
Proactive Security Auditing for Clouds

Suryadipta Majumdar

A thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

May 2018

c© Suryadipta Majumdar, 2018

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Suryadipta Majumdar

Entitled: Proactive Security Auditing for Clouds

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining commitee:

Dr. Ion Stiharu
Chair

Dr. Xiaodong Lin
External Examiner

Dr. Otmane Ait Mohamed
External to Program

Dr. Chadi Assi
Examiner

Dr. Jeremy Clark
Examiner

Dr. Lingyu Wang
Thesis Supervisor

Approved by
Dr. Chadi Assi, Graduate Program Director

July 24, 2018

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Proactive Security Auditing for Clouds

Suryadipta Majumdar, Ph.D.

Concordia University, 2018

Cloud computing is emerging as a promising IT solution for enabling ubiquitous, convenient,

and on-demand accesses to a shared pool of configurable computing resources. However, the

widespread adoption of cloud is still being hindered by the lack of transparency and account-

ability, which has traditionally been ensured through security auditing techniques. Security

auditing in the cloud poses many unique challenges in data collection and processing (e.g.,

data format inconsistency and lack of correlation due to the heterogeneity of cloud infrastruc-

tures), and in verification (e.g., prohibitive performance overhead due to the sheer scale of cloud

infrastructures and need of runtime verification for the dynamic nature of cloud). To this ex-

tent, existing security auditing solutions can mainly be categorized into three types: retroactive,

intercept-and-check and proactive. The retroactive auditing approach is the traditional auditing

technique, which audits after the fact and cannot prevent irreversible damages (e.g., leakage of

sensitive information and denial of service attacks). The intercept-and-check approach offers

runtime auditing and performs all the auditing steps after the occurrence of a critical event (i.e.,

which may potentially violate a security property). However, this approach results significant

delay in responding each critical event. On the other hand, the existing proactive approach

requires the changes (in the cloud configurations) planned for the future in advance to verify

its compliance; however, this approach is not practical, because the future change plan is not

always available due to cloud’s dynamic and ad-hoc nature. In this thesis, we address all the

above-mentioned limitations of the existing works by proposing a proactive security auditing

system, which potentially can prevent irreversible damages, respond in significantly less time

and offer a practical approach without requiring any future change plan. To this purpose, we

conduct our work into three main phases. During the first phase, we propose a runtime security

auditing system for the user-level of the cloud; where our proposed system audits wide range

of security properties relevant to different authentication and authorization mechanisms, such

as role-based access control (RBAC), attribute-based access control (ABAC) and single sign-on

(SSO), and enhances the existing intercept-and-check solutions by adopting an incremental ap-

proach to improve the efficiency. In the second phase of our work, we propose a novel approach

of proactive security auditing; which leverages the dependency relationship among cloud events

and pre-computes the most expensive parts of the auditing process to keep the response time

iii

of the solution to a practical level. In our final phase, we utilize learning techniques to auto-

matically capture these probabilistic dependency relationships, and propose an automated log

processing approach to prepare the raw logs collected from cloud deployments for these learn-

ing methods to significantly enhance the practicality of our proactive security auditing system.

Also, to demonstrate the applicability, scalability and efficiency of our proposed system, we

integrate it to OpenStack, a major cloud platform, and evaluate it using both synthetic and real

data. In summary, this thesis contributes towards enhancing security, efficiency and practicality

of security auditing in the cloud environment.

iv

Acknowledgments

This thesis work is the outcome of collaboration and support of many people, to whom I am

sincerely grateful and would like to appreciate their help.

At the very beginning, I would like to thank my PhD supervisor Dr. Lingyu Wang. His

continuous availability and guidance helped me the most to complete this thesis work. I am

grateful to him for enlightening me with his profound knowledge and precise insights. His

constructive criticism greatly helped me to improve my research skills throughout my PhD

study.

I would also like to thank Dr. Mourad Debbabi for his mentorship during my PhD. In

spite of his busy schedule, he always manages his time to listen to my various issues and to

provide very practical solutions to them. I am grateful to the members of my PhD examination

committee, Dr. Xiaodong Lin, Dr. Otmane Ait Mohamed, Dr. Chadi Assi and Dr. Jeremy

Clark, for their insightful advice during different phases of this work. I also thank all other

faculty members of the CIISE department, specially Dr. Mohammad Mannan, my master’s

supervisor, who continued his support to me during my PhD.

My heartfelt gratitude extends to all members of the Audit Ready Cloud group, specially

Dr. Makan Pourzandi, Dr. Yosr Jarraya, Taous Madi, Yushun Wang, Amir Alimohammad-

ifar, Momen Oqaily, Azadeh Tabiban and Gagandeep Singh Chawla, with whom I collabo-

rated throughout my PhD study. I also acknowledge the financial support of NSERC, Ericsson

Canada, Prompt Quebec and Concordia University.

At the end, I would like to acknowledge the unconditional affection and continuous support

of my parents, sister and nephew in my life. They always fulfill all my silly demands and keep

faith on my ability. They have always been the best inspiration in my life.

v

Contents

List of Figures x

List of Tables xiii

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.2.1 Runtime Security Auditing for Clouds 4

