suggests directions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



17 

 

 

 

 

Discrete Event System [41], [31] presentation of any real-world system is based on discrete 

mathematics. The states in DES change as a result of occurrence of events. Thus, the entire 

behavior of the DES system can be shown as sequences of these events. In order to facilitate the 

discussion, the following definitions of automata and languages are used. 

 

An alphabet is a finite set of symbols which is denoted by Σ. Each symbol represents an event. A 

sequence of these events is called a trace, string or word. The ϵ symbol is for an empty string. A 

set of strings over an alphabet Σ is called a language. The language of all finite sequences except 

the empty string is defined as: 

Σ+ = {𝜎1𝜎2…𝜎𝑘 | 𝑘 > 0, 𝜎𝑖 ∈ 𝛴} 

After adding the empty string, Σ∗ is obtained: 

Σ∗ = 𝛴+ ∪ {ε } 

A language is a set of strings, and thus for any two languages L1 and L2, set operations can be 

applied ( 𝑒. 𝑔. L1 ∩ L2, the intersection of L1 and L2, L1 ∪ L2, the union of L1 and L2, L1 - L2 the 

difference of L1 and L2, and L1
co the complement of L1). 

Moreover, for a string  with  ∈ Σ∗ ,  is called a prefix of ,  is called a substring of , 

and  is called a suffix of . The notation /  is to denote the suffix of  after its prefix , i.e., uv. 



18 

 

 

Let L1, L2 be two languages and L1 and L2 ⊆ Σ∗. 

Definition 2.1: Concatenation 

L1L2 = {𝑠 ∈ Σ∗ | ∃ 𝑠1 ∈ L1, ∃ 𝑠2 ∈ L2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠 =  L1L2} 

It means that any string in concatenation of L1  and  L2 (L1L2) is a concatenation of a string in 

L1 with a string in L2 . 

Definition 2.2: Prefix-closure. For L ⊆ Σ∗, 

  L̅ = {s ∈ Σ∗ | ∃t ∈ Σ∗ such that  st ∈ L} 

The prefix-closure of L, denoted by L̅, is all prefixes of every string in L. 

L is a prefix-closured language if  L = L̅ . 

Definition 2.3: Kleene-closure. For L ⊆ Σ∗ 

L∗ = {ε } ∪ L ∪ L L ∪ L L L ∪ … 

The Kleene-closure of L, denoted by  L∗,  is formed by concatenation of any finite number of 

strings of L and also includes the empty string. 

Definition 2.4: Post-language. For  L ⊆ Σ∗,  ∈ L̅ 

L/ { t ∈ Σ∗ | ∈  L}

The post-language of L after s which is denoted by L/ , is all suffixes of string L.

Definition 2.5: Truncation. For  L ⊆ Σ∗, N∈ ℕ, 

 𝐿|𝑁 = {t ∈ L  | |t| ≤ 𝑁} 

The truncation of L to N∈ ℕ which is denoted by 𝐿|𝑁 contains all strings of L with a length of at 

most N. 



19 

 

 

An automaton is a tool to present languages according to specific rules. A deterministic automaton 

is a five-tuple  

G =  ( 𝑋, Σ, η, x0, 𝑋𝑚) 

where 

𝑋 is the set of states, 

Σ  is the finite set of events, 

η: 𝑋 ×  Σ  →  𝑋  is a partial transition function, 

x0 is the initial state and 

𝑋𝑚 is the set of marked states ( 𝑋𝑚 ⊆ 𝑋 ), 

An automaton (generator or state machine) is considered to be deterministic if the destination of 

the transition with a particular event from any state is always a single state.[31] 

Definition 2.6: Language generated by G 

Language generated by G is denoted by 𝐿(𝐺) and is defined as 

L(G) = {s ∈ Σ∗ | η(x0, s)!} 

η(x0, s)! means there exists a trajectory in the automaton from the initial state following the string 

s. 

In other words, the language generated by G includes all strings from the initial state which lead 

to same state of G (includes x0). In the above definition, an extension of transition function  η  to 

sequences (η: 𝑋 × Σ∗   →  𝑋)  is used. By definition, L(G) is a prefix-closed language because it 

contains all string in any path from the initial state to other states. 

Definition 2.7: Language marked by G  

Language marked by G is denoted by 𝐿𝑚(𝐺) and defined as 



20 

 

Lm(G) = {s ∈ L(G) | η(x0, s) ∈ Xm} 

The marked language of G includes all strings that take a state from the initial state to some marked 

state. Obviously Lm(G) is a sublanguage of L(G). 

 

Definition 2.8: Reachable part (Accessible part) 

 Let G =  ( 𝑋, Σ, η, x0, 𝑋𝑚). The reachable states of G is the state set which can be reached from 

the initial state by at least one string s ∈ L(G). In other words, all x ∈ X are reachable if there is a 

string s ∈ L(G) such that  η(x0, s) =  x. Xr is set of all reachable states (The reachable part of G is 

the subautomaton of G that contains the state in Xr only). An automaton is called reachable if 

Xr= X. 

Definition 2.9: Coreachable part (Coaccessible part) 

 Let G =  ( 𝑋, Σ, η, x0, 𝑋𝑚). The coreachable states of G is the state set which have access to marked 

states through some string. In other words, a state x ∈ X is coreachable if there is a string s ∈ 

Σ∗ such that   η(x , s) ∈ Xm (The coreachable part of G is the subautomaton of G that contains only 

the coreachable states of G). 

Definition 2.10: Nonblocking 

An automaton G is nonblocking if for any reachable state, there is a string to a marked state. One 

can easily see that automaton G is nonblocking if and only if  L(G) = Lm(G)̅̅ ̅̅ ̅̅ ̅̅ . 

Definition 2.11: Trim 

The trim operation on an automaton removes all states which are not reachable or not coreachable. 

The state set of trimmed automaton is denoted by  Xtr  (Xtr = Xr  ∩  Xcr). 

Definition 2.12: Complement 

Let G =  ( 𝑋, Σ, η, x0, 𝑋𝑚). L(G) and Lm(G), the closed and marked languages of  G. The 

complement of G denoted by Gco is defined as a automaton that generates Σ∗ and marks Lm(𝐺
𝑐𝑜). 

a) Lm(𝐺
𝑐𝑜) = Σ∗ - Lm(G) 

b) L(𝐺𝑐𝑜) = Σ∗ 



21 

 

Definition 2.13: Product 

Let 𝐺1 = (𝑋1, 𝛴1, 𝜂1, 𝑥𝑜1 , 𝑋𝑚1
) and  𝐺2 = (𝑋2, 𝛴2, 𝜂2, 𝑥02, 𝑋𝑚2

). The product of 𝐺1 and 𝐺2 denoted 

by  𝐺1 × 𝐺2 is the reachable part of the following automaton 

(𝑋1  ×  𝑋2, 𝛴1 ∩ 𝛴2, 𝜂, ( 𝑥𝑜1 , 𝑥02),  𝑋𝑚1
× 𝑋𝑚2

 ) 

in which    𝜂((𝑥1, 𝑥2), 𝜎) = {
(𝜂1(𝑥1, 𝜎), 𝜂2(𝑥2, 𝜎))   𝑖𝑓  𝜂1(𝑥1, 𝜎)!   𝑎𝑛𝑑    𝜂2(𝑥2, 𝜎)! 

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In the product of two automata, an event can occur in a state if and only if it happens in both 

automata in their respective state. It means that both automata should be synchronized at the 

current state to proceed in their product. 

Therefore, the language of the resulting product is the intersection of the languages of 𝐺1 and 𝐺2.   

L(𝐺1 x 𝐺2) = 𝐿(𝐺1)  ∩  𝐿(𝐺2) 

Lm(𝐺1 x 𝐺2) = Lm(𝐺1) ∩ Lm(𝐺2) 

Definition 2.14: Parallel Composition (Synchronous Product) 

To build a model for a system composed of several components, the synchronization product 

(parallel composition) of the component automata can be used. 

Let 𝐺1 = (𝑋1, 𝛴1, 𝜂1, 𝑥𝑜1 , 𝑋𝑚1
) and  𝐺2 = (𝑋2, 𝛴2, 𝜂2, 𝑥02, 𝑋𝑚2

). The synchronous product of 𝐺1 

and 𝐺2, denoted by  𝐺1 ‖ 𝐺2 , is the reachable part of  

(𝑋1  ×  𝑋2, 𝛴1 ∪ 𝛴2, 𝜂, ( 𝑥𝑜1 , 𝑥02),  𝑋𝑚1
× 𝑋𝑚2

) 

where  𝜂((𝑥1 , 𝑥2), 𝜎) =

{
 
 

 
 

 

(𝜂1(𝑥1, 𝜎), 𝜂2(𝑥2, 𝜎))      𝑖𝑓 𝜎 ∈ (𝛴1 ∩ 𝛴2)  𝑎𝑛𝑑  𝜂1(𝑥1, 𝜎)!  𝑎𝑛𝑑   𝜂2(𝑥2, 𝜎)!

((𝜂1(𝑥1, 𝜎), 𝑥2)                                             𝑖𝑓  𝜎 ∈ (𝛴1 − 𝛴2)    𝑎𝑛𝑑    𝜂1(𝑥1, 𝜎)! 

 (𝑥1, 𝜂2(𝑥2, 𝜎))                                             𝑖𝑓  𝜎 ∈ (𝛴2 − 𝛴1)    𝑎𝑛𝑑    𝜂2(𝑥2, 𝜎)!

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

It is clear that if 𝛴1 = 𝛴2 then the product and synchronous product of 𝐺1 and 𝐺2 are equivalent up 

to renaming of states. 



22 

 

 

The role of supervisory control is to control a system (assumed to be modeled as automaton) in 

such a way that the system’s behavior meets a set of specifications. Control is done by limiting 

events at some states. Therefore, S, as a supervisor, observes the events at each state (as active 

events) and then prevents the occurrence of any events which violate the design specification. 

In this context, the events are partitioned to uncontrollable and controllable. The supervisor has 

the ability to restrict only the controllable events.  In general, some events may not be observable. 

However, in this thesis, we only study the case of full event observation. 

 

Consider a system with automaton model of G =  ( 𝑋, Σ, η, x0, 𝑋𝑚). Let L(G) be the closed 

language and  Lm(G) be the marked language of G. The supervisor S is a function from L(G)  to 

the power set of Σ: 

 S: L(G) → 2Σ 

in which Σ = Σc  ∪  Σuc and Σc is the set of controllable events and Σuc is the set of uncontrollable 

events (Σc  ∩  Σuc = Ø). 

 

Figure 2.2-1: Control feedback of supervisor 

As it is shown in Figure 2.2-1 the supervisor receives the sequence of events (string s), and then 

allows some events S(s) to happen in the plant. To precisely present supervisor, Γ: X → 2Σ  is 



23 

 

defined to provide the active events at each plant. For any σ ∈ Σ, σ ∈ Γ(𝑥) if and only if 𝜂(𝑥, 𝜎)! . 

Therefore for the string s ∈ L(G), the set of events that remain enabled will be (S(s) ∩  Γ(η(𝑥0, 𝑠)). 

The supervisor has no control over uncontrollable events and then S(s) includes all uncontrollable 

events in the active set of events. In other words, 

Σuc ∩  Γ(η(𝑥0, 𝑠)) ⊆  S(s) 

If the above condition is satisfied, the supervisor is called admissible. Let 𝑆/G denoted the plant G 

under the supervision of S. 

Definition 2.15: Languages generated and marked by 𝑺/𝑮 

The language generated by G  under the supervision of S denoted by L (𝑆/G ) is defined recursively 

as follows: 

1. ε ∈  L (𝑆/G )  

2. s ∈  L (𝑆/G ) and s𝜎 ∈ L(G) and 𝜎 ∈  S(s)  ⇒ s𝜎 ∈  L (𝑆/G ) 

Obviously, L (𝑆/G) is a closed language and  L (𝑆/G) ⊆ L(G).Then the language marked by of 

𝑆/G is defined as:  Lm (S/G ) = L (S/G ) ∩  Lm(G). 

Definition 2.16: Nonblocking Supervisor 

Supervisor S controlling G is a nonblocking supervisor if and only if S/G is nonblocking 

(𝐿𝑚(S/𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅= L (S/G )). 

As mentioned earlier, the supervisor restricts the behavior of plant to a safe (legal) sublanguage of 

L(G), denoted by La. The specification is considered as a legal closed behavior of the DES and let 

Lam be the legal marked behavior (Lam̅̅ ̅̅ ̅ = La ). Therefore, the language generated by applying the 

supervisor must be a subset of this specification. 

 L (𝑆/G)   ⊆  La  

In the case when nonblocking is an issue then S/G must satisfy the following:  

{
Lm (S/G )  ⊆  Lam

L̅m (S/G )  =  L (𝑆/G)
 

 



24 

 

Definition 2.17: Controllability [31] 

Let 𝐾 and 𝑀 = 𝑀̅ be languages over event set Σ and Σuc  ⊆  Σ . 𝐾 is said to be controllable with 

respect to  𝑀 and Σuc if  

𝐾̅Σuc  ∩  𝑀 ⊆ 𝐾̅ . 

Therefore  𝐾 ⊆  Σ∗ is controllable with respect to L(G) and Σuc if 

∀s ∈ 𝐾̅ and 𝜎 ∈ Σuc and s𝜎 ∈  L(G) ⇒  s𝜎 ∈ 𝐾̅ 

It is noticed that 𝐾 is not necessarily a subset of L(G) and 𝐾 is controllable if and only if 𝐾̅ is 

controllable. 

Theorem 2.1: Controllability Theorem [31] 

Consider an automaton G =  ( 𝑋, Σ, η, x0, 𝑋𝑚) and let Σuc  ⊆  Σ be the uncontrollable event set. For 

𝐾 ⊆ L(G) (𝐾 ≠ ∅) there exists a supervisor S such that L (S/G) = 𝐾̅  if and only if 𝐾 is 

controllable with respect to L(G) and Σuc.  

Up to now, the supervisor is defined as a control action over a string which is not a convenient 

way of deploying a supervisor. A realization of the supervisor by building an automaton which 

represents the supervisor can be done as follows. 

Consider Theorem 2.1. Let R be an automaton that marks the language  𝐾̅ with (R =

(Y, Σ, δ, y0, 𝑌𝑚)). All states are marked so L(R) = Lm(R) = K̅ . Then just by forming the product 

of R and G, the automaton of a closed-loop system of S/G is built. 

Let C(𝐾) be the class of controllable sublanguages of 𝐾: C(𝐾) = {𝐿 ⊆  𝐾 |𝐿̅Σuc ∩  𝑀 ⊆ 𝐿̅}. There 

exists supremal controllable sublanguage of 𝐾, denoted by SupC (K). 

SupC (K) = ⋃ 𝐿

L∈C(K)

 

One of the most important properties of SupC(. ) is that if K is a closed language then SupC(K) 

has to be a closed language too. 

 



25 

 

BSCP: Basic Supervisory Control Problem 

Consider automaton G =  ( 𝑋, Σ, η, x0, 𝑋𝑚) and legal language of La =  La̅̅ ̅̅ ⊆ 𝐿(𝐺). A supervisor 

S with following properties is required: 

1. L (𝑆/G)   ⊆  La 

2. If there is another supervisor which  L (𝑆𝑜𝑡ℎ𝑒𝑟/G)   ⊆  La then L (𝑆𝑜𝑡ℎ𝑒𝑟/G)   ⊆ L (𝑆/G) . 

While the first condition is related to the safety of the supervisor, the second one asks the 

supervisor to cover all possible solutions, that is, the supervisor needs to be optimal or minimally 

restrictive. It follows from Theorem 2.1 that 𝑆 exists and  L (𝑆/G)   = SupC(La). 

Theorem 2.2: Nonblocking Controllability Theorem [31] 

Let 𝐾 ⊆ Lm(G) (𝐾 ≠ ∅). There exists a nonblocking supervisor S such that L (S/G) = 𝐾̅ 

and Lm (S/G) = 𝐾 if and only if the following two conditions are met: 

1. 𝐾 is controllable with respect to L(G) and Σuc , 

2. 𝐾 is Lm(G)-closed that means 𝐾 = 𝐾̅  ∩ Lm(G). 

BSCP-NB: Basic Supervisory Control Problem- Non-Blocking case 

Consider an automaton G =  ( 𝑋, Σ, η, x0, 𝑋𝑚) and the legal language of Lam ⊆ Lm(G). Suppose 

 Lam is Lm(G)-closed. A supervisor S with following properties is required: 

1. Lm (S/G )   ⊆  Lam 

2. S/G is nonblocking 

3.  Lm (S/G ) is the largest it can be. 

By using Theorem 2.2, the solution exists and is characterized by Lm (𝑆/G)   = SupC(Lam) and 

L (𝑆/G)   =  Supc(Lam)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . The solution is minimally restrictive. 

In [32] an algorithm to build an automaton for marking Supc(Lam) based on the plant and the 

specification automata is introduced.  



26 

 

 

In the previous section, the objective was to build an offline supervisor (conventional supervisor), 

hence the resulting supervisor is stored in the computer system and during operation at every state 

obtained the enabled events are from a lookup table (to be explained in Section 3.6.2). 

Contrary to the conventional supervisory control in which all calculations have to be done before 

controlling the system starts, in LLP the computation of  S(s) is done on-the-fly and during 

operation [1]. The main reason LLP is introduced is that a conventional supervisor may be too 

large for storing in computer memory. In LLP the control action is calculated for -step ahead 

projection after the current state. This -step window shown by an -level tree is shown in Figure 

2.2-2. 

 

Figure 2.2-2: Limited Lookahead N-level tree 



27 

 

 

Because of the unexplored states further away of Nth level, the behavior of this level has to be 

assumed to be legal or illegal with respect to the specification. Therefore, one of two attitudes of 

optimistic and conservative is chosen before computation of LLP supervisor starts. Pending traces 

are the traces of length N  that are not in the illegal zone (𝐾̅ 𝑠|𝑁⁄ − 𝐾̅ ∕ 𝑠|𝑁−1). 

Let G be DES over event set Σ and Σ = Σc  ∪  Σuc . We suppose that G is nonblocking: L(G) =

Lm(G)̅̅ ̅̅ ̅̅ ̅̅ . 

Let 𝐾 ⊆ Lm(G) be a nonempty and Lm(𝐺)-closed language which presents the legal behavior of 

the system (𝐾 ≠ Ø,𝐾 = 𝐾̅  ∩ Lm(G)). 

Like offline supervisor, in LLP, the supervisor S, should control the system under supervision to 

meet the legal specification and be nonblocking (Lm (S/G ) ⊆ 𝐾 and L (S/G) =  Lm(S/G)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ).  

The online control function is defined in five steps as follows: 

1. The first step is to make a subsystem as is shown in Figure 2.2-3 for the -level tree. In 

function of block fL(G)
N , the post languages of L(G), Lm(G) are taken from the DES  G after 

the current string s: 

fL(G)
N (𝑠) = (L(G) 𝑠|𝑁⁄ , Lm(𝐺) ∕ 𝑠|𝑁) 

 

2. Then the illegal part of step 1 should be removed (function fN
K): 

 fN
K  o  fL(G)

N (𝑠) = (𝐾̅ 𝑠|𝑁⁄ , 𝐾 𝑠|𝑁⁄ ) 

3. In this step, the result of prior step needs to be adopted according to one of the attitudes 

which is decided for the supervisor. In optimistic attitude, all pending traces are assumed 

to be legal and marked and in the conservative attitude pending traces are considered as 

illegal. The corresponding function is denoted by fa
N (𝐾 assumed to be closed): 

   fa
N  o  fN

K  o  fL(G)
N (𝑠) = {

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒     𝐾 𝑠|𝑁−1⁄

𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐              𝐾 𝑠|𝑁⁄
 

4. Now the supremal controllable sublanguage of the result of step 3 (fa
N ) as the specification 

for the plant given by fL(G)
N (𝑠) and Σuc as uncontrollable events is calculated which is 

denoted by f ↑
N. 



28 

 

  fN(𝑠) = f ↑
N  o  fa

N  o  fN
K  o  fL(G)

N (𝑠) = [  fa
N  o  fN

K  o  fL(G)
N (𝑠)]↑∕𝑠|𝑁

= SupC (  fa
N  o  fN

K  o  fL(G)
N (𝑠)) 

(For 𝐿 ⊆ L(G) , the supremal controllable sublanguage of 𝐿 with respect to L(G) 𝑠|𝑁⁄  is 

denoted by (L)↑∕𝑠|𝑁  ). 

5. Finally, the control action is generated by the union of the active events from the former 

step and the uncontrollable events of the current active events set of the plant (𝛴𝐿(𝐺)(𝑠) 

step 1). This function is denoted by fu
N : 

γN(𝑠) = fu
N  𝑜  fN(𝑠) = 𝑓𝑁(𝑠)̅̅ ̅̅ ̅̅ ̅̅ |1  ∪  𝛴𝑢𝑐 ∩ 𝛴𝐿(𝐺)(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

All the steps of LLP calculation are depicted in Figure 2.2-3. Let the closed behavior of the 

controlled plant be denoted by L(G , γN) with γN being the control policy ( γN: L(G) → 2𝛴 ∪ {ε}). 

 

Figure 2.2-3: LLP supervisor block diagrams 

To compare the result of LLP with conventional supervisor, we define the notion of validity and 

run-time error. Although due to some constraints LLP calculation is performed on a limited 

window of the plant, our objective is to make it complete the LLP supervisor have the same 

performance as the conventional supervisor. The result of a “valid” LLP supervisor is the same as 

the conventional supervisor. However, because of the limited horizon for LLP, sometimes the  



29 

 

fN(𝑠) (supremal controllable sublanguage) becomes empty and the continuation of LLP is no 

longer possible which is called a “run-time error”. 

Definition 2.18: Validity [1] 

An LLP supervisor with the control policy γN (γN hereafter as a supervisor) is called valid if 

 L(G , γN) =  SupC(𝐾)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  

This means online and offline supervisors have the same control action for valid supervisor. 

Definition 2.19: Run-time error (RTE) and starting error [1] 

For a string 𝑠 ∈ L(G , γN) if  fN(𝑠) = ∅ , a Run-Time Error (RTE) has happened for string 𝑠. 

 If 𝑠 = {ε} and  fN(𝑠) = ∅, an Starting Error (SE) has occurred. 

The LLP supervisor should always have nonempty result for  fN(𝑠) in order to avoid being trapped 

in blocking or illegal region by an uncontrollable event.  

Proposition 2.1 [1]: 

The validity of supervisor γN is equivalent to the following statements: 

1. For all strings of 𝑠 ∈ L(G , γN),   γN(𝑠) = 𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|1 

2. 𝑆𝑢𝑝𝐶(𝐾) ≠  ∅ and (∀𝑠 ∈ 𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))   γN(𝑠) = 𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|1 

It can be seen from step 3 of LLP supervisory building blocks that one of two attitudes should be 

chosen and therefore different consequences are imposed on the resulting supervisor. While in the 

optimistic attitude by assuming all pending traces as marked, by going further illegal behavior or 

blocking may be encountered. In the conservative case which assumed pending traces as illegal, 

only marked legal strings may be found in the next steps. 

Theorem 2.3 [1]: L(G , γopt
N+1) ⊆  L(G , γopt

N ) 

Theorem 2.4 [1]: L(G , γcons
N ) ⊆  L(G , γcons

N+1 ) 

Furthermore, since in the optimistic case, maximum freedom is given to the supervisor, it is 

expected that the language of plant under control would be larger than offline result, as it is shown 

in the next theorem. 



30 

 

Theorem 2.5 [1]:  𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  ⊆  L(G , γopt
N ) 

In the conservative case, because of considering worst-case-scenario, the language of plant under 

control is smaller than the offline result, which results in the following theorem. 

