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ABSTRACT Recently, communication networks are evolving dramatically to meet the human dynamic
needs as well as provide the required support for the massive expansion in future applications. This fosters
the research in the mm-wave components to create a new infrastructure for these applications. As a result,
the electrical characteristics of the designed components in terms of the bandwidth and the linearity have to be
evaluated in an accurate way. The linearity of the mm-wave components is evaluated through the assessment
of the inter-modulation of these components, especially at the second harmonic band. In this paper,
a —17-dB harmonic coupler is designed to pick a strong sample at the second harmonic, while suppressing the
fundamental signal at the coupled port. A design procedure for the proposed harmonic coupler is presented
and illustrated. The fabricated unit is silver plated to minimize the losses, where the measured coupling at
the second harmonic band shows an excellent agreement with the simulated ones. In addition, the measured

coupling level at the fundamental band is below —75 dB.

INDEX TERMS Harmonic couplers, inter-modulation characterization, flat coupling.

I. INTRODUCTION

Future communication is moving toward the utilization of
mm-wave bands to provide extremely high data rates and
cover the massive number of access points [1], [2]. These
mm-wave bands will support the next generation of mobile
communication as well as the future IOT applications [3], [4].
This encourages the research community to direct more effort
in the field of mm-wave components analysis and design.
Many articles in the literature discussed the implementa-
tion of different microwave components in mm-wave bands
based on modern guiding structures [5]-[7]. Although these
components had gone through a great development cycle,
the designed components have to be characterized accu-
rately before any deployment in the standard systems. This
increases the need for various assessment and testing compo-
nents to evaluate the performance of mm-wave components in
terms of the electrical characteristics and the linearity [8], [9].
The linearity of the components can be evaluated through the
measurements of the inter-modulation of each component.
This can be performed using a special type of couplers called
harmonic couplers.

Couplers, in general, are passive devices used to obtain
flat samples of a specific signal within the operating band-
width. The couplers can be divided into two categories
based on the coupling level; strong coupling structures

such as 3dB hybrid couplers [10]-[12] and weak cou-
pling structures such as cross-guide couplers and loop
couplers [13], [14]. Another classification is based on the
implementation technology, where couplers can be imple-
mented based on traditional guiding structures such as rectan-
gular waveguides or based on modern guiding structures such
as substrate integrated waveguides (SIW) and printed ridge
gap waveguides (PRGW) [15], [16]. The harmonic coupler
is a special type of couplers used to characterize the inter-
modulation effect through sensing the second harmonic fre-
quency component and suppress the fundamental component
sample inside the secondary arm. Many couplers in the litera-
ture perform the opposite operation, where the coupling is flat
within the fundamental band while the harmonic signals were
suppressed [17]-[19]. On the other hand, a few articles were
intersected to couple the second harmonic band. However,
most of these works were directed to the harvesting appli-
cation rather the inter-modulation assessment [20], where the
coupling flatness is not a critical parameter.

In this work, a low loss harmonic coupler is designed and
tested showing superior electrical characteristics, where the
losses are minimized through the silver plating. The coupling
level has a mean value of —17dB with less than +1dB of
variation within the required bandwidth. This is achieved
using multi-section coupling hole structure between both
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coupling arms. The coupling of the fundamental signal is
suppressed to be less than —75dB to have an excellent iso-
lation. The presented coupler is considered as a weak cou-
pling structure and it is implemented based on rectangular
waveguide technology. This paper is organized as follows:
Section II describes the general configuration of the pre-
sented coupler as well as the required specifications. After-
wards, the mathematical formulation is illustrated in details
in Section III. In Section IV, the validation process of the
proposed design procedure is discussed, where the fabricated
prototype is measured in both the fundamental and the second
harmonic band. Finally, the paper outcomes are summarized
in Section V, where the future expansion of this work is
proposed.