1.2.2 Proactive Security Auditing for Clouds 4

1.2.3 Learning-Based Proactive Security Auditing 5

1.3 Contributions . 6

1.4 Thesis Structure . 8

Chapter 2: Background 9

2.1 Security Auditing for Clouds . 9

2.1.1 Categorization of Cloud Security Auditing 9

2.1.2 Structure of the Automated Security Auditing Process 10

2.2 Literature Review . 12

2.2.1 Retroactive Auditing . 12

2.2.2 Intercept-and-Check Auditing . 14

2.2.3 Proactive Auditing . 14

2.3 Notations . 15

Chapter 3: Runtime User-Level Auditing for Clouds 17

3.1 Introduction . 17

vi

3.2 User-Level Security Properties . 19

3.2.1 Models . 20

3.2.2 Security Properties . 24

3.2.3 Threat Model . 26

3.3 Runtime Security Auditing . 27

3.3.1 Overview . 27

3.3.2 Initialization Phase . 27

3.3.3 Runtime Phase . 28

3.3.4 Formalization of Security Properties 32

3.4 Implementation . 38

3.4.1 Architecture . 38

3.4.2 Integration into OpenStack . 39

3.4.3 Integration to OpenStack Congress . 45

3.5 Experiments . 45

3.5.1 Experimental Settings . 46

3.5.2 Results . 46

3.6 Discussion . 55

3.7 Related Work . 56

3.8 Conclusion . 59

Chapter 4: Proactive Security Auditing through Caching and Pre-Computation 61

4.1 Introduction . 61

4.2 Models . 65

4.2.1 Threat Model . 65

4.2.2 Dependency Models . 66

4.3 Proactive Security Auditing System (ProSAS) 70

4.3.1 Overview . 70

4.3.2 Interceptor . 73

4.3.3 Caching Manager . 73

vii

4.3.4 Proactive Module . 75

4.3.5 Feedback Manager . 79

4.4 Implementation . 81

4.4.1 Architecture . 81

4.4.2 Integration into OpenStack . 82

4.5 Experimental Results . 86

4.5.1 Experiment Settings . 86

4.5.2 Experimental Results with Testbed Clouds 89

4.5.3 Experimental Results with Real Clouds 95

4.6 Discussions . 95

4.7 Related Work . 99

4.7.1 Comparison between Related Works 99

4.7.2 Cloud Security Auditing . 102

4.7.3 Other Proactive Security Approaches 104

4.8 Conclusion . 104

Chapter 5: Learning Probabilistic Dependencies among Events for Proactive Se-

curity Auditing in Clouds 106

5.1 Introduction . 106

5.2 LeaPS Overview . 109

5.2.1 Motivating Example . 109

5.2.2 Threat Model . 110

5.2.3 Approach Overview . 112

5.3 Case Studies and Log Processing . 113

5.3.1 Case Studies on Real-World Cloud Logs 113

5.3.2 Real-World Challenges to Log Processing 119

5.3.3 Our Solution: LeaPS Log Processing 121

5.3.3.1 Inputs to LeaPS Log Processing 122

5.3.3.2 Parsing Logs . 123

viii

5.3.3.3 Grouping and Pruning of Parsed Logs 123

5.3.3.4 Marking Event Types . 125

5.3.3.5 Aggregating Logs . 126

5.3.3.6 Generating Outputs . 127

5.4 LeaPS Learning System . 128

5.4.1 The Dependency Model . 129

5.4.2 Learning Engine . 131

5.5 LeaPS Proactive Verification System . 132

5.5.1 Likelihood Evaluator . 132

5.5.2 Pre-Computing Module . 133

5.5.3 Feedback Module . 135

5.6 Implementation . 135

5.6.1 Background . 135

5.6.2 LeaPS Architecture . 136

5.6.3 Log Processor . 137

5.6.4 Learning System . 137

5.6.5 Proactive Verification System . 139

5.6.6 Dashboard & Reporting Engine . 140

5.7 Experimental Results . 141

5.7.1 Experimental Settings . 141

5.7.2 Results on Log Processor . 142

5.7.3 Results on Proactive Verification System 146

5.8 Discussions . 149

5.9 Related Work . 154

5.10 Conclusion . 157

Chapter 6: Conclusion 159

Bibliography 161

ix

List of Figures

3.1 Two domain instances of the RBAC model . 21

3.2 Two tenant instances of the ABAC model . 23

3.3 An overview of our runtime security auditing approach 27

3.4 A high-level architecture of our runtime verification framework 39

3.5 Showing the runtime steps for the common ownership property 44

3.6 Showing the runtime steps for the permitted action property 45

3.7 Comparing the verification time of our system and the retroactive approach for

the permitted action property . 46

3.8 Comparing the verification time of our system and the retroactive approach for

the permitted action property . 47

3.9 Total size (in Kilo Bytes) of the data to be verified 47

3.10 Time required for each step during the initialization phase 48

3.11 Total time required to perform the initialization phase 49

3.12 Total time required to perform the runtime phase for different number of users . 49

3.13 Total time required to perform the runtime phase for different number of tenants 50

3.14 Time required to perform the runtime phase for different events for the common

ownership property . 50

3.15 Time required to perform the runtime phase for different events for the permitted

action property . 51

3.16 CPU usage for each step during the initialization phase 52

3.17 Memory usage for each step during the initialization phase 52

3.18 Peak CPU usage to perform the initialization phase 53

3.19 Peak memory usage to perform the initialization phase 53

x

3.20 Peak CPU usage and peak memory usage to perform the runtime phase 54

3.21 Peak CPU usage and peak memory usage to perform the runtime phase 55

4.1 Comparison of the execution time of our solution with the typical intercept-and-

check and retroactive approaches. 64

4.2 An exploit of a vulnerability in OpenStack [86] 66

4.3 Dependency model of cloud infrastructure . 67

4.4 Dependency model of access control management 68

4.5 An overview of ProSAS . 72

4.6 The output of the initializer module for the no bypass property. 76

4.7 A part of the cloud infrastructure dependency model annotated with all possible

values of N that is relevant to the no bypass property. 77

4.8 An excerpt of runtime verification of the no bypass property. 79

4.9 The steps of the feedback manager module . 80

4.10 A high-level architecture of ProSAS . 81

4.11 Screenshots of the ProSAS monitoring dashboard. 87

4.12 Screenshots of the ProSAS audit report dashboard. 88

4.13 Evaluation of hit ratio . 90

4.14 Evaluation of average response time after caching 90

4.15 Evaluation of delay caused by caching . 91

4.16 Time required to process different requests . 91

4.17 Coverage gain for our feedback module . 92

4.18 Time required for our feedback module . 92

4.19 Time duration (in ms) for different modules 94

4.20 Time duration (in ms) for different modules 95

4.21 Time required for watchlist . 96

4.22 Memory required for watchlist . 97

5.1 Motivating example . 109

5.2 An exploit of a vulnerability in OpenStack [87] 111

5.3 An overview of LeaPS log processing, learning and auditing mechanisms. . . . 113

xi

5.4 Identification of useful information in logs . 114

5.5 Excerpts of unique fields and entries . 115

5.6 Parts of log entries belonging to different tenants 116

5.7 The format of OpenStack logs collected from (a) real cloud and (b) testbed cloud 117

5.8 An excerpt of outputs after each step of our log processor. 124

5.9 An example dependency model represented as a Bayesian network. 129

5.10 The outcomes of three learning steps for the dependency model. 132

5.11 An excerpt of the likelihood evaluator steps and their outputs. 133

5.12 Showing steps of the updating watchlist for a sample event sequences. 134

5.13 An architecture of LeaPS auditing system. 138

5.14 Time required for parsing during log processing 142

5.15 Time required for interpreting event types during log processing 143

5.16 Time required for grouping log entries based on tenant IDs 144

5.17 Time required for merging nova_api and neutron_server logs, and generating

inputs for the pattern mining library (SPMF) 144

5.18 Time required for eliminating repeated entries and generating log processor output145

5.19 Time required for running PrefixSpan, MaxSP and ClaSP algorithms 146

5.20 Showing time required for the online runtime verification 147

5.21 Showing time required for learning . 147

5.22 Showing time required for pre-computation 148

5.23 Showing time required for feedback modules 149

5.24 The additional delay in LeaPS pre-computation 150

5.25 The comparison between LeaPS and a baseline approach 150

xii

List of Tables

2.1 Description of frequently used terminologies in this work. 16

3.1 Usage of RBAC, ABAC and SSO in major cloud platforms 20

3.2 An excerpt of user-level security properties 25

3.3 Events that influence verification results for certain properties 31

3.4 Correspondence between relations in our formalism and relationships/entities . 34

3.5 Sample data sources in OpenStack for relations in Table 3.4 40

3.6 Mapping event APIs of different cloud platforms to generic event types. 56

3.7 Comparing different existing solutions . 58

4.1 An excerpt of the security properties supported by the cloud infrastructure model 69

4.2 An excerpt of the security properties supported by the access control management 71

4.3 Examples of OpenStack event instances and converted event types in ProSAS. . 73

4.4 An excerpt of a pre-computation cache . 74

4.5 An excerpt of a verification cache . 75

4.6 Comparing execution time (in ms) between ProSAS and our alternative imple-

mentation with the first set of dataset . 94

4.7 Comparing execution time (in ms) between ProSAS and our alternative imple-

mentation with the second set of dataset . 94

4.8 Summary of the experimental results with real data 95

4.9 Interception supports in major cloud platforms 97

4.10 Mapping event APIs from different cloud platforms to ProSAS event types. . . 98

4.11 Comparing existing solutions . 100

5.1 An excerpt of the log entries corresponding to system initiated events 116

5.2 Examples of similar URL paths corresponding to different cloud event types. . 118

xiii

5.3 Multiple entries in different logs corresponding to the same user request 118

5.4 An excerpt of the mapping to obtain the event types 126

5.5 Examples of identifying event types . 126

5.6 Showing part of multiple log entries . 127

5.7 An excerpt of outputs from LeaPS log processor. 128

5.8 Dataset description . 141

5.9 Experimental results with real data . 146

5.10 Summary of the experimental results with real data 149

5.11 Mapping event APIs from different cloud platforms to LeaPS event types. . . . 151

5.12 Interception supports in major cloud platforms 151

5.13 Comparing existing solutions with LeaPS . 156

xiv

Chapter 1

Introduction

1.1 Motivation

Cloud computing has been gaining momentum as a promising IT solution specially for enabling

ubiquitous, convenient, and on-demand accesses to a shared pool of configurable computing re-

sources. From small to large sized companies nowadays leverage the cloud service for conduct-

ing their major operations (e.g., web service, inventory management, customer service, etc.).

Based on the provided services, cloud computing has been divided into different categories

such as infrastructure as a service (IaaS), platform as a service (PaaS) and hardware as a service

(HaaS). In most of the categories, there exist at least three main stakeholders: cloud service

providers, tenants and their users.

A cloud service provider owns a significant amounts of computational resources, e.g., servers,

and offers different paid services (e.g., IaaS, PaaS, etc.) to its customers by utilizing this pool

of resources. A cloud tenant, the direct customer of cloud providers, enjoys the ad-hoc and

elastic (i.e., allocating/deprovisioning based on demands) nature of cloud to use the shared pool

of resources for conducting its necessary operations. Usually, tenants are different companies

or departments within a company. A user being a customer of a cloud tenant mainly avails

different services offered by a tenant. Thus, by providing a dynamic (i.e., ever changing) and

measured services (i.e., “pay as you go”) to its users and tenants, cloud computing has become

a popular choice for diverse business models in recent years.

1

While cloud computing has seen such increasing interests and adoption, the fear of losing

control and governance still persists due to the lack of transparency and trust [98]. Security

auditing and compliance validation may increase cloud tenants’ trust in the service providers

by providing assurance on the compliance with the applicable laws, regulations, policies, and

standards. However, there are currently many challenges in the area of cloud auditing and com-

pliance validation. For instance, there exists a significant gap between the high-level recom-

mendations provided in most cloud-specific standards (e.g., Cloud Control Matrix (CCM) [18]

and ISO 27017 [53]) and the low-level logging information currently available in existing cloud

infrastructures (e.g., OpenStack [89]). In practice, limited forms of auditing may be performed

by cloud subscriber administrators [84], and there exist a few automated compliance tools (e.g.,

[25, 108]) with several major limitations, which are discussed later in this section.

Furthermore, the unique characteristics of cloud computing may introduce additional com-

plexity to the task, e.g., the use of heterogeneous solutions for deploying cloud systems may

complicate data collection and processing and the sheer scale of a cloud, together with its self-

provisioning, elastic, and dynamic nature, may render the overhead of many verification tech-

niques prohibitive. In particular, the multi-tenant and self-service nature of clouds usually im-

plies significant operational complexity, which may prepare the floor for misconfigurations and

vulnerabilities leading to violations of security compliance. Therefore, the security compliance

verification with respect to security standards, policies, and properties, is desirable to both cloud

providers, and its tenants and users. Evidently, the Cloud Security Alliance (CSA) has recently

introduced the Security, Trust & Assurance Registry (STAR) for security assurance in clouds,

which defines three levels of certifications (self-auditing, third-party auditing, and continuous,

near real-time verification of security compliance) [19]. However, above-mentioned complexi-

ties coupled with the sheer size of clouds (e.g., a decent-size cloud is said to have around 1,000

tenants and 100,000 users [2]) implies one of the main challenges in cloud security auditing.

In summary, the major challenges are to handle the unique nature of cloud and to deal with the

sheer size of cloud in providing a scalable and efficient security auditing solution for clouds.

To this end, existing approaches can be roughly divided into three categories (a more de-

tailed review of related work will be given in Section 2.2). First, the retroactive approaches

2

(e.g., [25, 108]) catch compliance violations after the fact by verifying different configurations

and logs of the cloud. However, they cannot prevent security breaches from propagating or

causing potentially irreversible damages (e.g., leaks of confidential information or denial of

service). Second, the intercept-and-check approaches (e.g., [16, 88]) verify the compliance of

each user request before either granting or denying it, which may lead to a substantial delay to

user requests. Third, the proactive approach in [16, 88] verifies future change plan to identify

any potential breach from the proposed plan. However, due to the dynamic and ad-hoc nature

of clouds, providing future change plan in advance is not always feasible, and hence, this ap-

proach is not practical for clouds. In conclusion, existing works suffer from at least one of the

following limitations: i) supporting a very limited set of security properties, ii) responding with

a significant delay, and iii) involving unrealistic amounts of manual efforts.

1.2 Problem Statement

In this thesis work, we mainly address the aforementioned limitations of the existing cloud

auditing solutions. To this end, we focus on providing a practical security auditing system for

clouds, which significantly improves the existing state-of-the-art over at least three dimensions,

i.e., security, efficiency and practicality. In particular, this thesis work mainly answers the

following research questions:

1. How can we audit different security properties that are important to cloud tenants to en-

sure the accountability and transparency of cloud providers?

2. How can we provide an efficient runtime auditing solution with practical response time?

3. How can we automate different auditing steps to ensure better scalability, correctness and

usefulness of the auditing tools?

We elaborate the aforementioned problems in the following.

3

1.2.1 Runtime Security Auditing for Clouds

During the first phase of our work, we target providing a continuous security auditing solution

for the user-level (e.g., authentication and authorization) (which can potentially be adapted to

other layers) of the cloud. To this purpose, our main focuses are to address the limitations of

the existing solutions as well as to overcome the aforementioned challenges in the area of cloud

security auditing. More specifically, we explore the off-the-shelf verification methods and al-

ternatively consider customized verification algorithms to tackle the sheer scale of cloud (e.g.,

a large-size cloud is said to have around 10,000 tenants and 100,000 users [92]), together with

its self-provisioning, elastic, and dynamic nature, which potentially render the overhead of run-

time verification process prohibitive. Additionally, our work intends to bridge the gap between

the high-level recommendations provided in most cloud-specific standards (e.g., Cloud Con-

trol Matrix (CCM) [18] and ISO 27017 [53]) and the low-level logging information currently

available in existing cloud infrastructures (e.g., OpenStack [89]), and identify a wide range of

security properties to mainly cover the user-level of the cloud. Furthermore, designing the data

collection and pre-processing steps specifically to handle the use of heterogeneous solutions in

a cloud system. Chapter 3 details how our runtime security auditing approach works.

1.2.2 Proactive Security Auditing for Clouds

In the second phase of this work, our target is to overcome the significant delay in all existing

works and respond in a very practical time to audit a cloud at runtime. More specifically, after

a careful observation, we identify one of the main reasons behind the inefficiency of existing

intercept-and-check approaches (e.g., [16]) is that all the auditing steps are performed at a single

point (a.k.a. critical event 1) and not taking any advantage of the dependencies. Alternatively,

leveraging dependencies (if any) among cloud events potentially may allow starting the auditing

process in advance and conduct auditing incrementally. Therefore, in this work we explore the

possibility of deriving the relationship (e.g., dependency) among cloud events and devise a

proactive auditing technique leveraging those relationships. Chapter 4 elaborates our idea of

1The event type which potentially can violate a security property.

4

proactive security auditing approach.

1.2.3 Learning-Based Proactive Security Auditing

During the final phase, our main target is to strengthen the security guarantee and improve the

practicality of our proactive auditing approach to offer a practical proactive security auditing

system which potentially can be integrated to a popular cloud platform (e.g., OpenStack). To

this end, our first objective is to capture various relationships (e.g., dependency) among cloud

events to support wider range of security properties. Our second objective is to avoid error-

prone and tedious manual efforts involved with the auditing process, and to contribute towards

the automation of the auditing process. Chapter 5 further describes our idea on achieving both

aforementioned goals, and provides the details of our learning-based proactive security auditing

approach.

In summary, the three phases of this PhD research address the security, efficiency, and prac-

ticality aspects of security auditing in clouds, respectively. Those topics are complementary

to each other, and the following details the link between them, and how they were identified.

We start by addressing the security concerns of cloud tenants by enabling runtime auditing for

them. A key challenge emerged during this first research is that the sheer size of cloud renders

the overhead of runtime auditing prohibitive, and hence, the response time may not be practi-

cal. Therefore, in the second research, we address this limitation through a proactive auditing

approach, which leverages the dependency relationship among cloud events. One key obser-

vation during this second research is that the dependency model must be manually created;

which may turn to be an error-prone and tedious task especially considering the sheer size of

cloud. Therefore, in the third research, we address this limitation and fully automate the depen-

dency capturing step along with its pre-requisite steps (e.g., log processing) to offer a practical

proactive auditing system.

5

1.3 Contributions

The main contributions of this thesis work are towards security, efficiency and practicality im-

provements in cloud security auditing. To this end, we propose a proactive security auditing

system, which bridges the gap between high-level standards and low-level cloud logs and con-

figurations, supports a wide range of security properties to audit both user and virtual infrastruc-

ture levels in the cloud, significantly reduces the response time of runtime auditing, and offers

a fully automated auditing solution for clouds. We elaborate each contribution as follows.

First, this thesis concentrates on filling in the gap between standards and cloud imple-

mentations. To this end, we first study the major cloud specific standards (e.g., CCM [18],

ISO27017 [53] and NIST 800-53 [81]). Then, we prepare a list of security properties, which

mainly covers the security of both user and virtual infrastructure levels in the cloud. Next,

we investigate different configurations and log files in the cloud to propose a uniform solution

which can support various formats of those files. Finally, we transform the description of these

security properties based on the real cloud implementations and their supporting configurations

and logs.