Theorem 2.6 [1]: 𝑆𝑢𝑝𝐶(𝐾) ≠  ∅ if and only if  L(G , γ𝑐𝑜𝑛𝑠
N ) ⊆  𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

The window size N plays a crucial role in the LLP supervisory control. Apart from external issues 

which affect the selection of N , it is desired to choose a value for N to reach the same results as 

the offline supervisor to guarantee the validity of LLP supervisor. To obtain the optimal N in terms 

of validity, two possibilities for the specification as a legal behavior are considered. 

1. 𝐾 = 𝐾̅ 

Lemma 2.1 [1]:  

Let 𝐾 = 𝐾̅. If there is no RTE in L(G , γopt
N ),  then γopt

N =  𝑆𝑢𝑝𝐶(𝐾). 

The longest substring of the uncontrollable events in language L is defined as: 

Nu(L) = {
max {|𝑠|: 𝑠 ∈ 𝛴𝑢𝑐

∗  𝑎𝑛𝑑 (∃𝑢, 𝑣 ∈ 𝛴∗)𝑢𝑠𝑣 ∈ L   if it exists.
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Lemma 2.2: 

Let 𝐾 = 𝐾̅. If N≥Nu(𝐾) + 2 or N≥Nu(L(G)) + 1, then there is no RTE in L(G , γopt
N ). 

From lemma 2.1 and 2.2 the following theorem is concluded. 

Theorem 2.7: 

Let 𝐾 = 𝐾̅. If N≥Nu(𝐾) + 2 or N≥Nu(L(G)) + 1, then L(G , γopt
N ) =  𝑆𝑢𝑝𝐶(𝐾). 

In conservative case there is no relation between RTE and validity of the supervisor, but by 

forming closed language for L(G , γ𝑐𝑜𝑛𝑠
N ), the condition for validity can be extracted as follows. 

Theorem 2.8: 

Let 𝐾 = 𝐾̅. If there is no SE in L(G , γ𝑐𝑜𝑛𝑠
N ) and 𝐾 ∩ 𝛴𝑢𝑐

𝑁−1 = ∅ then  

L(G , γ𝑐𝑜𝑛𝑠
N ) = 𝑆𝑢𝑝𝐶(𝐾 − (𝐾/𝛴𝑢𝑐

𝑁−1) Σ∗) 



31 

 

Then from above theorem, the following corollary can be inferred. 

Corollary 2.1: 

Let 𝐾 = 𝐾̅. If there is no SE in L(G , γ𝑐𝑜𝑛𝑠
N ) and if N≥Nu(𝐾) + 2, then  

L(G , γ𝑐𝑜𝑛𝑠
N ) =  𝑆𝑢𝑝𝐶(𝐾). 

Obviously,  Nu(L(G)) ≥ Nu(𝐾). Therefore Nu(L(G)) + 2 is sufficient for validity. Moreover, 

if a language is closed, its supremal controllable sublanguage is closed too.  

2. 𝐾 ⊆ 𝐾̅ 

In this case, nonblocking has to be verified and so larger N is needed to make an LLP supervisor 

valid. To define minimum length of N the following terms are defined. 

Definition 2.20: 

𝐾𝑚𝑐 = { 𝑠 ∈  𝐾 |∀𝜎 ∈ 𝛴𝑢𝑐 , 𝑠𝜎 ∉  L(G)} 

𝐾𝑚𝑐 denotes all marked strings of 𝐾 which have just controllable events in their active events 

set. 

Definition 2.21: 

𝐾𝑓𝑐̅ = (( L(G) − 𝐾̅)/𝛴𝑢𝑐)  ∩   𝐾̅ 

𝐾𝑓𝑐̅ denotes all traces which bridge from legal zone to the illegal zone by just the execution of 

uncontrollable events. 

Since in the optimistic attitude, all pending traces are marked, then the legality and marking of 

traces beyond the boundary have to be examined. 

Definition 2.22: 

N𝑚𝑐𝑓𝑐̅ = {
max {|𝑡|: ∃𝑠 ∈ 𝐾𝑚𝑐  ∪ {ε} (st ∈ 𝐾𝑓𝑐̅ 𝑎𝑛𝑑 (∀ 𝜀 < 𝑣 < 𝑡)𝑠𝑣 ∉ 𝐾𝑓𝑐̅  ∪ 𝐾𝑚𝑐     if it exists.

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

N𝑚𝑐𝑓𝑐̅(L) is the maximum string length which begins from the initial or legal marked state 

with just controllable events and leads to the illegal zone and it has no prefix in the legal marked 

with just controllable events or illegal zone. Therefore neither nonblocking nor safety can be 

guaranteed by this length and the window size must be larger than it. 

Theorem 2.9: 

Let 𝑆𝑢𝑝𝐶(𝐾) ≠ ∅. If N>N𝑚𝑐𝑓𝑐̅ + 1, then L(G , γopt
N ) =  𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 



32 

 

In the conservative attitude since all pending traces are supposed to be illegal, the marking of 

the traces after the boundary needs to be checked. 

Definition 2.23: 

N𝑚𝑐𝑚𝑐 = {
max {|𝑡|: ∃𝑠 ∈ 𝐾𝑚𝑐  ∪ {ε} (st ∈ 𝐾𝑚𝑐  𝑎𝑛𝑑 (∀ 𝜀 < 𝑣 < 𝑡)𝑠𝑣 ∉ 𝐾𝑚𝑐    if it exists.
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

N𝑚𝑐𝑚𝑐 is the longest string from the initial or marked legal state with just controllable events 

which leads to another marked legal state with just controllable events without any prefix with 

the same properties. 

Theorem 2.10 [1]: 

Suppose 𝐾̅ = 𝐾𝑚𝑐̅̅ ̅̅ ̅ and there is no SE in L(G , γ𝑐𝑜𝑛𝑠
N ). If N≥N𝑚𝑐𝑚𝑐 + 1, then L(G , γ𝑐𝑜𝑛𝑠

N ) =

 𝑆𝑢𝑝𝐶(𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 

The assumption is that no legal marked state has an uncontrollable event in its active events 

set. It can be shown that when 𝐾̅ = 𝐾𝑚𝑐̅̅ ̅̅ ̅ and 𝑆𝑢𝑝𝐶(𝐾) ≠ ∅, N𝑚𝑐𝑚𝑐≥N𝑚𝑐𝑓𝑐̅. Therefore, the 

N ≥ N𝑚𝑐𝑚𝑐 + 1 is a general sufficient condition in both optimistic and conservative attitudes 

which means the longest string between the two marked legal states with just controllable 

events determine the minimum window size for validity. 

 [27]

In the previous section, it was assumed that the N steps ahead of current state as N successive 

events are known for the LLP supervisor (we call this event-based LLP). In that approach, no 

information about plant state is used; and it leads to form an -level tree to see the system after the 

current state. To simplify the supervisor computation and to find the optimum window size when 

there is an uncontrollable loop inside the system (which makes minimum window size for validity 

unbounded), the state information is added to the supervisory synthesis. This is called state-based 

LLP. As in most cases the model of plant and legal behavior exist in form of automaton, this 

information is already ready for extraction. 

Definition 2.24: 

The set of strings in L(G ) from the initial state 𝑥0 leading to the state 𝑥 is denoted by [𝑥]. 

 



33 

 

Definition 2.25: 

Xmc  is the set of marked states that only have controllable events. 

Xmc = { 𝑥 ∈ Xm |ΣG(𝑥)  ⊆  𝛴𝑐} 

(ΣG(𝑥) is active events set at state 𝑥). 

Definition 2.26: 

For an automaton G =  ( 𝑋, Σ, η, x0, 𝑋𝑚) 

ω(𝑥, s) = {
{η(𝑥, 𝑡) | 𝑡 ≤ s}  𝑖𝑓 (∀ 𝑡 ≤ s) η(𝑥, 𝑡) ∉ Xmc 𝑎𝑛𝑑 η(𝑥, 𝑡) ∈  𝑋𝐻
∅                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

H is a subautomaton of G which marks the specification 𝐾 (𝐿𝑚(𝐻) = 𝐾). If H is not a 

subautomaton of G , it should be transformed according to the procedure in [33] . 

ω(𝑥, s) is the set of states which are reached from 𝑥 and they are accessible through a sequence of 

states none of which belongs to the marked controllable or illegal states.  

To define the bound for the validity of supervisor, NB is defined as follows: 

Definition 2.27: 

NB = max
𝑥∈𝑋 ,   𝑠∈ L(G)/[𝑥]

|ω(𝑥, s) | 

Since there is no sign of any attitudes in the above definition, it means it is valid for optimistic and 

conservative attitudes. 

 

Discrete Event Control Kit (DECK) is a toolbox written in the programming language of 

MATLAB [34] for the analysis and design of supervisory control systems based on discrete-event 

models. 

In this section, the functions in DECK which will be used in the next chapter for supervisory 

computation are explained. 



34 

 

 

A DES model is defined as the class “Automaton” in DECK. 

G=automaton(N,TL,Xm) 

Inputs: 

N Number of states, 

TL Transition list, 

Xm Marked states (row vector), 

Outputs:  

G Output automaton, 

For example, the automaton G in Figure 2.3-1 has the following arguments. 

G=automaton(N,TL,Xm), 

N=5,  

TL= [1 𝛼 2; 2 𝛽 3; 3 𝛼 2; 3 𝛾 1; 3 𝛽 4; 4 𝛾 5], 

 Xm=[ 3 4], 

(The events must be labeled with numbers. For simplicity, we use the original Greek labels.) 

 

 

Figure 2.3-1: Automaton G 



35 

 

 

This function finds the reachable states through the transitions list from the source state set. 

Xr=reach(TL,S)  

Inputs:  

TL Transition list,  

S Source states (vector),  

Outputs: 

Xr States reachable from S (row vector),  

Consider the automaton G in Figure 2.3-1, Xr=reach(G.TL,[1]) generates the reachable state set 

as Xr=[1 2 3 4 5]. 

 

This function returns the reachable part of an automaton as a subautomaton (see Definition 2.8). 

[Gr,Xr]=reachable(G)  

Inputs:  

G Input automaton,  

Outputs:  

Gr Reachable subautomaton,  

Xr Reachable states of G (row vector), 

As all states of automaton G in Figure 2.3-1 are reachable, Gr=G and Xr=[1 2 3 4 5]. 

 

Trim returns the reachable and coreachable (Definition 2.9) part of an automaton (Definition 

2.11). 

[Gt,Xrc]=trim(G)  



36 

 

Inputs: 

G Input automaton,  

Outputs:  

Gt  Trim subautomaton,  

Xrc  States of G that are reachable and coreachable (row vector). 

For example, since state 5 of automaton G in Figure 2.3-1 is not coreachable, Xrc=[1 2 3 4] and 

Gt=automaton(4, [1 𝛼 2; 2 𝛽 3; 3 𝛼 2; 3 𝛾 1; 3 𝛽 4],[3 4]). 

 

This function generates the product of automata (Definition 2.13). 

[G,States]=product(G1,...,Gn) 

Inputs:  

Gi  Input automaton i (i=1, ..., n), 

Outputs:  

G  Output automaton,  

States State set of output automaton, 

For example, the product of automaton G in Figure 2.3-1 and H in Figure 2.3-2 results in the 

automaton P in Figure 2.3-3.  

 

Figure 2.3-2: Automaton H 



37 

 

 

Figure 2.3-3 : Automaton P 

H=automaton(4, [1 𝛼 2; 2 𝛽 3; 3 𝛾 1; 3 𝛼 4],[3 4]), 

[P,States]=product(G,H), 

P.N=4, 

P.TL=[1 𝛼 2; 2 𝛽 3; 3 𝛾 1; 3 𝛼 4], 

P.Xm=[3], 

States=[1 1;2 2;3 3;2 4], 

As can be seen from automaton P, since event 𝛼 from state 3 of automaton G reach state 2 which 

is not marked, then state 4 (state 2 of G and 4 of H) of automaton P is not marked. 

 

Sync, generates the synchronous product of automata (Definition 2.14) with the following format. 

G=sync(G1,...,Gn),  

[G,States]=sync(G1,...,Gn), 

Inputs:  

Gi  Input automaton i (i=1, ..., n), 

Outputs:  

G  Output automaton, 



38 

 

States State set of output automaton, 

 

Figure 2.3-4: Automaton M 

For example, automaton N (Figure 2.3-5) is the result of synchronous product of automaton P in 

Figure 2.3-3 and automaton M in Figure 2.3-4, has the following properties: 

M=automaton(4, [1 𝛼 2; 2 𝛽 3; 3 𝛿 4],[3 4]), 

 

Figure 2.3-5: Automaton N 

[N,States]=sync(P,M), 

N.N=6, 

N.TL=[1 𝛼 2; 2 𝛽 3; 3 𝛿 4; 3 𝛾 5;  5 𝛿 6; 4 𝛾 6], 

N.Xm=[3 4], 

States=[1 1;2 2;3 3;3 4;1 3;1 4], 



39 

 

It can be observed that event 𝛼 is a common event between automaton P and M; therefore this 

event cannot occur when P and M are both in their state 3 (M cannot execute 𝛼 in state 3). But 𝛾 

and 𝛿 are not common events and can occur in P and M respectively. 

We will discuss the supcon function to generate supervisor in Section 3.6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

 

The system for implementation of supervisory control in this thesis is a two degree-of-freedom 

solar tracker (Figure 3-1) controlled with a microcontroller. In the next sections after presenting 

the system hardware and software, steps toward offline design (conventional supervisory control 

) along with the corresponding implementation are explained. 

 

Figure 3-1: Two degree-of-freedom solar tracker 



41 

 

 

The schematic diagram of the solar tracker is depicted in Figure 3.1-1. It consists of a Lithium-ion 

Polymer battery, a photovoltaic (PV) cell, two servomotors for azimuth and elevation directions, 

and an EFM32™ Leopard Gecko, 32-bit Microcontroller as the processor. The objective of this 

system is to find the direction in which the brightness is higher than a predefined threshold by 

searching in azimuth and elevation directions while charging the battery. It has a serial 

communication port (through a wireless RF module) which sends and receives signals from a PC 

mimicking a ground station. The tracker can be assumed to be a satellite subsystem in charge of 

supplying solar energy. 

The reason for the selection of this type of microcontroller is that this microcontroller series is 

ideal for battery operated and low-energy consumption applications. This microcontroller 

(EFM32LG990F256) is a 32-bit ARM Cortex-M3 processor running at up to 48 MHz and has 

256kB flash memory and 32kB RAM which is quite enough for conventional supervisory control 

implementation. The two degree-of-freedom tracker was developed in [30]. In this thesis, we use 

the same hardware; however, the software and the design and implementation of supervisory 

control are novel and are among the contributions of this thesis. 

https://www.silabs.com/products/mcu/32-bit/efm32-leopard-gecko/device.efm32lg990f256-bga112


42 

 

 

Figure 3.1-1: Solar Tracker schematic diagram 

 

Since the thesis objective is to implement supervisory control, for brevity, the details of hardware 

specifications are not discussed. More details can be found in [30], [42]. The data sheets of the 

hardware components are collected in Appendix E. In the following sections, the main components 

are explained in brief. 

 

The battery supplies the entire system energy and is being charged from the PV cell. The battery 

type is LiPo with a nominal voltage of 3.7 volts and a capacity of 2200 mAh supply. The battery 

is connected to a fuel gauge which is a Sparkfun LiPo Fuel Gauge to show the state of charge 

(SOC) and voltage level using the I2C protocol to send these data in percentage and volt 

respectively to the microcontroller. 

https://www.sparkfun.com/products/10617


43 

 

 

The PV cell absorbs sunlight and converts it to electricity to charge the battery and supply the 

system. The solar cell is a PT15-300 from Flex Solar Cell which can supply at most 3.08 Watts 

whenever it is exposed to full sunlight. 

Since the current of the PV cell decreases when output voltage increases and at a certain point the 

current drops suddenly, to take the most power of the PV cell, a Maximum Power Point Tracker 

(MPPT) is used as a DC to DC converter to keep wattage of the PV cell at the top. A SunnyBuddy 

MPPT from Sparkfun is used in this system for this purpose. As it is shown in Figure 3.1-1, the 

MPPT is connected to the battery through the fuel gauge to charge the battery. Moreover, to 

measure the voltage level of the PV cell a Phidgets 1135 precision voltage sensor is used to convert 

the DC voltage of the PV cell to the range of 0.5-4.5 volts which is in the voltage range of analog to 

digital (ADC) ports of the microcontroller. 

 

There are two servomotors in the azimuth and elevation directions for adjusting the orientation of 

the PV cell with respect to the sunbeam. In the spherical coordinate system, the elevation angle is 

defined as the angle between the object in the space and the observer horizon and azimuth angle 

is the angle between the north to the elevation vector which is perpendicularly projected to the 

observer plane reference (Figure 3.2-1). 

 

Figure 3.2-1: Azimuth and elevation with respect to the object 

http://www.flexsolarcells.com/index_files/OEM_Components/Flex_Cells/pages/PowerFilm-Solar-OEM-21-Solar-Cell-Module-PT15-300.php
https://www.sparkfun.com/products/12885
https://www.sparkfun.com/products/12885
https://www.phidgets.com/?tier=3&catid=16&pcid=14&prodid=108


44 

 

 

In the solar tracker, the motor which changes the direction of PV cell parallel to the fixture is 

named azimuth and the other servomotor which moves in the plane perpendicular to the fixture is 

elevation servomotor (Figure 3.2-2). 

 

Figure 3.2-2: Azimuth and elevation servomotors of solar tracker 

 Each servomotor can move clockwise (CW) and counterclockwise (CCW). The azimuth 

servomotor range of rotation is from 0 degree to 180 degrees and the start position is chosen as 90 

degrees, while the elevation servomotor range is limited to 90 degrees, between +45 degrees (fully 

CCW, as starting position) and -45 degrees. 

The azimuth and elevation servomotors are HS-645MG and HS-805BB from Hitec. The rotational 

speed of these servomotors is very fast (rotating 60 degrees in 140 ms and 200 ms for elevation 

http://hitecrcd.com/products/servos/sport-servos/analog-sport-servos/hs-645mg-high-torque-metal-gear-servo/product
http://hitecrcd.com/products/servos/giant-servos/analog-giant-servos/hs-805bb-mega-giant-scale-servo/product


45 

 

and azimuth servomotor respectively). Each servomotor movement is limited to 2-degree steps in 

order to control the rotation of PV cell safely and avoid any damages since the angular speed of 

selected servomotors are well beyond the required rates for the solar tracker. The servomotors have 

internal position feedback control; the microcontroller sends the request of an angle and then 

servomotor system moves the armature to the target position. For changing the position, the Pulse 

Width Modulation (PWM) command from the microcontroller carries the required position to each 

servomotor. 

The servomotors can be obstructed during maneuvers and to detect it, the current of servomotors 

are sampled by SparkFun Low Current Sensor Breakout - ACS712 and converted to voltage for 

ADC channels of the microcontroller. As stall current for azimuth and elevation servomotors is 

2500mA and 6000mA respectively, the effect of being stuck can be seen by the voltage drop at the 

ADC port and then detected by the microcontroller [30], [42]. 

 

To communicate events between the ground station (PC running MATLAB) and the 

microcontroller, a pair of DIGI XBEE S1 802.15.4 MODULES are used. The communication 

protocol is UART from the microcontroller to the RF module and then to the PC. The maximum 

speed of wireless module is 115,200bps and the data are packed in packets for transmission (see 

Appendix C). 

 

 Programming the microcontroller is done in C language in Integrated Development Environment 

(IDE) (Silicon Lab is the manufacturer of EFM32 and the developer of this IDE) and the ground 

station platform is programmed by MATLAB. The solar tracker and ground station were 

configured to implement conventional supervisory control in [30] (Graphic User Interface in 

Python is used for the ground station). In the next chapter, a new algorithm for online supervisory 

control is discussed and implemented. In this chapter, first a modified software implementation of 

conventional SCT is developed which implements SCT supervisor more closely and accurately in 

the sense that the implementation better matches the theory. 

https://www.sparkfun.com/products/8883
https://www.digi.com/support/productdetail?pid=3257


46 

 

The supervisor in Figure 1.2-1 in offline design (i.e. conventional approach) performs in the 

following steps: 

1. The occurrence of events at specific time period is evaluated inside each component 

software module. 

2. According to the detected events, the next state of the supervisor is computed. 

3. If there is a controllable event among enabled events, it is activated. 

4. Once again, the occurrence of events is evaluated inside each component software module 

and then the next cycle starts from step 1. This is to see if a new event has occurred while 

supervisory control was done in step 2 and 3. 

 

Figure 3.3-1: Offline supervisory implementation timeline 

As it is illustrated in Figure 3.3-1, the control code is run every 50ms; however, the uncontrollable 

events may happen at any time causing some issues. Suppose multiple uncontrollable events 

happen in the real plant after S4 and before S1 or even an uncontrollable event happens after S1 

and before S3, in both cases the wrong control decision can be taken by the system due to missing 

the right order of the events (causing simultaneity and inexact synchronization problems 

respectively). To address the mentioned issues, event detection is done twice per any timer 

interruption in every 50ms (i.e. step 4).  

 

In Section 3.5, we will discuss plant and specification modeling and the design of supervisor 

automaton will be discussed. 

Once the automaton of the supervisor is calculated, it is used in the solar tracker control system to 

implement supervisory control. In this section, we discuss some of relevant implementation issues.  



47 

 

 

In this section, the procedure for the implementation of conventional supervisor is discussed. 

It is desired to make the behavior of implemented supervisor as close as possible to that of theory. 

This implementation as shown in Figure 3.4-1, is a symmetric feedback loop in which the 

supervisor in general, is not a passive controller to just prevent some controllable events from 

happening (asymmetric feedback loop), but it sends controllable events to the plant and plant sends 

uncontrollable events in a symmetric feedback loop [35]. 

 

Figure 3.4-1: Asymmetric feedback loop (left) and symmetric feedback loop (right) 

Moreover, in SCT there is no preference among events in active events set, in practice though due 

to the cyclic execution of program, and hardware limitations, some rules are needed to be set in 

order to process multiple active events as will be explained later. 



48 

 

 

Figure 3.4-2: Implementation flowchart for conventional supervisor in Solar Tracker. 

In Figure 3.4-2, the implementation flowchart is shown. This flowchart has some differences 

compared to the flowchart in [30] in which all controllable events are being disabled at the 

beginning of each cycle and according to the active events set the possibility of them are being 

checked and upon validation of the first event the associated transition is being triggered. 

 In Figure 3.4-2, if more than one event is detected (*), these are checked in order of their priority. 

The priority list is formed as follows. As a rule of thumb, uncontrollable events have higher priority 

compared to controllable events since they may appear at any time and the system should respond 

to their occurrence first.  



49 

 

Since the active event set may contain several uncontrollable events, they also need to be arranged 

in terms of evaluation (step **). One way of arrangement is claimed that the uncontrollable events 

which cannot occur if other events preempt them should be evaluated first [42]. 

For each component that generates uncontrollable event (input) a software subroutine is written to 

track the component and detect events. For instance, a subroutine reads PV cell output and checks 

the occurrence of PV cell events. The models of all components are stored in the microcontroller. 

The detected events are sent to the supervisor. This cycle repeated every 50ms by a timer interrupt.  

The priority which is considered for this implementation is based on the component-based priority. 

The components with internal events have higher priority compared to these which have interface 

events because their events can be generated immediately after reaching a new state. Since the rate 

of event change in the servomotors motion is higher than PV cell and battery (SOC is sent every 

10 sec.) and the master controller, these models have higher priority among mentioned models.   