Il. PROPOSED HARMONIC COUPLER SPECIFICATIONS
This work is done through collaboration with Scientific
Microwave Corporation (SMC), where it is an R&D project
to build up an inter-modulation test setup for mm-wave
components. According to the system requirements, the fun-
damental frequency band is located in a Ka-band, specifically
37.5-39.5 GHz, while the second harmonic frequency band is
75-79 GHz. The required coupling level is —17 dB at the sec-
ond harmonic band. The suppression of the fundamental band
should exceed 65 dB. Regarding the component interface,
it is specified as follows: The input and output of the main
arm comply with a WR22 cover flange, while the output of
the second arm is WR10. The directivity should be higher
than 25 dB for the second harmonic band.

The geometrical configuration of the proposed coupler is
shown in Figure 1(a). The proposed coupler consists of three
main parts. The first part is the coupling section, which is
a dissimilar multi-hole directional coupler with a primary
arm of the WR19 waveguide, while the secondary arm is
WRI12 as shown in Figure 1(b). These standards are chosen
to allow a smooth transition between the input and the output
waveguide standard, these standards are WR22 and WR10
respectively, as mentioned before. The second part is a tran-
sition from WR22 to WR19 in the main arm and a transition
from WR12 to WRI10 for the secondary arm. The third part
is a WR12 matched load, which is placed to terminate the
secondary arm from one direction.

Therefore, the proposed harmonic coupler is designed
through four steps; starting by designing the coupling section
shown in Figure 1(b) to achieved a —17 dB coupling with
a directivity beyond 25 dB. The second step is to provide a
design for WR22 to WR19 multi-section transition with a
deep matching level. The third step focus on the design of
WR12-WR10 transition with 90° bend. Finally, the assembly
of all the previous parts together as well as the validation
of the proposed harmonic coupler through the measurement.
It is worth mentioning that the design based on this scheme
will result in a self-suppression of the fundamental signal
inside the secondary arm as the fundamental signal will be an
evanescent wave inside the secondary arm structure. Hence,
the design effort will be directed to achieve both the coupling
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FIGURE 1. (a) The geometrical confiuration of proposed harmonic
coupler (b) Coupling section. (c) Coupling section front view. (d) Coupling
section side view.

flatness and the required directivity level at the second
harmonic band.

Ill. MATHEMATICAL FORMULATION
A. COUPLING STRUCTURE ANALYSIS
The harmonic coupler coupling section consists of two dis-
similar rectangular waveguides sharing a common broad
wall. Both waveguides are coupled to each other through two
rows of multihole with radius  and spaced d = Ag,/4 apart,
where Ay, is the guided wavelength at the center frequency
of operation. These rows are symmetrically located on the
axial at a distance S from each side wall of the primary arm
as shown in Figure 1(c) and 1(d).

Assuming the cross-sectional dimensions of the primary
and secondary waveguides to be a, x b, and a; x by,
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respectively. The incident TEjp mode with amplitude A is
applied at the input port produces both electric and magnetic
fields that can be written as [21]:

E = YAsin(kepx)e 7P W
Jhep —ib
H = AYiqp| — Xsin(kepx) + Z 5 P cos(k, »X) e (2)
P
where kg = 20 Bp = k* — k,, and Yo = wﬂ L are the

phase constant, cutoff wave number, and wave adm1ttance for
the primary arm, respectively. Each aperture can be repre-
sented by an infinitesimal electric and magnetic polarization
currents at the center of the aperture (x = S,y = 0).
The z-dependence is neglected at this step, while it will
be considered through the summation of the radiated wave
along the holes. These polarization currents are related by the
electric and magnetic current sources, J and M, respectively
as follow:

J = Yjote,a.A sin(ke,S) 3)

jkep
M = Jwo AY 1, [x sin(kepS) + z —jJﬂ cos(ke pS)i| 4)

(2
where, a, = %r3 CFg and o, = %r3 CF) are the electric
and magnetic polarizabilities of the round-slot, while CFg
and CF); are the electric and magnetic polarizability correc-
tion factors which can be written for a circular coupling hole
of radius r and thickness ¢ as follow [21]-[27]:

CF —27 At /1 A2, )
= ex - =
E P Ael A2
—2m At kzz

CFy = ey 6

M exp[ - 5 ©)

where A,y = 2.613 r and A,p = 3.412 r are the cut-

off wavelengths for the TMy; and TE|; modes of aperture
waveguides, respectively, while A, and A,, are effective wall
thickness coefficients which have empirical equations listed
in [26] and [27].