Second, we propose a runtime security auditing system specially designed for the user-level

of the cloud. More specifically, the user-level auditing is supported by covering a wide range

of security properties from most popular access control mechanisms, such as role-based access

control (RBAC) and attribute-based access control (ABAC), and major authentication plugins,

such as single sign-on (SSO). The runtime auditing is offered by performing the expensive au-

diting operations during the one-time initialization phase and by keeping the runtime operations

incremental and light-weight so that our proposed system can achieve a realistic practical time

(e.g., the response time is less than 500 milliseconds for a large cloud with 100,000 users).

Third, we propose a proactive security auditing approach for both user and virtual infrastruc-

ture levels of the cloud. Note that the proactive security auditing approach is a complementary

to the runtime security auditing as will be discussed in Section 4.3. In this work, we first cap-

ture the structural dependencies (which are mainly imposed by the cloud implementations) by

6

studying the cloud platform specifications. Then, we utilize this dependency model to pre-

compute expensive parts of the auditing incrementally. Finally, at a critical event (i.e., events

that potentially can violate the security properties), our proposed solution simply checks the

pre-computed results to verify any security property and responds to the request very quickly

(e.g., 8.5 milliseconds to verify 100,000 virtual ports).

Finally, we automate major proactive auditing steps and integrate them into a popular cloud

management platform (e.g., OpenStack) to offer a proactive security auditing system for clouds.

For instance, we automate the dependency capturing step by leveraging different learning mech-

anisms (e.g., Bayesian network and structural pattern mining). We also propose a log processing

approach, which automatically prepares the raw logs of clouds for the learning tools. Further-

more, we integrate our proposed system into OpenStack [89], one of the major cloud manage-

ment platforms, and conduct experiments to measure the efficiency, scalability and applicability

of this system.

In summary, main contributions of this thesis work are as follows.

• As per our knowledge, we are the first to propose a runtime security auditing for user-

level of the cloud which verifies security properties covering important authentication

and authorization mechanisms, such as RBAC, ABAC and SSO.

• We are the first to propose the concept of dependency-based proactive security auditing

approach for clouds which potentially can reduce the response time of runtime auditing

to a practical level.

• We are also the first to capture both structural and behavioral dependencies among cloud

events which potentially can be leveraged in different security solutions to enhance the

efficiency of those systems.

• We integrate our proposed auditing solution into OpenStack [89], a major cloud platform,

and evaluate it with both synthetic and real data; the results of which show scalability,

efficiency and applicability of our approach.

7

1.4 Thesis Structure

This thesis is organized into six chapters as follows. Chapter 2 provides background on the

traditional security auditing steps and discusses the major auditing approaches through related

works. Chapter 3 presents our runtime security auditing system for the user-level of the cloud,

where we further elaborate our motivation and problem, then describe the methodology of our

approach, and finally present implementation details and experimental results. Chapter 4 details

the design and implementation of our proactive security auditing approach with its experimental

evaluation with both synthetic and real data. In Chapter 5, we elaborate the methodology and

implementation of the steps involved with learning the probabilistic dependencies and process-

ing raw logs from real cloud environments along with the evaluation of how above-mentioned

steps can enhance the auditing process. Chapter 6 concludes this thesis with the summary of

this work and discussion on potential future works.

8

Chapter 2

Background

2.1 Security Auditing for Clouds

Security compliance auditing is in practice for years. However, the growing popularity and

underlying design features in the cloud, revive the need of security compliance of auditing with

newer challenges e.g., scalability and practical response time. In this section, we first describe

different categories of security auditing in cloud and then, explain different steps of a traditional

security auditing process.

2.1.1 Categorization of Cloud Security Auditing

Generally, there are two categories of cloud security auditing: 1) offline auditing and 2) online

auditing. Offline auditing is performed on the snapshots (e.g., configurations and logs) col-

lected from a real cloud deployment or the simulated model of a real cloud. Online auditing is

performed on the cloud at runtime or near runtime. The basic goal of the offline auditing is to

detect security violations either after the fact or to verify a future change plan. Whereas, the

online auditing either prevents a violation, or detects them as soon as they occur (i.e., with a

very little delay). In the following, we provide a brief description along with their limitations.

A detailed literature review is presented in Section 2.2.

Furthermore, the offline auditing approaches can be divided into two types: retroactive au-

diting and proactive auditing. The retroactive auditing is performed periodically (e.g., daily,

9

weekly and monthly) irrespective to the occurrence of any event or security violation. This

form of auditing is more traditional, however, the fundamental problem with this approach is

that it cannot prevent any irreversible damages, e.g., DoS attack and leaking sensitive infor-

mation. The existing proactive approaches verify future change plans and simulate them on

the devised model of the real cloud. The implicit assumption is that the future change plan is

known in advance so that at first the plan can be verified against security properties, and then

be applied.

On the other hand, the online auditing approaches interact with the cloud system and identify

security violations at real-time or near real-time. Near real-time (e.g., [14]) approaches detect

security violations with a little delay. On the other hand, real-time auditing solutions (e.g., [61])

are inline with the continuous monitoring to detect any violation right away. The response time

plays a critical role in adopting this approach.

2.1.2 Structure of the Automated Security Auditing Process

Though security auditing is not a new process, automation of this process and complexity of tar-

geted infrastructures introduce non-trivial challenges. Manual auditing is still in practice, where

internal or third party auditors conduct the auditing process based on the collected data/ev-

idence. Initial approaches of automating the auditing process are mostly to detect network

intrusions. Later it has been adapted in other domains, such as data systems, access control

and distributed systems. One of the most recent additions in the list is the cloud infrastructure.

Based on the proposed solutions and best practices, we identify different phases of an automated

security auditing process.

Defining the Scope and Threat Model. As a very first step, an organization should define the

scope of its auditing. Part of it is to identify the critical and sensitive assets, operations and

the modules in the system that deal with those assets and operations. The following step is

to identify threats or nature of threats to be considered for the auditing process. Most of the

time, threat model depends on the nature of the business and demand of customers. Part of this

step is to describe security assumptions while considering each threat. To this end, last few

10

years different studies have been conducted to identify risks and threats in the cloud comput-

ing ecosystem. Based on those threats, several security properties are proposed by CSA [17],

ENISA [28], ISO [53], NIST [81], CUMULUS [20], etc.

Data/evidence Collection. The next phase is to gather evidences/data to conduct the audit

process. Based on the target system and threat model, audit data is enlisted. In some cases (e.g.,

cloud and distributed systems), locating those audit data is non-trivial.

The data collection phase has become more dynamic with the virtualization and multi-

tenancy; which results an increase in the amount of data to be collected. We also consider

security aspects of data collection in addition to the different runtime and continuous data col-

lection techniques of different data types. The trust model ensures that the audit data provided

by a tenant is real and fresh. At the same time, there might exists the privacy concerns in a cen-

tral auditing system, such as any tenant must not leak any sensitive information to the auditor,

which can benefit any other tenants in case of colluding with the auditor.

In the cloud, most of the audit data is any of events, logs and system configurations. Differ-

ent collection techniques vary each other in terms of targeted environments and data, e.g., what

data to collect based on the scope, threat model and objectives, and how to collect data (more

challenging in a cloud-based system).

Data/evidence Processing. The previous step collects raw data from the system. It requires

further processing to be able to conduct auditing. In case of verifying compliance with a policy

language, it depends on the language. Collected data needs to be sanitized, as data is collected

from different sources. For better understanding and interpretation, different correlation meth-

ods are applied on sanitized data to categorize them. There are different techniques (e.g., call

graph, information flow graph, reachability graph) to represent the audit data. Heterogeneous

data is normalized by different methods, e.g., [23]. Storing this processed audit data is also

an important phase specially when dynamic cloud auditing generates enormous amount of data

over time.

Auditing. In the auditing phase, processed data is verified against the policies for any violation.

The process either validates the system or detects if any anomaly exists. There are different

11

auditing techniques proposed over time, though comparatively less automated techniques exist

for the cloud. To understand better and to adapt other approaches, automated auditing methods

in other analogous environments, such as intrusion detection systems and event correlation in

multi-domain network/infrastructure, might be interesting. We consider different techniques of

verifying policy compliance or detection of any policy violation including formal verification

and validation (V&V) methods.

Audit Output. The proper representation of auditing output is the last and one of the important

phases of security auditing. The audit report varies depending on the different demands and

requirements of the customers (e.g., tenants). Hierarchy-based reporting helps to fulfill different

levels of expectation. Major concern in outputting the result is not to leak any sensitive and

unnecessary information to any tenant. Proper information isolation must be ensured.

2.2 Literature Review

This section discusses existing cloud security auditing approaches.

2.2.1 Retroactive Auditing

In the context of cloud auditing, there are several works that target auditing data location and

storage in the cloud (e.g., [58]) and others target infrastructure change auditing (e.g., [25]). Par-

ticularly, Ullah et al. [108] propose an architecture to build automated security compliance tool

for cloud computing platforms focusing on auditing clock synchronization and remote admin-

istrative & diagnostic port protection. Doelitzscher [24] proposes on-demand audit architecture

for IaaS clouds and an implementation based on software agents to enable anomaly detection

system to identify anomalies in IaaS clouds for the purpose of auditing. The works in [108, 24]

have the same general objective, which is cloud auditing, as ours, but they use empirical tech-

niques to perform auditing whereas we use formal techniques to model and solve the auditing

problem. Tang et al. [107] formalize the core OpenStack access control (OSAC) and propose a

domain trust extension for OSAC to facilitate secure cross-domain authorization. We adapt this

model in our work. To the best of our knowledge, none of the aforementioned works support

12

auditing a wide variety of security properties in the cloud.

Several industrial efforts include solutions to support cloud auditing in specific cloud envi-

ronments. For instance, Microsoft proposes SecGuru [12] to audit Azure datacenter network

policy using the SMT solver Z3. IBM also provides a set of monitoring tool integrated with

QRadar [49], which is their security information and event management system, to collect and

analyze events in the cloud. Amazon is offering web API logs and metric data to their AWS

clients by AWS CloudWatch & CloudTrail [6] that could be used for the auditing purpose.

Although those efforts may potentially assist auditing tasks, none of them directly supports

auditing a wide range of security properties covering authentication, authorization and virtual

infrastructure on cloud standards.

Several existing efforts consider the verification of access control policies at the design time

expressed in the standard eXtensible Access Control Markup Language (XACML) using formal

reasoning. Among them, Fisler et al. [30] propose Binary Decision Diagrams (BDD) and

custom algorithms to verify access-control policies. Ahn et al. [2] use answer set programming

(ASP) and leverage existing ASP reasoning models to conduct policy verification. Arkoudas et

al. [7] propose a Satisfiability Modulo Theory (SMT) policy analysis framework. In most of

those works, multi-domain access control models are not considered.

To accommodate the need of secure collaborative environments such as cloud computing,

there have been some efforts towards proposing multi-domain/multi-tenant access control mod-

els (e.g., [36, 107, 40]). Gouglidis and Mavridis [40] leverage graph theory algorithms to verify

a subset of the access control security properties. Gouglidis et al. [41] utilize model-checking

to verify custom extensions of RBAC with multi-domains [40] against security properties. Lu

et al. [68] use set theory to formalize policy conflicts in the context of inter-operation in the

multi-domain environment. However, auditing encompasses more than a verification approach.

In contrast to these works, we are dealing with the verification of not only the policies but also

their implementations, which involve efficient techniques to collect, process, and verify large

amount of data.

13

2.2.2 Intercept-and-Check Auditing

Existing intercept-and-check approaches (e.g., [16, 88]) perform major verification tasks while

holding the event instances blocked, and usually cause significant delay to a user request. There

are several other works (e.g., [61, 59]) monitoring network events and checking network poli-

cies at runtime. Weatherman [16] and OpenStack Congress [88] offer security verification of

virtual infrastructure using the intercept-and-check approach. These works focus on operational

network properties (e.g., black holes and forwarding loops) in traditional networks, whereas our

effort is oriented toward preserving compliance with structural security properties that impact

isolation in cloud virtualized infrastructures. Designing cloud monitoring services based on

security service-level agreements have been discussed in [96].

2.2.3 Proactive Auditing

Proactive security analysis has been explored for software security enforcement through mon-

itoring programs’ behaviors and taking specific actions (e.g., warning) in case security poli-

cies are violated. Many state-based formal models are proposed for those program monitors

over the last two decades. First, Schneider [103] modelled program monitors using an infinite-

state-automata model to enforce safety properties. Those automata recognize invalid behaviors

and halt the target application before the violation occurs. Ligatti [65] builds on Schneider’s

model and defines a more general program monitors model based on the so called edit/security

automata. Rather than just recognizing executions, edit automata-based monitors are able to

suppress bad and/or insert new actions, transforming hence invalid executions into valid ones.