Table 3.4-1: Priority of models in events detection 

Priority 

Level 

Component Model 

(high) 1 Movement time interval 

2 Azimuth servomotor position 

3 Elevation servomotor position 

4 Azimuth servomotor motion 

5 Elevation servomotor motion 

6 PV cell 

7 Battery 

(low)  8 Master Controller 

 

Based on Table 3.4-1, a maximum of eight events can happen in one event check function, one per 

the component. Since the servomotors cannot move at the same time and events of master 

controller occur rarely, the maximum number of events in one function execution is never reached. 

This number plays a crucial role in the next state computation of supervisor because the supervisor 

has to check next state according to all of the received events from the plant. Therefore, the step 



50 

 

in software flowchart which is for finding the next state has to be repeated as long as the events 

array is not empty.  

The interaction of models to each other is considered as events condition in each model which may 

prevent occurrence of events because of unsuitable states in other models, however, if the plant is 

modeled precisely, they are not needed but to have a synchronous model with the real plant they 

have to be used in events generation functions.    

The main difference between [30] and this method is that in the former method at most one event 

is considered as an occurred events but here the number of occurred events can be as much as the 

number of components model which are recorded in an array. Since the checking of input signals 

and their associated uncontrollable events is being done periodically, following all of the occurred 

events right after they are detected is more beneficial and makes the supervised system behave 

closer to theoritical behavior. 

In [30], analog values (in the solar tracker all input signals are analog) are read periodically every 

250ms and then in the main program loop the occurrence of each event is checked with a very fast 

cycle time which is almost below 1ms. Eventually, the associated interface events may change 

every 250ms while other internal events change within the main loop cycle time and it makes an 

inconsistent event check procedure. But in this thesis, the sampling time of interface events is 

reduced to 50ms to have fresh data in shorter time and then all interface and internal events are 

checked together within their models in order to have uniform event check. Furthermore, by taking 

samples more frequently every 50ms, the order of events is better detected.  

Moreover, the voltage and current measurement in the solar tracker have considerable fluctuations 

(which should be addressed in the future in hardware parts). But to mitigate the undesired effect 

of this variation which causes unnecessary events, moving average of signals is applied which 

decreases false transitions dramatically. 

As mentioned earlier, there are three main problems in SCT implementation. Next we explain the 

measures we have taken to mitigate them. 

1. Simultaneity: One can notice in Figure 3.4-2 that the event detection check is done twice 

per a cycle, one time before checking the next state (*) and another time after that (**). 

The reason of having this second event evaluation is to mitigate the problem of 



51 

 

simultaneity in which the order of events becomes ambiguous or wrong. For example, 

after the internal controllable event of polling range AZ_POLL_RANGE, the next internal 

uncontrollable event AZ_RANGE_OK can be generated right way without any need to 

refresh input signals. In general, to dedicate a specific time for other CPU tasks, occupying 

entire CPU time to track events is not practical in larger systems. Because of servomotors 

move in every two seconds (according to specification discussed in the next section) and 

then the change in PV cell voltage and battery SOC, the solar tracker system characteristics 

in terms of total number of events and generated events per any cycle show that 50ms scan 

time is quite enough to track events and leaves enough time for other CPU tasks. 

2. Inexact synchronization: Although the pace of change in the events is not high, scanning 

every 50ms is enough to see any interface uncontrollable events before sending 

controllable events which in turn alleviates the inexact synchronization problem. The 

added monitoring function to check the occurrence of uncontrollable events right before 

activation of the controllable event shows no record of inexact synchronization 

3. Choice: The choice problem is not present in this system since there is no more than one 

controllable event in each state of the supervisor. 

After implementing the supervisor, according to the flowchart in Figure 3.4-2, the system is tested 

to seek a bright direction as per specific steps. To have a clear view of what events happen after 

starting the sequence by sending Full_Sweep command to the microcontroller, one of the very first 

loops of events is depicted in Figure 3.4-3. As it can be seen from state 1 after receiving 

Full_Sweep, the supervisor state changes to state 3 and then after sending controllable event 

AZ_POLL_RANGE to evaluate the current position of the servomotor, the response of it which is 

an uncontrollable event is received as AZ_RANGE_OK. Then the controllable event for rotating 

the azimuth servomotor (AZ_CCW_MOVE) is followed by wait_2sec as an uncontrollable event 

and at the end of the loop, the feedback of normal current of servomotor appears as AZ_CCW_OK 

(uncontrollable event). 

This is very important for further discussions in the next sections to understand cyclic trace of 

events in this system. The gap between states number is due to the occurrence of other events (e.g. 

Dark_to_Dim) and the sequence of events may be conducted to other loops with different state 



52 

 

numbers, but until the end of azimuth CCW motion this loop keeps essential mentioned events. 

After reaching maximum CCW point, the transition from state 9 to another loop will be followed.  

 

Figure 3.4-3: Part of the supervisor automaton.  

In Table 3.4-2, the occurrence time of events are shown to provide a better understanding of the 

system behavior. Here t=0 is the start of test. The CPU clock is used to time stamp events. This is 

the most accurate internal method to record events inside the microcontroller. 

Table 3.4-2: Events and their timeline in the Full Sweep test. 

Event Time of occurrence (t) Time between consecutive 

events 

Full_Sweep 23.390 sec. - 

AZ_POLL_RANGE 23.392 sec. 2 ms 

AZ_RANGE_OK 23.440 sec. 48 ms 

AZ_CCW_MOVE 23.443 sec. 3 ms 

wait_2sec 25.441 sec. 1998 ms 

AZ_CCW_OK 25.441 sec. <1 ms 

 

 The list of customized files which are prepared to implement conventional and LLP supervisory 

control are in Appendix B. 

As it is mentioned in Appendix B, the files which are built to read fuel gauge data, move the 

servomotors and read data from memory directly remained as in [30], but the other files were 



53 

 

changed in order to achieve the thesis objectives (e.g. to overcome the undesired fluctuations in 

signal levels, a moving average algorithm is added in the thesis_adc.c). 

The resulting supervisor which is obtained in the previous section is in the form of automaton. 

This automaton has a State Transition Table (STT). This STT has the complete supervisor 

information and by storing this table in the computer system, the supervisor states and transitions 

can be followed. As mentioned earlier, one of the offline drawbacks of conventional supervisor is 

state space explosion which requires enormous memory for a large plant. To store computed 

supervisor in the flash memory of the system, the STT is stored with the following structure: 

struct state_elements{  

uint16_t len;  

const uint16_t (*stt)[2];  

};  

For each state, the number of outgoing transitions from that state (len) is stored and then all 

transitions from that state are stored with event number and destination state in the format of 2 

dimensions array (stt). All numbers are unsigned integers (16 bits) because the largest number is 

below 65536 and above 256. 

In the following section, the DES model of main hardware components (gray blocks in Figure 

3.1-1), design specification and supervisor design will be explained.  

 

In the following sections the modeling each major component which has a role in supervisory 

control is discussed. Next the interactions of these components are described.  

As mentioned earlier, all sensor signals (e.g. SOC, servomotors current and PV cell voltage) which 

are not under the direct control of the system, generate uncontrollable events and all actuator 

signals (e.g. servomotors move) make controllable events. Another partition of events used in later 

sections is the interface and internal events. In the software architecture [36], the events between 

physical environment and computer (in our case the solar tracker system) are defined as “Interface 

events” like the voltage of PV cell (Interface in) or PWM signal to the servomotors (Interface out) 



54 

 

and the events which are generated and consumed solely within the software are defined as 

“Internal events” (e.g. reading the servomotor position). 

 

The three states of the battery are Critical, safe and full and are defined based on the state of charge 

(SOC) of the battery as shown in Figure 3.5-1. These state change as SOC increases or decreases. 

The changes are modeled with four uncontrollable events, marking the crossing of specific 

thresholds. There is a hysteresis of 5% for each stage which prevents changes of model state with 

fluctuations of SOC due to measurement noise. The reason for the separation of critical and safe 

states is that the movement of servomotors must be prevented when the battery is in critical 

condition (since there is not enough energy for successful movement). But in the other two states 

the servomotors can move without any problem; therefore, three distinct states are considered. 

 

Figure 3.5-1: Battery model 

The list of relevant events is in Table 3.5-1. 

Table 3.5-1: Battery events list 

Origin State Event Name Destination 

State 

Interface/Internal 

Safe Safe_to_Crit Critical Interface In 

Safe Safe_to_Full Full Interface In 

Critical Crit_to_Safe Safe Interface In 

Full Full_to_Safe Safe Interface In 



55 

 

 

As the intensity of sunlight varies with the position of the PV cell, the output voltage generated by 

the PV cell changes. The maximum energy can be captured when the PV cell is perpendicular to 

the sunlight beam. Therefore, three different states are defined and the change of PV cell output 

voltage is modeled with four uncontrollable events as shown in Figure 3.5-2. The objective of the 

solar tracker is to find a sufficient bright spot in one maneuver; hence one might think that two 

states would be enough for this purpose but as the battery cannot charge in the dark state, three 

different states are considered. 

 

Figure 3.5-2: PV cell model 

The list of relevant events is in Table 3.5-2. 

Table 3.5-2: PV cell events list 

Origin State Event Name Destination State Interface/Internal 

Dark Dark_to_Dim Dim Interface In 

Dim Dim_to_Bright Bright Interface In 

Bright Bright_to_Dim Dim Interface In 

Dim Dim_to_Dark Dark Interface In 

 

 

The operation of each servomotor is described with two DES models. The first model (motion 

model) is for safe movement in which the command is sent by the microcontroller and successful 

movement is evaluated in terms of the current which is drawn by the servomotor. The second 



56 

 

model (range model) is designed to control the position of servomotor to limit the movement in a 

predefined range. 

 

The goal of this model is to show commands to the servomotors. When a command is sent to the 

servomotor, it energizes the armature and then the specific current is consumed which shows the 

successful movement. Therefore, by measuring the servomotor current, the system verifies 

whether the movement is done or not.  

If the PV cell encounters an obstacle, the servomotors should not proceed anymore and the system 

needs to take another decision to avoid damages to the PV cell and servomotors. Hence, the current 

of servomotors is read by the microcontroller and if any excessive current is detected, it will be 

interpreted as an obstacle and then the next command toward this direction is prevented (This will 

be discussed in specifications). In this implementation, for the elevation servomotor, a fault state 

as a sign of abnormal situation is considered, but the azimuth servomotor is assumed to be free of 

any obstacle or fault for simplicity. 

As it is shown in Figure 3.5-3, two directions of Counter Clockwise (CCW) and Clockwise (CW) 

are triggered by their commands which are controllable events (the controllable events are shown 

in red). If the current is less than a specific value, the system backs to the idle state (initial state) 

through the uncontrollable events (As in [30] it is assumed that the azimuth motor works all the 

time and then the minimum current of 100mA is not checked). 

 

Figure 3.5-3: Azimuth servomotor, motion model 

The list of relevant events is given in Table 3.5-3. 

 



57 

 

Table 3.5-3: Azimuth servomotor, motion model events list 

Origin State Event Name Destination State Interface/Internal 

AZ. Idle AZ_CW_MOVE AZ. Turning CW Interface Out 

AZ. Idle AZ_CCW_MOVE AZ. Turning CCW Interface Out 

AZ. Turning CW AZ_CW_OK AZ. Idle Interface In 

AZ. Turning CCW AZ_CCW_OK AZ. Idle Interface In 

 

The elevation servomotor has a fault state. In any abnormal current case, the state changes to the 

fault state as depicted in Figure 3.5-4. The events have similar meanings to those in the azimuth 

model. 

 

Figure 3.5-4: Elevation servomotor, motion model 

 

 

 

 

 

 



58 

 

Table 3.5-4: Elevation servomotor, motion model events list 

Origin State Event Name Destination State Interface/Internal 

EL. Idle EL_CW_MOVE EL. Turning CW Interface Out 

EL. Idle EL_CCW_MOVE EL. Turning CCW Interface Out 

EL. Turning CW EL_CW_OK EL. Idle Interface In 

EL. Turning CCW EL_CCW_OK EL. Idle Interface In 

EL. Turning CW EL_FAIL_MOVE EL. Fault Interface In 

EL. Turning CCW EL_FAIL_MOVE EL. Fault Interface In 

EL. Fault EL_CW_MOVE EL. Turning CW Interface Out 

EL. Fault EL_CCW_MOVE EL. Turning CCW Interface Out 

 

Since the servomotors can rotate very fast which can damage the PV cell, in addition to limiting 

any movement to 2 degrees, a two-second delay is added to the measurement of servomotors 

current after a command. This creates a two-second interval between any two movements. This 

model is shown in Figure 3.5-5. 

 

Figure 3.5-5: Movement time interval model 

 

 

 

 



59 

 

Table 3.5-5: Movement interval events list 

Origin State Event Name Destination State Interface/Internal 

Idle EL_CW_MOVE Waiting Interface Out 

Idle EL_CCW_MOVE Waiting Interface Out 

Idle AZ_CW_MOVE Waiting Interface Out 

Idle AZ_CCW_MOVE Waiting Interface Out 

Waiting wait_2sec Current check Internal 

Current check EL_CW_OK Idle Interface In 

Current check EL_CCW_OK Idle Interface In 

Current check AZ_CW_OK Idle Interface In 

Current check AZ_CCW_OK Idle Interface In 

 

The current position of each servomotor stored in the RAM of the microcontroller and then, after 

each successful two-degree movement, it is increased after a CW movement or decreased after a 

CCW movement. Therefore, the current angular position of servomotors are available and when 

they reach the boundary of movement and the corresponding states are reached further movement 

in the same direction is forbidden. As shown in Figure 3.5-6 and Figure 3.5-7, for azimuth and 

elevation servomotors respectively, for any movement, the current angle is polled and then if it is 

in acceptable range, then a return to the initial state event is generated and if it is not in the range, 

then the corresponding state depending on the direction will be reached.  



60 

 

 

Figure 3.5-6: Azimuth servomotor position model 

Table 3.5-6: Azimuth servomotor position events list 

Origin State Event Name Destination State Interface/Internal 

AZ. In Range AZ_POLL_RANGE AZ. Polling Range Internal 

AZ. Polling Range AZ_RANGE_OK AZ. In Range Internal 

AZ. Polling Range AZ_MAX_CCW AZ. Max. CCW Internal 

AZ. Polling Range AZ_MAX_CW AZ. Max. CW Internal 

AZ. Max. CCW AZ_POLL_RANGE AZ. In Range Internal 

AZ. Max. CW AZ_POLL_RANGE AZ. In Range Internal 

 



61 

 

 

Figure 3.5-7: Elevation servomotor position model 

Table 3.5-7: Elevation servomotor position events list 

Origin State Event Name Destination State Interface/Internal 

EL. In Range EL_POLL_RANGE EL. Polling Range Internal 

EL. Polling Range EL_RANGE_OK EL. In Range Internal 

EL. Polling Range EL_MAX_CCW EL. Max. CCW Internal 

EL. Polling Range EL_MAX_CW EL. Max. CW Internal 

EL. Max. CCW EL_POLL_RANGE EL. In Range Internal 

EL. Max. CW EL_POLL_RANGE EL. In Range Internal 

 

 

Some of the events in the solar tracker system are not generated by the previous components. The 

“start full sweep” command comes from the PC and is uncontrollable (by the supervisor). The 

events “Elevation motor fault”, “Sweep Failure” and “Bright (direction) detected” are generated 

by the supervisor itself. To model the generation of these events, it is convenient to assume they 

are generated by a hypothetical component, Master Controller (Figure 3.5-8). 



62 

 

 

Figure 3.5-8: Master Controller (MC) model 

Table 3.5-8: Master controller events list 

Origin State Event Name Destination State Interface/Internal 

MC Full_Sweep MC Internal 

MC Bright_Detected MC Internal 

MC Sweep_Failure MC Internal 

MC EL_MOTOR_FAIL MC Internal 

 

To build a complete model, we have to model the interactions of the system components. For 

example, consider the SOC of the battery when the PV cell is in darkness. It is clear that going to 

the higher level for SOC is impossible. This behavior (restriction) should be captured by the model.  

Modeling interactions needs a rigorous attention to the physical characteristics of components, 

otherwise the constructed plant will not follow the real plant. In the following sections, the 

interactions of different components are modeled.  

 

As mentioned before, in the dark state, the maximum output voltage of the PV cell is 6 volts which 

cannot charge the battery SOC according to the battery specification. Therefore, in the dark state 

just the reduction of SOC can occur and in other states both reduction (because of servomotors 

consumption) or increase of SOC (because of PV cell supply) are possible. The battery SOC events 

as a function of the state of the PV cell is shown in Figure 3.5-9. 



63 

 

 

Figure 3.5-9: PV cell interaction with battery SOC 

 

According to the battery discharge curve and the current consumption of servomotors, it is 

essential that the SOC of battery be above 50% (in order to energize the servomotors sufficiently 

for a move). Thus, in the critical state of battery SOC, the events which guarantee a successful 

movement cannot happen as shown in Figure 3.5-10. 

 

Figure 3.5-10: Battery SOC and servomotors interaction 

According to the data sheets of the servomotors [42], the azimuth and elevation servomotors 

consume 350 mA and 700 mA respectively which are more than the maximum current the PV cell 



64 

 

supplies (200 mA). Therefore, during any servomotor movement, the battery is discharged and 

reaching a higher level of SOC is not possible. To model this behavior, the synchronous product 

of two servomotors models (shown in Figure 3.5-3 and Figure 3.5-4 ) is formed and decrease in 

SOC events are added as self-loop in the states in which movement occurs and increase and 

decrease of the SOC self-loops are added to the rest of states (Figure 3.5-11). For clarity, the 

transitions of the synchronous are not shown in the figure; only the self-loops are shown.  

 

Figure 3.5-11: Servomotors and battery SOC interaction 

At this point, the model of the plant can be constructed by the synchronous product of the DES 

models of the components and their interactions. The resulting plant automaton has 1584 states 

and 16800 transitions.  

 

In this section, the design specifications are explained and the supervisor is designed. 

 

The solar tracker system has three groups of design specification. A DES model for each group is 

introduced. A model for the overall specification is obtained using the automaton product 

operation. 



65 

 

 

The rotation should be limited to 180 degrees for the azimuth and 90 degrees for the elevation 

servomotor. Therefore, whenever in the position models (Figure 3.5-6 and Figure 3.5-7) the states 

of maximum CW or CCW are reached, further movement in the same direction should be 

prevented. Thus, in the mentioned states just the reverse movement is allowed as it is shown in 

Figure 3.6-1 for the azimuth servomotor. Similarly, the elevation servomotor should not rotate 

beyond its limit (the model specification is not shown for brevity). 

 

Figure 3.6-1: Azimuth servomotor rotation specification 

 

Since the current position of servomotor should be read after of a successful movement 

(XX_CW_OK, XX_CCW_OK events), the polling of this value should be done when the state of 

servomotor motion model (Figure 3.5-3and Figure 3.5-4) is in the idle state. This specification is 

depicted in Figure 3.6-2. For the elevation servomotor, the same rule is applied (For brevity the 

model is not shown). 



66 

 

 

Figure 3.6-2: Azimuth servomotor polling specification 

 

The former specifications are essential for a safe operation of the solar tracker. In addition, a 

procedure to indicate the sequence of steps toward finding a bright spot is required. It is common 

in industry to define a procedure to conduct the operation through steps for a variety of purposes. 

For example, in most petrochemical plants, startup phase and shutdown phase must be done by 

taking sequential steps to normal operation and safe state respectively. In this system, the goal is 

to sweep a hemisphere to find the spot with the sufficient sunbeam intensity. As each servomotor 

rotates in a plane, combining them, allows a complete hemisphere sweep. Assuming the solar 

tracker is located in a dark zone, a full sweep is done in the following order. 

 The azimuth servomotor starts rotation from 90 degrees in CCW direction by receiving 

“Full_Sweep” event from the MC; then in the maximum CCW position, it turns in the reverse 

direction and rotates to CW maximum position. Afterward, the elevation servomotor starts to rotate 

from its position (maximum CCW) to maximum CW for 90 degrees and then azimuth servomotor 

continues sweep in CCW direction for 180 degrees. In the end, if no bright spot is discovered, the 

Sweep_Failure event is generated; otherwise, the Bright_Detected as an indication of finding a 

bright direction is generated. Furthermore, EL_MOTOR_FAIL as an alarm for elevation 

servomotor fault is issued to MC if failure is detected.  



67 

 

As a general restriction, at any moment just one servomotor can move to maintain the battery 

voltage at sufficient level for the system. This specification`s model has 58 states and 209 

transitions (see Appendix A). One can see various loops inside this specification in each stage 

representing search for a bright direction until either the end of movement in one direction and the 

direction is changed or a bright source is detected.  

Thus far, the individual automaton for each specification is generated. Next, the events which are 

not relevant for each specification model are added as self-loop to all states. Finally, to find the 

overall specification model, the product of all specifications should be taken. The resulting 

specification model has 416 states and 4216 transitions. 

 

To design the supervisor using SCT, the toolbox Discrete Event Control Kit (DECK)) [37] which 

is developed in MATLAB [34] environment is used. The automata which are needed for making 

supervisor are prepared by using the functions of DECK. To compute the supervisor, first the 

components models are defined in DECK with the following format: 

 The automaton in DECK (G=automaton(N,TL,Xm)) is defined as a class with the following 

properties: 

N: The number of states, 

TL: Transition List, 

Xm: marked states (row vector), 

TL is a matrix with three columns. In each row, the first entry is a source state of each transition, 

the second element is the event related to the transition and the third element is the destination 

state. Thus the number of rows indicates the number of transitions. 

There are plenty of functions in DECK which do specific DES operations. The procedure to design 

the supervisor is as follows. 

First, the plant model is constructed by using the sync function of component models and their 

interactions ([G,States]=sync(G1,...,Gn)). Second, the general specification is made by using 



68 

 

product ([H,States]=product(H1,...,Hn))  of all specifications automata. The last step to obtain the 

supervisor from the plant and specification is to use the supcon function with the following format: 

 

K =supcon(H,G,Euc).  

H is the specification, G is the plant and Euc is the uncontrollable events set.  

Supcon generates the supremal sublanguage of Lm(H) ∩ Lm(G) that is controllable with respect 

to L(G) and Σuc. The result is returned in the trim automaton K which marks the supremal 

controllable sublanguage. 

{
Lm(K) = SupC(Lm(H) ∩ Lm(G))                    

L(K) = (Lm(K))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = SupC(Lm(H) ∩ Lm(G))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 

The resulting supervisor size is given below. 

Table 3.6-1: The plant, specification and supervisor size 

Automaton Number of States Number of 

Transitions 

Number of 

Marked States 

Plant (G) 1584  16800 27 

Specification (H) 416 4216 18 

Supervisor (K) 2061 9527 27 

 

 

 

 

 

 

 

  



69 

 

 

 

In supervisory control theory, the supervisor (i.e. control logic) is designed based on a DES model 

of the plant and a DES model of the design specifications. The design procedure is typically 

performed “offline” and the designed supervisor in the form of computer code is implemented 

“online” on, say, a microcontroller. This approach was used in the previous chapter. 

An alternative approach, as discussed in Chapter 2, is to use the Limited Lookahead Policy in 

which the plant model and design specifications are stored in the control computer and are used to 

generate supervisory control commands “online”. The main goal of this chapter is to explain the 

implementation of LLP. The solar tracker is used as the experimental setup. As we will see later, 

sometimes events are generated at a fast pace in the plant and there is not enough time to perform 

the LLP calculations between two consecutive events. In order to mitigate this issue, we propose 

a new method in which the supervisory commands are pre-calculated and “buffered” in advance. 

