
Optimization of Random Forest Based

Methods Applying the Genetic

Algorithms

Zahra Aback

A Thesis

In

The Department

of

Mathematics and Statistics

Presented in Partial Fulfilment of the Requirements

for the degree of Master of Science (Mathematics) at

Concordia University

Montreal, Quebec, Canada

July, 2018

c© Zahra Aback, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211520706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Zahra Aback

Entitled: Optimization of Random Forest Based Models Applying Genetic

Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Examiner

Dr. Yogendra P. Chaubey

Examiner
Dr. Frédéric Godin

Thesis Supervisor
Dr. Arusharka Sen

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Date

ABSTRACT

Optimization of Random Forest Based Models Applying Genetic Algorithms

Zahra Aback

In this century access to large and complex datasets is much easier. These datasets are

large in dimension and volume, and researchers are interested in methods that are able

to handle this type of data and at the same time produce accurate results. Machine

learning methods are particularly efficient for this type of data, where the emphasis is

on data analysis, and not on fitting a statistical model. A very popular method from

this group is Random Forests which have been applied in different areas of study on two

types of problems: classification and regression. The former is more popular, while the

latter can be applied for data analysis. Moreover, many efficient techniques for missing

value imputation were added to Random Forest over time. One of these methods which

can handle all types of variables is MissForest. There are several studies that applied

different approaches to improve the performance of classification type of Random Forests,

but there are not many studies available for regression type. In the present study, it is

evaluated if the performance of regression type of Random Forests and MissForests could

be improved by applying Genetic Algorithms as an optimization method. The experiments

were conducted on five datasets to minimize the mean square error (MSE) of the Random

Forest and imputation errors of the MissForest. The results showed the superiority of the

proposed method in comparison to the classical Random Forest methods.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my adviser Dr. Arusharka Sen for

his guidance and all his support for my Master’s studies.

Besides my adviser, I would like to thank my examiners: Dr. Yogendra P. Chaubey and

Dr. Frédéric Godin for their precious comments which helped me to improve my research.

I would also like to express my gratitude to the faculty members and graduate students

who helped me through my studies at Concordia University.

Last but not the least, I would like to thank my family especially my mom and friends

for supporting me throughout the writing of this thesis and my life in general.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1 Random Forest . 2

2 Genetic Algorithms . 3

3 Missing values . 4

4 Limitation . 6

2 Random Forest 8

1 Decision Tree . 8

1.1 CART-Split . 9

1.2 Estimation . 10

2 Bagging . 11

3 Regression RF and its characteristics . 13

3.1 CART-Split . 13

3.2 Estimation . 13

4 Measuring the performance of a regression model 15

5 Out of Bag Error . 18

6 Cross Validation . 19

7 Variable Importance . 19

8 Proximities . 21

9 Missing value imputation . 22

vi

9.1 RF imputation . 22

9.2 MissForest . 23

3 Genetic Algorithm 25

1 Definitions . 26

2 Types of GA . 27

2.1 Real-valued GA . 29

2.2 Selection . 30

2.3 Crossover . 33

2.4 Mutation . 35

2.5 GA control parameters . 36

4 GA optimization for RF based Methods 38

1 MissForest Optimization (MissRFGA) . 38

2 Random Forest Optimization . 41

3 Genetic Algorithm . 42

5 Experiments 44

1 Datasets . 44

2 Results . 45

2.1 MissForest . 46

2.2 RF . 50

3 Conclusions and Future Work . 56

References 65

vii

List of Figures

2.1 Sample Regression Decision Tree . 11

3.1 The process of GA . 29

3.2 Blend crossover (BLX− β) method . 35

5.1 Boxplot for 10 replicates of five datasets for MissForest 49

5.2 Boxplot for 10 replicates of five datasets for Random Forest 52

viii

List of Tables

2.1 Regression Random Forest Algorithm . 14

4.1 Compute fitness function for MissForest 39

4.2 Genetic Algorithm Process . 40

4.3 GA parameters for optimizing MissForest 41

4.4 GA parameters for optimizing RF . 42

4.5 GA arguments for RF and MissRF . 43

5.1 Description of the datasets used in the experiments 45

5.2 Comparing imputation error of optimized and classic MissForest 47

5.3 Experimental Results of imputation error for MissForest 47

5.4 Two sets of solutions for optimized MissForest 48

5.5 Comparing Performance of Optimized and classic RF 50

5.6 Experimental Results for Random Forest 51

5.7 Different GA operators for selection, crossover, mutation 53

5.8 Comparing different GA control parameters of RRFGA on Automobile

dataset . 55

ix

Chapter 1

Introduction

In the era where we have access to the large volume of data, researchers are looking

for methods or algorithms that are flexible enough to handle this type of data for analysis

and at the same time produce efficient statistics (Biau & Scornet, 2016). These methods

are recently developed in statistics and computer science in parallel which are linked to

an area of study called machine learning. This field of study enables computers to learn

without being programmed explicitly (Samuel, 1959). Many methods such as classification

and regression trees, bagging, and an improved version of them, Random Forests (RF),

fall in this category (James et al., 2013).

RF which was introduced by Breiman et al. (2001) has shown a great success in recent

decades to handle large datasets. RF has become very popular in recent years since it

is applicable in many prediction problems, and much simpler than some other machine

learning methods to run due to small number of parameters for tuning. It is also recognized

as a method that can be executed in parallel (Biau & Scornet, 2016). RF is a combination

of lots of trees that are grown from different pieces of datasets and provides an estimate

by averaging over trees (Biau & Scornet, 2016).

Since most of the time it is very common to have datasets that include missing values,

we have to decide how to deal with them. This is a very important issue when RF is

applied for data analysis since it cannot perform and produce results when missing values

are present. In this case, missing values are either discarded if applicable or a decision

is made to impute them. There are many imputation methods, but a very few of them

1

can handle missing values for both categorical and continuous variables. In this regard,

we used MissForest which was introduced by Stekhoven and Bühlmann (2011). Using

this method, missing values were imputed and imputation errors were reported for both

continuous and categorical variables.

There are two types of Random Forests: classification and regression for categorical

and continuous responses, respectively. The regression type of RF produces a predicted

value which is the average of the results of all the trees, and its performance is measured

by mean square error (MSE) of that estimation.

There are lots of studies focusing on improving the performance of RF or studying the

options for its parameter settings that help produce results in a reasonable time frame that

are accurate enough. Oshiro et al. (2012) and Latinne et al. (2001) studied the number of

trees required in a Random Forest and the first study suggested 64 trees, and the second

one suggested limited numbers for different datasets. Their study showed that the number

of trees larger than what they suggest will not improve RF performance. Bader-El-Den

and Gaber (2012) and Elyan and Gaber (2017) also studied the impact of using Genetic

Algorithms (GA) on the improvement of the performance of RF. These studies focused on

classification type of RF, the response of which is categorical, and they suggest different

approaches.

In this study the focus is on improving the performance of regression RF by applying

Genetic Algorithms. In fact, GA is applied to minimize the mean square error of RF by

searching over number of trees and number of features at each split. Moreover, it has been

studied if GA has an impact on the performance of MissForest to minimize its imputation

errors.

1 Random Forest

The RF was devised by Breiman et al. (2001) since he wanted to improve the perfor-

mance of Bagging which is the combination of large number of trees that are produced

from bootstrap samples of the original dataset. The improvement in comparison to Bag-

ging occurred to produce a RF by adding another type of randomness in the model beside

2

bootstrap sampling. The other randomness is CART-split, which is choosing the best

variable for splitting. The variable is selected from a number of variables in the subset

Mtry of total number of variables p to divide the sample space to sub-samples.

The RF is an ensemble method too, which is a method that produces the prediction

model (RF) from the strength of the collection of simpler ones (Decision Trees). In fact,

ensemble learning includes two procedures. It develops a large number of individual mod-

els and then it produces the final prediction by combining them (Friedman, Hastie, &

Tibshirani, 2001).

The RF is very efficient when the number of variables is larger than the number

of observations, and it is called "off the shelf" method which means it can give a very

preliminary result about the dataset in a very short time (Cutler, Cutler, & Stevens,

2012). It does not need any formal assumption about the distribution of the data, and

produces proximity matrices which can be used for missing values imputation and for the

detection of outliers. It is robust to the outliers. The performance of a RF is measured

internally during the implementation of its function, and it ranks the variables by their

importance (Cutler et al., 2012). There are many softwares that can implement the RF

analysis in their environment such as R. There is a package in R called Random Forest

which can be installed to carry out its function and produce the results. In addition

to these cases, there are some other softwares that have been developed just for machine

learning methods such as Salford Systems Data Mining and Predictive Analytics Software

(SPM) and Waikato Environment for Knowledge Analysis (WEKA).

2 Genetic Algorithms

There are many situations in our lives where we are looking for optimization of our

performance. For instance, we would like to have maximum sleep but at the same time

arrive at work on time. We could think of which route to take or how to be well prepared

the night before for the next morning. In fact, we look for a way to minimize our cost

and maximize our output or result. Optimization is a process in which the inputs of a

mathematical function or experiment or characteristics of a device are adjusted to find

3

the maximum or minimum results, see Haupt and Haupt (2004).

Haupt and Haupt (2004) addressed some issues in optimization problems such as

finding solutions in the case where the derivative of the objective function (the function

that needs to be optimized) does not exist or difficult to derive. Also, the type of solution

to the optimization problem is crucial too. It is important to know if the optimum value

obtained by this process is local or global.

There are several approaches for optimization with different advantages and disadvan-

tages. Haupt and Haupt (2004) discussed many algorithms that help to find the maximum

or minimum of some functions that were not either linear nor having a derivatives (it is

hard to find their derivative). However, they had one thing in common: they could not

produce the global minimum or maximum. Therefore, later some other algorithms were

introduced to overcome this problem, among which GA proposed. The GA does not need

derivative of the functions and could produce the global optimized solutions to the prob-

lems.

John Holland was the first person who tried to develop a theoretical basis for GA.

He developed it between 1960s and 1970s and the work was summarized in his book

"Adaptation in Natural and Artificial Systems (1975)". However, this method was made

very popular through one of his students, David Goldberg (1989), whose dissertation

solved a problem which was the control of gas pipline transmission (Haupt & Haupt,

2004).

In their book (Haupt & Haupt, 2004) defined GA as an optimization procedure that

imitates the reproduction process in organisms and uses its natural selection method to

find the optimum solution. In this process a large population is evolved through a specific

selection method to a point that optimizes the fitness function. GA mostly has been used

for optimizing hard and complex problems.

3 Missing values

Most of the time datasets are not complete and they contain missing values. There are

three most important type of missing values: Completely Missing at Random, Missing at

4

Random, and Not missing at Random which are explained as follows:

• Missing Completely At Random (MCAR): If the probability for a variable to have

some missing values is independent of other variables, that is called MCAR. In fact,

all the observations for a random variable have the same chance of being missing.

In this case, missing values can be removed from the dataset without imposing a

bias to the estimation, but this type of missing is not very common (Tang, 2017).

• Missing At Random (MAR): If the probability of being missing for a random variable

depends on the information of the other variables, it is called Missing At Random.

For instance, the information for occupation is missing for some races or ethnic

groups (Young, 2017).

• Missing Not At Random (MNAR): If the probability of being missing for a variable

is because of that variable itself, it is called MNAR. In this case the respondent

is not willing to answer the question because they are embarrassed or they do not

want to share their information for that question. Most of the time it is difficult to

identify this type of missing since it depends on some unobserved values (Young,

2017).

There are different strategies to deal with missing values. The first one is to remove

all the missing values and work with the complete dataset. In this case some information

will be lost and we will have larger standard errors. Also, it causes a problem when there

is a large number of variables with lots of missing values. In this case discarding these

observations will lead to dealing with many variables and few observations. The other

approach is to keep missing values and impute them by some current methods, so those

parts of the data will not be lost but adjusted (Young, 2017).

There are different methods for imputation, and some of them are RF based methods.

The two methods which can be implemented through the RF package in R are rough

imputation and RF imputation. The first model replaces missing values by the median or

the mode and produces the imputed values. The second model uses proximity measures

in a RF to impute the missing values, but this method cannot be applied when missing

5

values are present for the response variable.