The forward and reverse waves radiated by the equivalent
electric current J into the secondary waveguide of ith hole are
given by [21], [27] :

)

dg Yﬁi‘

while, the forward and reverse waves radiated by the equiv-
alent magnetic current M into the secondary waveguide of
ith hole are given by [21], [27]:

C;{i = Cp; = A——ac;sin(keS) sintkesS)  (7)

k.k,.
Ch=JA i~ P2 c0s(kepS) coslkesS)
’ L agbsBs
+ Ot 'Bb sin(kcpS) s1n(kCYS) (8)
svs -
_ . [ kcpkcs
CHJ. = ]A acb cos(kepS) cos(kesS)
s ‘
— U, i'B—b sin(kcpS) sin(kesS) )
svs -
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where kg = X, By = /K> —kZ, and Yio, = w’fi,,
phase constant, cutoff wave number, and wave admittance
for the secondary arm, respectively. Since the polarizabilities
Oe,i, 0tm,; Of ith hole are proportional to r , the coupling C;
and isolation /; coefficients in the secondary guide of ith hole
are given as:

Ci=Cf,+Ch,= Krr? (10)
I = Cp i+ Cpy ;= Kpr} (11)

where, Ky and K}, are constants for the coupling and isolation
coefficients which can be written as:

Ky = jA|CFy Hephes cos(kepS) cos(kesS)
f 3a_ybsﬁ cp CS
FCFy P cF 27 ) sin(kepS) sin(kesS)
- sin(k¢,S) sin(kes
M3asb5 E3 bs,Bs cp cs
(12)
. Akepkes
Ky = JA| CFy cos(kepS) cos(kesS)
3agb B
(CF 46y + CFeM kz)‘(ks)‘(kg)
- Sin SIn
M3asbs B by e s
(13)

Therefore, the amplitude of the forward wave C and back-
ward wave [ for double rows of N holes can be written as

N
C = 270N ZKfr?e_szD"/fi (14)
i=0
N . .
I =2 Kprje 3 (15)
i=0
where 0, = B,d and 0; = Byd, while Op;y = O ;95 and
0516,
Osum = %

B. MULTIHOLE COUPLING SECTION DESIGN PROCEDURE
The design of the coupling section starts with calculating
the radius of the coupling apertures r; i = 0,1,..,N) to
obtain a maximally flat response for the coupling as a stable
coupling level is required. This can be achieved by equating
the coupling coefficients with the binomial coefficients as
rl.3 = KP(N, i), where K is a constant to be determined, and
P(N,i) = (N]X—:)m are the binomial coefficients for i* hole.
Hence, the coupling and isolation coefficients of (14) and (15)
can be written as follow:
N

Cap = —20log | 2K;K | —20log | » _ P(N ., i)e™ 4’ |
i=0
= —20log | 2K¢K | —6N — 20log | cos(Opif) N (16)
N
Iig = —20log | 2KpK | —20log | ZP(N, i)e ™ H0sunt |
i=0

= —20log | 2K,K | —6N — 20log | cos(@sum) I¥ (17)

The constant K is calculated to achieve the required cou-
pling level value as well as to determine the radius of the
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TABLE 1. Final dimensions of the coupling section (mm).