In Sections 4.1 and 4.2 we will discuss code generation and implementation of LLP for the solar 

tracker as an example. Section 4.3 presents LLP with buffering. 

 

To store the information of the automaton we use the C struct. The required C code for LLP is 

obtained by converting DECK functions to C code using MATLAB coder. The DECK code for 

supervisory control has to be modified for use in LLP and be made compatible with MATLAB 



70 

 

coder. G.n,  G.TL and G.Xm are used as fields of struct G. This resembles the automaton objects 

in DECK. Although in MATLAB there is no need to define the size of TL and Xm explicitly, in 

C language, it is not possible to have more than one variable size array as an argument (Simply, 

TL and Xm can be seen as two and one-dimensional array, respectively). Therefore the 

coder.varsize is used to declare variable size array in functions in MATLAB. For example, 

consider the reach function, Xr=reach (TL, S), in which TL and S are the input arguments and Xr 

the reachable states from the states S as the output of the function in the form of row vector. Then 

to declare the size of Xr, the following line is added in the function: 

coder.varsize('Xr',[1,10000],[0 1]). 

This means that Xr is a one dimensional array and its size is bounded by 10,000 elements. 

After modifying the required functions to make them ready for compilation (by right-click on any 

m file and “Check Code Generation Readiness”, it should have a full score), the inputs of the 

functions need to be defined. For example, for the reach function, TL is defined as a matrix with 

bounded number of rows up to 10000 and exactly 3 columns with double elements 

(double(:10000x3)). Since MATLAB, for every variable, uses as double-precision floating-point 

values that are 8 bytes, it takes a large amount of memory to store and perform the calculations 

which is one of the disadvantages of direct C code generation from MATLAB coder.  

The other required functions are similarly adapted and compiled using MATLAB coder. It should 

be noted that, there are several parameters in MATLAB coder to make source code adjust to 

specific purposes in terms of execution speed, memory usage and even the hardware platform 

which can be selected for ARM Cortex –M (e.g. for EFM32 Series). Finally, the generated source 

codes can be used as a C function in the microcontroller to do the supervisory calculations.  

We used MATLAB coder for converting DECK functions to C code for the microcontroller 

EFM32 used in the solar tracker. But because of memory constraints and the slow execution, we 

decided to compile and run the code on the PC and use the microcontroller for interfacing with the 

hardware. Our reasons are explained in more detail in the following. 

1. The functions of DECK have many subfunctions like unique, ismember, intersect and so 

forth that make the compilation very complex in terms of debugging and memory 

management. Despite the fact that the generated C codes consume large flash memory, but 



71 

 

256KB flash memory is enough to contain all generated codes. For instance, the reach 

function which is one of the smallest functions in DECK takes almost 14 KB of flash 

memory.  

Since the default data type of MATLAB is a double which takes 64 bits and in spite of 

declaring input arguments in different data types which take less memory, the internal 

variables which are used by the compiler are all double and consequently the amount of 

RAM which is needed for computation surges up dramatically. For example to check a 

very simple automaton with the reachable function ([Gr,Xr]=reachable(G)), which 

contains the reach function as a subfunction, the total required RAM is almost 27KB 

(increased by 13KB)  and the rest of memory for the most complex functions like product 

and supcon is not adequate. 

2. The execution time is one the main concerns in online computation. Therefore, the 

generated codes must be optimized in such a way that they take the least possible time for 

execution in the microcontroller. To have an estimation of computation time, consider the 

result of computation time for a simple function like reach with 100 transitions and a state 

set S with one element in Table 4.1-1. 

Table 4.1-1: Execution time for the reach function with 100 transitions 

Platform and function  Execution 

time 

Function in MATLAB (Intel(R) Core™ i5-

6200U) 

1.3 ms 

Mex function in MATLAB(Intel(R) Core™ i5-

6200U) 

0.5 ms 

C code in EFM32 microcontroller 8 ms 

 

The execution time of MATLAB code is obtained after several runs to reach the minimum 

stable time. Then it is compared to a C code function (mex function) which runs in the 

MATLAB environment.  It is clear that converting MATLAB code to the C code (mex file 

in MATLAB) speeds up the execution time as it is expected but the computation time for 



72 

 

executing a very simple function like reach in the microcontroller is quite high considering 

the scan time of 50 ms.  

Examining the profiler in MATLAB using “Run and Time” shows that the reach function 

is called 4 times during supervisory computation which means that for the assumed small 

size TL, it takes at least 32ms (without considering overheads). Therefore, by considering 

other functions and the solar tracker plant size, we conclude that it is not practical to deploy 

these generated functions for LLP algorithm in this microcontroller.  

Ultimately, because of the mentioned problems and limitations and to accomplish this project in 

the limited timeframe, it was decided to move the execution of LLP from the microcontroller to 

the PC as part of the system. This type of implementation can still reveal many features and 

constraints of a complete LLP implementation in an embedded system and gives us the 

requirements for the hardware and software to implement LLP on any type of platform.  

 

Following the discussion of the previous section, by compiling the MATLAB code to the C code 

and executing it inside the MATLAB environment, execution time is improved adequately. Thus 

all functions in DECK whose execution consume large time, are converted to mex functions.  

Figure 4.2-1 shows the schematic diagram of the solar tracker, the microcontroller as an interface 

and the PC which performs supervisory calculations. 

 

Figure 4.2-1: Schematic diagram of the solar tracker and control system 

The flowchart for the implementation of LLP inside the microcontroller and PC is shown in Figure 

4.2-2. Detecting events is the microcontroller’s duty because it interacts with the solar tracker 

system and the latest status of the components is tracked by the microcontroller software. In every 

scan time, the newly detected events are packed in a packet and sent to the PC.  The microcontroller 

has a communication serial port which sends and receives data from the ground station (PC) 



73 

 

through a wireless module which has the ability to work at the baud rate of 115200bps as maximum 

speed. Although the EFM32 maximum UART speed is much higher than 115200bps but the 

wireless module as a bottleneck of this communication system limits this capability.  

After scanning events by a timer interrupt and sending them to the PC, an instrcallback function 

inside the MATLAB receives the data and stores them in the receiving packet. The callback 

functions in MATLAB can be triggered by the occurrence of any type of event. In this application, 

for receiving serial data whenever they are ready in the serial port, instrcallback is called and it 

stores data. Meanwhile, on the PC side, the plant, specification and supervisor are calculated for a 

predefined window size of LLP of length Nw. Then by considering the first events of the current 

state of the supervisor, one event is sent to the microcontroller as supervisory command. 



74 

 

 

Figure 4.2-2: Online LLP implementation flowchart 



75 

 

 

As mentioned in Section 2.2.2, the minimum size of lookahead window to guarantee that the 

resulting supervisor behavior is the same as a minimally restrictive conventional depends on 

several factors, in particular, the length of uncontrollable strings in the plant. 

After we build the plant model of solar tracker, we observe several loops consisting of 

uncontrollable events only. For example, among 1584 states of the plant, there is a loop of 

uncontrollable events (Dark_to_Dim and Dim_to_Dark ) as it is depicted in Figure 4.2-3 because  

changes in the PV cell voltage can happen any time.   

Therefore, according to the Theorem 2.8, Nu(L(G)) is infinite and therefore no minimum length 

for tree expansion of LLP can be determined to guarantee the validity of the supervisor.  

 

Figure 4.2-3: An uncontrollable loop in the plant 

It is pointed out in Section 2.2.3 that one of the advantages of state-based supervisory in 

comparison to event-based is that in the state-based supervisory with finite states, the minimum 

window length to make LLP supervisor valid is always finite. Let us define this minimum bound 

by Nmin. Hence, to find Nmin for the solar tracker plant, assuming state-based algorithm is used, 

and according to Definition 2.27, NB has to be calculated prior to LLP execution to provide the 

optimal supervisor. 

 In order to calculate NB, first of all, the set of all marked controllable states should be extracted. 

The function Xmc_verify (Plant,Ec)  is prepared in MATLAB to show the set of  Xmc (Definition 

2.25). After verifying the solar tracker plat, it turns out that there is no state with just controllable 

event in this plant. Secondly, the set of legal states (Definition 2.26) has to be investigated. It is 

worth noting that the generated supervisor using supcon in DECK, marks the supremal 



76 

 

sublanguage of Lm(𝐻) ∩ Lm(𝐺) which is controllable with respect to L(𝐺) and uncontrollable 

events. Hence, the language of  Lm(𝐻) ∩ Lm(𝐺) is the legal language which has to be examined 

to find NB. However, this legal behavior should be a subautomaton of the plant in order to be used 

in the definition of NB. This requires applying the procedures of [33]. 

In this thesis, instead we have used an exhaustive method for finding Nmin. That is conventional 

supervisor and LLP supervisor (for various values expansion Nw) are compared in every single 

state and then if there is no difference between enabled events, it means that Nw ≥  Nmin. After 

running the code several times it was seen that for Nw ≥ 9, no difference is observed between LLP 

and conventional results. Thus  Nmin = 9. 

 

The parameter Nw plays a very significant role in the LLP computation time due to the fact that 

for small Nw, the size of the expanded plant will be small resulting in lower LLP computation 

time. Therefore in the system with small time for event response, this number has to be in 

reasonable range. On the other hand, this number cannot be adjusted as a parameter, since it 

depends on system characteristics. To have a better understanding of this number, Plant Depth 

(PD) is defined as the lookahead window size in which the size of expanded plant model (in the 

state-based expansion) becomes equal to the plant model. The ratio of Nw to PD shows how much 

LLP computation is effective. If the ratio is near one, it means that LLP implementation value 

declines since the LLP supervisor almost equals to the conventional supervisor. Hence, LLP has 

no memory advantage and requires more computational time. 

The PD size for the solar tracker plant is 11 which is so close to minimum lookahead window size 

(Nmin=9).  

Nonblocking and safety properties are two major concerns in the context of supervisory control 

which have to be met. As shown in Table 3.6-1, there are 27 marked states in the plant which 

should be reachable and since the resulting supervisor is trim and then nonblocking, reachability 

of them is guaranteed. To simplify the following discussion in this thesis, we only consider the 

safety property and effectively mark all states. 



77 

 

It can be shown that if the nonblocking is no longer an issue and all states consider to be marked, 

then through the exhaustive method,  Nmin becomes smaller and equals to 6 which is almost half 

of the PD ( 
Nmin

𝑃𝐷
= 0.54). 

It should be noted that a better measure of the efficiency of LLP is to compare Nmin with the depth 

of the product of plant and specification. 

 

Computation time is one of the most important issues in LLP because of online calculation and 

limited CPU resources to respond to the upcoming events. Using lookahead window size of 

Nw= Nmin= 6, LLP computation times for a sample string of 259 events are found experimentally 

and shown in Table 4.2-1. For a more accurate measurement of the execution time in MATLAB, 

the priority of MATLAB in task manager of Windows is set to real-time priority which increases 

scheduling priority of the MATLAB among other tasks in Windows. 

Table 4.2-1: LLP computation time 

LLP computation time for Lookahead window Size Nw =6 

(MATLAB(Intel(R) Core™ i5-6200U) 

Average Minimum Maximum 

139 ms 42 ms 306 ms 

 

The supervisory control calculation of LLP consists of three steps. The calculation of each step 

can be in a number of different orders, resulting in different execution time. We have chosen an 

order for each step so as to minimize the execution time. The details are explained in the following.  

1. Plant expansion: The sync function is used to build a subautomaton of the plant with a 

depth of Nw events from the current state. The computational time and required memory 

used by sync function depends on the order of its input automaton (even though the end 

result is the same). It is well-known that automaton with significant common events should 

be synced together and therefore be close to each other on the list of arguments of sync. 

Therefore, a specific function based on product is provided in MATLAB to take every two 

automata and the window size Nw, and make the synchronous product of them after adding 



78 

 

the required self-loops. By ordering every two automata according to the number of events 

in common (the order of automata is illustrated in Figure 4.2-4) the least computation time 

of this phase is achieved. 

 

Figure 4.2-4: The order of sync operation to build plant expansion. 

2. Expanding the specification: The same procedure is applied to construct the general 

specification according to the five specifications (Figure 4.2-5). Since the attitude in this 

LLP implementation is conservative because of admissible results in all cases, as it is 

pointed out in the third step of LLP computation in Section 2.2.2, for conservative attitude, 

the size of expansion is one step less than the plant expansion. Therefore, the size of 

expansion in this phase is always one step less than the previous phase.  



79 

 

 

Figure 4.2-5: The order of calculation of specification 

3. Constructing the supervisor: In this phase, using supcon, the supervisor is generated from 

the plant and specification and then by extracting the events of the initial state, the enabled 

events are determined. 

It is obvious that from the second cycle after detecting an event, all component models need to 

be updated in order to determine the new state.  

One can observe from Table 4.2-1 that the average computation time is bigger than the scan 

time (139ms > 50ms). Therefore even on average, the code is not fast enough to do LLP 

calculation between two consecutive events. To evaluate the timing behavior of the software, 

the computation is defined to be feasible whenever there is enough time to execute all tasks of 

the processor [36]. As any task has an activation time, deadline and execution time, the aim of 

LLP is to respond to all events detected in scan time, and the execution of LLP calculation 

should meet the deadlines. 

Since the average LLP computation time (138ms in Table 4.2-1) is quite higher than the time 

between most events (Table 3.4-2) this type of scheduling is infeasible for the LLP supervisory 

implementation. Therefore, a new method to address scheduling issues is introduced in the next 

section. 



80 

 

 

The online calculations of LLP have to be executed after every new event is generated. This takes 

considerable CPU time specially in the case of large expansion window (i.e. large Nw). As we saw 

in the previous section, the LLP computation time in the solar tracker is typically larger than the 

scan time (the period of polling process).  Sometimes in the single scan time, more than one event 

may be detected. Therefore the complied C code does not run fast enough to respond to events in 

a timely fashion. To deal with this issue of LLP, a novel method called LLP with buffering is 

proposed in this section. In this method, in every LLP calculation, control commands are calculated 

for multiple future steps (not just the immediate next step). This is achieved by using a larger 

expansion window. 

 

As discussed in Sections 2.2.2 and 2.2.3, a valid supervisor has to use an expansion window of at 

least Nmin events after the current state to guarantee optimality. But how about using a larger 

window size? Suppose the size of lookahead window is increased to Nmin + Δ as it is illustrated 

in Figure 4.3-1. (This extension is different from what is outlined in [38], since they consider any 

string after limited lookahead window to remove the attitude effects on the supervisor.)  

 



81 

 

 

Figure 4.3-1: LLP with extended window size 

It will be shown that by considering Δ steps beyond the available window size Nmin, the calculated 

supervisor has the control commands of Δ steps after the current state (red zone in Figure 4.3-1). 

In other words, using an expansion window, enlarged by Δ events, we can calculate and “buffer” 

control commands for new and Δ events in the future. We will later explain how this property can 

be useful. 



82 

 

 

Figure 4.3-2: Tree expansion 

The mentioned property can be simply derived as a corollary to the following theorem.  

Theorem 4.1: [39] 

If 𝑠0 ∈ 𝑆𝑢𝑝𝐶(𝐾, L(G))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,  then 𝑆𝑢𝑝𝐶(𝐾, L(G))/𝑠0 =  𝑆𝑢𝑝𝐶(𝐾/𝑠0, L(G)/𝑠0). 

Here the supremal controllable sublanguage of 𝐾 with respect to the language which is generated 

by G and uncontrollable events set 𝛴𝑢𝑐, is shown by 𝑆𝑢𝑝𝐶(𝐾, L(G)). 

The theorem states that the post language of supremal controllable sublanguage of any string which 

is inside the closure of that language is equivalent to the supremal controllable sublanguage of post 

language of that string. 

Therefore if a string which is executed inside the plant is allowed by the supervisor (𝑠0 in Figure 

4.3-2), then any extension of this string inside the supervisor (𝑠0𝜎0…𝜎𝑖) has solely the same 

properties as it is outlined in Theorem 4.1. Without loss of generality, suppose that the limited 

lookahead supervisor window size which gives enabled events in the state 𝑥0 in Figure 4.3-2, is 

extended to Nmin + Δ, then the result of the supervisor is valid after the execution of Δ events  

from 𝑥0 (the next event 𝜎𝑖 is valid until i ≤  Δ). 

In other words, as long as after the current state there is a window size with at least Nmin events, 

the calculated supervisor is valid; therefore the calculated supervisor for the plant after any possible 

event (which is in the valid supervisor) provided that the front window size is greater than or equal 

to Nmin (right-hand side of the equation in Theorem 4.1), is the same as the post language of the 

supervisor after those events with the window size of those events in addition to  Nmin (left-hand 



83 

 

side of the equation). Simply, Δ events after the current state of the calculated supervisor in all 

valid possible paths are kept (i.e. buffered) to be used for future events.  

We saw in Section 4.2 that the time between consecutive events can be too short for LLP 

calculations. However often, as it is the case for the solar tracker, events are not generated 

regularly. Sometimes a sequence of events is generated rapidly, followed by a long gap till the 

next event. One can take advantage of this sporadic occurrence of events to overcome the challenge 

of performing LLP calculations. If we calculate and buffer a sequence of commands in advance 

(so that the commands at any states are always ready) and perform these calculations on a 

sufficiently long time (over which the events are spread), then all LLP calculations can be done on 

time. 

To formalize the above discussion, we introduce two functions. 

Def. 1 Shortest Duration Function. T𝑚𝑖𝑛: ℕ → ℝ 

T𝑚𝑖𝑛(𝑛): The shortest duration of the execution of a sequence containing at most 𝑛 events. 

Def. 2 Longest LLP computation 𝐶𝑚𝑎𝑥: ℕ → ℝ 

𝐶𝑚𝑎𝑥(Nw): The longest computational time of LLP calculations for an expansion window of 

length  Nw. 

Tmin  depends on the properties of the plant (and its supervisor) while 𝐶𝑚𝑎𝑥 depends on the 

computational algorithms and the computer running the algorithms. 

In the following, we will see how the above two functions are determined experimentally for the 

solar tracker and show how LLP with buffering can be developed to meet all LLP calculation 

deadlines. This discussion, in turn, leads to a general procedure for designing LLP with buffering. 

 

In Table 4.2-1, the computation time of LLP is shown for Nmin=6 and obviously just for one step 

(Δ=1). To have a better understanding about LLP computation time when the window size 

Nw expands, the trajectory of a completed full sweep is considered as a sample string to take the 

LLP computation time and the size of lookahead window size is changed over a range (Δ ≥ 1).In 

this sequence of events, Sweep_Failure event happens because a bright direction is not found. All 



84 

 

trajectory and the entire specification are involved. The normalized LLP computation time in 

second is illustrated in Figure 4.3-3 (Nw = Nmin + n − 1 and Nmin = 6). The considered sequence 

consists of 1433 events, and in every state, the LLP computation time is in the range of maximum 

(red line) and minimum (blue line) time. The computation time distribution for each LLP 

calculation is depicted by green circles and the average time is shown by pink line. The red line is 

𝐶𝑚𝑎𝑥(Nmin + 𝑛 − 1). As it is expected by increasing the 𝑛, the size of expanded plant and 

specification grows dramatically. Although at the Nw = 11 (𝑛 = 6) which equals to the PD, there 

is no growth in the expanded plant, but the specification still expands until Nw = 24 (𝑛 =

19)(very slowly near the end) which causes bigger size in the constructed supervisor and 

consequently the computation time increases steadily. After 𝑛 =20 stable average computation 

time is clear in this graph. The data for 𝐶𝑚𝑎𝑥(Nmin + 𝑛 − 1) is given in Table 4.3-1. 

Table 4.3-1: 𝐶𝑚𝑎𝑥  for 𝑛 = 1 𝑡𝑜 29 

𝒏 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝐶𝑚𝑎𝑥 0.29 0.44 0.55 0.71 0.98 1.36 1.84 2.52 2.79 3.33 3.74 3.91 4.14 3.82 3.79 

𝒏 16 17 18 19 20 21 22 𝟐𝟑 24 25 26 27 28 29  

𝐶𝑚𝑎𝑥 4.37 3.44 3.63 4.26 4.18 2.13 2.18 2.11 2.08 2.07 2.05 2.06 2.08 2.11  



85 

 

 

Figure 4.3-3: Normalized LLP computation time and occurrence time of the events vs. the size of 

LLP extension 

The black line which is depicted in the above graph is Tmin (𝑛) obtained from plant under 

supervision of conventional supervisor and based on the same sequence studied for Table 3.4-2. 

As can be seen in Figure 4.3-3, the addition of every 5 events adds 2 seconds to the execution time. 

This gap creates a space for precalculating control commands using LLP. The data for T𝑚𝑖𝑛(𝑛) is 

given in Table 4.3-2. 

Table 4.3-2: 𝑇𝑚𝑖𝑛  for 𝑛=1 to 26  

𝒏 1 2 3 4 5 6 7 8 9 10 11 12 13 

T𝑚𝑖𝑛(𝑛) 0 0.002 0.05 0.052 2.051 2.051 2.05 2.10 2.10 4.10 4.10 4.10 4.15 

𝒏 14 15 16 17 18 19 20 21 22 23 24 25 26 

T𝑚𝑖𝑛(𝑛) 4.15 6.15 6.15 6.15 6.20 6.20 8.20 8.20 8.20 8.25 8.25 10.25 10.25 

 

   



86 

 

 

Figure 4.3-4: Timeline of LLP computation with buffering  

In the proposed LLP with buffering, the LLP calculations are done in advance, i.e., the control 

commands are precalculated before they are needed. The timeline is shown in Figure 4.3-4. Note 

that the horizontal axis is the event count (logical time). The timeline is based on the following: 

1. At the starting point (𝑛 = 0), before sending an initial command to initiate the system (blue 

arrow in above figure), the LLP should have been computed for Nw = Nmin +  Δ − 1 to 

have enough responses for the upcoming  Δ events (i.e, 0 ≤ 𝑛 < Δ) and then the first 

command to start the system can be issued. 

2. After Δ − 𝛿 events (pink arrow), the LLP computation begins for the Nw = Nmin + 𝛿 +

 Δ − 1.  This will generate control commands for Δ − 𝛿 ≤ 𝑛 < 2Δ. This way the control 

commands for Δ ≤ 𝑛 < 2Δ are precalculated. These require  

                                                𝐶𝑚𝑎𝑥(Nmin + 𝛿 +  Δ − 1) ≤ Tmin (𝛿)  and  𝛿 <  Δ 

3. At 𝑛 = Δ (green arrow), the supervisor calculated in step 2 has to be updated based on the 

𝛿 events occurred from 𝑛 = Δ − 𝛿 to 𝑛 = Δ  and then it becomes the supervisor from 𝑛 =

Δ to 𝑛 = 2Δ. Obviously, after  Δ − 𝛿,  at 𝑛 = 2Δ − 𝛿, step two has to be repeated, followed 

by step 3 and so on. 

Now as an example, let us consider Figure 4.3-3 of the solar tracker. We have to choose parameter 

Δ and 𝛿. If 𝛿 = 10, then Tmin (𝛿) will be larger than any 𝐶𝑚𝑎𝑥(Nmin + 𝛿 +  Δ − 1). Thus Δ can be 

any number larger than 10. To leave some margin for error, we choose Δ = 15 (which makes Δ −

𝛿=5). Thus the LLP window will be Nw=Nmin + 𝛿 +  Δ − 1 = 6 + 10 + 15 − 1 = 30. 

Next we will discuss the software implementation of LLP with buffering.  