The third RF based method is MissForest, some characteristics of which was high-

lighted by Stekhoven and Bühlmann (2011). Firstly, this method can handle both cat-

egorical and continuous variables simultaneously. Secondly, the imputation error can be

computed internally during the imputation process. Finally, it performs really well when

non-linear relations or complex interactions are present. A comparison among these three

methods shows that the later can produce better results. Therefore, in this study, miss-

ing values are imputed by MissForest, and it was also studied if GA can optimize its

performance by minimizing imputation error (Stekhoven & Bühlmann, 2011).

4 Limitation

There are two types of RFs, a classification RF and the regression one, and most of

the time the focus in studies was always on the classification type. Some of these studies

focused on two parameters in RF that are considered as the most important factors which

have an effect on the its performance: the number of trees and the number of features

considered at each split (Elyan & Gaber, 2017). There are some studies that looked for

reducing the number of trees to produce accurate results but at the same time reduce the

processing time (Oshiro et al., 2012). Some other studies tried to find the best values for

the number of features considered at each split that could produce better results than

default values of a given RF implementation (Bernard et al., 2008). Also, two studies

focused on finding the best values for both parameters mentioned above to minimize the

model error by applying an optimization method, GA (Bader-El-Den & Gaber, 2012),

Elyan and Gaber (2017).

In spite of the fact that regression RF follows the same routine as the classification

type, according to my knowledge, there are not many studies available on evaluating

the performance of a regression RF. Therefore, the objective of the current study is to

evaluate if the mean square error of the regression RF could be minimized by searching

over the optimal numbers of trees and number of features at each split. GA was applied

as an optimization method to produce the minimum error and report its corresponding

6

solutions. This method was selected since it could optimize complex functions, it could

produce the global optimal solution, and it could be run in parallel. Moreover, since

MissForest is also an RF based model for the imputation, the other objective is to study

if its performance could be improved (minimizing the imputation error) by finding the

optimal solutions for the number of trees and the number of features at each split.

7

Chapter 2

Random Forest

The early definition of a Random Forest that is given by Breiman (2001) was for a

classification RF and was expressed as follows:

A Random Forest is a classifier that is created by a group of trees {h(x,Θk) k =

1, 2, · · · } where the {Θk} are identically independent random vectors, and each tree votes

for the most popular class for an input x. The random vector Θk is not defined in this

work, but implicitly it represent two types of randomness in an RF including the Bagging

and splitting a node which will be explained later.

A regression Random Forest is similar to a classification one, except that for an input

x, each tree produces an average as the estimation. The process of producing the esti-

mation for a regression RF will be explained in details later. The most important factors

in building a RF are CART-split of a Decision Tree and Bagging which creates predic-

tors from bootstrap samples of the original dataset and produces the final estimation by

averaging them (Biau & Scornet, 2016).

1 Decision Tree

The most popular Decision Tree is a Classification and Regression Tree (CART) that

was introduced in 1984 by Leo Breiman, Jerome Friedman, Richard Olshen and Charles

Stone. In this method the response could be continuous or discrete that leads to a regres-

sion or classification tree respectively.

8

1.1 CART-Split

In tree-based methods, the sample space is divided into a set of sub-spaces which are

called regions or nodes and each of them creates an estimate (Friedman et al., 2001). The

process of dividing the whole sample space into regions is called CART-split which is a

procedure that a variable and best value of that is selected from a whole set of variables

to minimize the mean square error of a region (Biau & Scornet, 2016).

CART-split of a Decision Tree is a binary partitioning of a sample dataset of size

n, Dn, and in each step it splits each region into two regions on the left and right by

minimizing the mean square error of those regions for a regression tree. For instance for

a (subset) region A suppose the number of observation is Nn(A) and the pair of (j, z)

as a cut point in which the splitting occurs. The component j of the pair refers to the

co-ordinate variable Xj so that, this variable is selected from a whole set of independent

variables (X1, X2, · · · , Xp) where p is the number of predictors. The second component

z is a value from the domain of variable Xj where the splitting occures. This region

will be divided into two more regions based on the best pair from whole predictors and

their best splitting values. If CA denotes a set of all pairs of cuts, the regression CART-

split criterion that leads to growing a tree from top to down for each pair (j, z) ε CA by

considering Xi = (X1
i , X

2
i , · · · , X

p
i) where i = 1, 2, · · · , n is in the from in Equation (1.1):

(Biau & Scornet, 2016):

Lreg,n(j, z) =
1

Nn(A)

n∑
i=1

(Yi− Ȳ)2IXiεA−
1

Nn(A)

n∑
i=1

(Yi− ȲALIXj
i<z
− ȲARIXj

i≥z
)2IXiεA (1.1)

The variable Yi is the response variable correspond to all the Xi in each region and

Ȳ is the average of all the Yi in that region, which is obtained by minimizing the mean

square error of that region. The Equation (1.1) above has to be maximized to find the

best variable and best value from its domain as the cut.

Region A is divided into two regions on the right AR = {XεA : Xj ≥ z} and on the

left AL = {XεA : Xj < z}. For region A, Ȳ is obtained from all the Yi corresponds to Xi

in region A and ȲAL and ȲAR respectively calculated from Yi corresponding to the Xi in

9

regions AL and AR. This process will be repeated for the next regions and each time a

best cut at the pair of (j?, z?) will be selected by maximizing the Lreg,n(j, z) over set of

all the pairs so that the best cut is defined as below:

(j?, z?) ∈ arg max
j∈{1,2,··· ,p}

(j,z)∈CA

Lreg,n(j, z) (1.2)

As it can be observed, at each node the criterion (1.1) is evaluated and the best cut

at each split is determined. The best cut in Equation (1.2) is not a unique pair and each

time for each split it changes and produces different values. Equation (1.1) was first used

by (Breiman et al, 1984) which measured the variance before and after splitting (Biau &

Scornet, 2016).

1.2 Estimation

The general idea is to produce a non-parametric regression estimation. The goal is

to predict the random response Y ∈ R where E(Y 2 < ∞) by estimating this regression

function m(x) = E[Y |X = x] for an input Random vector X ∈ χ where χ is an input

space. Having this in mind, for a sample dataset Dn = ((X1, Y1), (X2, Y2), . . . (Xn, Yn)) the

estimate mn : χ −→ R is constructed for the function m. The estimate for a regression

random tree at a value x is defined as follows:

mn(x,Dn) =
∑

iε{1,2,··· ,n}

IXiεAn(x,Dn)Yi

Nn(x,Dn)
(1.3)

where An(x,Dn) is the region that contains x and Nn(x,Dn) is the number of observa-

tions that belong to the region An(x,Dn). This estimation is the average of the responses

in a region, An(x,Dn), where the new input x has fallen (Biau & Scornet, 2016). The

process of CART-split (Friedman et al., 2001) for a sample dataset with two random

variables X1 and X2 is depicted in Figure 2.1 (Friedman et al., 2001).

10

Figure 2.1: Sample Regression Decision Tree

As displayed in Figure 2.1, at first, the sample space was divided into two regions.

Next, as depicted in Figure 2.1, the next region on the left also splitted to two more

regions and stopped from splitting in regions R1 and R2 which are called terminal nodes.

Then, the corresponding region on the right was divided into two more regions and it

continued splitting until the number of observations in each node (node size) is less than

5 or the stopping criterion is met (Friedman et al., 2001).

Decision Trees produce estimations with high variance, such that a small change in

the dataset will result in a different splitting, which leads to an unstable interpretation of

the tree (Friedman et al., 2001), so Bagging was introduced to alleviate this problem.

2 Bagging

Bagging which is the abbreviation of a bootstrap aggregation is known to work well

for low-bias and high-variance models like Decision Trees (Friedman et al., 2001). It was

introduced by Breiman (1996) and is a procedure in which many trees are built by drawing

several bootstrap samples from the dataset and by applying CART-split procedure from

Decision Trees on each bootstrap sample. In this process, each tree produces an estimate,

11

and the final prediction is obtained by averaging over these estimates. Bootstrap sampling

which introduced by Efron (1979) is a process of producing several samples of the original

dataset with replacement.

In a Bagging procedure, trees are grown from bootstrap samples. In this process, a

bootstrap sample of Dj
n, j ∈ {1, 2, · · · ,M} from a sample dataset Dn is drawn and a tree

is grown for this bootstrap sample. Then, if prediction of a bagging tree is m?
n(x,Dj

n) as

defined in Equation (1.3), then, the final prediction for Bagging from all trees, ntree = M ,

is:

mM,n(x,Dn) =
1

M

M∑
j=1

m?
n(x,Dj

n)

The most important point in Bagging is to obtain a smaller variance by averaging

over many noisy but approximately unbiased trees. Trees are a perfect option for Bagging

because they can capture the complex interactions in the data with relatively low bias

if they grow deep enough (Friedman et al., 2001). Trees that are grown in Bagging are

identically distributed, and the expectation of the average of trees is the same as a Decision

Tree, so the only hope is to reduce variance. Since trees are identically distributed but

not necessarily independent, the variance of the average of their estimate for ntree = M

trees is (Friedman et al., 2001):

V ar(
1

M

M∑
j=1

m?
n(x,Dj

n) =
1

M2
V ar(

M∑
j=1

m?
n(x,Dj

n))

=
1

M2
{Mσ2 +M(M − 1)ρσ2} = ρσ2 +

1− ρ
M

σ2

(2.1)

In Equation (2.1), ρ is the correlation between the predictions for an input x provided

by two trees from the bagging procedure. Also, in this equation, σ2 represents the variance

of the response prediction for an input x for each tree in the Bagging model. The variance

of Bagging as it is depicted is a composite of two terms. Friedman et al. (2001) explains

that when number of trees increases, the second term disappears, and the variance of

the predictor just depends on the first term. However, even if second term disappears by

increasing the number of trees, it will not be helpful when trees are highly correlated. In

12

this case RF was introduced to reduce the correlation between trees without increasing

the variance from predictions of the various trees too much.

3 Regression RF and its characteristics

A regression RF is built by applying Bagging and CART-split procedures from last

two sections. In the CART-split process the variable for splitting is selected from whole

set of variables {X1, X2, · · · , Xp}. However, in a RF the splitting variable is selected from

{X1, X2, · · · , XMtry} where Mtry is the number of selected variables at each split.

3.1 CART-Split

The CART-split process for a RF is different from Bagging such that for all the pair

of (j, z) ε CA the dimension j? is selected from Mtry. Therefore, the best cut for a RF is

depicted in Equation (3.1) (Biau & Scornet, 2016):

(j?, z?) ∈ arg max
j∈Mtry

(j,z)∈CA

Lreg,n(j, z) (3.1)

When the splitting process starts, each time the criterion (2.1) is evaluated at each

node, and the best cut which changes at each split is determined (Biau & Scornet, 2016).

3.2 Estimation

The estimation for a regression RF is very similar to Bagging, but the only difference

is that in a RF another type of randomness is injected to the model by choosing a random

variable from a subset of variables {X1, X2, · · · , XMtry} to start splitting at each node. If

the Dj
n, j ∈ {1, 2, · · · ,M} is the bootstrap sample for a sample dataset Dn, the estimate

for a regression random tree, j, in a RF is defined at a value x of random variable X as

follows (Biau & Scornet, 2016):

mn(x; Θj,Dj
n) =

∑
iε{1,2,··· ,n}

I
XiεAn(x;Θj ,D

j
n)
Yi

Nn(x;Θj ,Djn)
(3.2)

13

where An(x; Θj,Dj
n) is the region that contains x and Nn(x; Θj,Dג

n) is the number of

observations that belong to that region. Also, Θ1,Θ2, . . . ,ΘM are the parameters that

inject the randomness by Bagging and by selecting a variable Xj, a random variable from

a subset of variables, that maximizes Equation (1.1) (Cutler et al., 2012). The estimate

for the RF is the average of ntree = M trees estimates and it is depicted in Equation

(3.3):

mM,n(x; Θ1, . . . ,ΘM ,Dn) =
1

M

M∑
j=1

mn(x; Θj,Dj
n) (3.3)

The average is obtained over the whole number of trees. The algorithm of producing

a Random Forest (Friedman et al., 2001) is displayed below (see Table 2.1):

Table 2.1: Regression Random Forest Algorithm

1) For j = 1 to M (number of trees)

Draw bootstrap sample Dj
n of size n from sample dataset Dn

Grow a random tree from the bootstrap sample by repeating the next steps

recursively for each terminal node until the size of each node is nmin = 5

i) Select Mtry variables randomly from the p variables

ii) select the best variable with the best split value from Mtry that maximizes the Equation (1.1)

iii) split the node into two sub-nodes according to the criterion in step ii

2) Output the estimation for all the trees

Prediction for an RF:

mM,n(x; Θ1, . . . ,ΘM ,Dn) = 1
M

∑M
j=1mn(x; Θj,Dj

n)

Since M could be any number, it could approach to infinity, so the Equation (3.3) for

the RF will approach to the parameter in Equation (3.4):

lim
M→∞

mM,n(x; Θ1,Θ2, . . . ,ΘN ,Dn) = m∞(x;Dn) = EΘ[mn(x; Θ,Dn)] (3.4)

The expectation is over the parameter Θ conditional on the sample Dn and here the

14

law of large number justifies the operator limN→∞ (Biau & Scornet, 2016).