Mandatory Result Automata (MRA) is another model proposed by Ligatti et al. [66, 26] that can

transform both actions and results to valid ones. Narain [80] proactively generates correct net-

work configurations using the model finder Alloy, which leverages a state of the art SAT solver.

To this end, they specify a set of end-to-end requirements in First Order Logic and determine

the set of existing network components. Alloy uses a state of the art SAT solver to provide the

configurations that satisfy the input requirements for each network component. Considering the

huge size of cloud environments and the tremendous space of possible events, adapting those

14

solutions in the cloud is possibly very challenging.

Weatherman [16] is the most closely related work to ours. Aiming at mitigating miscon-

figurations and enforcing security policies in a virtualized infrastructure, Weatherman has both

online and offline approaches. Their online approach intercepts management operations for

analysis, and relays them to the management hosts only if Weatherman confirms no security

violation caused by those operations. Otherwise, they are rejected with an error signal to the

requester. The work defines a realization model, that captures the virtualized infrastructure

configuration and topology in a graph-based model. The latter is synchronized with the ac-

tual infrastructure using the approach in [14]. Two major limitations of this proposition are:

i) the model capturing the whole infrastructure causes a scalability issue for the solution, and

ii) the time consuming operation-checking that should be performed on the emergence of each

event, makes security enforcement not feasible for large size data centers. Our work over-

comes these limitations using dependency models, which are not context-dependent, and the

pre-computation steps, which considerably reduce the response-time.

Congress [88] is an OpenStack project offering both online and offline policy enforcement

approaches. The offline approach requires submitting a future change plan to Congress, so that

the changes can be simulated and the impacts of those changes can be verified against specific

properties. In the online approach, Congress first applies the operation to the cloud, then checks

its impacts. In case of a violation, the operation is reverted. However, the time elapsed before

reverting the operation can be critical to perform some illicit actions, for instance, transferring

sensitive files before loosing the assigned role. Foley et al. [31] provide an algebra to assess the

effect of security policies replacement and composition in OpenStack. Their solution can be

considered as a proactive approach for checking operational property violations.

2.3 Notations

In this thesis, we use several terminologies and notations. Table 2.1 describes the terminologies

and notations that we frequently use in this work.

15

Terminology/Notation Description

User-Level A cloud level includes the authentication and access control

mechanisms

Multi-Domain Cloud A cloud that consists of multiple domains (i.e., a collection

of tenants)

RBAC Role-based access control

ABAC Attribute-based access control

SSO Single sign-on

V&V Verification and validation

Event Type The generic name of each cloud event independent of any

cloud platform (e.g., create VM and delete port)

Event Instance An instance of an event type that is observed in logs

Runtime Event An event instance that is intercepted at runtime

Session The period within which a user remains active

Watchlist A list of resources that are allowed as parameters

Critical Event The events that may violate a security property

Table 2.1: Description of frequently used terminologies in this work.

16

Chapter 3

Runtime User-Level Auditing for Clouds

3.1 Introduction

The widespread adoption of cloud is still being hindered with the fear of losing control and

governance due to the lack of transparency and trust [98, 1]. Particularly, the multi-tenancy and

ever-changing nature of clouds usually implies significant design and operational complexity,

which may prepare the floor for misconfigurations and vulnerabilities leading to violations of

security properties. Runtime security auditing may increase cloud tenants’ trust in the service

providers by providing assurance on the compliance with security properties mainly derived

from the applicable laws, regulations, policies, and standards. Evidently, the Cloud Security

Alliance has recently introduced the Security, Trust & Assurance Registry (STAR) for secu-

rity assurance in clouds, which defines three levels of certifications (self-auditing, third-party

auditing, and continuous, near real-time verification of security compliance) [19].

Motivating Example. Here, we provide a sketch of the gap between high-level standards and

low-level input data, and the necessity of runtime security auditing.

• Section 13.2.1 of ISO 27017 [53], which provides security guidelines for the use of cloud

computing, recommends “checking that the user has authorization from the owner of the

information system or service for the use of the information system or service...”.

• The corresponding logging information is available in OpenStack [89] from at least three

different sources:

17

– Logs of user events (e.g., router.create.end 1c73637 94305b c7e62 2899

meaning user 1c73637 from domain 94305b is creating a router).

– Authorization policy files (e.g., "create_router": "rule:regular_user"mean-

ing a user needs to be a regular user to create a router).

– Database record (e.g., 1c73637 Member meaning user 1c73637 holds the Member

role).

• Continuously allocating and deprovisioning of resources and user roles for up to 100,000

users mean any verification results may only be valid for a short time. For instance, a re-

verification might be necessary after certain frequently-occurred operations such as: user

create 1c73637 (meaning the 1c73637 user is created), and role grant member

1c73637 (meaning the member role is granted to the 1c73637 user).

Existing approaches can be roughly divided into three categories. First, the retroactive ap-

proaches (e.g., [70, 73]) catch security violations after the fact. Second, the intercept-and-check

approaches (e.g., [88, 16]) verify security invariants for each user request before granting/deny-

ing it. Third, the proactive approaches (e.g., [88, 16, 71]) verify user requests in advance.

Our work falls into the second category. Therefore, this work potentially prevents the limi-

tation of the retroactive approaches, and also requires no future change plan unlike proactive

approaches (e.g., [88, 16]). In comparison with existing intercept-and-check solutions, our ap-

proach reduces the response time significantly and supports a wide range of user-level security

properties.

Clearly, during the runtime security auditing, collecting and processing all the data again

after each operation can be very costly and may represent a bottleneck for achieving the desired

response time due to the performance overhead involved with data collection and processing

operations (as reported in Section 3.5). In addition to data collection and processing, runtime

verification of ever-changing clouds within a practical response time is essential and non-trivial.

In this specific case, no automated tool exists yet in OpenStack for these purposes.

Objectives and Contributions. In this work, we propose a user-level runtime security auditing

framework in a multi-domain cloud environment. We compile a set of security properties from

18

both the existing literature on authorization and authentication and common cloud security stan-

dards. We perform costly auditing operations (e.g., data collection and processing, and initial

verification on whole cloud) only once during the initialization phase so that later runtime op-

erations can be performed in an incremental manner to reduce the cost of runtime verification

significantly with a negligible delay. We rely on formal verification methods to enable auto-

mated reasoning and provide formal proofs or counter examples of compliance. We implement

and integrate the proposed runtime auditing framework into OpenStack, and report real-life ex-

periences and challenges. Our framework supports several popular cloud access control and

authentication mechanisms (e.g., role-based access control (RBAC) [29], attribute-based ac-

cess control (ABAC) [48] and single sign-on (SSO)) with the provision of adding such more

extensions. Our experimental results confirm the scalability and efficiency of our approach.

The main contributions of this work are as follows.

• We propose an efficient user-level runtime security auditing framework in a multi-domain

cloud environment.

• The study on security properties provides a bridge between the cloud security standards and

the literature on multi-domain access control and authentication.

• Our prototype system can be a part of the auditing system for OpenStack-based cloud in-

frastructure management systems providing a practical auditing solution with the support of

common access control and authentication mechanisms (e.g., RBAC, ABAC and SSO).

• The experimental results show that our proposed system is realistic for large-scale cloud

environments (e.g., the response time is less than 500 ms for a large cloud with 100,000

users).

3.2 User-Level Security Properties

We first show different attack scenarios based on authorization and authentication models. Then

we formulate user-level threats as a list of security properties mostly derived from the cloud-

specific standards, and finally discuss our threat model.

19

3.2.1 Models

We now describe RBAC, ABAC and SSO models.

RBAC Model. We focus on verifying multi-domain role-based access control (RBAC), which

is adopted in real world cloud platforms (as shown in Table 3.1). In particular, we assume the

extended RBAC model as in [107], which adds multi-tenancy support in the cloud. The brief

definitions of different components of this model are as follows. The details can be found in

[107].

• Tenant1: A tenant is a collection of users who share a common access with specific privileges

to the cloud instances.

• Domain: A domain is a collection of tenants, which draws an administrative boundary within

a cloud.

• Object and operation: An object is a cloud resource e.g., VM. An operation is an access

method to an object. Object and operation together represent permissions.

• Token: A token is a package of necessary information used to authenticate prior to avail any

operation.

• Group: Groups are formed for better user management.

• Trust: Trust is the concept, which enables delegation of duties over tenants or domains.

• Service: A service means a distributed cloud service.

Plugins
Cloud Platforms

OpenStack [89] Amazon EC2 [5] Microsoft Azure [77] Google GCP [38] VMware [109]

RBAC • • • • •
ABAC Blueprint [56] • Azure AD Firebase •
SSO Federation AWS Directory Microsoft account G Suite myOneLogin

Table 3.1: Usage of RBAC, ABAC and SSO in major cloud platforms

Example 1 Figure 3.1 depicts our running example, which is an instance of the access con-

trol model presented in [107]. In this scenario, Alice and Bob are the admins of domains, Da

and Db, respectively, with no collaboration (trust) between the two domains; Pa and Pb are

two tenants2, respectively, owned by the two domains. In such a scenario, we consider a real

1We interchangeably use the terms, tenant and project, in Figure 3.1.
2We interchangeably use the terms, tenant and project in Figures 3.1 and 3.2

20

world vulnerability, OSSN-00101, found in OpenStack, which allows a tenant admin to become

a cloud admin and acquire privileges to bypass the boundary protection between tenants, and il-

licitly utilize resources from other tenants while evading the billing. Suppose Bob has exploited

this vulnerability to become a cloud admin. Figure 3.1 depicts the resultant state of the access

control system after this attack. Therein, Mallory belonging to domain, Da, is assigned a tenant-

role pair (Pb, Member), which is from domain, Db. This violates the security requirement of

these domains as they do not trust each other.

 Domain

{Da}

Project

{Pa}

Role

{Admin, Member}

Object

Operation

Service

UO

{(Mallory,Da)}

UA

{(Bob,(Pa,Admin))}

PO {(Pa,Da)}

Project-role pair

{(Pa,Admin), (Pa,Member)}

PA
PRMS

ot_service

 Token

Group

GA

GO

user_token

token_projects
token_roles

PO {(Pb,Db)}

 Domain

{Db}

Project-role pair

{(Pb,Admin), (Pb,Member)}

Project

{Pb}

UO

{(Alice,Db)}

 User

 , Alice} UA

{(Alice,(Pb,Admin)),

(Mallory,(Pb,Member))}

User

 {Bob, Mallory}

Role

{Admin, Member}

Figure 3.1: Two domain instances of the access control model of [107] depicting the resultant

state of the access control system after the exploit of the vulnerability, OSSN-0010. The shaded

region and dotted arrows show an instance of the exploit described in Example 1.

ABAC Model. ABAC [48], is considered as a strong candidate to replace RBAC in Sandhu [99],

which identifies several limitations of RBAC and thus emphasizes the importance of ABAC

specially for large infrastructures (e.g., cloud). In fact, major cloud platforms have started sup-

porting ABAC (as shown in Table 3.1). We briefly review the central concepts of ABAC model

here, while leaving more details to [48]. Attributes are name and value pairs, and associated

with different entities. The attribute is considered as a function, which takes users or objects

1Keystone exposes privilege escalation vulnerability, available at: https://wiki.openstack.org/wiki/OSSN/OSSN-

0010

21

as inputs and returns a value from the attribute’s scope. A user is a person or a non-person

entity, e.g., an application, which requests for actions on objects. A user is described with a

set of attributes (UATT), e.g., name, salary, role, etc. Objects are system resources (e.g., VMs,

files, etc.) which can be accessed only by authorized users. Object attributes (OATT) represent

resource properties such as risk level, classification and location. Actions are the list of allowed

operations on an object by a user. In this work, we mainly use two ABAC functions, i.e., user

attribute (UATT) and object attribute (OATT).

Example 2 Figure 3.2 depicts our running example for ABAC, and shows a similar attack

scenario as Example 1. The model in the figure is an instance of the access control model

presented in [97], and shows the resultant state of the access control system after this attack.

SSO Mechanism. SSO, which is a popular cloud authentication extension and supported by

major cloud platforms (shown in Table 3.1), only requires a single user action to permit a user

to access all authorized computers and systems. In this work, we detail two SSO protocols:

OpenID [85] and SAML [82] supported by OpenStack and many other cloud platforms.