87 

 

 

The flowchart for  LLP with buffering is similar to that of the Figure 4.2-2. The section of flowchart 

related to the microcontroller remains the same and the right side of the flowchart is modified in 

order to respond to the received events by MATLAB at the highest priority. To accomplish this 

task, the part of the code which responds to received events has to be moved to the callback 

function which guarantees the readiness of responses in the case of any event occurrence while 

heavy LLP computation is being performed (The flowchart is depicted in Figure 4.3-5; the 

microcontroller part remains the same as Figure 4.2-2 and is not shown for brevity). Since the 

number of events plays a critical role in activating different tasks, the delta variable keeps the 

number of events in the buffer. Thus, at the starting point, delta equals Δ and after the occurrence 

of Δ − 𝛿 events, it reaches 𝛿 that is the time to activate LLP computation. Therefore, at delta= δ, 

the LLP_execution bit is set to true and a copy of all models are kept till in the main function 

LLP_execution is checked and then the prepared copies are used to compute the supervisor. 

Meanwhile, the received events from the microcontroller are responded to in “instrcallback” 

function and are stored to be used at the time of delta=0. 

Before delta approaches zero, the supervisor is constructed and a copy of this supervisor is sent to 

the callback function and at the time of delta=0, the supervisor is updated according to the recorded 

events very quickly and then it is ready for the next Δ events. At the end of the callback function 

if there is any controllable event among enabled events, it is sent to the microcontroller. The 

experimental results are reported in the next chapter. 



88 

 

 

Figure 4.3-5: Implementation of LLP with buffering flowchart  



89 

 

 

 

In this section we will discuss the experimental results of implementation of LLP with buffering 

on the solar tracker. First we review the setup and the tests conducted. Next we will explore the 

effect of factors that were not considered in the theoretical analysis of Section 4.3. Finally, we will 

compare the test results of LLP with Buffering with those of the experiences of Chapter 3 which 

was designed offline and implemented on the microcontroller. This setup under the supervision of 

Chapter 3 is used as the benchmark for evaluating LLP with buffering. 

We implemented the flowchart of the previous chapter in the solar tracker system and performed 

several tests from various initial positions with respect to the light source. We observe that the 

LLP supervisor with buffering parameters 𝛿 = 10 and Δ = 15 successfully controlled the system, 

confirming the applicability of the proposed method. 

To better understand the interactions between the software codes in the microcontroller and 

MATLAB, several sample points were added to track the code execution flow. Because the delta 

variable changes in the callback function and at delta= 𝛿, the LLP_execution is set to true, but the 

LLP calculation is done inside the main function, in some cases in which two successive events 

are received by the callback function, LLP computation time starts after Δ − 𝛿 has occurred 

(Figure 4.3-4). The actual Nw and computation time in Table 5-1 indicate that at most just one 

extra event can occur from the time which is set for the start off LLP computation. Moreover, the 

average of 29.7 for window size shows that most of the time LLP calculation starts as shown in 

Figure 4.3-4. 

 



90 

 

 

 

Table 5-1: LLP computation time and window size 

 LLP computation time in seconds 

(MATLAB, Intel(R) Core™ i5-6200U) 

LLP window size  

( 𝐍𝐰) 

Maximum 2.59 30 

Average 2.29 29.7 

Minimum 2.03 29 

 

Next let us explore the effects of the factors which were not considered in the previous section. 

Callback Functions. Consider the timeline in Figure 5-1 in which the duration of LLP 

computation is depicted by two-side yellow arrow. The duration of LLP computation in Table 5-1 

which contains callback function execution time shows that as expected from Figure 4.3-3, the 

average LLP computation time for Nw  ≥ 29 is around 2.29 seconds (Since the computation time 

in Figure 4.3-3 does not depend on sending and receing events from the microcontroller, the 

computation time in Figure 4.3-3 for 𝑛 = Δ + 𝛿 = 25 are slightly smaller than the computation 

time in Table 5-1 in which instrcallback function interrupts LLP computation several times). Thus 

the callback function does not have any significant effect on execution time. 

Another point which is observed from the timeline is that in spite of calling instrcallback function 

during the LLP computation, the computation finishes well before the deadline when delta is zero. 

Depending on the times instrcallback function interrupts this computation, the end of computation 

varies between delta=8 for the shorter interruption and delta=3 for longer interruption.  



91 

 

 

Figure 5-1: LLP implemented timeline 

Supervisor Refreshing. As can be seen in Figure 5-1, right after when the delta is zero (𝑛 = 15), 

the LLP supervisor that was calculated must be initializd to take over control over the window of 

𝑛 = 16 to 𝑛 = 30. We refer to this initialization time as the “refresh time”. This refresh time 

should be quite small in order to avoid any interference for upcoming events. The average refresh 

time is 4 ms, with a maximum of 10 ms which is negligible. Specially, using Figure 4.3-3 with 

𝛿 = 10 and Δ = 15, we see that 

𝐶𝑚𝑎𝑥(Nmin + 𝛿 +  Δ − 1) = 𝐶𝑚𝑎𝑥(Nmin + 24) ≃ 2.2 sec. 

 Tmin (𝛿)  = Tmin (10)  ≃ 4.1 sec. 

This creates a margin of 4.1-2.2=1.9 sec. which is much more than 10ms refresh time. 

Communication Delay. Now we compare the timelines of events in both LLP (Chapter 4) and 

conventional (Chapter 3) implementations. In the conventional system, the events are read and 

processed inside the microcontroller. On the other hand, in the LLP implementation, although 

uncontrollable events are generated and stamped inside the microcontroller, controllable events 

are sent from the supervisor in MATLAB to the microcontroller and then they are sent back to the 

MATLAB to be accepted as controllable events. Consequently, an unwanted communication delay 

is imposed on the system in LLP supervision. In fact, the communication delay over a window of 

Δ = 15 events is around 300 ms which is much smaller than the margin of 1.9s mentioned in the 

previous paragraph. 

Comparison with Conventional Supervisor. The plant under the supervision of the standard 

supervisor, designed offline (Chapter 3) is our benchmark and reference for evaluating LLP 



92 

 

supervision with buffering. We note that any two executions of the two implementations may 

slightly differ from one another since some events such as those of PV cell and battery may occur 

at slightly different times. To compare the two supervisors, we have decided to use the duration of 

event sequences as a function of the length of the sequences (Figure 5-2). The execution times for 

the conventional system (the pink line) are slightly less than those of system supervised by LLP 

(the green line). The difference is minor and can be attributed mainly to the communication delays. 

 

Figure 5-2: Occurrence time of events in LLP and conventional implementation 

 

 

 

 

 

 

 

  



93 

 

 

In this thesis, the implementation issues of LLP supervisors are studied. To address the issue of 

computational delay in LLP supervision, a novel technique is proposed in which supervisory 

control commands are calculated in advance (and online) for a window of events in the future and 

buffered. When the window starts, the commands would be ready after each event. This eliminates 

the delay due to online calculations, and reduces the delay in responding to new events to levels 

close to those of conventional supervisors (designed "offline"). 

In an effort to assess the proposed methodology and better understand the implementation issues 

of SCT, a two degree-of-freedom solar tracker with two servo motors is selected as the plant. 

Previously, a conventional supervisor had been designed for this solar tracker to guide the tracker 

and perform a sweep to find a sufficiently bright direction to charge the battery and other parts of 

the system (from its Photo Voltaic cell). In this thesis, the conventional supervisor was improved. 

Next the LLP with buffering was implemented. Several experimental results confirmed that the 

plant under the supervision of LLP supervisor with buffering can match the behavior of the plant 

under the supervision of conventional supervisor. 

To compare the offline and online implementations, firstly, memory requirement in both cases 

should be examined. The conventional supervisor is stored in the memory using a struct format. 

Thus, the minimum required flash memory which IDE dedicates for storing the full sweep 

supervisor is: 

Memory Size= (Number of states x 6) + (Number of transitions x 4) +10 

                                  = (2061 x 6) + (9527 x 4) +10 =50,484 bytes. 



94 

 

 

Each element of struct is composed of a variable "len" and a two dimensional array. All variables 

in the format of an unsigned integer each requiring 2 bytes. Therefore, for any state 2 bytes for len 

have to be allocated, but the way IDE stores this struct has an overhead which adds 4 other bytes 

to each state. Furthermore, an array starts from 0 but the supervisor states start from 1 in TL, and 

to keep the same number a null element is added to struct array which takes 10 bytes. There are 

other methods (e.g. memory safe in [40]) for memory management but they do not have any 

specific advantage compared with the State Transition Table. 

The amount of memory for code in LLP implementation is different from the conventional but it 

is negligible and therefore, since there is no need for allocation of specific amount of flash memory 

to store supervisor, it has a significant advantage over conventional implementation. One can argue 

that the required memory for conventional supervisor compared to the capacity of the flash 

memory in this microcontroller (256 Kbyte) is enough; nevertheless, for larger systems which have 

more components, much larger memory will be needed. For example, for a system with 100,000 

states and 1,000,000 transitions, unsigned double integer has to be used to store numbers and then 

the minimum required memory is more than 8.7 Mbytes while the maximum flash memory of 

EFM32 series is 2 Mbytes. 

To realize an efficient implementation of LLP on a microcontroller (so as to have a more realistic 

comparison of conventional and LLP implementations), a fast and customized code for LLP 

computation for the microcontroller (as opposed to code generated from MATLAB) should be 

prepared in a way to decrease the computation time. Then after optimizing the computation time 

(in comparison to the scan time), the window size, Nw, can be chosen to be lower than PD and the 

LLP implementation will be beneficial compared with the conventional supervisor. 

In this thesis, the sequence duration function Tmin  (Chapter 4) was obtained experimentally. It 

would be interesting to find a formal procedure to determine this function using a timed model of 

the plant under supervision.  



95 

 

Since in SCT, the uncontrollable events cannot be prevented from occurring, at any state, if an 

uncontrollable event in the system occurs, the supervisor must also follow that transition. Suppose 

at some state, the LLP calculation starts and before the enabled events set becomes ready, an 

uncontrollable event is detected. In this case, the LLP computation can be abandoned and the 

information about the current plant state can be updated. The LLP then should start its calculations 

from this new state. This enhances its performance. The result of an experiment with use of this 

method in solar tracker system shows that almost 20% of LLP computations can be avoided; this 

could considerably boost the performance of LLP. 

Moreover, some other variations of LLP which are mentioned in Section 1.4.3 such as VLP could 

be equipped with buffering to make calculations more efficient in terms of computation time. 

Even though the choice problem does not exist in the solar tracker, a rigorous solution must be 

found to address cases in which more than one controllable event can be enabled in one state. 

 

 

 

 

 

 

 

 

 

  



96 

 

 

[1] S. L. Chung, S. Lafortune and F. Lin, "Limited lookahead policies in supervisory control of 

discrete event systems," IEEE Transactions on Automatic Control, vol. 37, (12), pp. 1921-1935, 

1992.  DOI: 10.1109/9.182478. 

[2] C. R. Frost, "Challenges and opportunities for autonomous systems in space," Presented at the 

National Academy of Engineering’s U.S. Frontiers of Engineering Symposium, 2010, pp. 17. 

[3] N. Muscettola, P. Pandurang Nayak, Barney Pell, Brian C. Williams, "Remote Agent: To 

Boldly Go Where No AI System Has Gone Before," Artif. Intell., vol. 103, (1-2), pp. 5-47, 1998. 

DOI: 10.1016/S0004-3702(98)00068-X. 

[4] B. C. Williams and P. P. Nayak, "A model-based approach to reactive self-configuring 

systems,"Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, 

1996, pp. 971-978. 

[5] M. Pekala, G. Cancro and J. Moore, "Verifying executable specifications of spacecraft 

autonomy," Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics 

and Automation in Space, 2008, pp. 8. 

[6] B. C. Williams, M.D. Ingham, S.H. Chung, P.H. Elliott "Model-based programming of 

intelligent embedded systems and robotic space explorers," Proceedings of the IEEE, vol. 91, (1), 

pp. 212-237, 2003. DOI: 10.1109/JPROC.2002.805828. 

[7] S. Bensalem, L. Silva, M. Gallien, R. Yan, ""Rock solid" software: A verifiable and correct-

by-construction controller for rover and spacecraft functional levels," International Symposium on 

Artificial Intelligence, Robotics and Automation for Space, 2010, pp. 9. 

[8] P. J. Ramadge and W. M. Wonham, "The control of discrete event systems," Proceedings of 

the IEEE, vol. 77, (1), pp. 81-98, 1989. DOI: 10.1109/5.21072. 

[9] P. J. Ramadge and W. M. Wonham, "Supervisory Control of a Class of Discrete Event 

Processes," SIAM J.Control Optim., vol. 25, (1), pp. 206-230, 1987. DOI: 10.1137/0325013. 

[10] C. M. Ozveren and A. S. Willsky, "Observability of discrete event dynamic systems," IEEE 

Transactions on Automatic Control, vol. 35, (7), pp. 797-806, 1990.  DOI: 10.1109/9.57018. 

[11] F. Lin and W. M. Wonham, "On Observability of Discrete-event Systems," Inf. Sci., vol. 44, 

(3), pp. 173-198, 1988. DOI: 10.1016/0020-0255(88)90001-1. 



97 

 

[12] P. Malik, "Generating controllers for discrete-event models."  Proceedings of MOdelling and 

VErification of parallel Processes, Nantes, France, 2002. 

[13] S. R. Mohanty, V. Chandra and R. Kumar, "A computer implementable algorithm for the 

synthesis of an optimal controller for acyclic discrete event processes," Proceedings 1999 IEEE 

International Conference on Robotics and Automation1, 1999, pp. 126-130, DOI: 

10.1109/ROBOT.1999.769942. 

[14] V. Chandra, Z. Huang and R. Kumar, "Automated control synthesis for an assembly line using 

discrete event system control theory," IEEE Transactions on Systems, Man, and Cybernetics, Part 

C (Applications and Reviews), vol. 33, (2), pp. 284-289, 2003. DOI: 

10.1109/TSMCC.2003.813152. 

[15] J. W. P. Geurts, "Supervisory Control of MRI Subsystems", Master’s Thesis, Eindhoven 

University of Technology, Eindhoven, 2012. 

[16] R. H. J. Kamphuis, "Design and Real-Time Implementation of a Supervisory Controller for 

Baggage Handling at Veghel Airport", Master’s thesis, Eindhoven University of Technology, 

2013. 

[17] A. D. Vieira , E. A. P. Santos, M. H. de Queiroz, A.B. Leal, A. D. de P. Neto, J. E. R. Cury 

"A Method for PLC Implementation of Supervisory Control of Discrete Event Systems," IEEE 

Transactions on Control Systems Technology, vol. 25, (1), pp. 175-191, 2017. DOI: 

10.1109/TCST.2016.2544702. 

[18] M. H. de Queiroz and J. E. R. Cury, "Synthesis and implementation of local modular 

supervisory control for a manufacturing cell," Proceedings of the Sixth International Workshop on 

Discrete Event Systems, Zaragoza, Spain, 2002, pp. 6, DOI: 10.1109/WODES.2002.1167714. 

[19] F. Göbe, T. Timmermanns, O. Ney, S. Kowalewski "Synthesis tool for automation controller 

supervision," 2016 13th International Workshop on Discrete Event Systems, Xi'an, China, 2016, 

pp. 424-431, DOI: 10.1109/WODES.2016.7497883. 

[20] J. N. Tsitsiklis, "On the control of discrete-event dynamical systems," Mathematics of 

Control, Signals and Systems, vol. 2, (2), pp. 95-107, 1989. DOI: 10.1007/BF02551817. 

[21] Z. A. Banaszak and B. H. Krogh, "Deadlock avoidance in flexible manufacturing systems 

with concurrently competing process flows," IEEE Transactions on Robotics and Automation, vol. 

6, (6), pp. 724-734, 1990. DOI: 10.1109/70.63273. 

[22] C. A. Brooks, R. Cieslak and P. Varaiya, "A method for specifying, implementing, and 

verifying media access control protocols," IEEE Control Systems Magazine, vol. 10, (4), pp. 87-

94, 1990. DOI: 10.1109/37.56282. 



98 

 

[23] P. Gawrychowski, D. Krieger, N. Rampersad, J. Shalli, "Finding the growth rate of a regular 

of context-free language in polynomial time," International Conference on Developments in 

Language Theory, Kyoto, Japan, 2008, pp. 339-358, DOI: 10.1007/978-3-540-85780-8_27. 

[24] C. Winacott, B. Behinaein and K. Rudie, "Methods for the estimation of the size of lookahead 

tree state-space," Discrete Event Dynamic Systems, vol. 23, (2), pp. 135-155, 2013. DOI: 

10.1007/s10626-012-0138-y. 

[25] S. L. Chung, S. Lafortune and F. Lin, "Recursive computation of limited lookahead 

supervisory controls for discrete event systems," Proceedings of the 31st IEEE Conference on 

Decision and Control, Tucson, AZ, USA, 1992, pp. 3764-3769, DOI: 10.1109/CDC.1992.370956. 

[26] S. Chung, S. Lafortune and F. Lin, "Supervisory control using variable lookahead policies," 

Discrete Event Dynamic Systems, vol. 4, (3), pp. 237-268, 1994. DOI: 10.1007/BF01438709. 

[27] N. B. Hadj-Alouane, S. Lafortune and F. Lin, "Variable lookahead supervisory control with 

state information," IEEE Transactions on Automatic Control, vol. 39, (12), pp. 2398-2410, 1994. 

DOI: 10.1109/9.362854. 

[28] M. Fabian and A. Hellgren, "PLC-based implementation of supervisory control for discrete 

event systems," Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 

USA, 1998, pp. 3305-3310, DOI: 10.1109/CDC.1998.758209. 

[29] A. B. Leal, D. L. L. da Cruz and M. d. S. Hounsell, "Supervisory control implementation into 

programmable logic controllers," IEEE Conference on Emerging Technologies & Factory 

Automation, Mallorca, Spain, 2009, pp. 7, DOI: 10.1109/ETFA.2009.5347090. 

[30] K. Searle and S. Hashtrudi-Zad, "Microcontroller based supervisory control of a solar 

tracker," IEEE 30th Canadian Conference on Electrical and Computer Engineering, Windsor, ON, 

Canada, 2017, pp. 6, DOI: 10.1109/CCECE.2017.7946686. 

[31] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. (2nd ed.), New 

York, Springer, 2010. 

[32] W. M. Wonham and P. J. Ramadge, "On the supremal controllable sublanguage of a given 

language," The 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, pp. 

1073-1080,  1984. DOI: 10.1109/CDC.1984.272178. 

[33] S. Lafortune and E. Chen, "The infimal closed controllable superlanguage and its application 

in supervisory control," IEEE Transactions on Automatic Control, vol. 35, (4), pp. 398-405, 1990.  

DOI: 10.1109/9.52291. 

[34] Mathworks Inc, "MATLAB," Available: https://www.mathworks.com/products/matlab.html. 

[35] S. Balemi, "Control of Discrete Event Systems: Theory and Application," Ph.D. dessertation, 

ETH Zurich, 1992. 

https://doi.org/10.1007/978-3-540-85780-8_27


99 

 

[36] A. C. Shaw, Real-Time Systems and Software. New York, NY, USA: John Wiley \& Sons, Inc. 

(1st ed.) 2000. 

[37] S. Hashtrudi Zad, S. Zahirazami and F. Boroomand, "Discrete Event Control Kit," DECK, 

2013, Department of Electrical and Computer Engineering, Concordia University, Available: 

http://users.encs.concordia.ca/~shz/deck.  

[38] R. Kumari, H. M. Cheung and S. I. Marcus, "Extension based limited lookahead control for 

discrete event systems," Proceedings of 35th IEEE Conference on Decision and Control, Kobe, 

Japan, 1996, pp. 2225-2230, DOI: 10.1109/CDC.1996.572975. 

[39] S. L. Chung, S. Lafortune and F. Lin, "Addendum to ‘Limited lookahead policies in 

supervisory control of discrete event systems’:Proofs of technical results," College of Eng. Contr. 

Group Reps., Univ. of Michigan, Tech. Rep. Tech. Rep. CGR-92-6, Apr. 1992. 

[40] Y. Kaszubowski Lopes, A. Leal, R. Rosso Jr., E. Harbs "Local modular supervisory 

implementation in microcontroller," 9 th International Conference of Modeling, Optimization and 

Simulation, Bordeaux, France, 2012, pp. 6. 

[41] W.M.Wonham, Supervisory Control of Discrete Event Systems, ECE Dept., Univ. of 

Toronto, 2015. 

[42] K. Searle, "Microcontroller Based Supervisory Control of a Solar Tracker", Master’s Thesis, 

Concordia University, Montreal, 2016. 

 

 

 

 

 

 

 

 

 

 

 



100 

 

 

  



101 

 

 

Table appendix B: List of customized C language files 

Filename Function Changes 

thesis_adc.c Analog to Digital Converting of input 

signals 

-Adding moving average 

thesis_dma.c Direct Memory Access - 

thesis_events.c Generating uncontrollable events 

according to the input signals and sending 

controllable events as out signals  

-Events are generated 

inside stored models. 

-Time stamping   

thesis_i2c.c Reading the SOC and voltage of the battery - 

thesis_pwm.c Sending moving commands to the 

servomotors 

- 

thesis_supervisor_new Finding next state of offline supervisor -Using of generated array 

events (offline mode only) 

timer.c To call functions in specific timer 

interrupts 

-All functions are executed 

in this routine.  

thesis_uart.c Sending and receiving data between 

microcontroller and PC 

-Some new packets are 

added  

-Adding functions in the 

time of receiving 

controllable events 

app.c Main function  -No task is defined 

 

  



102 

 

 

To send and receive data between the microcontroller and the PC, the data are collected in some 

packets in the following frame: 

                       !XX@YYYYY& 

Each packet has ten ASCII characters inside. The ! and & character denote for initial and end of the 

packets respectively. XX as a header identifies the data type and value of data is in the format of YYYY 

and they are separated by @ character. List of all packets which are used in this thesis is shown in 

Table Appendix C-0-1. According to this table, each packet is sent from microcontroller to the PC 

or in reverse direction and they are used in each mode of offline or online or both. For packets 

which have to deliver a specific value (e.g. voltage, current or a number), the second part of the 

packet which consists of four characters is used but for other packets which convey an event (e.g. 

Full_Sweep), just the header is set and recognized in the packets. 

 

 

 

 

 

 

 

 

 

 



103 

 

Table Appendix C-0-1: List of packets in communication between the microcontroller and the 

PC. 

Header Packet Name Sender Used in Mode 

00 Start events PC Online 

01 Elevation servomotor current Microcontroller Offline/Online 

02 Azimuth servomotor current Microcontroller Offline/Online 

03 PV cell voltage Microcontroller Offline/Online 

04 System Time Microcontroller Offline/Online 

05 Battery voltage Microcontroller Offline/Online 

06 Battery SOC Microcontroller Offline/Online 

07 Offline supervisor state number Microcontroller Offline 

08 Event number Microcontroller Online 

15 Full_Sweep PC Offline/Online 

20 Bright_Detected Microcontroller Offline 

21 Sweep_Failure Microcontroller Offline 

22 EL_MOTOR_FAIL Microcontroller Offline 

23 AZ_POLL_RANGE PC Online 

24 EL_POLL_RANGE PC Online 

25 AZ_CW_MOVE PC Online 

26 AZ_CCW_MOVE PC Online 

27 EL_CW_MOVE PC Online 

28 EL_CCW_MOVE PC Online 

29 Bright_Detected PC Online 

30 Sweep_Failure PC Online 

31 EL_MOTOR_FAIL PC Online 

32 ONLINE PC Online 



104 

 

Online Supervisory control computation: 

 

1 % Online supervisory control  of 2 Degrees Solar Tracker with buffering 

2 % Ehsan Ghaheri, June 2018 

3 % Number of offline supervisor states :2061 

4 % Number of offline supervisor transitions:9527 

5 % 

6 clc; 

7 clear; 

8 %If a variable with the same  name  as the global  variable already  exists in the current workspace, 

9 %MATLAB issues a warning  and changes the value of that  variable and its scope  to match  the global  variable. 