A RF and a Decision Tree are varying in three different ways. Firstly, in an RF the

best variable Xj and best value of its domain is selected from number of variables in the

subset Mtry while in a Decision Tree it is selected from whole set of variables. Second, in

an RF, trees are fully grown without pruning1, but a Decision Tree is pruned to have a

better estimate. Finally in a RF, trees are built from a bootstrap sample of the dataset,

but a Decision Tree is built from a sample dataste (Biau & Scornet, 2016). Friedman et al.

(2001) explained that having the ability to change Mtry could have an effect on reducing

the correlation between trees and reducing the variance. They pointed out Breiman et

al. (2001)’s suggestion for Mtry which was √p for classification and p/3 for regression.

However these numbers could change with respect to problem at hand, so sometimes it

can be observed that some other numbers for Mtry produce better results.

In the R package the default value for number of trees is 500, and the default number

for the Mtry is p/3 for a regression RF. Also, the maximal node size which is the stopping

point for splitting for a regression RF is 5; at this point the node will not be split further

and the node is regarded as a terminal node. Moreover, the repeating sample size for

bootstrap sampling is the same as the size of the data set. Sometimes parameters like

node size, size of a tree, and the size of the bootstrap considered as tuning parameters

that have an effect on the performance of the RF (Biau & Scornet, 2016).

4 Measuring the performance of a regression model

In Statistical learning the goal is to estimate a response Y by discovering its relation-

ship with some predictors {X1, X2, · · · , Xp}. The relationship between these components

is displayed in Equation (4.1) James et al. (2013) :

Y = f(X) + ε (4.1)

As it was defined by James et al. (2013) f would be considered as an unknown function
1Pruning is a process in which some of the nodes are removed from the tree and the model error is

evaluated so that the new pruned tree with the least error is selected.

15

but fixed and ε was considered a random error with E(ε) = 0 and V ar(ε) = σ2. Also, f

represents a mechanism in which {X1, X2, · · · , Xp} disclose some information about Y .

The prediction of Y is Ŷ = f̂(X) where f̂ is an estimation of f . There are two quantities

that have effect on the accuracy of Ŷ , which are called irreducible and reducible errors.

Since f̂ is not always an ideal estimate of f , it introduces some error which is called

reducible error. The error is reducible since by fitting a proper model, the error can be

reduced. However, even the model is appropriate enough such that Ŷ = f(X), some error

is present which is called irreducible error. The reason for this error to be present is that

Y is also a function of ε and even if the model performs well, the error that is introduced

by ε cannot be reduced. This error could be present due to some reasons like not including

some variables in the model or it is because of some variation in ε (James et al., 2013). If

f̂ is an estimate for f , the mean square error of that can be calculated as it is defined in

Equation (4.2). It is also considered as a measure of performance:

E(Ŷ − Y)2 = E(f(X) + ε− f̂(X))2 = E((f(X)− f̂(X))2) + V ar(ε). (4.2)

As James et al. (2013) explained, the first part is the reducible error which can be

minimized by applying a proper model and the last part is irreducible error which is out

of control. Actually, the most common criterion to measure the regression performance is

Mean Square Error (MSE) and when the model is fitted to the sample data it is computed

as depicted in Equation (4.3):

ˆMSE =
1

n

n∑
i=1

(yi − ŷi)2 =
1

n

n∑
i=1

(yi − f̂(xi))
2. (4.3)

James et al. (2013) named the MSE in Equation (4.3) as the MSE for training data

or training MSE. The training data is the one that was used to develop or train the

model and it shows how much f̂(xi) is close to f(xi). If the difference between these two

functions is very small it implies that the model performed well on the training data and

the prediction is close to the observed value. However, the main interest is not really on

the performance of a model on training data. The goal is to see if this model performs

16

well on a new data which is called a test data and is independent from the training data.

James et al. (2013) pointed out to the fact that when a model fits well on a dataset, it

is a positive point, but we are more interested to see if it has the same or close performance

on a new similar dataset. For instance, if we have a number of patients with their clinical

measurements and we want to predict the risk of diabetes, a model can be applied for

this data and fits the data very well, but we want to use this model for future patients

and predict the risk of diabetes based on their inputs.

James et al. (2013) described how the MSE for a new observation from a new dataset

is computed. They explained when a model is developed by training data, the goal is to

find if f̂(x0) can produce an accurate estimate for f(x0) which is the prediction for a new

observation x0. To measure the performance of a model on a new observation, the MSE

of that is computed by Equation (4.4) which is called a generalization error:

E(y0 − f(x0))2 = var(f̂(x0)) + [bias(f̂(x0)]2 + var(ε). (4.4)

In Equation (4.4) the goal is to reduce the variance and bias as much as possible to

have a better performance for the model. However, somtimes it has to be decided for a

trade-off between these two factors. Generally, a test dataset is not available to measure

the performance of a model, so when we have enough observations it is recommended to

divide the dataset into two parts one for training and one for testing. If the performance of

the model is assessed on the test set, most of the time its MSE is larger than the training

MSE because some of the patterns that have been caught in the training set could not

exist in a test set as they are purely due to noise, and this is called overfitting. Although

it has to be noted that whether overfitting is present or not, the test MSE is larger than

the training MSE because the model directly or indirectly tries to minimize the training

MSE. In general, when the test MSE is much larger than the training MSE it is regarded

as overfitting (James et al., 2013).

Friedman et al. (2001) also introduced another way of performing data partitioning.

They suggested that we have two goals in modeling which are either model selection

or model assessment. In model selection the performance of different models could be

17

compared to select the best model. In model assessment, the final model would be selected

by estimating the generalization error on new data. If we want to address both needs, the

best way is to divide the dataset into three parts which are training, validation, and test

sets. The training set is used for developing the model, the validation set is used for

model selection by estimating the prediction error, and the test set is used to evaluate

the generalization error of the final model. There is no specific rule stating how to split

the data into the three subsets, and it depends on the size of the dataset and some other

factors, but one of the suggestions provided by Friedman et al. (2001) is to divide it to

50%, 25%, 25% of the data for training, validation, and test sets.

5 Out of Bag Error

As discussed in previous section, one of the ways to evaluate the performance of a

model is to measure the MSE on a test set which most of the time is not available. In

Random Forest this problem has been addressed by measuring the out of bag error which

is the MSE of the test data that is available internally during the process of growing trees

using bootstrap sampling.

When Bootstrap sampling procedure is applied to grow a tree, about one third of

data is not included in the sample and they are regarded as out of bag observations. In

fact, for each Bootstrap sample a tree is grown using two third of the sample and out of

bag observations are the one third left out observations. These observations are used as a

test set to measure the performance of the model (Cutler et al., 2012). The reason that

one third of the data is dropped out of sampling as Louppe (2014) described is because

after n draw with replacement the probability of not being selected can be calculated as

expressed in Equation (5.1):

(1− 1

n
)n ≈ 1

e
≈ 0.368. (5.1)

As Cutler et al. (2012) described these observations are used to assess the performance

of the model by estimating the out of bag error. In fact, each of these observations are

dropped from the tree, after ending up in a node, the prediction for them will be cal-

18

culated, so the mean square error can be computed. If Dj
n is the bootstrap sample and

̂mn(xi; Θj,Dj
n) is the prediction at xi for tree j and the set of out of bag observations is

defined as : υi = {j : (xi, yi) 6∈ Dj
n} and the number of the members of the set is ιi then

out of bag estimation is defined as below:

f̂oob(xi) =
1

ιi

∑
j∈υi

̂mn(xi; Θj,Dj
n) (5.2)

Where out of bag mean squared error is calculated:

ˆMSEoob(reg) =
1

n

n∑
i=1

(yi − f̂oob(xi))2 (5.3)

6 Cross Validation

There is another way to measure the prediction error or performance of a model which

is very simple and popular, and it is called cross validation. This method estimates the

expected error of the extra sample, the average generalization error, when the developed

model on the training set is applied on a test set. Most of the times, this method is applied

since the size of the dataset is not large enough to divide the dataset to different parts.

The general method is called K-fold cross validation, and K could be different numbers

but mostly it is recommended to set it to 5 or 10 (Friedman et al., 2001).

In this method the data is divided into K equal parts and the model is fitted on the

K − 1 sets and the error of the Kth part is measured as the test set error and recorded

K times. Finally the average of these test set errors is computed as the prediction error

of the model. Cross-validation works well on the expected error (Friedman et al., 2001).

7 Variable Importance

Despite the fact that a RF cannot be interpreted like a Decision Tree, it measures the

variable importance, which is useful for interpretation and variable selection (Cutler et

al., 2012). In this process, the variables which are more important are selected based on

19

two criteria: Mean Decrease Impurity (MDI) and Mean Decrease Accuracy (MDA). When

the focus is on the effect of a variable in maximizing the CART-split criterion in Equation

(1.1), averaging over all the trees, MDI would determine the important variables. On the

other hand, MDA ranks the variables based on how much that variable minimizes the

mean square error of a region. The MDI of a variable Xj for ntree = M trees of an RF

is calculated by the criterion in Equation (7.1):

M̂DI(Xj) =
1

M

M∑
k=1

∑
t∈τk
j?t,n=j

pt,nLreg,n(j?t,n, z
?
t,n) (7.1)

In Equation (7.1) pt,n is the portion of the observations that fall in node t which

includes intermediary and terminal nodes, {τk}1≤k≤M is the group of trees in the RF, ”n”

represents the sample size, and (j?t,n, z
?
t,n) is the best cut that maximizes Equation (1.1)

in node t. Equation (7.1) is the average of total improvement in CART-split by variable

Xj that produces the best cut among number of variables in Mtry for a node. In fact,

variables that maximize Equation (1.1) are considered in this method and their weighted

results would incorporate in producing the final resul (Biau & Scornet, 2016).

If prediction accuracy of a model (reducing the out of bag error) is considered, MDA

would be selected (Biau & Scornet, 2016). If the goal is to measure the importance of vari-

able Xj, the following steps will be taken. First, the out of bag observations are dropped

from the tree and the predicted values for these observations are obtained. Second, the

values of variable Xj in the out of bag observations are randomly permuted while other

predictors are fixed. These reshaped out of bag observations are dropped from the tree and

the predicted values for them is computed. This process will result in two sets of data: one

from real values of variable Xj and other one from permuted values of this variable. The

measure of variable importance is computed by taking the difference between the MSE

of the predictions from the real data and MSE of the predictions from permuted data.

The final variable importance is obtained by taking the average over all the observations.

(Cutler et al., 2012).

As (Biau & Scornet, 2016) defined out of bag data of sample size n for variable Xj is

20

Dl,n and the data after permutation is Dג
l,n for lth tree. Also, mn(x; Θl,Dl,n) as defined

before in section 2.3 is the estimate for lth tree, the estimate of out of bag error MSEn is

computed by Equation (7.2)

MSEn[mn(x; Θl,D)] =
1

|D|

∑
i:(Xi,Yi)∈D

(Yi −mn(Xi; Θl,D))2 (7.2)

The estimate MSEn is computed by Equation (7.2) by considering D = Dl,n or D =

Dג
l,n. MDA mathematically is obtained from Equation (7.3):

M̂DA(Xj) =
1

M

M∑
l=1

[MSEn[(x; Θl,Dג
l,n)]−MSEn[(x; Θl,Dl,n))]] (7.3)

The first term produces the out of bag error for permuted observations of variable

Xj and the second term produces the out of bag error for regular observations. The

difference is the average over whole number of trees ntree = M . This measure shows

how much the error will increase or decrease after permutation of a random variable. If

the value for difference is high, it is due to getting high value for the out of bag error

after permutation, which means that the variable is important. On the other hand, small

values for the difference is due to the fact that, the variable is not important (Cutler et

al., 2012).