Dimension | Value
hole6 (1’5) 0.57
holey (r¢) 0.6
hOleg (1’7) 0.6
holey (rg) 0.61

Dimension | Value
hole1 (1’0) 0.25
hole; (1) 0.27
hole3 (Tz) 0.34
holey (r3) 0.47
hole5 (T4) 0.53

coupling holes, while the number of holes N + 1 is calcu-
lated to satisfied the minimum directivity required. Hence,
the directivity can be given as follow:

Dagp = —Cyp — Iy (18)

Ky cos(fp) n
= 201 — | +20I 19
g | X, | +20log | c0s(@s) | (19)

Since the term log | i—f | has a slight dependency on
frequency and can be neglected compared to the second term,
we can assume that the minimum directivity Dgpp, over the
frequency band of operation is controlled by the second term

and can be written as:

cos(fp) |N

D igmin = 201
dBmin 24 | COS(Qs)

(20)

Hence, the minimum value of N to satisfy the minimum
directivity Dgpmin over the frequency band can be calculated
using (20). Substituting in (16) by the desired coupling,
the value of the constant K can be calculated. Then, by know-
ing the constant K and the number of holes N, the radius
of holes having a binomial distribution can be calculated.
Increasing the number of holes will not only satisfy a high
directivity, but also results in a feasible holes edge to edge
spacing among the holes. This should be taken in consid-
eration since relatively strong coupling is required which
results in either large hole diameters or large number of
holes.

Based on the design procedure discussed before, the num-
ber of holes (N + 1) = 18 is selected to achieve a —17 dB
coupling as well as a directivity more than 25 dB over the
operating frequency band. This results in initial holes diam-
eter values based on binomial distribution. These coupling
holes are spaced a distance d = Ag;/4 apart, where Agy is the
guided wavelength at the center frequency of operation in the
secondary waveguide. These holes are initially symmetrically
located on the axial at a distance S = a,/4. Further tuning is
performed a round 5% to adjust the coupling level since the
wall thickness 7" = 0.508 mm is considered in the fabrication
process as well as the simulation. The optimum holes dimen-
sions are located at a distance S = 1.61036 mm and spacing
d = 1.524 mm, where Table 1 indicates the final dimensions
for the coupling holes. Both the coupling coefficient and the
directivity will be compared with the analytic model and the
measured results in the validation and experimental results
section.
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FIGURE 2. Multisection transition between a lower and a higher band
waveguide.

C. MULTISECTION WAVEGUIDE TRANSITION DESIGN
The design procedure of waveguide transition is pre-
sented in this section using multisection transformer shown
in Figure 2. Many articles have discussed the design of
transitions between two waveguides operating in different
frequency bands [28]-[31]. The proposed transition consists
of M equal-length sections of waveguides with length L;
having a cross-sections of a; x b;, where i = 1,2,..., M.
This transition is connected between a lower and a higher
band waveguides with cross-sections a; x b; and a X by,
respectively. The proposed transition is designed based on
Chebyshev matching transformer which featured with wide
bandwidth. The proposed transition should achieve a match-
ing level beyond —30 dB (VSWR < 1.1) over the center
frequency band. The fractional bandwidth of the transition
is defined as [28]:

B = ot el

kgh + )\gl

where Ag, and Ay, are the guided wavelength in a lower and
a higher band waveguides at the center frequency. Hence,
the length of wavegudie transformer sections is given as [28]:

21

_ )\gh)\gl
2(hgh + Agl)

assuming impedance ratio R = %, where Z;, and Z; are the

characteristic impedances at the center frequency for a higher
and a lower band waveguides, respectively. The characteris-
tic impedances for a rectangular waveguide section can be
given as [28]:

(22)

i

b g

Zyg ~ 600= 22 (23)
a

where Ag is the guided wavelength for a waveguide with
cross-section a x b at the center frequency [31]. The number
of steps required for a given maximum VSWR (V,) can
be roughly calculated by a trial and error solution of the
following equation [28]:

2 1 _ &
“Tu |:sin(rrB.W/4)] T @4
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FIGURE 3. S-parameters of the primary arm transition.

where, &, = (RZRI)Z and & = w. Ty is a Chebyshev
polynomial of order M. Once the number of sections has
been calculated, the Chebyshev reflection coefficients and
associated characteristic impedancess for each section are
calculated [21]. The cross-section dimensions a; x b; of each
section are calculated using (23) by assuming b; = a;/2 as
initial values.