However, there are several attacks (e.g., [111, 42, 83, 8]) on two above-mentioned SSO

protocols. The following describes several security concerns specific to these protocols.

• In SAML, there is no communication between service provider (SP) and identity provider

(IdP). Therefore, an SP maintains a list of trusted IdPs, and any ID generated by an IdP that

is not in this list must be strictly restricted.

• On the other hand, OpenID accepts any IdP by communicating with the corresponding re-

lying party (RP), which provides the login service as a third party. Therefore, a proper

synchronization between IdP and RP is essential for the OpenID protocol. Otherwise, it may

result following security critical incidents:

– Logging out from IdP may not ensure logging out from RP, and thus an unauthorized

session is possible.

– Linking to an existing account with an OpenID without any authentication may result

unauthorized access.

22

Project

{Pa}

UATT

{Admin}

Project

{Pb}

userOwner

{(Bob,Pa)} User

 , Alice}

{(Alice,(Pb,Admin)),

(Mallory,(Pb,Member))}

User

 {Bob, Mallory}

Auth Auth
Action

{read,write,update}
Object

{VM1,VM2}

Object

{VM3,VM4}

UATT

{Admin , Member}

userOwner

{(Mallory,Pa)}

userOwner

{(Alice,Pb)}

uattOwner

{(Member,Pa)}
uattOwner

{(Member,Admin,Pb)}

OATT

{location, class}

{(Bob,(Pa,Admin))}oattOwner

{(location,Pa)}
OATT

{location, class}

oattOwner

{(location,Pa)}

objOwner

{(VM1,Pa),

(VM2,Pa)}

objOwner

{(VM3,Pb),

(VM4,Pb)}

Figure 3.2: Two tenant instances of the access control model of [97] depicting the resultant state of the access control system after the exploit of

the vulnerability, OSSN-0010. The shaded region and dotted arrows show an instance of the exploit described in Example 2.

2
3

To address such security concerns and to be compliant with aforementioned cloud-specific se-

curity standards, we devise security properties in the next subsection.

3.2.2 Security Properties

Table 3.2 presents an excerpt of the list of user-level security properties that we identify from the

access control and authentication literature, relevant standards (e.g., ISO 27002 [52], NIST SP

800-53 [81], CCM [18] and ISO 27017 [53]), and the real-world cloud implementation (e.g.,

OpenStack). Even though some properties (e.g., cyclic inheritance) are not directly found in

any standard, they are included based on their importance and impact described in the literature

(e.g., [41]).

RBAC Security Properties. RBAC-specific security properties are shown in Table 3.2. For

our running example, we will focus on following two properties. Common ownership: based

on the challenges of multi-domain cloud discussed in [41, 107], users must not hold any role

from another domain. Minimum exposure: each domain in a cloud must limit the exposure of

its information to other domains [107].

Example 3 The attack scenario in Example 1 violates the common ownership property. Ac-

cording to the property, Mallory must not hold a role member in tenant, Pb, belonging to do-

main, Db, because Mallory belongs to domain, Da, and there exists no collaboration between

domains, Da and Db.

ABAC Security Properties. Table 3.2 provides an excerpt of ABAC-related security properties

supported by our auditing system. Some properties are specific to ABAC, and rests are adopted

from RBAC. We only discuss the following properties, which are extended or added for ABAC.

• Consistent constraints: Jin et al. [57] define constraints for different basic changes in ABAC

elements e.g., adding/deleting users/objects. After each operation, certain changes are nec-

essary to be properly applied. This property verifies whether all constraints have been per-

formed.

• Common ownership: For ABAC, the common ownership property also includes objects and

their attributes so that an object owner and the owner of the allowed user performing certain

24

Standards

R
B

A
C

A
B

A
C

S
S

O

Properties ISO27002 [52] ISO27017 [53] NIST800 [81] CCM [18]

Role activation [54] 13.2.2b 15.2.2b AC-1 IAM-09 • •
Permitted action [54] 11.2.1.b, 1.2.2c 13.2.1b, 13.2.2c AC-14 IAM-10 • •
Common ownership [41] 11 13 AC IAM • •
Minimum exposure [107] 11.6.1 13.4.1 AC-4 IAM-04,06 • •
Separation of duties [107] 11.6.2 13.6.2 AC-5 IAM-02,05 •
Cyclic inheritance [41] •
Privilege escalation [41] 11.2.2.b 13.2.2b AC-6 IAM-08 • •
Cardinality [54] 11.2.4 13.2.4 AC-1 • •
Consistent constraints [57]

add/delete user 11.5.1 13.4.2 AC-7,9 IAM-02 •
modify user attributes 13.2.2b 15.2.2b AC-1 IAM-09 •
add/delete object 13.2.2b 15.2.2b AC-1 IAM-09 •
modify object attributes 13.2.2b 15.2.2b AC-1 IAM-09 •

Session de-activation [81] 11.5.5 13.2.8 AC-12 • •
User-access validation [53] 11.5.2 13.4 AC-3 IAM-10 •
User-access revocation [52] 11.2.1h 13.2.1h AC-2 IAM-11 •
No duplicate ID [18] 11.5.2 13.5.2 AC-2 IAM-12

Secure remote access [53] 11.4.2 13.4.2 AC-17 IAM-02,07

Secure log-on [53] 11.5.1 13.4.2 AC-7,9 IAM-02

Session time-out [81] 11.5.5 13.2.8 AC-12 •
Concurrent session [81] 13.5.4 AC-10

Brute force protection 11.2.2.b 13.2.2b AC-1 IAM-09 •
No caching 11.2.1.b, 1.2.2c 13.2.1b, 13.2.2c AC-14 IAM-10 •

Table 3.2: An excerpt of user-level security properties

25

actions on that object must be the same.

Authentication-Related Security Properties. Table 3.2 shows an excerpt of security proper-

ties related to generic authentication mechanisms and extensions (e.g., SSO). We discuss the

SSO-related properties as follows. Brute force protection: account lockout, CAPTCHA or any

such brute force protection must be applied in SSO. No caching: SSO and associated applica-

tions should set no-cache and no-stored-cache directives. User access revocation: logout from

one application must end sessions of other applications. User access validation: only a valid

authentication token must pass the authentication step.

3.2.3 Threat Model

Our threat model is based on two facts. First, our solution focuses on verifying the security

properties specified by cloud tenants, instead of detecting specific attacks or vulnerabilities

(which is the responsibility of IDSes or vulnerability scanners). Second, the correctness of

our verification results depends on the correct input data extracted from logs and databases.

Since an attack may or may not violate the security properties specified by the tenant, and

logs or databases may potentially be tampered with by attackers, our results can only signal an

attack in some cases. Specifically, the in-scope threats of our solution are attacks that violate

the specified security properties and at the same time lead to logged events. The out-of-scope

threats include attacks that do not violate the specified security properties, attacks not captured

in the logs or databases, and attacks through which the attackers may remove or tamper with

their own logged events. More specifically, in this work we focus on user-level security threats

and rely on existing solutions (e.g., [16, 71]) to identify virtual infrastructure level threats. We

assume that, before our runtime approach is launched, an initial verification is performed and

potential violations are resolved. However, if our solution is added from the commencement

of a cloud, obviously no prior security verification (including the initial phase) is required. We

also assume that tenant-defined policies are properly reflected in the policy files of the cloud

platforms.

26

3.3 Runtime Security Auditing

This section presents our runtime security auditing framework for the user-level in the cloud.

3.3.1 Overview

Figure 5.20 shows an overview of our runtime auditing approach. This approach contains two

major phases: i) initialization, where we conduct a full verification on the collected and pro-

cessed cloud data, and ii) runtime, where we incrementally verify the compliance upon dynamic

changes in the cloud. The initialization phase is performed only once through an offline veri-

fication. This phase performs all costly operations such as data collection and processing, and

an initial full compliance verification for a list of security properties. The initial verification

result is stored in the result repository. For the latter, we devise an incremental verification ap-

proach to minimize the workload at the runtime. During the runtime phase, each management

operation (e.g., create/delete a user/tenant) is intercepted, its parameters are processed with the

previous result, and finally the verification engine evaluates the compliance and provides the

latest verification result. We elaborate major phases of our system as follows.

Data Collection Data Processing
Offline

Verification

Interceptor Data Processing
Incremental

Verification

Verif.

Results

Initialization

Run-time
Management

operation

Cloud data

Event

parameters
Previous result

Current

result

i

{Property}iCloud

Figure 3.3: An overview of our runtime security auditing approach

3.3.2 Initialization Phase

Our runtime auditing approach at first requires one-time data collection and processing, and full

verification of the cloud, namely, the initialization phase, against a list of security properties.

Initially, we collect all necessary data from the cloud, which are in different formats and in

27

different levels of abstractions. Therefore, we further process these data to convert the format

and correlate them to identify required relationships for considered security properties. Then,

we generate inputs for the verification engine incorporating the processed data in the previous

step. Finally, the verification engine checks the compliance for a list of security properties, and

provides an initial verification result.

The collection engine is responsible for collecting the required data in a batch mode from

the cloud management system. The role of the processing engine is to filter, format, aggregate,

and correlate this data. The required data is distributed throughout the cloud and in different

formats (e.g., files and databases). The processing engine must pre-process the data in order

to provide specific information needed to verify given properties. A final processing step is to

generate and store the inputs to be used by the compliance verification engine. Note that the

format of the inputs depends on the selected back-end verification engine.

The compliance verification engine is to perform the actual verification of the security prop-

erties. We use formal methods to capture the system model and to verify properties, which

facilitates automated reasoning and is generally more practical and effective than manual in-

spection. If a security property is violated, evidences can be obtained from the output of the

verification back-end, e.g., a set of real data in the cloud for which all conditions of a security

property are not satisfied are provided as a feedback. Once the outcome of the initial verifica-

tion is ready, results and evidences are stored in the result repository and made accessible to the

runtime engine.

3.3.3 Runtime Phase

The initialization phase conducts an offline verification, where we verify security properties

on the whole cloud. However, verifying the whole cloud after each configuration change is

very expensive. Alternatively, we intercept each event and verify the impact of the events in an

incremental manner, where we perform runtime verification on a minimal dataset based on the

current change to provide a better response time, to catch a security violation.

28

We update the verification results continuously by verifying the cloud at runtime. The run-

time verification is event-driven and property-specific. Table 3.3 shows the events that may

affect the result of verification for certain properties. The bottom part of Figure 5.20 depicts the

steps of this phase. We intercept each operation request generated from the cloud management

interface. We further retrieve the parameters of the request and pass them to the data pro-

cessing module. The data processing module performs similarly as described in Section 3.3.2.

However, during the runtime phase, mostly partial data are sent for the incremental verifica-

tion for each security property. Thus, the incremental verification is only conducted on the

impact of the current change. Then, the final verification result is inferred from the result of

current incremental verification and the previous result. Incremental verification is performed

using any of the two methods: i) deltaVerify, where compliance verification mechanism dis-

cussed in the initialization phase is applied on the delta data, and ii) customAlgo, where security

property specific customized algorithms are performed. We discuss our runtime verification

algorithm in more details in Section 3.4.2. In the following examples, we assume that the

previous verification result for a specific property is stored in Resultt0, the parameters of the

intercepted event is in ∆i and the updated result will be stored in Resultt . For example, all

user-role pairs violating the common ownership property at time t0 are stored in Resultt0 as

{Mallory,Da,(Pb,Member),Db}.

Example 4 Table 3.3 shows that the verification result for the common ownership property

may change for following events: grant role, delete role, delete user, delete tenant and delete

domain. Upon intercepting any of these events, we conduct incremental verification as follows:

• Grant a role: Each role assignment alone may affect the common ownership property, and

hence, it does not depend on the previous assignments. Therefore, upon a grant role request,

we only verify the parameters of the intercepted event using the deltaVerify method, and

combine the obtained result with the previous result (Resultt0) to infer the updated result

(Resultt).

• Delete a role: If the deleted role (∆i) is present in the previous result (i.e., ∆i ∈ Resultt0), then

we update the current result by removing that role (i.e., Resultt = Resultt0−∆i). Otherwise,

the result remains unchanged (i.e., Resultt = Resultt0). Deleting a user/tenant/domain can be

29

similarly handled.

Example 5 Similarly, upon intercepting any of the events marked for the permitted action prop-

erty in Table 3.3, we conduct incremental verification as follows:

• Grant a role: If the granted role (∆i) is present in the previous result (i.e., ∆i ∈ Resultt0), then

we update the current result by removing that role (i.e., Resultt = Resultt0 −∆i). Otherwise,

the result remains unchanged (i.e., Resultt = Resultt0).