8 Proximities

Two features of a RF is missing values imputation and outlier detection which is possi-

ble by using proximity measure between two observations. This measure is defined as the

number of times two observations end up in the same terminal node. If two observations

ended up in the same terminal node, their proximity is one; otherwise the proximity will

be zero (Cutler et al., 2012). The proximity between two observations in a terminal node

can be measured by Equation (8.1) (Louppe, 2014):

Proximity(x1, x2) =
1

M

M∑
l=1

∑
t∈τ ′l

I(x1, x2 ∈ χt) (8.1)

21

In Equation (8.1), τ ′l is the set of terminal nodes for the lth tree and χt is the tth

terminal node. Also, ntree = M is the total number of trees in a RF (Louppe, 2014). This

equation computes the number of times a pair of observations would settle in the same

node among all the trees and divided that to total number of them. If this proximity is

close to one they would be similar, if it is close to zero they would be regarded different

and would be in separate nodes (Cutler et al., 2012).

9 Missing value imputation

The RF can be considered as a method that handles missing values really well. Missing

values could be imputed using proximity measures in a RF itself or through the MissForest

method.

9.1 RF imputation

If missing values are present just for predictors, they can be imputed by proximity

measures of an RF, the procedure of which is as follows. Firstly, an RF is built with missing

values that are replaced with the sample median of all the observations for considered

random variables. In the next steps the sample median is updated with new imputed

value by using the proximity measures. In the first RF it is evaluated to which terminal

nodes the missing values (which replaced by sample median) were ended up and their

proximity weights with respect to other observations in that node were computed for

missing values. Having the proximity weights the second RF is produced and the imputed

values of these missings are obtained by weighted average of those observations in that

node. The weights of the observations are obtained by proximity matrices using Equation

(8.1). The updated imputed values is computed and it will be used to produce the next

RF. In the next RF, the missing values are updated by proximity measures and this

process repeats several times by producing several Forests. It continues until the imputed

values converge to a number and cannot be updated anymore. At this stage these final

values are regarded as the final imputed missing values (Cutler et al., 2012).

22

9.2 MissForest

The second method of imputation is MissForest which can handle missing values for

both categorical, continuous variables and for response variable Stekhoven and Bühlmann

(2011). The authors stated that this imputation method was very efficient computationally

and had a great performance when the number of predictors is very large. MissForest

imputes missing values directly from the observed values. It divides the dataset into four

parts regarding the observed and missing values of a variableXs. Suppose the observed and

missing values of Xs are denoted by Y
(s)
obs and Y

(s)
miss respectively, Xs = [Y

(s)
obs,Y

(s)
miss]. The

components of the other variables Xr, r = {1, 2, · · · , p} , r 6= s, correspond to observed

and missing values of variable Xs are denoted by Xs
obs and X

(s)
miss, Xr = [X

(s)
obs,X

(s)
miss]

The imputation starts with replacing missing values by mean of the observations for

variables Xs, s = {1, . . . , p}. Then the variables are sorted from smallest to the largest

amount of missing values. The missing values imputation for each variable Xs continues

by fitting Random forest on the predictors X(s)
obs and the response Y(s)

obs and applying it to

predict Y(s)
miss from X

(s)
miss. This procedure repeats until the stopping point criterion holds,

which is when the difference between the new and old imputed values increases for the

first time with respect to both types of variables if applicable. Stekhoven and Bühlmann

(2011) defined the difference for continuous variables as expressed in Equation (9.1):

MN=

∑
j∈N(Ximp

new −Ximp
old)∑

j∈N(Ximp
new)2

(9.1)

and their criterion for the difference between new and old imputed values for set of cate-

gorical variables F is defined in Equation (9.2):

MF=

∑
j∈F
∑n

i=1 IXimp
new 6=Ximp

old

#NA
(9.2)

Stekhoven and Bühlmann (2011) also defined a criteria to measure the performance

of the model after imputation. There are two measures: "Normalized Root Mean square

error" (NRMSE) for continuous variables and "Proportion of Falsely Classified entries"

23

(PFC) for categorical variables. The NRMSE was defined in Equation (9.3):

NRMSE =

√
mean((X true −X imp)2)

V AR(X true)
(9.3)

Where X true is the complete dataset and X imp is the imputed one. The notations VAR

and mean are the sample mean and variance which are computed for missing continuous

values only. The PFC is the percentage of entries that are miss-classified over the number

of missing values for categorical variables and that is defined as above MF . If values for

these two items are close to zero, it will be an indication of good performance and if it

is close to one it represents a bad performance for imputation. (Stekhoven & Bühlmann,

2011).

24

Chapter 3

Genetic Algorithm

Haupt and Haupt (2004) explained the process of natural selection and evolution with

the purpose of getting an insight into the process of a Genetic Algorithm mechanism. It

can be supposed that the new generation of organisms are produced through a process of

optimization, in which the goal is to maximize their survival. The most fit cases are the

ones that can last longer. In the process of reproduction and creating a new generation,

genetics and evolution play an important role.

The basic unit of inheritance is a gene which is a component of a chromosome, and the

process of reproduction occurs at this level. The group of chromosomes that can match

and reproduce is called the population. The reproduction starts with the cell division such

that chromosomes with the same size and shape are selected, and half genes from mother

and half genes from father’s chromosomes join. The match is such that the left part of

the chromosomes of the mother are joined with the right part of the chromosomes of the

father. This process is called crossover and leads to observing some variety in the species.

The other process that brings more diversity in the next generation is mutation which

could be a random change of a gene due to an external force or could happen internally

(Haupt & Haupt, 2004).

As Haupt and Haupt (2004)explained, each time a new generation is produced through

the process of selection, crossover, and mutation and evolves. The evolution of these

generation as Darwin explained includes four components:

25

• Many characteristics of the parents would pass to the offspring.

• Individuals have various characteristics that could be passed to the new generation.

• A small number of the offspring could survive.

• The survival of the offspring depends on their characteristics.

Therefore, as it can be observed the process of selection, crossover, mutation and their

evolution leads to creating each new generation. The same approach holds for the GA

which will be explained in next section (Haupt & Haupt, 2004).

1 Definitions

Since GA mechanism is similar to the biological process of reproduction, some of its

related terminology is borrowed from biology. However, the terminology in GA is much

simpler than the one in the biological process. Some of the definitions that are more

common between these two process are explained as follows (Haupt & Haupt, 2004):

• Chromosome: A group of parameters or genes that are plugged into the fitness

function.

• Fitness function: is a function that has to be optimized by providing a fitted value.

• Generation: An iteration in the process of implementing the Genetic Algorithm

• Population: A number of chromosomes (solutions) that mix together to produce the

next generation of the solutions.

• Population size: The size of initial and evolved population during the process of

optimization.

• Search Space: Possible values of the parameters (solutions) of the function

• Selection: It is a process in which parents are selected for the reproduction.

26

• Crossover: It is a process in which new offspring (solution) is reproduced by ex-

changing part of information from parents.

• Mutation: It is a random change in the genes (parameter) of a parent (current

solution).

• Probability of crossover: It is the percentage of population that are selected to do

the crossover.

• Probability of mutation: The percentage of population that are selected for the

mutation.

• Elitism: The percentage of best fitted solutions that survive to the next generation.

2 Types of GA

Carr (2014) explained that there are three types of Genetic Algorithms with regard

to the solutions:

• Binary: A string of zero’s and one’s

• Permutation: combinations of the items

• Real-valued: continuous values

Carr (2014) illustrated that the fitness function in Binary GA could be optimized by

converting the solutions to the binary strings. The initial population of solutions to the

problem are encoded to an array of binary values like a set of genes in a chromosome of

an organism. An example of the solutions (chromosomes) could be these two members of

the population [11010111001000] and [01011101010010]. These solutions are plugged in

the fitness function, and the fitness value is calculated.

The next step is the selection process in which the fittest solutions are selected to

produce the new solutions or offspring. There are different ways of selecting the parents

which will be explained later. In this step the function searches solution over a search space

27

and finds the fittest ones. When parents are selected they produce the new generation

through crossover and mutation.

Carr (2014) defined crossover and mutation through an example. For instance if two bi-

nary solutions from the initial population are [11010111001000] and [01011101010010],

and they crossover after the fourth digit, their new offspring are [11011101010010] and

[01010111001000]. Mutation brings more diversity in the population and does not let

the algorithm converge very fast. Mutation could happen before selection and crossover

or after that. If mutation occurs after crossover, one of the bits in new solution or off-

spring would be flipped from zero to one or vice versa. For instance in the first offspring

above, the mutation could occur on the 11th point and change the zero to one as follows

[11011101011010] and the final new solution is reported.

This process of selection, crossover, and mutation repeats for next generations and each

time the best solution with the best fitness value is recorded. The process of evolution

is continued until the convergence criteria is met. This could be for an algorithm to

reach a maximum number of iterations. The process of all the iterations which leads to

a value as a solution is called a Run . The second type of convergence occurs when a

quite large number of generation passed with almost the same fitness value or without

any improvement in it. The third type of convergence is when there is a predefined bound

for the population statistic (scrucca2013ga). Performance of a GA depends on the fitness

function and parameters like probability of crossover, probability of mutation, size of the

population, and the number of iterations which can be adapted after some primary runs

(Carr, 2014).

As Carr (2014) explained, Permutation type of Genetic Algorithm is an optimization

problem for combinations which means the function is optimized by selecting the best

permutation or order of the numbers or items. The very famous problem of permutation

type of a GA is "The Traveling Salesman Problem" (TSP).

28

2.1 Real-valued GA

When we are interested in optimizing a function, the variables of which are continuous,

we are required to apply Real-valued GA. This type of GA is less time consuming since the

solutions do not need to be converted to binary values as in the Binary type of GA (Haupt

& Haupt, 2004). If the fitness function is bi-variate, f(x, y), with continuous variables x

and y, it will report two solutions to the problem. The domain of the variables has to

be determined for the function to help GA to limit the search space to a reasonable size

(Haupt & Haupt, 2004).

Firstly, the process of optimization of a real-valued GA starts with an initial population

of continuous solutions. Secondly, the fitness values of these initial solutions are computed

using the fitness function. Then, it will be investigated if they are optimal numbers and the

algorithm converges or if they have to be evolved using GA operators through the process

of selection, crossover, and mutation. If the initial solutions are not optimal, the second

generation of solutions will be produced using the GA operators and the convergence will

be checked. This process could continue for several generations until the optimal numbers

will be obtained and the GA converges. The whole process of GA which will lead to

producing the optimal solutions is depicted in Figure 3.1(see (Haupt & Haupt, 2004)).

Figure 3.1: The process of GA

There are different types of GA operators, and various combinations of them could be

29

used to produce the optimal solutions. Some of the GA operators will be explained in the

following sections.

2.2 Selection

The selection process for reproduction is a very crucial step in the optimization of

a GA. The selection mechanism determines the individuals that need to be selected to

produce the new generation. Also, there is an important parameter in the selection pro-

cess called selection pressure which aims for for the selection of the fittest solutions or

individuals for producing the next generation. If selection pressure is too low then it

slows down the process of convergence to find optimum solutions. If it is too high, the

algorithm converges too fast to a local optimum since it does let less fitted solutions to

be selected which leads to less diversity in the population. Therefore, it is important to

know which selection method to choose that help the algorithm converges to the global

optimum solution (Oladele & Sadiku, 2013).

• Roulette Wheel Selection (RWS): Razali, Geraghty, et al. (2011) explained that in

this method each individual solution has a probability of being selected proportional

to its fitness value. If a solution is denoted by fi, i = 1, 2, · · · , n, the probability

for a solution to be selected is pi = fi∑n
i=1 fi

. In this approach the solution with the

highest probability have higher chance of being selected. The process of selection in

roulette wheel method can be summarized in these steps:

– S =
∑n

i=1 fi is the sum of all the fitness values

– α ∈ (0, S) is a random number generated

– go through the solutions and calculate the sum of fitness values S ′ =
∑j

i=1 fi.

If α < S ′ then solution j is selected.

– repeat the last two steps to produce enough pairs that could mate and produce

new generation or solutions.