10 clear global  variable; 

11 global  Online Nw delta  delta_N small_delta; 

12 delta=0; 

13 Auto=input('Auto(For predefined N)1=Yes 0=No  ?\n' ); 

14 if Auto==1 

15 

16 

17 

18 

Online=1; 

all_marked=1; 

delta_N=15 

small_delta=10 

19 else 

20 

21 

22 

23 

24 

25 

26 

27 

28 

Online=input('Online(LLP Computation)1=Yes 0=No?\n' ); 

if Online==1 

all_marked=input('All states marked? 1=Yes 0=No\n' ); 

delta_N=input('Big Delta?\n'); 

Nw=delta_N+5;%It has been tested as depth of lookahead window with plenty  of runs. 

small_delta=input('Small Delta N?\n'); 

else 

all_marked=0; 

end 

29 end 

30 global  Serial; 

31 Serial=input('Serial Port Available? 1=Yes 0=No\n' ); 

32 % 

33 % Plant Components 

34 % 

35 % Battery State  of Charge 

36 

37 Safe_to_Full = 601; 

38 Full_to_Safe = 602; 

39 Crit_to_Safe = 603; 

40 Safe_to_Crit = 604; 

41 if all_marked==1 

42 Bat_SOC_Marked_States =(1:3) ; 

43 else 

44 Bat_SOC_Marked_States =[2]; 

45 end 

46 Bat_SOC_STT = [1 Safe_to_Full 2 ; 2 Full_to_Safe 1 ; 3 Crit_to_Safe 1 ; 1 Safe_to_Crit 3]; 

47 Bat_SOC = automaton(3, Bat_SOC_STT, Bat_SOC_Marked_States); 

48 

49 % 

50 % PV Cell Illumination 

51 % 

52 

53 Dark_to_Dim = 301; 

54 Dim_to_Bright = 302; 

55 Dim_to_Dark = 303; 

56 Bright_to_Dim = 304; 

57 if all_marked==1 

58 PV_Marked_States =(1:3) ; 

59 else 

60 PV_Marked_States = [3]; 

 



105 

 

 

61 end 

62 PV_STT = [1 Dark_to_Dim 2 ; 2 Dim_to_Bright 3 ; 3 Bright_to_Dim 2 ; 2 Dim_to_Dark 1]; 

63 PV_Cell = automaton(3, PV_STT, PV_Marked_States); 

64 

65 % 

66 % Motor  Motion 

67 % 

68 

69 % Azimuth 

70 AZ_CCW_OK = 401; 

71 AZ_CW_OK = 402; 

72 AZ_CCW_MOVE = 403; 

73 AZ_CW_MOVE = 404; 

74 if all_marked==1 

75 AZ_Motor_Motion_Marked_States =(1:3) ; 

76 else 

77 AZ_Motor_Motion_Marked_States =[1]; 

78 end 

79 AZ_Motor_Motion_STT = [1 AZ_CW_MOVE 2 ; 2 AZ_CW_OK 1 ; 1 AZ_CCW_MOVE 3 ; 3 AZ_CCW_OK 1]; 

80 AZ_Motor_Motion = automaton(3, AZ_Motor_Motion_STT, AZ_Motor_Motion_Marked_States); 

81 

82 % Elevation 

83 EL_CCW_OK = 451; 

84 EL_CW_OK = 452; 

85 EL_CCW_MOVE = 453; 

86 EL_CW_MOVE = 454; 

87 EL_FAIL_MOVE = 455; 

88 

89 if all_marked==1 

90 EL_Motor_Motion_Marked_States =[1:4] ; 

91 else 

92 EL_Motor_Motion_Marked_States =[1,4]; 

93 end 

94 EL_Motor_Motion_STT = [1 EL_CW_MOVE 2 ; 2 EL_CW_OK 1 ; 1 EL_CCW_MOVE 3 ; 3 EL_CCW_OK 1; 2 EL_FAIL_MOVE 4; 3 

EL_FAIL_MOVE 4]; 

95 EL_Motor_Motion = automaton(4, EL_Motor_Motion_STT, EL_Motor_Motion_Marked_States); 

96 

97 % Timing delay for 2 seconds for each servomotors movement. 

98 % 

99 wait_2sec=480; 

100 Wait_Marked_States=[1:3]; 

101 Wait_STT=[1 AZ_CCW_MOVE 2;1 AZ_CW_MOVE 2;1 EL_CCW_MOVE 2;1 EL_CW_MOVE 2;2 wait_2sec 3 ;3 AZ_CW_OK 1;3 

AZ_CCW_OK 1;3 EL_CW_OK 1;3 EL_CCW_OK 1]; 

102 Wait=automaton(3,Wait_STT,Wait_Marked_States); 

103 

104 % 

105 % Motor  Range 

106 % 

107 

108 % Azimuth 

109 AZ_MAX_CW = 410; 

110 AZ_MAX_CCW = 411; 

111 AZ_RANGE_OK = 412; 

112 AZ_POLL_RANGE = 425; 

113 if all_marked==1 

114 AZ_Motor_Range_Marked_States = (1:4); 

115 else 

116 AZ_Motor_Range_Marked_States = [1,2,3]; 

117 end 

118 AZ_Motor_Range_STT = [1 AZ_POLL_RANGE 4; 4 AZ_RANGE_OK 1; 4 AZ_MAX_CW 2; 4 AZ_MAX_CCW 3; 3 AZ_POLL_RANGE 4; 2 

 



106 

 

 

AZ_POLL_RANGE 4]; 

119 AZ_Motor_Range = automaton(4, AZ_Motor_Range_STT, AZ_Motor_Range_Marked_States); 

120 

121 % Elevation 

122 EL_MAX_CW = 460; 

123 EL_MAX_CCW = 461; 

124 EL_RANGE_OK = 462; 

125 EL_POLL_RANGE = 435; 

126 if all_marked==1 

127 EL_Motor_Range_Marked_States =(1:4) ; % 

128 else 

129 EL_Motor_Range_Marked_States = [1,2,3]; 

130 end 

131 EL_Motor_Range_STT = [1 EL_POLL_RANGE 4; 4 EL_RANGE_OK 1; 4 EL_MAX_CW 2; 4 EL_MAX_CCW 3; 3 EL_POLL_RANGE 4; 2 

EL_POLL_RANGE 4]; 

132 EL_Motor_Range = automaton(4, EL_Motor_Range_STT, EL_Motor_Range_Marked_States); 

133 

134 % 

135 % Master  Controller 

136 % 

137 

138 Full_Sweep = 504; 

139 Bright_Detected = 510; 

140 Sweep_Failure = 511; 

141 EL_MOTOR_FAIL = 512; 

142 

143 MC_Marked_States = [1]; 

144 MC_STT = [1 Full_Sweep 1; 1 Bright_Detected 1; 1 Sweep_Failure 1 ; 1 EL_MOTOR_FAIL 1]; 

145 MC = automaton(1, MC_STT, MC_Marked_States); 

146 

147 % 

148 % Interactions 

149 % 

150 

151 %The Motors  cannot move when the battery state  of charge is Critical. 

152 if all_marked==1 

153 Mot_Motion_f_Bat_SOC_Marked_States =(1:4) ; 

154 else 

155 Mot_Motion_f_Bat_SOC_Marked_States =[1, 2] ; 

156 end 

157 Mot_Motion_f_Bat_SOC_STT = [Bat_SOC_STT; 2 AZ_CCW_OK 2; 2 AZ_CW_OK 2; 2 AZ_CW_MOVE 2; 2 AZ_CCW_MOVE 2; 3 

AZ_CCW_OK 3; 3 AZ_CW_OK 3; 1 AZ_CCW_OK 1; 1 AZ_CW_OK 1; 1 AZ_CW_MOVE 1; 1 AZ_CCW_MOVE 1]; 

158 Mot_Motion_f_Bat = automaton(4, Mot_Motion_f_Bat_SOC_STT, Mot_Motion_f_Bat_SOC_Marked_States); 

159 

160 % The Battery State  of Charge  varies as a function  of the brightness on the 

161 % PV Cell. 

162 

163 % Battery State  of charge as a function  of Solar Cell Brightness 

164 if all_marked==1 

165 Bat_SOC_f_PV_Marked_States =(1:3) ; 

166 else 

167 Bat_SOC_f_PV_Marked_States = [3]; 

168 end 

169 Bat_SOC_f_PV_STT = [PV_STT; 1 Safe_to_Crit 1; 1 Full_to_Safe 1; 2 Safe_to_Crit 2; 2 Full_to_Safe 2; 2 Crit_to_Safe 2; 2 Safe_to_Full 

2; 3 Safe_to_Crit 3; 3 Full_to_Safe 3; 3 Crit_to_Safe 3; 3 Safe_to_Full 3]; 

170 Bat_SOC_f_PV = automaton(3, Bat_SOC_f_PV_STT, Bat_SOC_f_PV_Marked_States); 

171 

172 % The Battery State  of Charge  varies as a function  of the motor state  (both 

173 % EL and AZ) 

174 % Battery State  of charge as a function  of Solar Cell Brightness. 

 



107 

 

 

175 

176 [Bat_SOC_f_Motor_Motions, states]  = sync(AZ_Motor_Motion, EL_Motor_Motion); 

177 for i=1:size(states,1) 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

if (states(i,1) ==  1  && states(i,2)  ==  1) 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Safe_to_Full i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Full_to_Safe i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Crit_to_Safe i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Safe_to_Crit i]; 

elseif (states(i,1) ==  1  && states(i,2)  ==  4) 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Safe_to_Full i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Full_to_Safe i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Crit_to_Safe i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Safe_to_Crit i]; 

else 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Safe_to_Crit i]; 

Bat_SOC_f_Motor_Motions.TL=[Bat_SOC_f_Motor_Motions.TL; i Full_to_Safe i]; 

end 

195 end 

196 

197 % Specifications: 

198 

199 % Motor  Motion  and Motor  Range need to be synchronized - This is performed 

200 % as a Specification as we are imposing a set of rules on how the system 

201 % behaves. 

202 

203 % The motors cannot move when CCW when in the Max CCW state. 

204 % The motors cannot move CW when in the Max CW state. 

205 % When the motors are "In Range" there  is no limit on the motion 

206 

207 % Azimuth 

208 if all_marked==1 

209 Spec_AZ_M_Motion_f_M_Range_MarkedStates =(1:4) ; %In the previous  ver. it was [1,2,3] 

210 else 

211 Spec_AZ_M_Motion_f_M_Range_MarkedStates =[1,2,3]; 

212 end 

213 Spec_AZ_M_Motion_f_M_Range_STT = [AZ_Motor_Range_STT; 1 AZ_CW_MOVE 1; 1 AZ_CCW_MOVE 1; 2 AZ_CCW_MOVE 2; 3 

AZ_CW_MOVE 3]; 

214 Spec_AZ_M_Motion_f_M_Range = automaton(4, Spec_AZ_M_Motion_f_M_Range_STT, 

Spec_AZ_M_Motion_f_M_Range_MarkedStates); 

215 

216 E_Not_In_AZ_M_Motion_f_M_Range_Spec = [Dark_to_Dim, Dim_to_Dark, Bright_to_Dim, Dim_to_Bright, Safe_to_Full, 

Full_to_Safe, Crit_to_Safe, Safe_to_Crit, Full_Sweep, Bright_Detected, Sweep_Failure, EL_MOTOR_FAIL, AZ_CCW_OK, AZ_CW_OK, 

EL_POLL_RANGE, EL_RANGE_OK, EL_MAX_CW, EL_MAX_CCW, EL_FAIL_MOVE, EL_CW_MOVE, EL_CCW_MOVE,  EL_CW_OK, 

EL_CCW_OK,wait_2sec]; 

217 

218 global  Spec_AZ_M_Motion_f_M_Range_SelfLooped Spec_AZ_M_Motion_f_M_Range_SelfLooped_tmp; 

219 Spec_AZ_M_Motion_f_M_Range_SelfLooped = selfloop(Spec_AZ_M_Motion_f_M_Range, 

E_Not_In_AZ_M_Motion_f_M_Range_Spec); 

220 

221 % Elevation 

222 if all_marked==1 

223 Spec_EL_M_Motion_f_M_Range_MarkedStates =(1:4) ; 

224 else 

225 Spec_EL_M_Motion_f_M_Range_MarkedStates =[1,2,3]; 

226 end 

227 Spec_EL_M_Motion_f_M_Range_STT = [EL_Motor_Range_STT; 1 EL_CW_MOVE 1; 1 EL_CCW_MOVE 1; 2 EL_CCW_MOVE 2; 3 

EL_CW_MOVE 3]; 

 



108 

 

 

228 Spec_EL_M_Motion_f_M_Range = automaton(4, Spec_EL_M_Motion_f_M_Range_STT, 

Spec_EL_M_Motion_f_M_Range_MarkedStates); 

229 

230 E_Not_In_EL_M_Motion_f_M_Range_Spec = [Dark_to_Dim, Dim_to_Dark, Bright_to_Dim, Dim_to_Bright, Safe_to_Full, Full_to_Safe, 

Crit_to_Safe, Safe_to_Crit, Full_Sweep, Bright_Detected, Sweep_Failure, EL_MOTOR_FAIL, EL_FAIL_MOVE, AZ_CCW_OK,  AZ_CW_OK, 

AZ_CW_MOVE,  AZ_CCW_MOVE,  AZ_POLL_RANGE, AZ_RANGE_OK, AZ_MAX_CW, AZ_MAX_CCW, EL_CCW_OK, EL_CW_OK,wait_2sec]; 

231 

232 global  Spec_EL_M_Motion_f_M_Range_SelfLooped Spec_EL_M_Motion_f_M_Range_SelfLooped_tmp; 

233 Spec_EL_M_Motion_f_M_Range_SelfLooped = selfloop(Spec_EL_M_Motion_f_M_Range, 

E_Not_In_EL_M_Motion_f_M_Range_Spec); 

234 

235 % Motor  Range as a function  of Motor  Motion 

236 % When the Motors  are Turning CW, it can generate the "AZ_CW_OK" signal, all other  signals are suppresed. (Cannot  add  - will 

make it non-deterministic) 

237 % When the Motors  are Turning CCW, it can generate the "AZ_CCW_OK" signal, all other  signals are suppresed. (Cannot  add  - 

will make it non-deterministic) 

238 % When the Motors  are Idle, it can generate the AZ_MAX_CCW and AZ_MAX_CW signals 

239 

240 

241 % Azimuth 

242 if all_marked==1 

243 Spec_AZ_M_Range_f_M_Motion_MarkedStates =(1:3) ; %In the previous  ver. it was [1] 

244 else 

245 Spec_AZ_M_Range_f_M_Motion_MarkedStates =[1]; 

246 end 

247 Spec_AZ_M_Range_f_M_Motion_MarkedStates_STT = [AZ_Motor_Motion_STT; 1 AZ_MAX_CW 1; 1 AZ_MAX_CCW 1; 1 

AZ_RANGE_OK 1; 1 AZ_POLL_RANGE 1]; 

248 Spec_AZ_M_Range_f_M_Motion = automaton(3, Spec_AZ_M_Range_f_M_Motion_MarkedStates_STT, 

Spec_AZ_M_Range_f_M_Motion_MarkedStates); 

249 

250 E_Not_In_AZ_M_Range_f_M_Motion_Spec = [Dark_to_Dim, Dim_to_Dark, Bright_to_Dim, Dim_to_Bright, Safe_to_Full, 

Full_to_Safe, Crit_to_Safe, Safe_to_Crit, Full_Sweep, Bright_Detected,Sweep_Failure, EL_MOTOR_FAIL, EL_CW_MOVE, EL_CCW_MOVE, 

EL_CW_OK, EL_CCW_OK, EL_FAIL_MOVE, EL_POLL_RANGE, EL_RANGE_OK, EL_MAX_CW, EL_MAX_CCW,wait_2sec]; 

251 

252 global  Spec_AZ_M_Range_f_M_Motion_SelfLooped Spec_AZ_M_Range_f_M_Motion_SelfLooped_tmp; 

253 Spec_AZ_M_Range_f_M_Motion_SelfLooped = selfloop(Spec_AZ_M_Range_f_M_Motion, 

E_Not_In_AZ_M_Range_f_M_Motion_Spec); 

254 

255 % Elevation 

256 if all_marked==1 

257 Spec_EL_M_Range_f_M_Motion_MarkedStates =(1:4) ; %In the previous  ver. it was [1,4] 

258 else 

259 Spec_EL_M_Range_f_M_Motion_MarkedStates =[1,4]; 

260 end 

261 Spec_EL_M_Range_f_M_Motion_MarkedStates_STT = [EL_Motor_Motion_STT; 1 EL_MAX_CW 1; 1 EL_MAX_CCW 1; 1 

EL_RANGE_OK 1; 1 EL_POLL_RANGE 1]; 

262 Spec_EL_M_Range_f_M_Motion = automaton(4, Spec_EL_M_Range_f_M_Motion_MarkedStates_STT, 

Spec_EL_M_Range_f_M_Motion_MarkedStates); 

263 

264 E_Not_In_EL_M_Range_f_M_Motion_Spec = [Dark_to_Dim, Dim_to_Dark, Bright_to_Dim, Dim_to_Bright, Safe_to_Full, Full_to_Safe, 

Crit_to_Safe, Safe_to_Crit, Full_Sweep, Bright_Detected,Sweep_Failure, EL_MOTOR_FAIL, AZ_CCW_OK, AZ_CW_OK, AZ_CW_MOVE, 

AZ_CCW_MOVE, AZ_POLL_RANGE, AZ_RANGE_OK, AZ_MAX_CW, AZ_MAX_CCW,wait_2sec]; 

265 

266 global  Spec_EL_M_Range_f_M_Motion_SelfLooped Spec_EL_M_Range_f_M_Motion_SelfLooped_tmp; 

267 Spec_EL_M_Range_f_M_Motion_SelfLooped = selfloop(Spec_EL_M_Range_f_M_Motion, 

E_Not_In_EL_M_Range_f_M_Motion_Spec); 

268 

269 % The final spec defines  the behaviour of the system  should  take when a 

270 % Sweep command is received. 

271 

 



109 

 

 

272 Spec_Total_States = 58; 

273 if all_marked==1 

274 Sweep_Spec_MarkedStates =(1:58) ; 

275 else 

276 Sweep_Spec_MarkedStates =[2,40]; 

277 end 

278 Sweep_Spec_STT = [1 Dim_to_Bright 2 ; 2 Bright_to_Dim 1 ; 1 Full_Sweep 3 ; 2 Full_Sweep 4 ; 4 Bright_Detected 2 ; 3 

Dim_to_Bright 4 ; 4 Bright_to_Dim 3 ; 3 AZ_POLL_RANGE 5 ; 5 Dim_to_Bright 6 ; 6 Bright_to_Dim 5 ; 5 AZ_RANGE_OK 7 ; 5 

AZ_MAX_CW 7 ; 7 AZ_CCW_MOVE 3 ; 7 Dim_to_Bright 8 ; 8 Bright_to_Dim 7 ; 5 AZ_MAX_CCW 9 ; 9 Dim_to_Bright 10 ; 10 

Bright_to_Dim 9 ; 9 EL_POLL_RANGE 11 ; 11 Dim_to_Bright 12 ; 12 Bright_to_Dim 11 ; 11 EL_RANGE_OK 13 ; 11 EL_MAX_CW 13 ; 13 

Dim_to_Bright 14 ; 13 EL_CCW_MOVE 35 ; 14 Bright_to_Dim 13 ; 11 EL_MAX_CCW 15 ; 15 Dim_to_Bright 16 ; 16 Bright_to_Dim 15 ; 

15 AZ_POLL_RANGE 17 ; 17 Dim_to_Bright 18 ; 18 Bright_to_Dim 17 ; 17 AZ_RANGE_OK 19 ; 17 AZ_MAX_CCW 19 ; 19 Dim_to_Bright 

20 ; 19 AZ_CW_MOVE 15 ; 20 Bright_to_Dim 19 ; 17 AZ_MAX_CW 21 ; 21 Dim_to_Bright 22 ; 22 Bright_to_Dim 21 ; 21 

EL_POLL_RANGE 23 ; 23 Dim_to_Bright 24 ; 24 Bright_to_Dim 23 ; 23 EL_RANGE_OK 25 ; 23 EL_MAX_CCW 25 ; 25 Dim_to_Bright 26 ; 

25 EL_CW_MOVE 55 ; 26 Bright_to_Dim 25 ; 23 EL_MAX_CW 27 ; 27 Dim_to_Bright 28 ; 28 Bright_to_Dim 27 ; 27 AZ_POLL_RANGE 29 

; 29 Dim_to_Bright 30 ; 30 Bright_to_Dim 29 ; 29 AZ_RANGE_OK 31 ; 29 AZ_MAX_CW 31 ; 29 AZ_MAX_CCW 33 ; 31 AZ_CCW_MOVE 

27 ; 31 Dim_to_Bright 32 ; 32 Bright_to_Dim 31 ; 33 Dim_to_Bright 34 ; 34 Bright_to_Dim 33 ; 35 EL_CCW_OK 9 ; 35 Dim_to_Bright 36 

; 36 Bright_to_Dim 35 ; 36 EL_CCW_OK 10 ; 36 EL_FAIL_MOVE 38 ; 35 EL_FAIL_MOVE 37 ; 37 Dim_to_Bright 38 ; 38 Bright_to_Dim 37 ; 

38 EL_MOTOR_FAIL 48 ; 37 EL_MOTOR_FAIL 47 ; 55 EL_CW_OK 21 ; 55 Dim_to_Bright 56 ; 56 Bright_to_Dim 55 ; 56 EL_CW_OK 22 ; 

55 EL_FAIL_MOVE 57 ; 57 Dim_to_Bright 58 ; 58 Bright_to_Dim 57 ; 56 EL_FAIL_MOVE 58 ; 58 EL_MOTOR_FAIL 54 ; 57 

EL_MOTOR_FAIL 53 ; 39 Full_Sweep 41 ; 40 Full_Sweep 42 ; 41 AZ_POLL_RANGE 43 ; 43 AZ_RANGE_OK 45 ; 43 AZ_MAX_CW 45 ; 45 

AZ_CCW_MOVE 41 ; 43 AZ_MAX_CCW 47 ; 47 AZ_POLL_RANGE 49 ; 49 AZ_RANGE_OK 51 ; 49 AZ_MAX_CCW 51 ; 39 Dim_to_Bright 

40 ; 40 Bright_to_Dim 39 ; 41 Dim_to_Bright 42 ; 42 Bright_to_Dim 41 ; 43 Dim_to_Bright 44 ; 44 Bright_to_Dim 43 ; 45 Dim_to_Bright 

46 ; 46 Bright_to_Dim 45 ; 47 Dim_to_Bright 48 ; 48 Bright_to_Dim 47 ; 49 Dim_to_Bright 50 ; 50 Bright_to_Dim 49 ; 51 Dim_to_Bright 

52 ; 51 AZ_CW_MOVE 47; 52 Bright_to_Dim 51 ; 49 AZ_MAX_CW 53 ; 53 Dim_to_Bright 54 ; 54 Bright_to_Dim 53 ; 53 Sweep_Failure 

39 ; 33 Sweep_Failure 1 ; 6 Bright_Detected 2 ; 8 Bright_Detected 2 ; 10 Bright_Detected 2 ; 12 Bright_Detected 2 ; 14 

Bright_Detected 2 ; 16 Bright_Detected 2 ; 18 Bright_Detected 2 ; 20 Bright_Detected 2 ; 22 Bright_Detected 2 ; 24 Bright_Detected 2 