The design procedure discussed before is used to design
a double plane primary arm transition, where the lower and
upper band waveguides are WR22 and WR19, respectively.
The proposed transition should achieve a maximum VSWR
V, = 1.1 over the fundamental frequency of 38.5 GHz with
a fractional bandwidth B.W = 23%. From (24), the pro-
posed transition must have at least three sections(M = 3).
The number of sections used for the proposed transition is
(M = 4), where the final dimensions for the proposed
transition are indicated in Table 2. All the simulations are
performed using the electromagnetic (EM) computer simu-
lation technology (CST) Microwave Studio Transient solver
2017. The accuracy is adjusted to be —40 dB and the mesh-
ing type is hexahedral with 20 cells per wavelength. The
simulation S-parameter for the proposed transition is shown
in Figure 3 which illustrates a matching level less than
—30 dB over the fundamental frequency band.

TABLE 2. Final dimensions of the primary arm AND secondary arm
transition in milimeter.

WG transition WR22-WR19 | WR12-WR10
Transformer length | L; 2 L; 1
ot g1 33 Ll 20
Section 2 Zi 4212 Zi 12 '267
Section 32—
T

Based on the similar design procedure discussed before,
a secondary arm transition is designed, where the lower and
upper band waveguides are WR12 and WRI10, respectively.
Single plane transition are used since the height of lower
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FIGURE 4. S-parameters of the secondary arm transition.

band waveguide (WR12) is selected equal to the height
of the higher band waveguide (WR10) since both standard
heights are close to each other. The proposed transition should
achieve a maximum VSWR V, = 1.1 over the second
harmonic frequency of 77 GHz with a fractional bandwidth
B.W = 6%. The number of sections used for the pro-
posed transition is (M = 4), where the final dimensions
for the proposed transition are indicated in Table 2. The
simulation S-parameter for the proposed transition is shown
in Figure 4 which illustrates a matching level less than
—40 dB over the second harmonic frequency band.

FIGURE 5. S-parameters of the secondary arm transition a 90° E-plane
bend in WR10 waveguide standard.

A 90° E-plane bend is designed for WR10 waveguide
standard in the secondary arm as shown in Figure 5. In order
to achieve low return loss, three stairs are inserted to elim-
inate the discontinuity produced by the 90° edge as shown
in Figure 5. These stairs have a dimension of w; x [} =
0.08 x 0.46 mm and wr x I, = 0.56 x 0.56 mm, while
the third stair is the mirror of the first one. These dimen-
sions are achieved through optimization process using CST
simulator. The simulation S-parameter for the proposed bend
is shown in Figure 5 which illustrates a low return loss less
than —40 dB over the second harmonic frequency band.
All the previous designed components are assembled together
to construct the harmonic coupler shown in Figure 1(a),
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where the simulated S-parameter will be compared with the
measurement in the experimental and validation section.

@

(b)

(©

FIGURE 6. (a) The fabricated parts of the harmonic coupler. (b) Harmonic
coupler after assembly (c) Measurement setup.

IV. VALIDATION AND EXPERIMENTAL RESULTS

The proposed harmonic coupler is fabricated using
(MATSUURA MC-510VG) CNC machine, which has a
tolerance of 0.0005 inches in all dimensions. The proposed
device is fabricated using aluminum and silver painted to
reduce the losses. Figure 6(a) show the fabricated parts
of the proposed prototype. The proposed coupler parts are
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FIGURE 7. (d) Measured fundamental coupling level. Harmonic coupler
comparison between simulations and measurement the second harmonic
band: (e) Coupling, and (f) Directivity.

assembled and tested as shown in Figure 6(b) and 6(c). The
measurement process is performed through measuring the
proposed harmonic coupler in both the fundamental and sec-
ond harmonic frequency bands. Through the measurement in
the fundamental frequency band, WR10 to WR22 transition
is used in the secondary arm to allow a double offset short
calibration to calibrate the ANRITSU (MS46322A) VNA
network analyzer. The coupling coefficient is measured in the
fundamental frequency band, where the measured coupling
level is less than —75 dB as shown in Figure 7(a).
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TABLE 3. Comparison between harmonic coupler configurations.