For instance, if the current solutions are fi = {1, 5, 6, 7, 11, 20} and the sum is

S = 50 and α is selected randomly from this range α ∈ (0, 50) such as α = 23.

30

Also, the S ′ = 1 + 5 + 6 + 7 + 11 = 30 is computed. since α < S ′ then 11 is the

one that is selected. This method gives chance to every individual to be selected

but the opportunity is not the same for every individual. The ones with the largest

probability have more chance to be selected since the selection pressure is too high.

They dominate the population and do not let the other individuals to be involved

which leads to less diversity in the next generation. Therefore, the algorithm could

produce the local optimum rather than global.

• Rank Selection: This method was introduced to bring more diversity to the solutions

that cannot be obtained in the previous method due to fittest solutions dominance.

In fact this method gives every solution the same chance of being selected. In this

method the individuals are ranked according to their fitness values. The individual

with the lowest fitness value ranks 1 and the one with the highest fitness value

ranks n (Kumar, 2012). Rank selection method prevents the algorithm to converge

too fast and will not let the algorithm get stuck in the local optimum. The process

of selection in Rank Selection method by considering the rank of a solution as ri

can be summarized in these steps (Kumar, 2012):

– S =
∑n

i=1 ri is the sum of all the fitness values

– α ∈ (0, S) is a random number generated

– go through the solutions and calculate the sum of fitness values S ′ =
∑j

i=1 ri.

If α < S ′ then the solution j is selected.

– repeat the last two steps to produce enough pairs that could mate and produce

new generation or solutions.

For instance, if the current solutions are fi = {1, 5, 6, 7, 11, 20} and the sum is

S = 21 and α is selected randomly from this range α ∈ (0, 21) such as α = 14. Also,

the S ′ = 1 + 2 + 3 + 4 + 5 = 15 is computed. since α < S ′ then 11 is the one that is

selected. The problem with this method is that it converges very slowly because it

is based on the ranks of the solutions, but it is more robust comparing to the other

method of selections. Rank selection method includes two types of methods:

31

– Linear Rank Selection: This method was proposed by Blickle and Thiele (1995).

In this method the probability of selection is linearly proportional to their rank

pi =
1

n
(η− + (η+ − η−)

i− 1

n− 1
), i ∈ {1, 2, · · · , n}

η+ = 2− η−, η− > 0 (2.1)

In Equation (2.1) the probability of the worst solution to be selected is η−

n
and

the probability of the best solution to be selected is η+

n
. Also, the constraints

η+ = 2−η−, η− > 0 must be achieved as the population size is held invariant.

In this method even the individual solutions with the same fitness value get

different probability of being selected . In this equation if the fitness value of the

fittest individual is set to 2 or larger than that, then the worst individual does

not have the chance to be selected for the reproduction. By setting η+ > 2 the

worst solutions fitness values will be negative which means they cannot produce

any new solutions (Blickle & Thiele, 1995). Another method that gives a chance

to the worst members of a population to be selected is the Non-linear Rank

selection.

– Non-linear Rank Selection: In this method the probability of selection is not

proportional to the rank. it is proportional to a non-linear function of the rank.

In this method the selective pressure is higher than linear rank selection, so

the algorithm converges slowly to find the optimal solution (Kumar, 2012).

• Linear Scaling Selection(Goldberg & Holland, 1988): This process of selection is

defined to overcome the problem of the fittest solutions domination in Roulette

wheel selection method. In this method, a linear function fscaled of the current fitness

function fraw is defined as fscaled = afraw + b. The coefficients a and b are selected

such that favgraw = favgscaled. Also, fmaxscaled = Cfavgraw in which C ∈ (1.1, 2) is the number

of expected desired copies of best solutions that can be selected to produce the

next generation of solutions. In fact, C controls the number of fittest solutions to

be selected for the reproduction. The choice of C pulls the fitness function out

32

remarkably when the algorithm reaches to the end of the run. This situation causes

some problem in using linear scaling. There are some bad solutions with fitness

values that are very far from the average and the maximum which are almost close

in a mature run. When scaling is applied, since the maximum and average fitness

values are so close, it affects the scaled bad fitness values and they become negative.

In this case one of the solutions is to map these negative values to zero for the bad

fitness values and keep the rest stay the same as they are.

• Sigma Truncation Selection: The previous method works well and prevents the

domination of powerful solutions. However, some weak solutions produce negative

amounts for the scaled fitness function fscaled due to scaling. In this case, it is sug-

gested using the variance of fitness values of the population before scaling. In this

process, before scaling a constant is deducted from the raw fitness value and the new

fitness function f ′ is computed. The new fitness function is f ′ = fraw − (f̄ − c× σ)

where f̄ =
∑n

i=1 fi and σ is the standard deviation of the fitness values of the pop-

ulation. Also, c ∈ (1, 3) is selected as a multiple of σ. After sigma truncation is

incorporated, and new fitness values f ′ are computed, the linear scaling procedure

which explained in the previous part can be applied. Sigma truncation prevents from

having negative values for scaled fitness values (Goldberg & Holland, 1988).

• Tournament Selection (Jebari & Madiafi, 2013): In this process a subset of the

population k < n is selected and from this subset the fittest individual will be the

one to be chosen for reproduction. This process repeats n times and for the whole

population. Since this method does not involve sorting, it works really well for large

populations.

2.3 Crossover

When the parents are selected by one of the methods that described above, then we

need to decide how they are going to mate and produce the next generation which leads

us to the topic in this section, crossover. There are various methods for crossover which

33

was explained by Adewuya (1996):

• Single point crossover: In this method, parents that are selected from the initial

population exchange some part of the information to produce the new generation.

For instance consider there are k variables involved to the problem that have to be

solved. The solution is a k-dimension vector, and the two parents as an example

could be F1 = [f1, f2, f3, f4, · · · , fk] and F2 = [f ′1, f
′
2, f

′
3, f

′
4, · · · , f ′k]. The new off-

spring can be produced by choosing randomly a single point such as point three in

the parents and exchange the items between them as follows to produce new solu-

tions: F new
1 = [f ′1, f

′
2, f

′
3, f4, · · · , fk] and F new

2 = [f1, f2, f3, f
′
4, · · · , f ′k]. This method

is rarely used, and if it is the case, mutation rate has to be high to bring more

diversity to the solutions by introducing new members.

• Uniform Crossover: In this method the crossover occurs on multiple points randomly.

If two parents are F1 = [f1, f2, f3, f4, · · · , fk] and F2 = [f ′1, f
′
2, f

′
3, f

′
4, · · · , f ′k], The

new offspring could be produced by choosing randomly a single or multiple points in

the parents chromosomes and exchange the items between them as follows F new
1 =

[f ′1, f2, f
′
3, f4, · · · , fk] and F new

2 = [f1, f
′
2, f3, f

′
4, · · · , f ′k].

• Local Arithmetic crossover: If F1 and F2 are the parents, the offspring is produced

from these three linear combinations

F new
1 = 0.5F1 + 0.5F2 F new

2 = 1.5F1 − 0.5F2 F new
3 = −0.5F1 + 1.5F2

The combinations occurs gene by gene in the parents, and the best two out of these

three are selected as the new offspring. This method brings more diversity to the

solutions.

• Whole Arithmetic crossover: If F1 and F2 are the parents and the offspring is created

through this combination:

F new
1 = aF2 + (1− a)F1 F new

2 = aF1 + (1− a)F2

34

where a ∈ [0, 1] is randomly selected, it is called whole arithmetic crossover.

• Blend Crossover (BLX−β): In this method a parameter β is selected that identifies a

bound outside the range of values between two parents to produce the new offspring.

Figure 3.2 depicts how this type of crossover works:

Figure 3.2: Blend crossover (BLX− β) method

If β = 0 then, it is called flat crossover, and the values are selected from the outside

the range of parents values. Parameter β stretches the range of the new generation

but not too far.

2.4 Mutation

When the methods for selection and crossover are selected, the next step is to introduce

mutation to the algorithm. Mutation brings more diversity to the solutions and also

prevents the algorithm from converging too quickly on a local optimum value. There are

different methods for mutation as well (Adewuya, 1996):

• Uniform random mutation: If the solution vector for the fitness function and for

generation t is F t = (f1, f2, · · · , fj, · · · , fk) and every item has the same chance to

be selected, the new solution could be F t+1 = (f1, f2, · · · , f ′j, · · · , fk) where f ′j, 1 ≤

j ≤ k could be any number between lower and upper bound of the fk. This method

produce solutions close to the original solutions.

• Non-uniform random mutation: If the solution vector for the fitness function is

F t = (f1, f2, · · · , fj, · · · , fk) and every item has the same chance to be selected, the

35

new solution could be F t+1 = (f1, f2, · · · , f ′j, · · · , fk) where:

f ′j = fj + y × r
(

1− t

T

)b

where t is the number of current generation, T is the maximum number for genera-

tion, r is a random number that is generated and it is between 0 and 1,b determines

a non-uniformity is the system parameter, and y takes values between -1 and 1 with

probability of 0.5.

• Random mutation around the solution: If the solution vector for the fitness function

is F t = (f1, f2, · · · , fj, · · · , fk) and every item has the same chance to be selected,

the new solution could be F t+1 = (f1, f2, · · · , f ′j, · · · , fk) where f ′j could be the

lower bound Lj or the upper bound Uj of the fj, 1 ≤ j ≤ k. This method creates

solutions with less diversity since the new solution can take values either as the

upper or lower bound.

All these methods are the ones that are defined for GA package in R. There are other

parameters that have effect on the performance of GA such as probability of crossover,

probability of mutation, and elitism. In next section it is discussed how these parameters

could have impact on the performance of GA.

2.5 GA control parameters

All the methods that are described above are part of the GA operators: selection,

crossover, and mutation. The choice of these methods has effect on the performance of

GA. There are also some other parameters which are called control parameters in the GA

function that have effect on its performance like population size, probability of crossover,

and probability of mutation. Most of the time, the best values for these control parameters

are determined by trial and error. There is no single optimal number for these parameters

and it changes among various problems or even at different levels of the GA process. He

presented some of the studies that investigated the optimal numbers for probability of

crossover and probability of mutation (Patil & Pawar, 2015).

36

DeJong (1975) explained that high values for the mutation rate decrease the perfor-

mance of GA regardless of what values to be assigned to the other parameters. One of

their suggestions for these parameters is a population size of (50-100), a single point prob-

ability of crossover (0.6) and a probability of mutation of (0.001) which have been used

in many Genetic Algorithms.

Grefenstette (1986) illustrated that for a low population size between (20, 40) the GA

performs well either with high/low probability of crossover with low/high mutation error.

One of his suggestions is a population size of 30 with mutation probability of 0.01 and with

crossover probability of 0.95. Schaffer et al. (1989) also studied and concluded that the

GA performance is more sensitive to the crossover probability than mutation probability.

He suggested some parameter setting very close to what Grefenstette (1986) proposed.

He proposed a population size of (20-30) with probability of mutation between (0.005-

0.01) and crossover rate between (0.75-0.95). Also, there are some research showing that

changing the mutation rate has a positive effect on GA and it has to decrease over the

time of process.

As it can be noticed there are different possibilities for control parameters, and it has

to be decided based on the time of the process, accuracy of the results, and the type of a

problem which one to select.

As mentioned before, the GA package in R could be used for the analysis. In the R

package the GA maximizes the fitness function, so for minimizing a function, the negative

of that function has to be maximized. The function needs an initial population which

could be generated from a random (uniform) population of real values in the range of the

variables.

37

Chapter 4

GA optimization for RF based Methods

As discussed before the number of trees, ntree, and number of features at each split,

Mtry, are mostly regarded as tuning parameters for a RF, and they are considered as

the most important ones that have impact on performance of the RF (Elyan & Gaber,

2017). These two parameters are also inputs for MissForest. Since MissForest is a RF

based method, these parameters could also have an impact on its performance. The goal

is to apply GA to find the optimized values for these parameters that minimize the MSE

of the RF and imputation error of MissForest. In this section, it will be elaborated how

these optimized methods work, and they are compared with classic models.

1 MissForest Optimization (MissRFGA)

Since a RF cannot be implemented when missing values are present, first the MissFor-

est approach and its optimization process was explained. In this study, if datasets include

missing values, they are imputed by MissForest and by an optimized version of that func-

tion. If they did not have missing values, 10% of the datasets was randomly converted to

missing just to compare the performance of both classic and optimized models.