• Delete a role: If the deleted role (∆i) is present in the previous result (i.e., ∆i ∈ Resultt0), then

we update the current result by removing that role (i.e., Resultt = Resultt0 −∆i). Otherwise,

the result remains unchanged (i.e., Resultt = Resultt0). Deleting a user/tenant/domain can be

similarly handled.

Identifying the Impacts of Events. By observing the impacts of cloud events, Table 3.3 lists

all events that may change the verification result of certain security properties. However, iden-

tifying impacts of events in cloud can be challenging. Also, the completeness of the method of

identifying the impacts, relies on the specifications of APIs by the cloud platforms. In this work,

we mainly follow two methods (i.e., API documentation and infrastructure change inspection)

proposed by Bleikertz et al. [16]. Firstly, we go through the API documentation provided by

cloud platforms to obtain API specifications including their functionality, parameters and im-

pacts on the infrastructure. Secondly, we perform different events and observe the infrastructure

configuration change to capture the impact of those events. Finally, we combine this knowledge

with the definition of security properties to populate Table 3.3.

Provision of Enriching the Security Property List. Beside the security properties in Sec-

tion 3.2.2, tenants might intend to add new security properties over time. Our framework pro-

vides the provision of adding new security properties through following simple steps. First, the

new security property is defined in the cloud system context, which can be simply performed by

following our existing techniques discussed in Section 3.2.2 to apply high-level standard termi-

nologies to cloud-specific resources. Next, the property is translated to the first order logic and

then to Constraint Satisfaction Problem (CSP) constraints, and in many cases the existing rela-

tions discussed in Section 3.3.4 can be re-used as they include basic relations such as belongs to,

30

Events

Properties cr
ea

te
u

se
r

cr
ea

te
ro

le

cr
ea

te
te

n
an

t

cr
ea

te
d

o
m

ai
n

cr
ea

te
o

p
er

at
io

n

cr
ea

te
o

b
je

ct

d
el

et
e

u
se

r

d
el

et
e

ro
le

d
el

et
e

te
n

an
t

d
el

et
e

d
o

m
ai

n

d
el

et
e

o
p

er
at

io
n

d
el

et
e

o
b

je
ct

g
ra

n
t

ro
le

re
v
o

k
e

to
k
en

en
ab

le
u

se
r

en
ab

le
ro

le

en
ab

le
te

n
an

t

en
ab

le
d

o
m

ai
n

d
is

ab
le

u
se

r

d
is

ab
le

ro
le

d
is

ab
le

te
n

an
t

d
is

ab
le

d
o

m
ai

n

Common Ownership • • • • •
Permitted Action • • • • •

Minimum Exposure • • • • •
Role Activation • • • •

Separation of Duties • • • • •
Privilege Escalation • • • • • •

Cardinality • • • • • • • • • • • • •
Cyclic Inheritance • •
No Duplicate ID • • • • • • • • • • • •

User Access Validation • • •
User Access Revocation • • • • • • • • • • • •
Secure Remote Access • • • •

Secure Log-on • • • •
Session Time-out • • • • • • • • • • • •

Concurrent Session • • • • • •

Table 3.3: Events that influence verification results for certain properties

3
1

owner of, authorized for, etc. Our data collection engine already collects data from all relevant

sources of data of a cloud platform regardless of security properties. Therefore, no extra effort is

needed in the data collection phase, unless the new property requires data from a different layer

in the cloud (e.g., SDN). Then, the data processing effort for a new property mainly involves

building correlation between data from different sources, because other processing steps are

mostly property-independent. The remaining initial verification step is only to add constraints

of the new property to the verification list. Finally, we identify the events that may alter the

verification result of the new property by re-utilizing the knowledge of impacts of events, and

perform the runtime verification through incremental steps either using the deltaVerify method

or by a customized algorithm (as in Section 3.4.2). Additionally, whenever there is any change

in the event specification for a cloud system, we capture the update on impacts (if any) of events

on the security properties.

3.3.4 Formalization of Security Properties

As a back-end verification mechanism, we formalize verification data and properties as Con-

straint Satisfaction Problem (CSP) and use a constraint solver, namely, Sugar [105], to validate

the compliance. CSP allows formulation of many complex problems in terms of variables de-

fined over finite domains and constraints. Its generic goal is to find a vector of values (a.k.a.

assignment) that satisfies all constraints expressed over the variables. If all constraints are satis-

fied, the solver returns SAT, otherwise, it returns UNSAT. In the case of a SAT result, a solution

to the problem is provided. In our case, we formalize each security property in CSP to verify

in Sugar. After verification, Sugar provides proper evidence (a.k.a counter examples) of a vio-

lation (if any) of a security property. In the following, we first provide a generic description of

model formalization, then illustrate examples of property formalization, and finally show some

counter examples for those security properties.

Model Formalization. Referring to Figures 3.1 and 3.2, entities are encoded as CSP variables

with their domains definitions (over integer), where instances are values within the correspond-

ing domain. For example, User is defined as a finite domain ranging over integer such that

32

(domain User 0 max_user) is a declaration of a domain of users, where the values are between

0 and max_user. Relationships and their instances are encoded as relation constraints and their

supports, respectively. For example, AuthorizedR is encoded as a relation, with a support as

follows: (relation AuthorizedR 3 (supports (r1,u1,t1) (r2,u2,t2))). The support of this relation

will be fetched and pre-processed in the data processing step. The CSP code mainly consists of

four parts:

• Variable and domain declaration. We define different entities and their respective domains.

For example, u and op are entities (or variables) defined respectively over the domains User

and Operation, which range over integers.

• Relation declaration. We define relations over variables and provide their support from the

verification data.

• Constraint declaration. We define the negation of each property in terms of predicates over

the involved relations to obtain a counter example in case of a violation.

• Body. We combine different predicates based on the properties to verify using Boolean op-

erators.

Properties Formalization for RBAC. Security properties are presented as predicates over re-

lation constraints and predicates. We detail two representative properties in this work. We first

express these properties in first order logic [11] and then in their CSP formalization (using Sugar

syntax). Table 3.4 summarizes the relations that we use in these properties.

1. Common ownership: Users are authorized for the roles that are only defined within their

domains.

∀u ∈ User,∀d ∈ Domain,∀r ∈ Role,∀t ∈ Tenant (1)

BelongsToD(u,d)∧AuthorizedR(u,t,r) −→

TenantRoleDom(t,r,d)

The corresponding CSP constraint is

33

Relations in Properties Evaluate to True if Corresponding Rela-

tions in Fig. 3.1

AuthorizedOp(d, t,u,r,o,op) In domain d, and tenant t, the user u, with the role r is

authorized to perform operation op on object o

UA, PO, tenant-role

pair, PA, PRMS

OwnerD(od, t,o) Domain od is the owner of the object o in tenant t PO, tenant-role pair,

PA

AuthorizedR(u, t,r) User u belonging to tenant t is authorized for the role r UA, tenant-role pair

BelongsToD(u,d) User u belongs to the domain d UO

TenantRoleDom(t,r,d) Role r is defined within the domain d in tenant t PO, tenant-role pair

LogEntry(d, t,u,r,o,op) Operation op on object o is actually performed by user u

having role r in tenant t and domain d

ND

ActiveToken(tok,d, t,u,r, time) Token tok is active at time time and in use by user u having

role r in tenant t and domain d

UA, token_tenants, to-

ken_roles, PO, tenant-

role pair

Table 3.4: Correspondence between relations in our formalism and relationships/entities in Figure 3.1. Note that one of the relations (in third

column) is denoted by ND as it is inferred from dynamic data (e.g., logs).

3
4

(and BelongsToD(u,d) AuthorizedR(u,t,r) (2)

(not TenantRoleDom(t,r,d)))

2. Minimum exposure: We assume that the user access is revoked properly and that each do-

main’s administrator may share a set of objects (resources) with other domains. The admin-

istrator defines accordingly a policy governing the shared objects, the allowed domains for

a given object and the allowed actions for a given domain with respect to a specific object.

During data processing, we recover for each domain, the set of foreign objects (belonging to

other domains) and the actual operations performed on those objects (from the logs). This

property allows checking whether the collected and correlated data complies with the defined

policy of each domain.

∀d,od ∈ Domain,∀o ∈ Object,∀op ∈ Operation, (3)

∀r ∈ Role,∀t ∈ Tenant,∀u ∈ User

LogEntry(d,t,u,r,o,op)∧BelongsTo(u,d)∧

OwnerD(od,t,o) −→ AuthorizedOp(d,t,u,r,o,op))

The CSP constraint for this property is:

(and(and LogEntry(d,t,u,r,o,op) (4)

OwnerD(od,t,o) BelongsTo(u,d))

(not (AuthorizedOp(d,t,u,r,o,op))))

Properties Formalization for ABAC. In the following, we show formalization of one security

property for ABAC.

35

Common ownership: Formally the common ownership property is violated in the

following conditions: userOwner(u) 6= uattOwner(userRolei(u)) OR ob jOwner(o) 6=

oattOwner(ob jRolei, j(o)). Through this extension, we complement the previous definition,

and the property is now more general in the sense that we can identify the misconfiguration in

defining policies for an object. Following example further explains this benefit. Alice is a user

(from the user set, U) owned by the domain, d1. Alice holds a member role in the domain,

d2, expressed as userRole2(Alice). The owner of this role is the domain, d2 (inferred from

the uattOwner(userRole2(Alice)) relationship). This situation violates the common ownership

property, as the first part of the condition (i.e., userOwner(u) 6= uattOwner(userRolei(u))) is

true. Additionally, there is an object i.e., VM1 (from the object set O) owned by the domain,

d2. The policy related to V M1 states that a user with the member role of the d2 domain can

read from V M1 (as described in ob jRole1,2(VM1)). To verify the owner of the role that policy

allows certain action on the object using the oattOwner(ob jRole1,2(VM1)) relation. In this

case, ob jOwner(o) 6= oattOwner(ob jRolei, j(o)) is false; hence, the property is preserved.

Since ABAC is more expressive, there might be a larger set of properties for ABAC (as

shown in Table 3.2). However, the verification complexity depends more on the security prop-

erties, and less on the model. For example, the common ownership, permitted action and min-

imum exposure properties show different level of complexities, as shown through their formal

representation and as supported by the experiment results in Section 3.5.

Properties Formalization for SSO. In the following, we present formalization steps of one

SSO related security property (i.e., user access revocation). The user access revocation property

is for the token-based user access. At a given time, for active tokens, we check that none of the

situations leading to their revocation has been occurred. Function TimeStamp(tok) returns the

token expiration time.

36

∀tk ∈ Token,∀r ∈ Role,∀t ∈ Tenant, (5)

∀u ∈ User,∀d ∈ Domain

ActiveToken(tk,d,t,u,r,Time) −→

AuthorizedR(u,t,r)∧ IsActiveR(r,t,u)∧

BelongsToD(u,d)∧IsValidU(u)∧IsValidD(d)

∧IsvalidT(t)∧TimeStamp(tk) > Time

Thus, the corresponding CSP constraint is:

(and ActiveToken(tk,d,t,u,r,time)(or (not (6)

(not AuthorizedR(u,t,r))(not IsActiveR(r,t,u))

(IsValidU(u))(notIsvalidT(t))(notBelongsToD(u,d))

(notIsValidD(d))(not(> TimeStamp(tk)Time))))

Evidences of Violations. Our auditing system using the formal verification tool, Sugar, indi-

vidually identifies the causes (a.k.a. counter examples) for each security property violated in

the cloud. With the following examples, we show how our system can locate the cause of the

violations.

Example 6 The CSP predicate for the common ownership property is as follows:

(and BelongsToD(u,d) AuthorizedR(u, t,r) (not Tenant- RoleDom(t,r,d))). The property

is violated when a user from one domain holds a tenant-role pair from another domain.

In other words, in case of a violation there exists at least a set of predicates as follows:

(and BelongsToD(u1,d1) AuthorizedR(u1, t2,r2) (notTenant-RoleDom(t2,r2,d1))); mean-

ing that the user, u1, from domain, d1, holds a role pair, t2-r2, which is not from domain,

d1. In such cases, our auditing system using Sugar identifies that the (u1, d1, t2, r2) tuple is

37

the cause for a violation of the common ownership property. In Section 3.4, Example 7 further

extends this example to show concrete examples of evidences provided by our auditing system.