; 26 Bright_Detected 2 ; 28 Bright_Detected 2 ; 30 Bright_Detected 2 ; 32 Bright_Detected 2 ; 34 Bright_Detected 2 ; 42 

Bright_Detected 40 ; 44 Bright_Detected 40 ; 46 Bright_Detected 40 ; 48 Bright_Detected 40 ; 50 Bright_Detected 40 ; 52 

Bright_Detected 40 ; 54 Bright_Detected 40 ; 3 Full_Sweep 3 ; 4 Full_Sweep 4 ; 5 Full_Sweep 5 ; 6 Full_Sweep 6 ; 7 Full_Sweep 7 ; 8 

Full_Sweep 8 ; 9 Full_Sweep 9 ; 10 Full_Sweep 10 ; 11 Full_Sweep 11 ; 12 Full_Sweep 12 ; 13 Full_Sweep 13 ; 14 Full_Sweep 14 ; 15 

Full_Sweep 15 ; 16 Full_Sweep 16 ; 17 Full_Sweep 17 ; 18 Full_Sweep 18 ; 19 Full_Sweep 19 ; 20 Full_Sweep 20 ; 21 Full_Sweep 21 ; 22 

Full_Sweep 22 ; 23 Full_Sweep 23 ; 24 Full_Sweep 24 ; 25 Full_Sweep 25 ; 26 Full_Sweep 26 ; 27 Full_Sweep 27 ; 28 Full_Sweep 28 ; 29 

Full_Sweep 29 ; 30 Full_Sweep 30 ; 31 Full_Sweep 31 ; 32 Full_Sweep 32 ; 33 Full_Sweep 33 ; 34 Full_Sweep 34 ; 35 Full_Sweep 35 ; 36 

Full_Sweep 36 ; 37 Full_Sweep 37 ; 38 Full_Sweep 38 ; 41 Full_Sweep 41 ; 42 Full_Sweep 42 ; 43 Full_Sweep 43 ; 44 Full_Sweep 44 ; 45 

Full_Sweep 45 ; 46 Full_Sweep 46 ; 47 Full_Sweep 47 ; 48 Full_Sweep 48 ; 49 Full_Sweep 49 ; 50 Full_Sweep 50 ; 51 Full_Sweep 51 ; 52 

Full_Sweep 52 ; 53 Full_Sweep 53 ; 54 Full_Sweep 54 ; 55 Full_Sweep 55 ; 56 Full_Sweep 56 ; 57 Full_Sweep 57 ; 58 Full_Sweep 58; 6 

AZ_RANGE_OK 8; 6 AZ_MAX_CW 8; 6 AZ_MAX_CCW 10; 12 EL_RANGE_OK 14; 12 EL_MAX_CW 14; 12 EL_MAX_CCW 16; 18 

AZ_RANGE_OK 20; 18 AZ_MAX_CW 20; 18 AZ_MAX_CCW 22; 24 EL_RANGE_OK 26; 24 EL_MAX_CW 26; 24 EL_MAX_CCW 28; 30 

AZ_RANGE_OK 32; 30 AZ_MAX_CW 32; 30 AZ_MAX_CCW 34; 44 AZ_RANGE_OK 46; 44 AZ_MAX_CW 46; 44 AZ_MAX_CCW 48; 50 

AZ_RANGE_OK 52; 50 AZ_MAX_CW 52; 50 AZ_MAX_CCW 54]; 

279 Sweep_Spec_Automata = automaton(Spec_Total_States, Sweep_Spec_STT, Sweep_Spec_MarkedStates); 

280 

281 E_Not_In_Sweep_Spec = [AZ_CCW_OK, AZ_CW_OK, Dark_to_Dim, Dim_to_Dark, Safe_to_Full, Full_to_Safe, Crit_to_Safe, 

Safe_to_Crit,wait_2sec]; 

282 

283 global  Sweep_Spec_Automata_SelfLooped Sweep_Spec_Automata_SelfLooped_tmp; 

284 Sweep_Spec_Automata_SelfLooped = selfloop(Sweep_Spec_Automata, E_Not_In_Sweep_Spec); 

285 

286 global  Euc; 

287 Euc = [Full_Sweep, Dark_to_Dim, Dim_to_Bright, Dim_to_Dark, Bright_to_Dim, AZ_CCW_OK, AZ_CW_OK, EL_CW_OK, 

EL_CCW_OK, EL_FAIL_MOVE, Safe_to_Full, Full_to_Safe, Crit_to_Safe, Safe_to_Crit, AZ_RANGE_OK, AZ_MAX_CCW, AZ_MAX_CW, 

EL_RANGE_OK, EL_MAX_CCW, EL_MAX_CW,wait_2sec]; 

288 

289 global  Ec; 

290 Ec=[AZ_CW_MOVE, AZ_CCW_MOVE,EL_CW_MOVE, EL_CCW_MOVE,EL_POLL_RANGE,AZ_POLL_RANGE, Bright_Detected, 

Sweep_Failure,EL_MOTOR_FAIL]; 

291 % 

292 %----------------------------------------------- 

293 Plant = sync(PV_Cell, Bat_SOC, AZ_Motor_Motion, EL_Motor_Motion, AZ_Motor_Range, EL_Motor_Range, MC, 

 



110 

 

 

Mot_Motion_f_Bat, Bat_SOC_f_PV, Bat_SOC_f_Motor_Motions,Wait); 

294 Xmc_verify(Plant,Ec);%To check marked states with just controllable events  to determine NB. 

295 

296 [SPEC,Sstates] = product(Sweep_Spec_Automata_SelfLooped, Spec_EL_M_Range_f_M_Motion_SelfLooped, 

Spec_AZ_M_Range_f_M_Motion_SelfLooped, Spec_EL_M_Motion_f_M_Range_SelfLooped, 

Spec_AZ_M_Motion_f_M_Range_SelfLooped); 

297 

298 %The legal language 

299 legal=product(Plant,SPEC); 

300 Xmc_verify(legal,Ec);%To check marked states with just controllable events  to determine NB. 

301 %------------------------- 

302 Supervisor  = supcon(SPEC, Plant, Euc); %Offline supervisor 

303 %To recheck  consistency of defined events. 

304 Modules_events=[PV_Cell.TL(:,2)', Bat_SOC.TL(:,2)', AZ_Motor_Motion.TL(:,2)', EL_Motor_Motion.TL(:,2)', AZ_Motor_Range.TL(:,2)', 

EL_Motor_Range.TL(:,2)', MC.TL(:,2)', Mot_Motion_f_Bat.TL(:,2)', Bat_SOC_f_PV.TL(:,2)', Bat_SOC_f_Motor_Motions.TL(:,2)',Wait.TL(:,2)']; 

305 Events_diff=setdiff([Ec,Euc],unique(Modules_events)); 

306 if ~isempty (Events_diff) 

307 

308 

fprintf('There is a different  between availabe  events  and Ec,Euc :%d 

return; 

\n ' ,Events_diff); 

309 end 

310 

311 %The product function(instead of sync) is used  to make a Plant inside lookehead window,therefore, all events  will be added as 

a 

312 %selfloop  to the models(..._s) and then  by using Product of these modules within Nw 

313 %steps,the online plant  will be constructed. 

314 global  Bat_SOC_s PV_Cell_s AZ_Motor_Motion_s EL_Motor_Motion_s AZ_Motor_Range_s EL_Motor_Range_s MC_s  ... 

315 Mot_Motion_f_Bat_s Bat_SOC_f_PV_s Bat_SOC_f_Motor_Motions_s Wait_s; 

316 global  Bat_SOC_s_tmp PV_Cell_s_tmp AZ_Motor_Motion_s_tmp EL_Motor_Motion_s_tmp AZ_Motor_Range_s_tmp 

EL_Motor_Range_s_tmp MC_s_tmp ... 

317 

318 

Mot_Motion_f_Bat_s_tmp Bat_SOC_f_PV_s_tmp Bat_SOC_f_Motor_Motions_s_tmp Wait_s_tmp; 

319 Bat_SOC_s=selfloop(Bat_SOC,setdiff(Modules_events,unique(Bat_SOC.TL(:,2)))); % 

320 PV_Cell_s=selfloop(PV_Cell,setdiff(Modules_events,unique(PV_Cell.TL(:,2)))); % 

321 AZ_Motor_Motion_s=selfloop(AZ_Motor_Motion,setdiff(Modules_events,unique(AZ_Motor_Motion.TL(:,2)))); % 

322 EL_Motor_Motion_s=selfloop(EL_Motor_Motion,setdiff(Modules_events,unique(EL_Motor_Motion.TL(:,2)))); % 

323 AZ_Motor_Range_s=selfloop(AZ_Motor_Range,setdiff(Modules_events,unique(AZ_Motor_Range.TL(:,2)))); % 

324 EL_Motor_Range_s=selfloop(EL_Motor_Range,setdiff(Modules_events,unique(EL_Motor_Range.TL(:,2)))); % 

325 MC_s=selfloop(MC,setdiff(Modules_events,unique(MC.TL(:,2)))); % 

326 Mot_Motion_f_Bat_s=selfloop(Mot_Motion_f_Bat,setdiff(Modules_events,unique(Mot_Motion_f_Bat.TL(:,2))));  % 

327 Bat_SOC_f_PV_s=selfloop(Bat_SOC_f_PV,setdiff(Modules_events,unique(Bat_SOC_f_PV.TL(:,2)))); % 

328 Bat_SOC_f_Motor_Motions_s=selfloop(Bat_SOC_f_Motor_Motions,setdiff(Modules_events,unique(Bat_SOC_f_Motor_Motions.TL 

(:,2))));% 

329 Wait_s=selfloop(Wait,setdiff(Modules_events,unique(Wait.TL(:,2)))); % 

330 

331 %To transform Automaton to Struct(The struct  data  type is used  in mex files). 

332 %   

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

346 

PV_Cell_s=Change(PV_Cell_s,1); 

Bat_SOC_s=Change(Bat_SOC_s,1); 

AZ_Motor_Motion_s=Change(AZ_Motor_Motion_s,1); 

EL_Motor_Motion_s=Change(EL_Motor_Motion_s,1); 

AZ_Motor_Range_s=Change(AZ_Motor_Range_s,1); 

EL_Motor_Range_s=Change(EL_Motor_Range_s,1); 

MC_s=Change(MC_s,1); 

Mot_Motion_f_Bat_s=Change(Mot_Motion_f_Bat_s,1); 

Bat_SOC_f_PV_s=Change(Bat_SOC_f_PV_s,1); 

Bat_SOC_f_Motor_Motions_s=Change(Bat_SOC_f_Motor_Motions_s,1); 

Wait_s=Change(Wait_s,1); 

%---- 

%Modules  which make SPEC 

 

 



111 

 

 

347 

348 

349 

350 

351 

352 

Sweep_Spec_Automata_SelfLooped=Change(Sweep_Spec_Automata_SelfLooped,1); % 

Spec_EL_M_Range_f_M_Motion_SelfLooped=Change(Spec_EL_M_Range_f_M_Motion_SelfLooped,1); % 

Spec_AZ_M_Range_f_M_Motion_SelfLooped=Change(Spec_AZ_M_Range_f_M_Motion_SelfLooped,1); % 

Spec_EL_M_Motion_f_M_Range_SelfLooped=Change(Spec_EL_M_Motion_f_M_Range_SelfLooped,1); % 

Spec_AZ_M_Motion_f_M_Range_SelfLooped=Change(Spec_AZ_M_Motion_f_M_Range_SelfLooped,1); % 

%   

353 global  String; 

354 String=[];%It keeps  the trajectory of selected events  which are taken  during  online  looahead. 

355 global  Supervisor_m new_enable_event CallbackRunning; 

356 Supervisor_m=Supervisor;%The offline supervisor which is tracked by taken  events. 

357 new_enable_event=false; 

358 %--------------------------------------------------------------------------------------------- 

359 

360 Lookahead_tot_time=[]; %Keep record  of total  time of generating Plant and Supervisor  in online mode. 

361 global  serialOne;%Used in serial_com 

362 del_time=[]; 

363 del_t=tic; 

364 global  totall_e_time; 

365 totall_e_time=[0 0]; 

366 global  first; 

367 first=true;%For the first run of LLP. 

368 Lookahead_Comp_cntr=0; 

369 buff_cntr=0;%Buffer counter to keep  the unsyncronized received  event  in the buffer for further 

370 %steps  use. 

371 global  rec_e_t buff_cntr; 

372 Plant_size=[]; 

373 SPEC_size=[]; 

374 Online_Supervisor_size=[]; 

375 global  Enable_Events_offline Enable_Events_first; 

376 global  Online_Supervisor Online_Supervisor_at_small_delta; 

377 global  Lookahead_Copm_time_Intervals_tot Lookahead_Copm_time_Intervals LLP_at_delta LLP_exe miss_event del_t del_time 

String_tmp callback_times_matrix; 

378 Lookahead_Copm_time_Intervals_tot=[]; 

379 

380 LLP_at_delta=false; 

381 LLP_exe=false;%When selta=samll delta,the LLP computation has to be executed. 

382 miss_event=0;%The nimber  of events  which is past  since LLP_exe=True and real start  of LLP computation. 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

while(Online) 

%LLP_at_delta would be "false" at delta=0 to prevent LLP 

%calculation be repeated at delta_N-small_delta 

if first==true || (LLP_exe==true && LLP_at_delta==false) 

%The copy of last available modeles should  be used  for LLP. 

%the manipulation of these modules should  be prevented by receing  event  interrupt. 

if first==true 

Lookahead_Copm_time_Intervals=tic;%To record  the time intervals of supcon occurence 

Nw_tmp=Nw; 

copy_modules();%Make a copy of all models as  ..._tmp 

elseif LLP_exe==true 

%If due  to some  consequitive events,the point  of 

%"delta_N-small_delta" for LLP calculation is missed,the length of 

%LLP window should  be less as "delta_N+delta" 

Nw_tmp=5+delta_N+delta; 

LLP_at_delta=true; 

end 

%Making a Plant with depth of Nw by producting of every two modeles 

check_t_LookaheadComTime=tic; 

Lookahead_Copm_time_Intervals_t=toc(Lookahead_Copm_time_Intervals); 

Lookahead_Copm_time_Intervals_tot=[Lookahead_Copm_time_Intervals_tot;Lookahead_Copm_time_Intervals_t 1]; 

p1=product_c_v2_n_mex(Nw_tmp,Bat_SOC_f_PV_s_tmp,Bat_SOC_s_tmp); % 

p2=product_c_v2_n_mex(Nw_tmp,p1,PV_Cell_s_tmp); % 

 

 



112 

 

 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

p3=product_c_v2_n_mex(Nw_tmp,AZ_Motor_Motion_s_tmp,EL_Motor_Motion_s_tmp); % 

p4=product_c_v2_n_mex(Nw_tmp,p3,Wait_s_tmp); % 

p5=product_c_v2_n_mex(Nw_tmp,p4,Bat_SOC_f_Motor_Motions_s_tmp); % 

p6=product_c_v2_n_mex(Nw_tmp,Mot_Motion_f_Bat_s_tmp,p5); % 

p7=product_c_v2_n_mex(Nw_tmp,AZ_Motor_Range_s_tmp,EL_Motor_Range_s_tmp); % 

p8=product_c_v2_n_mex(Nw_tmp,p2,p6); % 

p9=product_c_v2_n_mex(Nw_tmp,p8,MC_s_tmp); % 

p10=product_c_v2_n_mex(Nw_tmp,p9,p7); 

%Modeles  which make SPEC 

s1=product_c_v2_n_mex(Nw_tmp-1,Spec_EL_M_Motion_f_M_Range_SelfLooped_tmp, 

Spec_EL_M_Range_f_M_Motion_SelfLooped_tmp); % 

417 s2=product_c_v2_n_mex(Nw_tmp-1,Spec_AZ_M_Range_f_M_Motion_SelfLooped_tmp, 

Spec_AZ_M_Motion_f_M_Range_SelfLooped_tmp); % 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

s3=product_c_v2_n_mex(Nw_tmp-1,s1,s2); % 

s4=product_c_v2_n_mex(Nw_tmp-1,s3,Sweep_Spec_Automata_SelfLooped_tmp); % 

if first==true 

Online_Supervisor=supcon_c_mex(s4,p10,Euc); 

rec_e_t=tic;%To start  timer of recording events  once  the computation time starts. 

delta=delta_N; 

Enable_Events_offline=unique(Supervisor_m.TL(Supervisor_m.TL(:,1)==1,2)); % 

Enable_Events_first=unique(Online_Supervisor.TL(Online_Supervisor.TL(:,1)==1,2)); 

fprintf('Size of lookahead buffer:%d \n ',delta); 

fprintf('First Enable Events of online  Supervisor:%d \n ' ,Enable_Events_first); 

Event_diff1=setdiff(Enable_Events_offline,Enable_Events_first); 

Event_diff2=setdiff(Enable_Events_first,Enable_Events_offline); 

if ~isempty(union(Event_diff1,Event_diff2)) 

fprintf('Not Valid Nw because of %d 

break; 

end 

elseif LLP_exe==true 

\n ',Event_diff1)%The validity of LLP supervisor is checked in every single step. 

Online_Supervisor_at_small_delta=supcon_c_mex(s4,p10,Euc); 

miss_event=small_delta-delta 

LLP_exe=false; 

CallbackRunning=false; 

end 

p_t_s_t=toc(check_t_LookaheadComTime); 

uint64  check_t_LookaheadComTime=0; 

Lookahead_tot_time=[Lookahead_tot_time; p_t_s_t delta  Nw_tmp]; 

%-------------------------------------------- 

Lookahead_Copm_time_Intervals_t=toc(Lookahead_Copm_time_Intervals); 

Lookahead_Copm_time_Intervals_tot=[Lookahead_Copm_time_Intervals_tot;Lookahead_Copm_time_Intervals_t 2]; 

%------------------------------------------------- 

%To record  the size of main automatons in every LLP computation. 

t=size(p10.TL); 

Plant_size=[Plant_size;p10.N t(1,1)]; 

t=size(s4.TL); 

SPEC_size=[SPEC_size;s4.N t(1,1)]; 

t=size(Online_Supervisor.TL); 

Online_Supervisor_size=[Online_Supervisor_size;Online_Supervisor.N t(1,1)]; 

%------------------------------------------------ 

if Serial==1 && first==true 

serial_com_v2();%To Config the serial port  and received  events  from "uc" after sending "START_EVENT". 

first=false; 

end 

Lookahead_Comp_cntr=Lookahead_Comp_cntr+1; 

end%if delta==0 ||... 

if isempty(Online_Supervisor.TL) 

disp('e(SE or RTE)');%It means SE or RTE. 

 



113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

return; 

end 

end  %while 

if Serial==1 

RESET=input('Reset the position of motors?\n'); 

if RESET==true 

fprintf(serialOne,'!33@ 

end 

end 

&');% 

%To save the results  of execution in related files. 

dlmwrite('String for small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt',String); 

dlmwrite('Time Exucation for Plant & Supcon  for small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt', 

Lookahead_tot_time); 

476 

477 

478 

dlmwrite('Time of Event Reception to MATLAB for small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt',totall_e_time); 

dlmwrite('Time of serial data  delivery for small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt',del_time); 

dlmwrite('Time of Supcon  Execution Intervals for small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt', 

Lookahead_Copm_time_Intervals_tot); 

479 

480 

481 

482 

dlmwrite('Lookahead Plant Size of small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt',Plant_size); 

dlmwrite('Lookahead SPEC Size of small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt',SPEC_size); 

dlmwrite('Lookahead Supervisor  Size of small delta'+string(small_delta)+'DelN'+string(delta_N)+'.txt',Online_Supervisor_size); 

dlmwrite('Callback Function  execution time'+string(small_delta)+'DelN'+string(delta_N)+'.txt',callback_times_matrix); 

 



114 

 

   Serial communication between MATLAB and microcontroller: 

 

1 function  []=serial_com_v2() 

2 %To send  an receive data  from\to microcontroller through serial port. 

3 %clc; 

4 %clear; 

5 global  frst_full_sweep Lookahead_Copm_time_Intervals_tot; 

6 frst_full_sweep=true; 

7 global  serialOne  E_rec_str Online; 

8 E_rec_str=[];%keep the current received  events 

9 global  E_rec_n; 

10 E_rec_n=[];%The number of events  which are received  in one  packet. 

11 global  Event; 

12 Event=[]; 

13 global  E_rec_number; 

14 E_rec_number=0;%Event number 

15 global  E_rec_cmplt; 

16 E_rec_cmplt=false; 

17 global  Euc Jump_Lokkahead_com Euc_received_p rec_e_t delta  delta_N small_delta new_enable_event; 

18 global  Supervisor_m Online_Supervisor Online_Supervisor_at_small_delta; 

19 global  Ec_t_b_delivered;%True if there  is an Ec to be delivered. 

20 Ec_t_b_delivered=false; 

21 global  String_tmp del_time callback_times_matrix; 

22 callback_times_matrix=[]; 

23 String_tmp=[]; 

24 del_time=[];% 

25 global  CallbackRunning String_test LLP_at_delta first LLP_exe Enable_Events Enable_Events_first Enable_Events_offline Ec_deliver 

del_t; 

26 Ec_deliver=0;%The Ec which should  be delivered. 

27 String_test=[]; 

28 first_t=true; 

29 reapeated_n=0; 

30 %To initialize the serial port. 

31 if ~isempty(instrfind) 

32 

33 

fclose(instrfind); 

delete(instrfind); 

34 end 

35 serialOne=serial('COM3','BaudRate', 115200,'Timeout',10,'InputBufferSize',2048,'Terminator','&'); 

36 serialOne.ReadAsyncMode='continuous'; 

37 serialOne.BytesAvailableFcnMode = 'terminator'; 

38 %If BytesAvailableFcnMode is terminator, 

39 %the callback function  executes every time the character specified  by the Terminator property is read. 

40 serialOne.BytesAvailableFcn = @instrcallback; 

41 %The MATLAB® file callback function  specified  for the OutputEmptyFcn property is executed when the output buffer is empty. 

42 fopen(serialOne); 

43 fprintf(serialOne,'!00@ 

44 

45 if Online==1 

&');%Sending start  signal(START_EVENT) 

46 fprintf(serialOne,'!32@ &');%ending online  mode signal(ONLINE) 

47 end 

48 if frst_full_sweep==true 

49 

50 

fprintf(serialOne,'!15@ 

frst_full_sweep=false; 

&');%Full sweep  command 

51 end 

52 global  totall_e_time Lookahead_Copm_time_Intervals; 

53 

54 %Equivalent events_array numbers in the vector. 