In the optimization process, the GA was applied to produce the solutions for the

optimized MissForest. The solutions are optimized values for ntree andMtry that minimize

the imputation error of the MissForest which is a fitness function for GA. At the beginning,

an initial population of solutions was required to start this process. The optimization

38

started with this population, a population of 50 solutions, and evolved over a number

of generations to find the optimal values to improve the performance of the model. The

component of the population were values for this vector V = [ntree,Mtry]. The number of

trees was between, ntree ∈ [50, 500], and number of features was set between these values

Mtry ∈ [1, p] where p is the number of parameters. The range for ntree was selected to

have enough number of trees to reduce the variance. Also, the number of features includes

all the choices to see if the boundaries will be selected as solutions. The default setting

for MissForest is ntree = 100 and Mtry =
√
p.

In this process, at first a fitness function was defined which was called later by GA.

The fitness function is the imputation error of the model and its computation algorithm

is depicted in Table 4.1 (Elyan & Gaber, 2017):

Table 4.1: Compute fitness function for MissForest

begin

A← Dataset

ntree← ntree0

Mtry ←Mtry0

(ntree,Mtry)← (ntree0,Mtry0)

model← fit missRF (A, ntree,Mtry)

imputation_error ← evaluation of the model

return(imputation_error)

(ntree,Mtry)← Solutions

repeat the process from step 5

end

In this algorithm as it can be observed, at first a primary number was assigned to both

number of trees, ntree0, and number of features Mtry0. Secondly, the fitness function

(imputation error) was computed by applying these numbers, then it was evaluated for

other solutions during the optimization process. The fitness function above was called in

GA function to be optimized and produce the optimum results. The algorithm for GA is

39

presented in Table 4.2 (Elyan & Gaber, 2017):

Table 4.2: Genetic Algorithm Process

begin

iter ← 0

j ← 0

Generationj ← K random solution

fitness← compute fitness(k) ∀k ∈ Generationj

While fitness not optimized and i ≤ iter do

Generationj+1 ← evolve(Generationj)

fitness← compute fitness(k) ∀k ∈ Generationj+1

iter ← iter + 1

end

return(fittest solution)

end

This algorithm called the fitness function from Table 4.1, then it searched over ntree

and Mtry values and reported the optimized numbers and their corresponding fitness

values (imputation errors). The fittest solution was the minimum value for imputation

errors which include both NRMSE (for continuous variables) and PFC (for categorical

variables). As explained before there are different options for GA control parameters like

population size, probability of crossover, and probability of mutation. Also, there are other

parameters like elitism, maximum iteration, and run which can be set to default or some

initial values to investigate the performance of GA. The parameters selected for this study

is depicted in Table 4.3:

40

Table 4.3: GA parameters for optimizing MissForest

Parameters value

Population Size 50

Pcrossover 0.8

Pmutation 0.1

Elitism 0.05

Maxiteration 20

Run 20

The package MissForest in R was applied to produce the results. In the process of op-

timization, GA was applied to search over the range of values ntree andMtry to minimize

the imputation error of MissForest and the same time impute the missing values. Then,

the minimized imputation error was compared to the imputation error of the classic Miss-

Forest with default values ntree andMtry. If the optimized MissForest had minimized the

imputation error, the ntree and Mtry of the minimized error were reported as the optimal

solutions. Since there were packages for both RF and GA in R, the optimization functions

were defined and implemented in this environment.

2 Random Forest Optimization

One of the objective of this study was using the GA to optimize the performance of a

RF. The goal was to find the optimal values for ntree andMtry that minimize the MSE of

the RF. The range of the initial population is ntree ∈ [50, 1000] and Mtry ∈ [1, p] where

p is the number of parameters. The range for number of trees is such that to make sure

to have enough trees. Some studies have shown that number of trees beyond 500 to 1000

does not have a significant effect on improving the error of estimation, so the maximum

number of tress was set to 1000 (Elyan & Gaber, 2017). Also, for a classic regression RF

ntree = 500 and Mtry = p/3. The GA control parameters to optimize the RF is presented

in Table 4.4.

41

Table 4.4: GA parameters for optimizing RF

Parameters value

Population Size 500

Pcrossover 0.8

Pmutation 0.1

Elitism 0.05

Maxiteration 500

Run 300

The fitness function algorithm for a RF optimization is the same as MissForest except

for the fitness function that changes from imputation error to MSE. The GA function

minimizes this fitness function and reports the optimized ntree and Mtry.

In the optimization process of a RF, the function GA was applied to minimize the MSE

of the RF to produce the optimal solutions for ntree and Mtry. In order to optimize a

Random Forest, the datasets were divided into train, test, and validation sets by 50%, 25%,

25%. The training set was used to apply GA to optimize the RF during the optimization

process. The validation set was used to evaluate the optimized model while selecting

the GA parameters. The test set was used for assessment of the final model. All these

procedures were defined and implemented in a function in R using RF and GA packages.

3 Genetic Algorithm

In this study, the Real-valued type of Genetic Algorithm was applied to optimize the

performance of the RF and MissRF. The GA was applied to minimize the validation

MSE of a RF and imputation errors (NRMSE and PFC) of a MissForest and return their

corresponding optimal integer value of ntree andMtry. The GA function in R is applied for

maximization of the fitness functions. In this study the goal is to minimize the estimation

error, so a minus sign was added to the fitness function for minimization. As mentioned

in section 3.2 there are several options for GA operators like selection, crossover, and

mutation, but for this study the default settings were applied for both models which are

42

depicted in Table 4.5.

Table 4.5: GA arguments for RF and MissRF

GA Arguments default options

Population range [min,max]

Selection gareal_lsSelection

Crossover gareal_laCrossover

Mutation gareal_raMutation

The population refers to the initial population that is generated randomly from the

range of the solutions. For instance for ntree ∈ [50, 1000] in a RF, the initial population

is selected randomly from this range. The size of the population is determined in Table

4.4 (500). The default options for selection, crossover, and mutation are linear scaling,

local arithmetic crossover, and uniform random mutation respectively. In order to evaluate

the results for other options, one dataset (Automobile) was selected and the results were

obtained and compared with default values which will be reported in next section.

43

Chapter 5

Experiments

This section presents the experiments that were conducted to compare the performance

of optimized models with classic types. The optimized regression RF is called RRFGA

and the optimized version of MissForest is MissRFGA. The goal of the experiments was

to show that the optimized version of the models outperforms the classic types. In order

to have a stable and valid conclusion, the experiments were replicated 10 times for all the

datasets by using different seed numbers for RF and MissForest functions.

1 Datasets

There are five datasets that were selected from the UCI repository for the analysis.

Two datasets contained missing values, and for the remaining three datasets, 10% of them

were converted to missing values, which are considered missing completely at random. All

the datasets and their descriptions are presented in Table 5.1.

44

Table 5.1: Description of the datasets used in the experiments

Dataset Size Variables No
Continuous

variables No

Categorical

variables No
Missing values

Concrete Compressive

Strength
1030 9 9 0 No

Automobile Data 205 26 15 11 YES

Auto MPG Data Set 398 9 5 4 YES

Student Performance 649 31 4 27 No

Computer Hardware Data Set 209 8 7 1 No

For the first dataset "Concrete compressive strength dataset", the response, "Concrete

strength", is predicted by 8 predictors, and this dataset does not include any missing

values. The second dataset is the Automobile data where the price of the automobile is

predicted by 25 predictors. This dataset includes missing values, so at first they were

imputed by MissForets and then the RF was used for the prediction. The third dataset

measures mile per gallon gas consumption of the automobiles based on eight variables.

In the fourth dataset, students’ final grades were predicted by 30 variables as predictors.

The grades range was between 0 and 20 and it was a continuous variable. For the final

dataset the performance of a computer hardware was measured by seven variables. This

dataset included nine variables, but since one of them (model name) had more than 51

categories and since a RF could not handle this type of variable, it was removed from the

dataset.

2 Results

In this section the results of the optimized and classic MissForest and RF are pre-

sented. The MissForest and RF were optimized by GA. There was a comparison between

optimized MissForest and classic MissForest to evaluate their performance by comparing

their imputation errors. Also, the performance of optimized RF and the classic RF were

compared to investigate which model produce the minimum MSE.

These models were applied on five datasets from the UCI repository website. Firstly,

45

during the optimization process the final model which is the optimized one was selected,

and the corresponding optimal solutions for ntree and Mtry were obtained. It has to be

considered that one optimal number was obtained from the optimization process. After

receiving optimal numbers, they were plugged in the MissForest and RF functions as

initial values and the imputation error and MSE were computed respectively. Then, the

imputation error and MSE of the optimal numbers were compared to the imputation

error and MSE of the classic MissForest and RF using default values for ntree and Mtry.

The comparison of the MSE of classic RF and optimized RF and classic MissForest and

optimized MissForest were replicated 10 times with different seed numbers for both RF

and MissForest.

The 10 replications for comparing the estimation error of the RF and MissForest have

been conducted to evaluated if the optimal numbers for ntree andMtry from optimization

process produce minimum error comparing to the default values of these parameters in

RF and MissForest. When 10 replications were conducted, each time the MSE of the RF

and imputation error of the MissForest for both optimized and default ntree and Mtry

were recorded and the average and standard deviation of 10 repetitions were computed for

each dataset. The processing time to run the experiments for optimization of MissForest

and RF was between 7 to 9 hours.

2.1 MissForest

The results of the average and standard error of the imputation errors for the 10

replicates of both optimized and classic MissForests are depicted in Table 5.2.

46

Table 5.2: Comparing imputation error of optimized and classic MissForest
Datasets ntree Mtry MissRFavg MissRFGAavg MissRFstd MissRFGAstd

Concrete (NRMSE) 88 6 0.066 0.063 0.0004 0.0005

Automobile (Price/NRMSE) 194 10 0.131 0.124 0.0025 0.0013

Automobile (MPG/NRMSE) 285 5 0.086 0.085 0.0013 0.0006

Automobile (MPG/PFC) 285 5 0.277 0.288 0.0060 0.0079

Students performance(NRMSE) 172 17 0.317 0.305 0.0024 0.0023

Students performance(PFC) 172 17 0.437 0.444 0.0028 0.0018

Cmputer Hardware (NRMSE) 251 5 0.377 0.354 0.0061 0.0053

The values for ntree and Mtry in Table 5.2 are the values that were obtained from the

optimization process. The column missRFavg represents the average imputation error of

the classic MissForest using the default values for ntree and Mtry which are 100 and √p

respectively, where p is the number of predictors. The column missRFGAavg represents

the average imputation error of the optimized MissForest using the optimal numbers for

ntree andMtry respectively. The last two columns represent the standard deviation of the

imputation error of the classic and optimized MissForest. This table represents the impact

of applying GA as an optimization method on the performance of MissForest. It shows

that especially when missing values are present for continuous variables, the corresponding

imputation error (NRMSE) produces better results than the classic type. The last column

in Table 5.3 shows the percentage of improvement of the optimized MissForest over the

classic one.

Table 5.3: Experimental Results of imputation error for MissForest

Datasets ntree Mtry MissRFavg MissRFGAavg
percentage of improvement

for the optimized model

Concrete 88 6 0.066 0.063 5%

Automobile (Price) 194 10 0.131 0.124 5%

Automobile (MPG/NRMSE) 285 5 0.086 0.085 1%

Automobile (MPG/PFC) 285 5 0.277 0.288 -4%

Students performance(NRMSE) 172 17 0.317 0.306 4%

Students performance(PFC) 172 17 0.437 0.444 -2%

Cmputer Hardware 251 5 0.377 0.354 6%

47

The optimal ntree and Mtry are presented in Table 5.3. The columns MissRFavg and

MissRFGAavg represent the average of imputation error (NRMSE). The last column

provides the percentage of improvement in minimizing the (NRMSE) using optimized

MissForest by computing the percentage in improvement (MissRFavg
MissRFGAavg

− 1)%. As it can

be noticed by looking at Table 5.3 the optimized MissForest had a better performance

than the classic model especially for three datasets that contain missing values just for

continuous variables. However, there are some variations in its performance when missing

values are present for both continuous and categorical variables. In this case, the impu-

tation error of the MissForest function includes both NRMSE and PFC, the imputation

error for continuous and categorical variables respectively.