Reference [20] [20] This work
Operating bands | Ku-band/ Ka-band Ka-band/E-band Q-band/E-band
Length ~ 5inches ~ 3 inches = 3.3 inches
Coupling flatness | High variation > = 5 dB | High variation > £ 5 dB | Small variation = £0.75 dB
Application Harvesting Harvesting Inter-modulation assessment

(8)

(h)

FIGURE 8. Harmonic coupler return loss comparison between
simulations and measurement in the second harmonic band: (g) Main
arm, and (h) Secondary arm.

Through the measurement of the second harmonic, two
sections of WR22 to WRI1O0 transition are used to allow a
TRL calibration to calibrate the (N52271A) PNA network
analyzer as shown in Figure 6(c). The fabricated prototype
is tested using one of the states of art microwave equipment
and facilities located at the Poly-Grames Research Center
where the THz VNA up to 750 GHz is used to test the
proposed device. The comparison between the measurement
and the simulation as well as the analytic for both coupling
and directivity are presented in Figure 7(b) and 7(c), respec-
tively. Figure 7(b) shows an excellent agreement between
the analytic and simulation as well as the measurement of
the coupling coefficient, which demonstrates a coupling level
of 17+ 0.75 dB. This agreement shows the validation of the
proposed analytically model presented in Section III.

38742

The measured directivity shown in Figure 7(c) demon-
strates a directivity higher than 30 dB over the second har-
monic frequency band with a good agreement between the
simulation and analytic model. Although there is a clear
discrepancy in the analytic directivity response compared
to the simulated and measured, the proposed model shows
the ability to provide accurate initial dimensions value for
the harmonic coupler design. This discrepancy is due to
the coupling between holes which is not considered in the
analytical model. In addition, some approximations are used
in the calculation of the coupling and directivity to provide
simple and efficient design procedure.

The primary and secondary arms return loss are mea-
sured and compared with the simulation responses in
Figure 8(a) and 8(b), respectively. It can be depicted from
Figure 8(a) and 8(b) that the measured and the simulated
return loss are in good agreement, where both achieve a
return loss are less than —15 dB. The deviation between the
measured and the simulated results are due to the using of
another 90° through the measurement to allow the connection
of the proposed device to the VNA analyzer equipment as
shown in Figure 6(c).

Finally, the performance of the proposed harmonic cou-
pler is compared with the performance of other structures
in Table 3. The proposed harmonic coupler is designed to
characterize the linearity of mm-wave components in Q and
E bands through detection of second harmonic and suppres-
sion of first harmonic. Compared with the Ku/Ka-band and
Ka/E-band harmonic couplers in [20], which having a large
size and high coupling variation, the proposed coupler has
a compact size of 3.3 inches with small coupling variation
around +0.75 dB.

V. CONCLUSION

A silver plated harmonic coupler has been presented with
—17dB flat coupling response. The measured coupling level
variation is less than +-1dB over the required operating band-
width, while the directiveity exceeds 30dB within the same
band. The introduced harmonic coupler has provided high
suppression of the fundamental signal inside the secondary
arm, beyond 76 dB, in order to isolate the second harmonic
sample. In addition, a systematic design procedure has been
illustrated to facilitate the reproduction of this kind of cou-
plers for other applications. The final structure is fabricated
of aluminum and silver painted, where the measured results
are in a good agreement with the simulated ones. This work
can be extended in future through applying the same design
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procedure at different bands. The overall size can be mini-
mized using a smaller number of holes or by utilizing differ-
ent polynomial in obtaining the dimensions of the holes.
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