3.4 Implementation

In this section, we first illustrate the architecture of our system. We then detail our auditing

framework implementation and its integration into OpenStack along with the challenges that

we face and overcome.

3.4.1 Architecture

Figure 3.4 shows a high-level architecture of our runtime verification framework. It has three

main components: data collection and processing module, compliance verification module, and

dashboard & reporting module. In the following, we describe different engines inside the data

collection and processing module. The security property extractor identifies the sources of

required data for a list of security properties. The event intercepter intercepts each manage-

ment operation requested by the user in the cloud infrastructure system. The data collection

engine interacts mainly with the cloud management system, the cloud infrastructure system

(e.g., OpenStack), and elements in the data center infrastructure to collect various types of audit

data. Then the data processing engine aids to build the correlation and to uniform the collected

data. Our compliance verification module is responsible for the offline and runtime verification

using the formal verification and validation (V&V) tools and our custom algorithms. Finally,

the dashboard & reporting module interacts with the cloud tenant through the dashboard to ob-

tain the tenant requirements and to provide the tenant with the verification results in a report.

Tenant requirements encompass both general and tenant-specific security policies, applicable

standards, as well as verification queries.

38

Verification

Result Repository

Data Collection and

Processing Module

Compliance

Verification Module

Requirements (general/ tenant-specific security

policies and standards) and Audit Requests

Result Processing

Engine

Dashboard &

Reporting Module

Cloud Infrastructure

System

(e.g., OpenStack)

Cloud Management

System

Data Center Infrastructure

(switches compute nodes,

middleboxes,…)

Event Interceptor

Data Collection

Engine

Data Processing

Engine

Formal V&V

Engine

Custom

Algortihms

Dashboard

Reporting Engine

Security Property

Extractor

Audit

Reports

Figure 3.4: A high-level architecture of our runtime verification framework

3.4.2 Integration into OpenStack

We focus mainly on three components in our implementation: the data collection and process-

ing module, the compliance verification module and dashboard & reporting module. In the

following, we first provide background on OpenStack, and then describe our implementation

details.

Background. OpenStack [89] is an open-source cloud infrastructure management platform in

which Keystone is its identity service, Neutron is its network component, Nova is its compute

component, and Ceilometer is its telemetry.

Data Collection Engine. The collection engine involves several components of OpenStack

e.g., Keystone and Neutron for collecting data from log files, policy files, different OpenStack

databases and configuration files from the OpenStack ecosystem to fully capture the config-

uration. We present hereafter different sources of data in OpenStack along with the current

support for auditing offered by OpenStack. The main sources of data in OpenStack are logs,

configuration files, and databases. Table 3.5 shows some sample data sources. The Open-

Stack logs are maintained separately for each service, e.g., Neutron, Keystone, in a direc-

tory named var/log/component_name, e.g., keystone.log and keystone_access.log are stored

in the var/log/keystone directory. Two major configuration files, namely, policy. json and

policy.v3cloudsample. json, contain policy rules defined by both the cloud provider and tenant

39

Relations Sources of Data

AuthorizedOp user, assignment, role in Keystone database and

policy. json and policy.v3cloudsample. json

OwnerD user, assignment in Keystone database and policy. json

AuthorizedR user, tenant, assignment in Keystone database

BelongsToD user, domain tables in Keystone database

TenantRoleDom tenant, assignment, domain tables in Keystone

database

LoggedEntry keystone_access.log and Ceilometer database

ActiveToken Keystone database and keystone_access.log

Table 3.5: Sample data sources in OpenStack for relations in Table 3.4

admins, and are stored in the keystone/etc/ directory. The third source of data is a collection of

databases, hosted in a MySQL server, that can be read using component-specific APIs such as

Keystone and Neutron APIs. With the proper configuration of the OpenStack middleware, noti-

fications for specific events in Keystone, Neutron and Nova can be gathered from the Ceilometer

database.

The effectiveness of a verification solution critically depends on properly collected evi-

dences. Therefore, to be comprehensive in our data collection process, we firstly check fields

of all varieties of log files available in Keystone and more generally in OpenStack, all config-

uration files and all Keystone database tables (18 tables). Through this process, we identify all

possible types of data with their sources. Due to the diverse sources of data, there exist incon-

sistencies in formats of data. On the other hand, to facilitate verification, presenting data in a

uniform manner is very important. Therefore, we facilitate proper formatting within our data

processing engine.

Data Processing Engine. Our data processing engine, which is implemented in Python, mainly

retrieves necessary information from the collected data, converts it into appropriate formats, re-

covers correlation, and finally generates the source code for Sugar. First, our tool fetches the

necessary data fields from the collected data, e.g., identifiers, API calls, timestamps. Simi-

larly, it fetches access control rules, which contain API and role names, from policy. json and

policy.v3cloudsample. json files. In the next step, our processing engine formats each group of

40

data as an n-tuple, i.e., (user, tenant, role, etc.). To facilitate verification, we additionally cor-

relate different data fields. In the final step, the n-tuples are used to generate the portion of the

Sugar’s source code, and the relationships for security properties (discussed in Section 3.3.4)

are also appended with the code. Different scripts are needed to generate the Sugar source code

for the verification of different properties, since relationships are usually property-specific.

The logs generated by each component of OpenStack usually lack correlation. Even though

Keystone processes authentication and authorization steps prior to a service access, Keystone

does not reveal any correlated data. Therefore, we build the data correlation support within

the processing engine. For an example, we infer the relation (user operation) from the avail-

able relations (user role) and (role operation). In our settings, we have 61,031 entries in the

(user role) relations for 60,000 users. The number of entries is larger than the number of users,

because there are some users with multiple roles. With the increasing number of users having

multiple roles, the size of this relation grows, and as a result, it increases the complexity of the

correlation step.

Initial Compliance Verification. The compliance verification module contains two major

modules responsible for the initial verification and runtime verification, respectively. The pre-

requisite formalization steps of the initial verification are already discussed in Section 3.3.4.

Here, we explain different parts of a Sugar source code through a simple example and verifica-

tion algorithm (as in Algorithm 1) in the following.

Listing 3.1: Sugar source code for the common ownership property

1 / / D e c l a r a t i o n

2 (domain Domain 0 500) (domain Ten an t 0 1000)

3 (domain Role 0 1000) (domain User 0 60000)

4 (i n t D Domain) (i n t R Role)

5 (i n t P Ten an t) (i n t U User)

6 / / R e l a t i o n s D e c l a r a t i o n s and Au d i t Data as t h e i r S u p p o r t

7 (r e l a t i o n BelongsToD 2 (s u p p o r t s (100 401) (40569 123)

8 (102 452) (145 404) (156 487) (128 4 6 3)))

9 (r e l a t i o n Au th o r i zed R 3 (s u p p o r t s (100 301 225)

10 (40569 1233 9) (102 399 230) (101 399 2 3 1)))

41

11 (r e l a t i o n TenantRoleDom 3 (s u p p o r t s (301 225 401)

12 (1233 9 335) (399 230 452) (399 231 4 5 2)))

13 / / S e c u r i t y P r o p e r t y : Common Ownership

14 (p r e d i c a t e (o wn er sh ip D R U P)

15 (and (Au th o r i zed R U P R) (BelongsToD U D)

16 (n o t (TenantRoleDom P R D))))

17 (o wn er sh ip D R U P)

Example 7 Listing 3.1 is the CSP code to verify the common ownership property. Each do-

main and variable are first declared (lines 2-5). Then, the set of involved relations, namely,

BelongsToD, AuthorizedR, and TenantRoleDom, are defined and populated with their support-

ing tuples (lines 7-12), where the support is generated from actual data in the cloud. Then,

the common ownership property is declared as a predicate, denoted by ownership, over these

relations (lines 14-16). Finally, the predicate is instantiated (line 17) to be verified. As we are

formalizing the negation of the properties, we are expecting the UNSAT result, which means

that all constraints are not satisfied (i.e., no violation of the property). Note that the predicate is

unfolded internally by the Sugar engine for all possible values of the variables, which allows to

verify each instance of the problem among possible values of domains, users and roles.

In this example, we also describe how a violation of the common ownership property may

be caught by our verification process. Firstly, our program collects data from different tables

in the Keystone database including users, assignments, and roles. Then, the processing engine

converts the collected data and represents as tuples; for our example: (40569 123) (40569

1233 9) (1233 9 335), where Mallory: 40569, Da: 123, Pb: 1233, member: 9 and Db: 335.

Additionally, the processing engine interprets the property and generates the Sugar source code

(as Listing 3.1) using processed data and translated property. Finally, the Sugar engine is used

to verify the security properties. The CSP predicate for the common ownership property is

as follows: (and BelongsToD(u,d) AuthorizedR(u, t,r) (not Tenant −RoleDom(t,r,d))). As

Mallory belongs to domain, Da, BelongsToD(Mallory,Da) evaluates to true. Mallory has been

authorized a tenant-role pair, (Pb,member), thus AuthorizedR(Mallory,Pb,member) evaluates

to true. However, TenantRoleDom(Pb,member,Da) evaluates to false, as the pair (Pb,member)

42

does not belong to domain Da. Then, the whole ownership predicate unfolded for this case

is evaluated to true. In this case, the output of sugar is SAT, which confirms that Mallory

violates the common ownership property and further presents the cause of the violation, i.e.,

(d = 123,r = 9, t = 1233,u = 40569).

Algorithm 1 Runtime Compliance Verification

1: procedure INITIALIZE(Properties,CloudOS)

2: rawData = collectData(CloudOS)

3: verData = processData(rawData)

4: for each property pi ∈ Properties do

5: Resultt0,pi= Verify (pi,verData)

6: procedure RUNTIME(Event,Resultt0,Properties)

7: for each property pi ∈ Properties do

8: ∆i = processData(event.parameters)

9: if incremental-method(pi) = custom then

10: custom-algo(event,pi,Resultt0,pi,∆i)

11: else

12: deltaVerify(event,pi,Resultt0,pi,∆i)

13: return Resultt

14: procedure DELTAVERIFY(event,pi ,Resultt0,pi,∆i)

15: Resultt,pi = verify(pi,∆i)

Runtime Verification. Our runtime verification engine implements Algorithm 1. Firstly, the

interceptor module intercepts each management operation based on the existing intercepting

methods (e.g., audit middleware [90]) supported in OpenStack. Events are primarily created

via the notification system in OpenStack; Nova, Neutron, etc. emit notifications in a JSON for-

mat. Here, we leverage the audit middleware in Keystone to intercept Keystone, Neutron and

Nova events by enabling the audit middleware and configuring filters. Secondly, the data pro-

cessing engine handles the intercepted parameters to perform similar data processing operations

43

as discussed previously. The processed data is denoted as ∆i. Finally, the runtime verification

engine performs incremental steps either using the deltaVerify method, which involves Sugar, or

custom algorithms. Figures 3.5 and 3.6 show the incremental steps for the common ownership

and permitted action properties, respectively.

There exist difficulties in locating relevant information, e.g., the initiator of Keystone API

calls is missing, and in obtaining adequate notifications from Ceilometer for Keystone events.

Therefore, to obtain sufficient and proper information about user events to conduct the auditing,

we collect Neutron notifications from the Ceilometer database.

Start

Event.name?

 Δi Resultt0

Delete a roleGrant a role

i Resultt = deltaVerify(Δi)

 Δi = Resultt0

Resultt = Resultt0

No Yes

Resultt = Resultt0 - Δi Resultt = No violation

End

No Yes

Figure 3.5: Showing the runtime steps for the common ownership property

Dashboard & Reporting Module. We further implement the web interface (i.e., dashboard) in

PHP to place audit requests and view audit reports. In the dashboard, tenant admins can initially

select different standards (e.g., ISO 27017, CCM V3.0.1, NIST 800-53, etc.). Afterwards,

security properties under the selected standards can be chosen. Additionally, admins can select

any of the following verification options: i) runtime verification, and ii) retroactive verification.

Once the verification request is processed, the summarized verification results are shown and

continuously updated in the verification report page. The details of any violation with a list of

evidences are also provided. Moreover, our reporting engine archives all the verification reports

for a certain period.

44

Start

Event.name?