When missing values were present for both categorical and continuous variables, the

GA that was applied to optimize MissForest did not minimize both imputation errors

at the same time and as a result did not produce one optimal solutions for ntree and

Mtry. Therefore, the GA optimizes the MissForest and produces two optimal solutions

for them: one that minimizes NRMSE but not the corresponding PFC error. The other

solution minimizes PFC but not the corresponding NRMSE. In this case the average of

the both NRMSE and PFC is computed and the solutions (ntree and Mtry) are selected

whose average is smaller. The Table 5.4 shows the two sets of solutions that was obtained

from the optimized MissForest for Automobile MPG dataset. The last column shows the

average of the imputation error two solutions.

Table 5.4: Two sets of solutions for optimized MissForest

ntree Mtry NRMSE PFC average of imputation errors

285 5 0.075 0.225 0.15

350 6 0.098 0.275 0.187

As it can be noticed from Table 5.4 by comparing the average in the last column, the

first solution was selected to produce the 10 times replications of the results for MissForest.

Figure 5.1 represents the box plot of the 10 replicates of the datasets for MissRF and its

corresponding optimized versions. This Figure represents the 10 replications of optimized

48

and classic MissForest for NRMSE (imputation error for continuous variables) in the

boxplots for five datasets.

Figure 5.1: Boxplot for 10 replicates of five datasets for MissForest

Figure 5.1 depicts that the performance of MissRFGA is better than the classic Miss-

49

Forest for almost all datasets. Three datasets including concrete, student performance,

and computer hardware performance which showed a better performance did not include

missing values, so 10% of them were converted to missing values completely at random.

(Misztal, 2013) showed that MissForest has a better performance for MAR and MCAR.

Therefore, it could be concluded that better results for these datasets was due to having

MCAR missing values. However, Automobile and Automobile MPG datasets included

missing values and still showed a better performance for MissRFGA.

2.2 RF

Table 5.5 represents the average and standard deviation of MSE of 10 replications

of running the RF function for both optimized and classic RF. The solutions of the

optimized RF were ntree and Mtry which were depicted in Table 5.5. The default values

for classic RF were ntree = 500 and Mtry = p/3. The optimized and default values of

these parameters are plugged in the RF function and the results of 10 replications were

obtained and depicted below.

Table 5.5: Comparing Performance of Optimized and classic RF

Datasets ntree Mtry RFavg RRFGAavg RFstd RRFGAstd

Concrete 616 6 25.789 20.961 0.223 0.268

Automobile (Price) 388 4 3,569,261 3,530,232 49250 48340

Automibile (MPG) 285 5 8.317 8.088 0.085 0.072

Students performance 485 16 15.849 15.577 0.038 0.095

Cmputer Hardware 452 4 3292.497 3013.604 130 132

The values for ntree and Mtry in Table 5.5 are the values that were obtained from

the optimization process. The column RFavg represents the average MSE of the classic

RF using the default values for ntree and Mtry which are 500 and p
3
respectively, where

p is the number of predictors. The column RFGAavg represents the average MSE of the

optimized RF using the optimal numbers for ntree and Mtry respectively. The last two

50

columns represent the standard deviation of the MSE of the classic and optimized RF.

Table 5.5 shows that optimized RF had a great impact on first and last datasets while

it also performed relatively well on other datasets. Table 5.6 represents how much in

percentage the optimized RF outperformed a classic RF.

Table 5.6: Experimental Results for Random Forest

Datasets ntree Mtry RFavg RFGAavg
percentage of improvement

for optimized RF

Concrete 616 6 25.789 20.961 23%

Automobile (Price) 388 4 3,569,261 3,530,232 1%

Automobile(MPG) 285 5 8.317 8.088 3%

Students performance 485 16 15.849 15.577 2%

Cmputer Hardware 452 4 3293 3013 9%

The optimal ntree and Mtry are presented in Table 5.6. The columns RFavg and

RFGAavg represent the average of MSE of the estimation. The last column provides the

percentage of improvement in minimizing the MSE using optimized RF by computing the

percentage in improvement (RFavg
RFGAavg

− 1)%.

The percentages in Table 5.6 show a great performance for the Concrete dataset and

for computer hardware dataset. By looking at these two datasets it appears that the

former did not include any categorical variable and the number of observations is large

comparing to the other datasets. The hardware dataset also includes only one discrete

variable as a predictor which shows a relatively good performance.

Figure 5.2 shows the distribution of the 10 replicates of the results for optimized and

classic RF. As it can be observed the performance of the optimized model is better than

classic RF especially for the Concrete dataset where the MSE for RRFGA is much lower

than for RF. Also, in most cases the distribution for RRFGA is skewed to the left which

represents the lower amounts for the MSE of the model. The boxplot for the 10 replicates

of the MSE of the RF is represented in Figure 5.2.

51

Figure 5.2: Boxplot for 10 replicates of five datasets for Random Forest

52

The results in Figure 5.2 for the automobile dataset show some outliers for the classic

RF on the two extremes, while it represents relatively higher values of the MSE com-

paring to the results of RRFGA. Also the results for MSE of RRFGA for this dataset is

pretty close to the RF. The dataset student performance contains both categorical and

continuous variables, and even if on average it does not show a great performance, it

shows a better performance for the replicates which could be due to the larger number of

observations after Concrete dataset.

Since there are different options for GA operators including selection, crossover, and

mutation, some of these options were applied for the analysis of Automobile dataset, and

the result of 10 replications was reported and compared to the default setting (Table 4.5).

The results of these options are depicted in Table 5.7.

Table 5.7: Different GA operators for selection, crossover, mutation

GA Operators:slection/crossover/mutation RRFGAavg
increase in average MSE

compare to default(%)

lsSelection,laCrossover,raMutation (default) 3,530,232

nlrSelection,laCrossover,raMutation 3,879,156 10%

lrSelection,waCrossover,nraMutation 3,863,449 9%

nlrSelection,spCrossover,raMutation 3,858,709 9%

nlrSelection,blxCrossoverraMutation 3,854,262 9%

rwSelection,spCrossover,raMutation 3,822,033 8%

nlrSelection,laCrossover,raMutation 3,798,243 8%

nlrSelection,waCrossover,raMutation 3,710,612 5%

rwSelection,laCrossover,raMutation 3,621,036 3%

lrSelection,blxCrossover,nraMutation 3,590,870 2%

lrSelection,spCrossover,nraMutation 3,586,734 2%

lrSelection,spCrossover,nraMutation 3,586,734 2%

rwSelection,blxCrossover,raMutation 3,576,262 1%

rwSelection,waCrossover,raMutation 3,559,247 1%

53

The first result on the top of the table was the default setting. This method produced

the lowest average and standard error among all available options. The average MSE of

the optimized RF using other operators in GA was compared to the default operators

on the top in Table 4.4. It was evaluated to what extend (in terms of percentage) using

other operators of GA will increase the average MSE of the RF (equivalent operator
default operator

− 1)%.

This occurrence could be random, so this process could be repeated for other datasets to

see if it holds for other types of data. Different GA operators could be examined for RF

optimization and the one that produces the lowest minimum MSE could be selected.

In last part of section 3, it was discussed that the performance of GA depends on the

GA operators: selection, crossover, and mutation. Also, some studies showed the effect

of GA control parameters like the probability of crossover and mutation on its perfor-

mance. These studies suggested some numbers especially for population size, probability

of crossover, and probability of mutation. Some values were selected from the suggested

ranges and plugged in the GA function which was applied to optimize the RF function.

These parameters for GA were applied for RF optimization, and the solutions which

were ntree and Mtry obtained. Then, 10 replications were conducted for the automobile

dataset, and the average of the results was reported in Table 5.8. The first column depicted

the parameters respectively: ntree, Mtry, population size, probability of crossover, and

probability of mutation. The first record on the top represents the control parameter

suggested in table 4.4 that was used for all the datasets.

54

Table 5.8: Comparing different GA control parameters of RRFGA on Automobile dataset

RRFGA parameters MSEavg
increase in average MSE

comparing to default (%)

388-4-500-0.9-0.1 3530232

498-6-50-0.6-0.001 3634526 3%

557-10-100-0.6-0.001 3531811 0.04%

498-4-30-0.95-0.01 3931844 11%

498-4-30-0.95-0.005 3931844 11%

496-13-30-0.75-0.01 3575685 1%

496-13-30-0.75-0.005 3575685 1%

513-12-20-0.95-0.005 3553703 0.7%

513-12-20-0.95-0.01 3553703 0.7%

530-12-20-0.75-0.005 3532588 0.07%

530-12-20-0.75-0.01 3532588 0.07%

Table 5.8 represents the average MSE of RF using different GA control parameters.

The first row is the proposed numbers in Table 4.4 to run the GA. The average MSE of

the optimized RF using other control parameters in GA was compared to the suggested

ones in Table 4.4. It was evaluated to what extend (in terms of percentage) using other

control parameters of GA will increase the average MSE of the RF (equivalent option
suggested option

− 1)%.

The results show that the GA operators suggested before in Table 4.4, which is the

top row in Table 5.8, outperformed the other numbers depicted in this table. However,

as it can be observed, in most cases the increase in the MSE of the RF is not noticeable,

except for two cases which show a growth of 11% comparing to the default GA parameters

represented on the first row. Also, some of the suggested numbers for population size,

probability of crossover and mutation produced the same numbers for ntree and Mtry

which can be seen on the 4th record and later. All these cases have to be examined on

the other datasets to evaluate if different GA parameters on other datasets produce a

higher MSE comparing to the default numbers. In addition, since for some of the cases

55

the difference between the average MSE for default and suggested numbers is very small

especially when the population size is involved, it could be suggested using the proposed

options with smaller population size to reduce the processing time.

3 Conclusions and Future Work

In this study the main objective was to optimize regression RF and MissForest by ap-

plying GA. The goal was to minimize the MSE of RF and imputation errors of MissForest

by obtaining the optimal numbers for ntree and Mtry. Since the search space was very

large, the fitness function was complex, and the goal was to look for optimal numbers,

GA was applied. As it was observed the proposed models outperformed the classic types.

Although the impact of optimization on RF was more remarkable than MissForest.

This study coordinates with two other studies that had been conducted by Bader-El-

Den and Gaber (2012) and Elyan and Gaber (2017) where they used GA to optimize the

performance of Classification RF. Bader-El-Den and Gaber (2012) applied single point

crossover with uniform mutation as operators. The population size was either one of

these choices, 100, 200, 400, 500 and the probability of crossover and mutation were

set to 0.9 and 0.1 respectively. The results showed the optimized model GARF had a

better performance on 8 out of 15 datasets. Elyan and Gaber (2017) applied GA to

optimize the classification RF by obtaining the optimized values for sub-classes of the

response, ntree and Mtry. The parameter setting for GA in their study was the same as

in Table 4.4 for this study. They obtained 3% improvement in the performance of RF

using GA. According to my knowledge since there are not many studies available related

to improving the performance of regression RF, in this study it was evaluated if GA

could improve its performance. The study was conducted on five datasets, and in all of

them the optimized methods, RRFGA and MissRFGA, outperformed RF and MissForest.

The optimized MissForest also had a better performance especially when just continuous

variables were present.

In spite of noticing some improvement in the proposed methods specially for RF, it

has to be considered that among all the combinations for GA control parameters, one

56

approach (Table 4.4) was studied. Also, for a RF some other parameters such as node

size, size of the tree, or size of the bootstrap samples could be evaluated to be regarded

as parameters.

The results of various GA operators were presented in Table 5.8, and it was observed

that the default operators had a better performance for Automobile dataset. Also, the

results of GA control parameters presented in Table 5.8 showed a better performance for

the options depicted in Table 4.4. Also, one important issue in this study is the time of

the analysis. The average time for the optimization process was between 7 to 9 hours,

however, for some of the GA control parameters in Table 5.8, it was reduced on average

to 30 minutes.

Regarding all the issues discussed above, it is suggested that for a future study, the

effect of all the available GA control parameters on various types of datasets be evaluated

to find the one that could produce optimal solutions. Also, the effect of GA operators

on different datasets could be investigated to find one operator that produce the optimal

results. It also can be studied how to have a trade-off between time of the process and

producing an accurate result. In addition, since proposed method produce two sets of

solutions for MissForest, it could be assessed if there is a possibility to minimize both

errors at the same time to produce one set of solution.