55 Dark_to_Dim_v = 0; 

56 Dim_to_Bright_v = 1; 

57 Dim_to_Dark_v = 2; 

58 Bright_to_Dim_v = 3; 

59 

 



115 

 

 

60 AZ_CCW_OK_v = 4; 

61 AZ_CW_OK_v = 5; 

62 AZ_CCW_MOVE_v = 6; 

63 AZ_CW_MOVE_v= 7; 

64 

65 EL_CCW_OK_v = 8; 

66 EL_CW_OK_v = 9; 

67 EL_CCW_MOVE_v = 10; 

68 EL_CW_MOVE_v = 11; 

69 EL_FAIL_MOVE_v = 12; 

70 

71 AZ_POLL_RANGE_v = 13; 

72 AZ_MAX_CW_v = 14; 

73 AZ_MAX_CCW_v = 15; 

74 AZ_RANGE_OK_v = 16; 

75 

76 EL_POLL_RANGE_v = 17; 

77 EL_MAX_CW_v = 18; 

78 EL_MAX_CCW_v = 19; 

79 EL_RANGE_OK_v = 20; 

80 

81 Safe_to_Full_v = 21; 

82 Full_to_Safe_v = 22; 

83 Crit_to_Safe_v = 23; 

84 Safe_to_Crit_v = 24; 

85 

86 Bat_Discharging_v = 25; 

87 Bat_Charging_v = 26; 

88 

89 AZ_Sweep_CW_v = 27; 

90 AZ_Sweep_CCW_v = 28; 

91 EL_Sweep_CW_v = 29; 

92 EL_Sweep_CCW_v = 30; 

93 

94 Full_Sweep_v = 31; 

95 Bright_Detected_v = 32; 

96 Sweep_Failure_v = 33; 

97 EL_MOTOR_FAIL_v = 34; 

98 

99 wait_2sec_v=35; 

100 send_AZ_CCW_HW_v=36; 

101 send_AZ_CW_HW_v=37; 

102 send_EL_CCW_HW_v=38; 

103 send_EL_CW_HW_v=39; 

104 

105 %-------------------------------- 

106 Dark_to_Dim_var = 301; 

107 Dim_to_Bright_var = 302; 

108 Dim_to_Dark_var = 303; 

109 Bright_to_Dim_var = 304; 

110 

111 AZ_CCW_OK_var = 401; 

112 AZ_CW_OK_var = 402; 

113 AZ_CCW_MOVE_var = 403; 

114 AZ_CW_MOVE_var = 404; 

115 

116 EL_CCW_OK_var = 451; 

117 EL_CW_OK_var = 452; 

118 EL_CCW_MOVE_var = 453; 

119 EL_CW_MOVE_var = 454; 

 



116 

 

 

120 EL_FAIL_MOVE_var = 455; 

121 

122 AZ_POLL_RANGE_var = 425; 

123 AZ_MAX_CW_var = 410; 

124 AZ_MAX_CCW_var = 411; 

125 AZ_RANGE_OK_var = 412; 

126 

127 EL_POLL_RANGE_var = 435; 

128 EL_MAX_CW_var = 460; 

129 EL_MAX_CCW_var = 461; 

130 EL_RANGE_OK_var = 462; 

131 

132 Safe_to_Full_var = 601; 

133 Full_to_Safe_var = 602; 

134 Crit_to_Safe_var = 603; 

135 Safe_to_Crit_var = 604; 

136 

137 AZ_Sweep_CW_var = 500; 

138 AZ_Sweep_CCW_var = 501; 

139 EL_Sweep_CW_var = 502; 

140 EL_Sweep_CCW_var = 503; 

141 Full_Sweep_var = 504; 

142 Bright_Detected_var = 510; 

143 Sweep_Failure_var = 511; 

144 EL_MOTOR_FAIL_var = 512; 

145 

146 wait_2sec_var=480; 

147 send_AZ_CCW_HW_var=483; 

148 send_AZ_CW_HW_var=481; 

149 send_EL_CCW_HW_var=493; 

150 send_EL_CW_HW_var=494; 

151 %   

152 %instrcallback  function 

153 function  instrcallback(serialOne,BytesAvailable) 

154 callback_time=tic; 

155 E_rec_cmplt=false; 

156 strrec=''; 

157 strrec=fscanf(serialOne); 

158 chr=0; 

159 if ( strcmp(strrec(1:4),'!08@') && length(strrec)==10 )%strcmp(s1,s2)  compares s1 and s2 and returns 1 (true) if the two are 

identical  and 0 (false) otherwise 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

Event=[]; 

for i=1:5 

chr=strrec(4+i); 

if chr~='A' 

Event(i)=uint8(chr)-66 ; 

end  end%for 

E_rec_number=length(Event); 

for i=1:E_rec_number 

event_Number=Event(i); 

if(event_Number ==  Dark_to_Dim_v) 

E_rec_str=[E_rec_str; Dark_to_Dim_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Dark_to_Dim_var e_t_rec]; 

elseif(event_Number ==  Dim_to_Bright_v) 

E_rec_str=[E_rec_str; Dim_to_Bright_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Dim_to_Bright_var e_t_rec]; 

elseif(event_Number ==  Dim_to_Dark_v) 

 

 



117 

 

 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

E_rec_str=[E_rec_str; Dim_to_Dark_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Dim_to_Dark_var e_t_rec]; 

elseif(event_Number ==  Bright_to_Dim_v) 

E_rec_str=[E_rec_str; Bright_to_Dim_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Bright_to_Dim_var e_t_rec]; 

elseif(event_Number ==  AZ_CCW_OK_v) 

E_rec_str=[E_rec_str; AZ_CCW_OK_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_CCW_OK_var e_t_rec]; 

elseif(event_Number ==  AZ_CW_OK_v) 

E_rec_str=[E_rec_str; AZ_CW_OK_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_CW_OK_var e_t_rec]; 

elseif(event_Number ==  AZ_CCW_MOVE_v) 

E_rec_str=[E_rec_str; AZ_CCW_MOVE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_CCW_MOVE_var e_t_rec]; 

elseif(event_Number ==  AZ_CW_MOVE_v) 

E_rec_str=[E_rec_str; AZ_CW_MOVE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_CW_MOVE_var e_t_rec]; 

elseif(event_Number ==  EL_CCW_OK_v) 

E_rec_str=[E_rec_str; EL_CCW_OK_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_CCW_OK_var e_t_rec]; 

elseif(event_Number ==  EL_CW_OK_v) 

E_rec_str=[E_rec_str; EL_CW_OK_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_CW_OK_var e_t_rec]; 

elseif(event_Number ==  EL_CCW_MOVE_v) 

E_rec_str=[E_rec_str; EL_CCW_MOVE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_CCW_MOVE_var e_t_rec]; 

elseif(event_Number ==  EL_CW_MOVE_v) 

E_rec_str=[E_rec_str; EL_CW_MOVE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_CW_MOVE_var e_t_rec]; 

elseif(event_Number ==  EL_FAIL_MOVE_v) 

E_rec_str=[E_rec_str; EL_FAIL_MOVE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_FAIL_MOVE_var e_t_rec]; 

elseif(event_Number ==  AZ_POLL_RANGE_v) 

E_rec_str=[E_rec_str; AZ_POLL_RANGE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_POLL_RANGE_var e_t_rec]; 

elseif(event_Number ==  AZ_MAX_CW_v) 

E_rec_str=[E_rec_str; AZ_MAX_CW_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_MAX_CW_var e_t_rec]; 

elseif(event_Number ==  AZ_MAX_CCW_v) 

E_rec_str=[E_rec_str; AZ_MAX_CCW_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_MAX_CCW_var e_t_rec]; 

elseif (event_Number ==  AZ_RANGE_OK_v) 

E_rec_str=[E_rec_str; AZ_RANGE_OK_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_RANGE_OK_var e_t_rec]; 

elseif(event_Number ==  EL_POLL_RANGE_v) 

 



118 

 

 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

E_rec_str=[E_rec_str; EL_POLL_RANGE_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_POLL_RANGE_var e_t_rec]; 

elseif(event_Number ==  EL_MAX_CW_v) 

E_rec_str=[E_rec_str; EL_MAX_CW_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_MAX_CW_var e_t_rec]; 

elseif(event_Number ==  EL_MAX_CCW_v) 

E_rec_str=[E_rec_str; EL_MAX_CCW_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_MAX_CCW_var e_t_rec]; 

elseif(event_Number ==  EL_RANGE_OK_v) 

E_rec_str=[E_rec_str; EL_RANGE_OK_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_RANGE_OK_var e_t_rec]; 

elseif(event_Number ==  Safe_to_Full_v) 

E_rec_str=[E_rec_str; Safe_to_Full_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Safe_to_Full_var e_t_rec]; 

elseif(event_Number ==  Full_to_Safe_v) 

E_rec_str=[E_rec_str; Full_to_Safe_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Full_to_Safe_var e_t_rec]; 

elseif(event_Number ==  Crit_to_Safe_v) 

E_rec_str=[E_rec_str ;Crit_to_Safe_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Crit_to_Safe_var e_t_rec]; 

elseif(event_Number ==  Safe_to_Crit_v) 

E_rec_str=[E_rec_str; Safe_to_Crit_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Safe_to_Crit_var e_t_rec]; 

elseif(event_Number ==  AZ_Sweep_CCW_v) 

E_rec_str=[E_rec_str; AZ_Sweep_CCW_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;AZ_Sweep_CCW_var e_t_rec]; 

elseif(event_Number ==  EL_Sweep_CW_v) 

E_rec_str=[E_rec_str; EL_Sweep_CW_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_Sweep_CW_var e_t_rec]; 

elseif(event_Number ==  wait_2sec_v)%EL_Sweep_CCW_v 

E_rec_str=[E_rec_str; wait_2sec_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;wait_2sec_var e_t_rec]; 

elseif(event_Number ==  Full_Sweep_v) 

E_rec_str=[E_rec_str; Full_Sweep_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Full_Sweep_var e_t_rec]; 

elseif(event_Number ==  Bright_Detected_v) 

E_rec_str=[E_rec_str; Bright_Detected_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Bright_Detected_var e_t_rec]; 

elseif(event_Number ==  Sweep_Failure_v) 

E_rec_str=[E_rec_str; Sweep_Failure_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;Sweep_Failure_var e_t_rec]; 

elseif(event_Number ==  EL_MOTOR_FAIL_v) 

E_rec_str=[E_rec_str; EL_MOTOR_FAIL_var E_rec_number]; 

e_t_rec=toc(rec_e_t); 

totall_e_time=[totall_e_time;EL_MOTOR_FAIL_var e_t_rec]; 

end%if event_Number.. 

 



119 

 

 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

end%for  i:... 

fprintf('Event Received  ') 

E_rec_str 

%-------------------------------------------------------------------------------- 

%In this part, by receiving  any event,the online supervisor responds by 

%generating new Enable_events. 

[E_rec_str_del,E_rec_n_del]=get_rec_event(); 

%Receiving Ec after sendig to uc. 

delivery_time=toc(del_t);%It is assumed that  the received  event  is what is sent  right before. 

if Ec_deliver~=0 && ~isempty(intersect(E_rec_str_del,Ec_deliver)) 

Ec_deliver=0 

Ec_t_b_delivered=false; 

del_time=[del_time delivery_time]; 

% To send  again  any lost packet. 

elseif Ec_t_b_delivered==false && Ec_deliver~=0 && delivery_time>2 && isempty(intersect(E_rec_str_del,Ec_deliver)) 

Ec_t_b_delivered=true; 

reapeated_n=reapeated_n+1 

del_time=[del_time delivery_time]; 

% 

end 

%-------------------------------------------------------------------------- 

for l=1:length(E_rec_str_del(:,1)) 

if first_t==true 

Es=det_Es_v1(E_rec_str_del,Enable_Events_first); 

first_t=false; 

else 

Es=det_Es_v1(E_rec_str_del,Enable_Events); 

end 

if ~isempty(Es) 

Change_state(Es);%From the delta_N - small_delta point  aferwards the modeles which are used  in LLP should  not be 

updated. 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

346 

347 

delta=delta-1; 

if delta==small_delta 

LLP_exe=true; 

copy_modules(); 

CallbackRunning=true; 

end 

if delta<small_delta 

String_tmp=[String_tmp Es]; 

end 

if first==false && delta==0 && LLP_exe==false 

%The last condition is added in order  to avoid picking up the online 

%at small dalta  which maight not be ready( delta  in time stamping=bigdelta) 

delta=delta_N; LLP_at_delta=false; 

Lookahead_Copm_time_Intervals_t=toc(Lookahead_Copm_time_Intervals); 

Lookahead_Copm_time_Intervals_tot=[Lookahead_Copm_time_Intervals_tot;Lookahead_Copm_time_Intervals_t 3]; 

for k=1:small_delta-1 

String_tmp(k); 

Online_Supervisor_at_small_delta=Change(Online_Supervisor_at_small_delta,Next_si 

(Online_Supervisor_at_small_delta,String_tmp(k))); 

348 

349 

350 

351 

352 

353 

354 

355 

356 

end 

Lookahead_Copm_time_Intervals_t=toc(Lookahead_Copm_time_Intervals); 

Lookahead_Copm_time_Intervals_tot=[Lookahead_Copm_time_Intervals_tot;Lookahead_Copm_time_Intervals_t 4]; 

String_tmp=[]; 

Online_Supervisor=Online_Supervisor_at_small_delta; end 

Supervisor_m=Change(Supervisor_m,Next_si(Supervisor_m,Es)); 

Enable_Events_offline=unique(Supervisor_m.TL(Supervisor_m.TL(:,1)==1,2)); % 

if first==false %Not First time 

 



120 

 

 

 

 

 

357 

358 

if delta~=0 

Online_Supervisor=Change(Online_Supervisor,Next_si(Online_Supervisor,Es)); %For delta=0 update has been done 

in above  for loop 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

String_test=[String_test Es]; 

end 

Enable_Events=unique(Online_Supervisor.TL(Online_Supervisor.TL(:,1)==1,2)); 

Event_diff1=setdiff(Enable_Events_offline,Enable_Events); 

Event_diff2=setdiff(Enable_Events,Enable_Events_offline); 

if ~isempty(union(Event_diff1,Event_diff2)) 

fprintf('Not Valid Nw because of %d 

return; 

end 

end 

\n ',Event_diff1);%To check the validity of the online  supervisor 

fprintf('Size of lookahead buffer:%d \n ',delta); 

fprintf('Enable Events of online Supervisor:%d 

new_enable_event=true; 

\n ' ,Enable_Events); 

Ec_t_b_sent=intersect(Enable_Events',[510,511,512,425,435,404,403,454,453]); 

if ~isempty(Ec_t_b_sent) 

Ec_t_b_delivered=true; 

send_Ec(Ec_t_b_sent); 

end 

if length(Ec_t_b_sent)>1 

fprintf('Choice Problem 

return; 

end 

else 

\n ')%If there  is more  than  one  controllable event  in enable events. 

fprintf('No Event has been selected among these enabled events:%d \n ' ,Enable_Events); 

end 

end%for 

E_rec_cmplt=true; 

if (Jump_Lokkahead_com==1) 

if ~isempty(intersect(E_rec_str(:,1),Euc)) 

Euc_received_p=true; 

else 

Euc_received_p=false; 

end 

end 

396 end% if event  packet  recieved(line 163) 

397 callback_times_matrix=[callback_times_matrix;toc(callback_time) delta]; 

398 end%call back function 

399 

400 end% Base function 

401 

401 

 



121 

 

  Sending controllable events to the microcontroller: 

 

1 function  []=send_Ec(Ec_t_b_sent) 

2 %To send  controllable events  to the micrcontroller. 

3 global  Serial; 

4 global  Ec_t_b_delivered; 

5 global  E_rec_str; 

6 global  serialOne;%Used in serial_com 

7 global  Ec_sent Ec_deliver del_t; 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

if (Serial==1  && (Ec_t_b_delivered==true) && isempty(E_rec_str)) 

Ec_deliver=0; 

if (Ec_t_b_sent== 425) && strcmp(serialOne.TransferStatus, 'idle')%AZ_POLL_RANGE_var = 425; 

fprintf(serialOne,'!23@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 425 ]; 

Ec_sent(end) 

Ec_deliver=425; 

Ec_t_b_delivered=false; 

elseif (Ec_t_b_sent== 435) && strcmp(serialOne.TransferStatus, 'idle')%EL_POLL_RANGE_var = 435; 

fprintf(serialOne,'!24@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 435 ]; 

Ec_sent(end) 

Ec_deliver=435; 

Ec_t_b_delivered=false; 

elseif (Ec_t_b_sent== 404) && strcmp(serialOne.TransferStatus, 'idle')%AZ_CW_MOVE_var = 404; 

fprintf(serialOne,'!25@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 404 ]; 

Ec_sent(end) 

Ec_deliver=404; 

Ec_t_b_delivered=false; 

elseif (Ec_t_b_sent== 403) && strcmp(serialOne.TransferStatus, 'idle')%AZ_CCW_MOVE_var = 403; 

fprintf(serialOne,'!26@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 403 ]; 

Ec_sent(end) 

Ec_deliver=403; 

Ec_t_b_delivered=false; 

elseif (Ec_t_b_sent== 454) && strcmp(serialOne.TransferStatus, 'idle')%EL_CW_MOVE_var = 454; 

fprintf(serialOne,'!27@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 454 ]; 

Ec_sent(end) 

Ec_deliver=454; 

Ec_t_b_delivered=false; 

elseif (Ec_t_b_sent== 453) && strcmp(serialOne.TransferStatus, 'idle')%EL_CCW_MOVE_var = 453; 

fprintf(serialOne,'!28@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 453 ]; 

Ec_sent(end) 

Ec_deliver=453; 

Ec_t_b_delivered=false; 

elseif (Ec_t_b_sent== 510) && strcmp(serialOne.TransferStatus, 'idle')%Bright_Detected_var = 510; 

fprintf(serialOne,'!29@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 510 ]; 

Ec_sent(end) 

Ec_deliver=510; 

Ec_t_b_delivered=false; 

fprintf('Bright_Detected \n ') 

elseif (Ec_t_b_sent== 511) && strcmp(serialOne.TransferStatus, 'idle')%Sweep_Failure_var = 511; 

 



122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

fprintf(serialOne,'!30@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 511 ]; 

Ec_sent(end) 

Ec_deliver=511; 

Ec_t_b_delivered=false; 

fprintf('Sweep_Failure \n ') 

elseif (Ec_t_b_sent== 512) && strcmp(serialOne.TransferStatus, 'idle')%EL_MOTOR_FAIL_var = 512; 

fprintf(serialOne,'!31@      &');% 

del_t=tic; 

Ec_sent=[Ec_sent 512 ]; 

Ec_sent(end) 

Ec_deliver=512; 

Ec_t_b_delivered=false; 

fprintf('EL_MOTOR_FAIL \n ') 

end 

end%Sending Ec 

79 end 

 



123 

 

  Selection of an event from enable events: 

 

 

 

1 function  [Es]=det_Es_v1(E_rec_str_del,Enable_Events) 

2 %To choose an event  among enable events  according to received  events. 

3 global  Serial Euc Ec new_enable_event E_rec_str String Ec_deliver; 

4 Es=[]; 

5 if Serial==1 && ~isempty(E_rec_str_del) 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

Cmm_Event=intersect(E_rec_str_del,Enable_Events','stable'); 

Cmm_Event_Euc=intersect(Cmm_Event,Euc,'stable'); 

Cmm_Event_Ec=intersect(Cmm_Event,Ec,'stable'); 

if ~isempty(Cmm_Event) 

Cmm_Event_ln=length(Cmm_Event); 

if Cmm_Event_ln==1 && Ec_deliver==0 

Es=Cmm_Event(1); 

elseif Cmm_Event_ln>=2 && ~isempty(Cmm_Event_Euc) && isempty(Cmm_Event_Ec) && Ec_deliver==0 

Es=Cmm_Event_Euc(1); 

elseif Cmm_Event_ln>=2 && ~isempty(Cmm_Event_Euc) && ~isempty(Cmm_Event_Ec) 

Es_u=Cmm_Event_Euc(1); 

Es_c=Cmm_Event_Ec(1); 

[~,ind3]=intersect(E_rec_str_del,Es_u); 

[~,ind4]=intersect(E_rec_str_del,Es_c); 

Es=Es_c; 

elseif Cmm_Event_ln>=2 && ~isempty(Cmm_Event_Ec)&& isempty(Cmm_Event_Euc) 

Es=Cmm_Event_Ec(1); 

end 

if ~isempty(Es) 

new_enable_event=false; end 

[E_rec_str_Es,i1,~]=intersect(E_rec_str(:,1),Es); 

%While selected event  is being  removed from the 

%receiving  array,another event  with the same  number 

%might  be received,so just one  event  has to be removed. 

if ~isempty(E_rec_str_Es) 

E_rec_str(min(i1),:)=[]; 

end 

ind7=E_rec_str(:,2)==0; 

fprintf('Event Remained  ') 

E_rec_str=E_rec_str(~ind7,:) 

String=[String,Es]; 

else 

end%~isempty(Cmm_Event) 

if ~isempty(E_rec_str) ind6=E_rec_str(:,2)>1; 

E_rec_str(ind6,2)=E_rec_str(ind6,2)-1; 

end 

45 end%There is a received  event 

46 end 

 



124 

 

Photovoltaic Cell 

 

 

 

 

 

 

 



125 

 

     Fuel gauge 

 

 

 

 

 

 

 

 

 



126 

 

      Maximum Power Point Tracker 

 

 

 

 

 

 

 

 

 



127 

 

    USB to serial converter 

 

 

 

 

 

 

 

 

 

 

 



128 

 

RF module 

 


	Chapter 1
	Introduction
	0
	1
	1.1 Discrete Event Systems
	1.2 Supervisory Control
	1.3 Limited Lookahead Policy
	1.4 Literature Review
	1.4.1 Autonomous Systems
	1.4.2 Supervisory Control
	1.4.3 Limited Lookahead Policy
	1.4.4 Implementation problems of SCT
	1.4.4.1 Inexact synchronization
	1.4.4.2 Simultaneity
	1.4.4.3 Choice


	1.5 Thesis Contributions
	1.6 Thesis Outline

	Chapter 2
	Background
	2
	2.1 Discrete Events Systems
	2.1.1 Languages
	2.1.2 Operations on Languages
	2.1.3 Automata
	2.1.4 Operations on Automata

	2.2 Supervisory Control
	2.2.1 Basic Supervisory Control
	2.2.2 Limited Lookahead Supervisory Control
	2.2.3 State-Based Limited Lookahead Supervisory Control [27]

	2.3 Discrete Event Control Kit (DECK)
	2.3.1 Automaton
	2.3.2 Reach
	2.3.3 Reachable
	2.3.4 Trim
	2.3.5 Product
	2.3.6 Sync


	Chapter 3
	Two Degree-of-Freedom Solar Tracker
	3
	3.1 Schematic Diagram
	3.2 System Hardware
	3.2.1 Battery
	3.2.2 PV Cell
	3.2.3 Servomotors
	3.2.4 RF module

	3.3 System Software
	3.4 Conventional Supervisor Implementation
	3.4.1 Supervisor structure Implementation

	3.5 System Discrete-Event Model
	3.5.1 Battery
	3.5.2 PV Cell
	3.5.3 Servomotors
	3.5.3.1 Motion Models
	3.5.3.2 Movement time interval Model
	3.5.3.3 Position Models

	3.5.4 Master Controller
	3.5.5 System Interactions
	3.5.5.1 Battery and PV cell
	3.5.5.2 Battery and Servomotors


	3.6  Supervisor Design
	3.6.1  Specification
	3.6.1.1  Servomotor Motion Range specifications
	3.6.1.2  Servomotor Polling Range specifications
	3.6.1.3 Servomotor Movement Trajectory specifications

	3.6.2 Supervisor


	Chapter 4
	Limited Lookahead Supervisory Control with Buffering
	4
	4.1 Generating C Code for the Microcontroller
	4.2 Generating Code for Implementation of LLP in MATLAB
	4.2.1 The Minimum Size of Lookahead Window
	4.2.2 Plant Depth
	4.2.3 LLP Computation Time

	4.3 Limited Lookahead Supervisory Control with Buffering
	4.3.1 Extension of the Lookahead window size
	4.3.2 LLP with Buffering and Its Design Procedure
	4.3.3 Generating code for LLP with Buffering


	Chapter 5
	Experimental Results
	Chapter 6
	Conclusion
	6.1 Summary
	6.2 Future Work

	References
	Appendix A
	Full Sweep Specification Model
	Appendix B
	List of customized C language files
	Appendix C
	Communication between the microcontroller and the PC
	Appendix D
	MATLAB Code
	Appendix E
	Data sheets