57

R codes

l i b r a r y (randomForest)

l i b r a r y (MASS)

l i b r a r y (ROCR)

l i b r a r y (party)

l i b r a r y (GA)

l i b r a r y (missForest)

/∗RRFGA and C l a s s i c RF∗/

setwd ("D:/ cour s e s /Thes i s / f o r data s e t / other data s e t / da ta s e t s ")

ds=read . csv (" Concrete . csv ")

s e t . seed (23568)

n = nrow (ds)

t ra in Index = sample (1 : n , s i z e = round (0 . 8∗n) , r ep l a c e=FALSE)

t r a i n = ds [t ra in Index ,]

t e s t = ds [− t ra in Index ,]

n1=nrow (t r a i n)

vindex=sample (1 : n1 , s i z e = round (0 .75∗ n1) , r ep l a c e=FALSE)

t r a i n1=t r a i n [vindex ,]

v a l i d a t i o n=t r a i n [−vindex ,]

58

cgar f<−f unc t i on (ntrees , mtrys){

ntrees <−50

mtrys<−4

s e t . seed (23568)

n = nrow (ds)

t ra in Index = sample (1 : n , s i z e = round (0 . 8∗n) , r ep l a c e=FALSE)

t r a i n = ds [t ra in Index ,]

t e s t = ds [− t ra in Index ,]

n1=nrow (t r a i n)

vindex=sample (1 : n1 , s i z e = round (0 .75∗ n1) , r ep l a c e=FALSE)

subt ra in=t r a i n [vindex ,]

sub t e s t=t r a i n [−vindex ,]

r f<−randomForest (subt ra in [, −9] , subt ra in [, 9] , x t e s t=subte s t [, −9] ,

y t e s t=subte s t [, 9] , n t r ee = ntrees , mtry=mtrys , proximity=TRUE, importance = TRUE)

e r r . g<−r f $ t e s t$mse [n t r e e s]

pred<−r f $ t e s t $ p r e d i c t e d

re turn (e r r . g)

}

RRFGA<−f unc t i on (ds , mintrees =100 ,maxtrees=1000 , min feature s=1/(nco l (ds)−1) ,

maxfeatures=1, popSize=50,maxIter=10, runs=10){

s e t . seed (23568)

n = nrow (ds)

t ra in Index = sample (1 : n , s i z e = round (0 . 8∗n) , r ep l a c e=FALSE)

t r a i n = ds [t ra in Index ,]

t e s t = ds [− t ra in Index ,]

59

n1=nrow (t r a i n)

vindex=sample (1 : n1 , s i z e = round (0 .75∗ n1) , r ep l a c e=FALSE)

subt ra in=t r a i n [vindex ,]

sub t e s t=t r a i n [−vindex ,]

ntrees1 <−500

n fea ture s<−nco l (ds)−1

s e t . seed (4578)

r f<−randomForest (subt ra in [, −9] , subt ra in [, 9] , x t e s t=t e s t [, −9] ,

y t e s t=t e s t [, 9] , n t r ee = ntrees1 , proximity=TRUE, importance = TRUE)

e r r . r<−r f $ t e s t$mse [n t r e e s1]

minc<−c (mintrees , (min feature s ∗ n f e a tu r e s))

maxc<−c (maxtrees , (maxfeatures ∗ n f e a tu r e s))

GA<−ga (type="rea l−valued " , f i t n e s s=cgar f ,

min=minc ,max=maxc , keepBest=TRUE, popSize=popSize , maxiter=maxIter , run=runs , seed=2356 ,

names=c (" n t r e e s " ,"mtry "))

t e s tRe su l t s <−data . frame ()

f o r (i in 1 : nrow (GA@solution)){

ntrees<−as . i n t e g e r (round (GA@solution [i , 1]))

mtrys<−as . i n t e g e r (round (GA@solution [i , 2]))

r fg<−randomForest (subt ra in [, −9] , subt ra in [, 9] , x t e s t=subte s t [, −9] ,

y t e s t=subte s t [, 9] , n t r ee = ntrees , mtry=mtrys , proximity=TRUE, importance = TRUE)

e r r . g<−r f g$ t e s t$mse [n t r e e s]

60

#pred<−r f $ t e s t $ p r e d i c t e d

wr i t e . csv (pred , " prd . csv ")

t e s tRe su l t s <−rbind (t e s tRe su l t s , c (ntrees , mtrys , e r r . g , e r r . r))

fp<−paste0 (" r e s u l t s /" , names (ds [nco l (ds)]) , " preddf . csv ")

wr i t e . csv (pred , f i l e=fp)

}

f1<−paste0 (" r e s u l t s /" , names (ds [nco l (ds)]) , " . csv ")

f2<−paste0 (" r e s u l t s /" , names (ds [nco l (ds)]) , " _tes tResu l t s " ,"_" , " . csv ")

wr i t e . csv (GA@solution , f i l e=f1)

names (t e s tRe su l t s)<−c (" n t r e e s " ,"mtrys " ," e r r . g " ," e r r . r ")

wr i t e . csv (t e s tRe su l t s , f i l e=f2)

re turn (GA)

}

s t a r t . time <− Sys . time ()

RRFGA(ds ,100 ,1000 ,1/ (nco l (ds)−1) ,1 ,500 ,500 ,300)

end . time <− Sys . time ()

r f<−randomForest (ds [, −9] , ds [, 9] , importance = TRUE, nt ree =616 ,mtry=6,do . t r a c e = 100)

r f1<−randomForest (ds [, −9] , ds [, 9] , importance = TRUE, do . t r a c e = 100)

\newpage

/∗MissRFGA and MissForest ∗/

setwd ("D:/ cour s e s /Thes i s / f o r data s e t / other data s e t / da ta s e t s ")

ds=read . csv (" Concrete . csv ")

conc r e t e . mis <− prodNA(ds1 , noNA = 0 . 1)

wr i t e . csv (conc r e t e . mis , f i l e = "conmis . csv ")

61

ds1=read . csv (" conmis . csv ")

gamiss<−f unc t i on (ntrees , mtrys){

ntrees <−50

mtrys<−4

ga . imp <− missForest (ds , n t r ee=ntrees , mtry=mtrys)

e r r . g<−ga . imp$OOBerror

pred<−ga . imp$ximp

return (e r r . g)

}

MissRFGA<−f unc t i on (conc r e t e . mis , mintrees=50,maxtrees=200 , min feature s=1/(nco l (ds1)−1) ,

maxfeatures=1, popSize=30,maxIter=20, runs=10){

ntrees1 <−500

n fea ture s<−nco l (ds1)−1

conc r e t e . imp <− missForest (ds1)

e r r . r<−conc r e t e . imp$OOBerror

obs . d<−conc r e t e . imp$ximp

minc<−c (mintrees , (min feature s ∗ n f e a tu r e s))

maxc<−c (maxtrees , (maxfeatures ∗ n f e a tu r e s))

GA<−ga (type="rea l−valued " , f i t n e s s=gamiss ,

62

min=minc ,max=maxc , keepBest=TRUE, popSize=popSize , maxiter=maxIter , run=runs ,

names=c (" n t r e e s " ,"mtry "))

t e s tRe su l t s <−data . frame ()

f o r (i in 1 : nrow (GA@solution)){

ntrees<−as . i n t e g e r (round (GA@solution [i , 1]))

mtrys<−as . i n t e g e r (round (GA@solution [i , 2]))

ga . imp <− missForest (ds1 , n t r ee=ntrees , mtry=mtrys)

e r r . g<−ga . imp$OOBerror

pred<−ga . imp$ximp

te s tRe su l t s <−rbind (t e s tRe su l t s , c (ntrees , mtrys , e r r . g , e r r . d))

fp<−paste0 (" miss ing /" , names (ds1 [nco l (ds1)]) , " predmiss . csv ")

wr i t e . csv (pred , f i l e=fp)

fp1<−paste0 (" miss ing /" , names (ds1 [nco l (ds1)]) , " de fmis s . csv ")

wr i t e . csv (obs . d , f i l e=fp1)

}

f1<−paste0 (" miss ing /" , names (ds1 [nco l (ds1)]) , " . csv ")

f2<−paste0 (" miss ing /" , names (ds1 [nco l (ds1)]) , " _tes tResu l t s " ,"_" , " . csv ")

wr i t e . csv (GA@solution , f i l e=f1)

names (t e s tRe su l t s)<−c (" n t r e e s " ,"mtrys " ," e r r . g " ," e r r . r ")

wr i t e . csv (t e s tRe su l t s , f i l e=f2)

re turn (GA)

}

s t a r t . time <− Sys . time ()

63

MissRFGA(con . miss , 50 , 500 , 1/ (nco l (ds1)−1) ,1 ,50 ,20 ,20)

end . time <− Sys . time ()

con . imp <− missForest (ds1 , n t r ee =88,mtry=6)

err<−con . imp$OOBerror

con . impp <− missForest (ds1)

err<−con . impp$OOBerror

64

References

Adewuya, A. A. (1996). New methods in genetic search with real-valued chromosomes

(Unpublished doctoral dissertation). Massachusetts Institute of Technology.

Bader-El-Den, M., & Gaber, M. (2012). Garf: towards self-optimised random forests. In

International conference on neural information processing (pp. 506–515).

Bernard, S., Heutte, L., & Adam, S. (2008). Forest-rk: A new random forest induction

method. In International conference on intelligent computing.

Biau, G., & Scornet, E. (2016). A random forest guided tour. Test , 25 (2), 197–227.

Blickle, T., & Thiele, L. (1995). A comparison of selection schemes used in genetic algo-

rithms. The Computer Engineering and Networks Laboratory (TIK), Swiss Federal

Institute of Technology (ETH) Zurich(11).

Breiman, L. (1996). Bagging predictors. Machine learning , 24 (2), 123–140.

Breiman, L. (2001). Random forests. Machine learning , 45 (1), 5–32.

Breiman, L., et al. (2001). Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical science, 16 (3), 199–231.

Carr, J. (2014). An introduction to genetic algorithms. Senior Project , 1 , 40.

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. In Ensemble machine

learning (pp. 157–175). Springer.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of

Statistics , 7 (1), 1–26.

Elyan, E., & Gaber, M. M. (2017). A genetic algorithm approach to optimising random

forests applied to class engineered data. Information sciences , 384 , 220–234.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning

65

(Vol. 1). Springer series in statistics New York.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.

Machine learning , 3 (2), 95–99.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.

IEEE Transactions on systems, man, and cybernetics , 16 (1), 122–128.

Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning (Vol. 112). Springer.

Jebari, K., & Madiafi, M. (2013). Selection methods for genetic algorithms. International

Journal of Emerging Sciences , 3 (4), 333–344.

Kumar, R. (2012, 08). Blending roulette wheel selection and rank selection in genetic

algorithms. International Journal of Machine Learning and Computing , 2 (4), 365-

370.

Latinne, P., Debeir, O., & Decaestecker, C. (2001). Limiting the number of trees in random

forests. In International workshop on multiple classifier systems (pp. 178–187).

Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv

preprint arXiv:1407.7502 .

Misztal, M. (2013). Some remarks on the data imputation using “missforest” method.

Folia Oeconomica, 285 , 169–179.

Oladele, R. O., & Sadiku, J. S. (2013, May). Article: Genetic algorithm performance

with different selection methods in solving multi-objective network design problem.

International Journal of Computer Applications , 70 (12), 5–9.

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random

forest? In Machine learning and data mining in pattern recognition (pp. 178–187).

Patil, V., & Pawar, D. (2015). The optimal crossover or mutation rates in genetic

algorithm: A review. International Journal of Applied Engineering and Technology ,

5 (3), 38–41.

Razali, N. M., Geraghty, J., et al. (2011). Genetic algorithm performance with different

selection strategies in solving tsp. , 2 , 1134–1139.

66

Samuel, A. (1959). some studies in machine learning using the game of checkers. journal

of research and development , 3 (3), 210–299.

Schaffer, J., Caruana, R., Eshelman, L., & Das, R. (1989, 01). A study of control param-

eters affecting online performance of genetic algorithms for function optimization. ,

51-60.

Stekhoven, D. J., & Bühlmann, P. (2011). Missforest—non-parametric missing value

imputation for mixed-type data. Bioinformatics , 28 (1), 112–118.

Tang, F. (2017). Random forest missing data approaches (Unpublished doctoral disser-

tation). University of Miami.

Young, J. (2017). Imputation for random forests. All Graduate Plan B and other Re-

ports(994). https://digitalcommons.usu.edu/gradreports/994.

67