 Δi Resultt0 Δi Resultt0

Delete a role Grant a role

i R

Resultt = Resultt0 Resultt = Resultt0 - Δi

 Δi = Resultt0

Resultt = Resultt0

No NoYes Yes

Resultt = Resultt0 - Δi Resultt = No violationEnd

YesNo

Figure 3.6: Showing the runtime steps for the permitted action property

3.4.3 Integration to OpenStack Congress

To demonstrate the service agnostic nature of our framework, we further integrate our auditing

method with OpenStack Congress [88]. Congress implements policy as a service in OpenStack

in order to provide governance and compliance for dynamic infrastructure. Congress can inte-

grate third party verification tools using a data source driver mechanism. Using Congress policy

language that is based on Datalog, we define several tenant specific security policies as same as

security properties described in Section 3.2.2. We then use our processed data to detect those

security properties for multiple tenants. The outputs of the data processing engine in both cases

of initialization and runtime are in turn provided as inputs for Congress to be asserted by the

policy engine. This integrates compliance status for some policies whose verification is not yet

supported by Congress (e.g., permitted action and minimum exposure).

3.5 Experiments

This section evaluates the performance of this work by measuring the execution time, and mem-

ory and CPU consumption.

45

E1 E2 E3 E4 E5

events

0

1,000

2,000

ti
m

e
(m

s)

Runtime Verification Retroactive Verification

Figure 3.7: Comparing the verification time required after each event for our system and the

retroactive approach (e.g., [73]) for the common ownership property. Here, E1=initialization,

E2=grant a role, E3=delete a role, E4=delete a user and E5=delete a tenant. The results are for

our largest dataset.

3.5.1 Experimental Settings

We collect data from the OpenStack setup inside a lab environment. Our OpenStack version is

Mitaka (2016.10.15) with Keystone API version v3. There are one controller node and three

compute nodes, each having Intel i7 dual core CPU and 2 GB memory with the Ubuntu 16.04

server. To make our experiments more realistic, we follow recently reported statistics (e.g., [92]

and [35]) to prepare our largest dataset consisting 100,000 users, 10,000 tenants, and 500 do-

mains. For verification, we use the V&V tool, Sugar V2.2.1 [105]. We conduct the experiment

for 12 different datasets in total. All data processing and V&V experiments are conducted on

a PC with 3.40 GHz Intel Core i7 Quad core CPU and 16 GB memory, and we repeat each

experiment 1,000 times.

3.5.2 Results

The objective of the first set of our experiments (see Figures 3.7, 3.8 and 3.9) is to demon-

strate the time and memory efficiency of our solution, and to compare the performance with

46

E1 E2 E3 E4 E5
events

0

1,000

2,000

3,000

ti
m

e
(m

s)

Runtime Verification Retroactive Verification

Figure 3.8: Comparing the verification time required after each event for our system and the

retroactive approach (e.g., [73]) for the permitted action property. Here, E1=initialization,

E2=grant a role, E3=delete a role, E4=delete a user and E5=delete a tenant. The results are

for our largest dataset.

CO PA ME C ND

security properties

1,000

5,000

10,000

15,000

si
ze

 (
K

B
)

Retroactive Verification Runtime Verification

Figure 3.9: Total size (in Kilo Bytes) of the data to be verified both for our approach and a naive

approach for different properties (where CO: common ownership, PA: permitted action, ME:

minimum exposure, C: cardinality, ND: no duplicate ID). The results are for our largest dataset.

47

0 20,000 40,000 60,000
0

2000

4000

6000

8000

of users

ti
m

e
 (

m
s
)

0 20,000 40,000 60,000
0

500

1000

1500

2000

of users

ti
m

e
 (

m
s
)

data processing verification data collection

Figure 3.10: Time required for each step during the initialization phase for the common owner-

ship property while varying the number of users. Time for the data collection (right) is shown

separately, as it is a one-time effort. In all cases, the number of domains is 500 and number of

tenants is 10,000.

a retroactive auditing approach similar as in [73]. Firstly, Figure 3.7 shows time in millisec-

onds required for our runtime verification framework for the common ownership property. Our

runtime verification requires a relatively expensive (i.e., about 2.5 seconds) initialization phase,

similar to that of the retroactive approach. Afterwards, our runtime approach takes less than 100

ms; whereas, the retroactive approach always takes 2.5 seconds. Secondly, Figure 3.8 compares

time in milliseconds required for verifying the permitted action property by our framework and

a retroactive verification method. For this property, we obtain results of the same nature as the

previous one i.e., requiring only a relatively expensive (i.e., about 3.5 seconds) initialization

phase followed by runtime verification costing maximum 500 ms. For the permitted action

property, after the delete a role event, a search for a certain role is performed; hence the verifi-

cation time reaches the maximum value. Otherwise, verification time is within 100 ms for both

properties. Finally, Figure 3.9 depicts the comparison between memory requirement for both

approaches while verifying different properties. The retroactive approach requires 12 MB to 17

MB space, as each time we have to load the whole verification data. Whereas, in the runtime

approach, mostly we perform verification only on the changed data, therefore it takes maximum

1 MB memory.

Our second set of experiments (see Figures 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15) is to

demonstrate the time efficiency of individual phases of our solution. Firstly, Figure 3.10 shows

48

0 2500 5000 7500 10000
0

5000

10000

15000

of tenants

ti
m

e
 (

m
s
)

0 20,000 40,000 60,000
0

5000

10000

15000

of users

ti
m

e
 (

m
s
)

common ownership minimum exposure two properties

Figure 3.11: Total time required to perform the initialization phase for common ownership,

minimum exposure and both properties together, by varying the number of users with fixed

5,000 tenants (left) and the number of tenants with fixed 30,000 users (right). In all cases, the

number of domains is 500. Note that time in curves encompasses all three steps (collection,

processing and verification). For the curve of two properties, data collection is performed one

time.

0 5,000 10,000

of tenants

0

200

400

600

ti
m

e
(m

s)

Common ownership Permitted action

Figure 3.12: Total time required to perform the runtime phase of the common ownership and

permitted action properties, by varying the number of tenants with fixed 30,000 users. In all

cases, number of domains is 500.

49

0 50,000 100,000

of users

0

200

400

600

ti
m

e
(m

s)

Common ownership Permitted action

Figure 3.13: Total time required to perform the runtime phase of the common ownership and

permitted action properties, by varying the number of users with fixed 5,000 tenants. In all

cases, number of domains is 500.

0 2,000 4,000 6,000 8,000 10,000

of tenants

0

100

200

400

600

ti
m

e
(m

s)

Grant role Delete role Delete user Delete tenant

Figure 3.14: Time required to perform the runtime phase of the common ownership property

for different events, by varying the number of tenants with 10 users per tenant. In all cases,

number of domains is 500.

50

0 2,000 4,000 6,000 8,000 10,000

of tenants

0

100

200

400

600

ti
m

e
(m

s)

Grant role Delete role Delete user Delete tenant

Figure 3.15: Time required to perform the runtime phase of the permitted action property for

different events, by varying the number of tenants with 10 users per tenant. In all cases, number

of domains is 500.

time in milliseconds required for data collection, data processing and compliance verification

during the initialization phase to verify the common ownership property for different cloud

sizes (e.g., the number of users). The obtained results show that the verification execution time

is less than two seconds for fairly large numbers of users. Knowing that this task is performed

only once upon each request, we believe that this is an acceptable overhead for verifying a

large setup. Figure 3.11 shows the total time required for separately performing the initializa-

tion phase for common ownership and minimum exposure properties, and also for both of the

properties together. We can easily observe that the execution time is not a linear function of

the number of security properties to be verified. In fact, we can see that verifying more se-

curity properties would not lead to a significant increase in the execution time. Figures 3.12

and 3.13 show the total time required for separately performing the runtime phase for common

ownership and permitted action properties for different cloud sizes. The obtained results sup-

port that the verification time for the permitted action (i.e., up to 500 ms) is more than that of

the common ownership (i.e., up to 100 ms). Figures 3.14 and 3.15 further depict the effects of

different events on the runtime phase for different security properties, while varying the number

of tenants up to 10,000. As our runtime phase is an incremental approach and verifies mainly

parameters of the events (as shown in Figure 3.9), the size of the cloud affects the verification

51

time very less.

0 5 10 15

time (s)

0

20

40

60

C
P

U
 (

%
)

0-7s: data collection, 7-9s: data processing, 9-12s: verification

Figure 3.16: CPU usage for each step during the initialization phase over time with 60,000

users, 10,000 tenants and 500 domains for the common ownership property.

0 5 10 15

time (s)

0

0.1

0.2

m
em

o
ry

 (
%

)

0-7s: data collection, 7-9s: data processing, 9-12s: verification

Figure 3.17: Memory usage for each step during the initialization phase over time with 60,000

users, 10,000 tenants and 500 domains for the common ownership property.

Our third experiment (see Figures 3.16, 3.18 and 3.20) measures the CPU usage (in %) dur-

ing the initialization and runtime phases. Figure 3.16 depicts the fact that the data collection step

requires significantly higher CPU usage than the other two steps. However, the average CPU

usage for data collection is 30%, which is reasonable since the verification process lasts only

a few seconds. Note that, we conduct our experiment in a single PC; if the security properties

52

0 5000 10000
0

20

40

60

of tenants

C
P

U
 (

%
)

0 20,000 40,000 60,000
0

20

40

60

of users

C
P

U
 (

%
)

common ownership

Figure 3.18: Peak CPU usage to perform the initialization phase for the common ownership

property by varying the number of users with 10,000 tenants (left) and number of tenants with

60,000 users (right). In both cases, there are 500 domains.

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

of tenants

m
e

m
o

ry
 (

%
)

0 20,000 40,000 60,000
0

0.05

0.1

0.15

0.2

of users

m
e

m
o

ry
 (

%
)

common ownership

Figure 3.19: Peak memory usage to perform the initialization phase for the common ownership

property by varying the number of users with 10,000 tenants (left) and number of tenants with

60,000 users (right). In both cases, there are 500 domains.

can be verified through concurrent independent Sugar executions, we can easily parallelize this

task by running several instances of Sugar on different VMs in the cloud environment. Thus,

performing verification using the cloud or even with multiple servers possibly reduces the cost

significantly. For the other two steps, the CPU cost is around 15%. In Figure 3.18, we measure

the peak CPU usage (in %) consumed by different steps while verifying the common owner-

ship property. Accordingly, the CPU usage grows almost linearly with the number of users and

tenants. We observe a significant reduction in the increase rate of CPU usage for datasets with

45,000 users or more. Note that, other properties show the same trend in CPU consumption, as

53

0 5000 10000

of tenants

0

2

4

6

C
P

U
 (

%
)

Grant role Delete role Delete user Delete tenant

Figure 3.20: Peak CPU usage (left) and peak memory usage (right) to perform the runtime

phase of the common ownership property for different events, by varying the number of tenants

with 10 users per tenant. In all cases, the number of domains is 500.

the CPU cost is mainly influenced by the data collection step. Figure 3.20 shows that runtime

phase expectedly requires negligible CPU (i.e., up to 4.7%) in comparison to the initialization

phase.

Our final experiment (Figures 3.17, 3.19 and 3.21) measures the memory usage during

the initialization and runtime phases. Figure 3.17 shows that the data collection step is the

most costly in terms of memory usage. However, the highest memory usage observed during

this experiment is only 0.2%. Figure 3.19 shows that the rise in memory consumption is only

observed beyond 50,000 users (left) and 8,000 tenants (right). We investigated the peak in the

memory usage for 50,000 users and it seems that this is due to the internal memory consumption

by Sugar. Figure 3.21 depicts the memory usage by our runtime phase and further supports that

the runtime phase deals with significantly smaller data set (as also shown in Figure 3.9).

Although we report results for a limited set of security properties, the use of formal methods

for verifying these properties shows very promising results. Particularly, we show that the time

required for our solution grows very slowly with the number of security properties. As seen in

Figure 3.11, an additional security property adds only about three seconds to the initial effort.

Therefore, we anticipate that verifying a large list of security properties would still be practical.

54

0 2000 4000 6000 8000 10000

of tenants

0

0.02

0.04

0.06

m
em

o
ry

 (
%

)

Grant role Delete role Delete user Delete tenant

Figure 3.21: Peak CPU usage (left) and peak memory usage (right) to perform the runtime

phase of the common ownership property for different events, by varying the number of tenants

with 10 users per tenant. In all cases, the number of domains is 500.

3.6 Discussion

Adapting to Other Cloud Platforms. Our solution is designed to work with most popu-

lar cloud platforms (e.g., OpenStack [89], Amazon EC2 [5], Google GCP [38], Microsoft

Azure [77]) with a minimal one-time effort. Once a mapping of the APIs from these platforms

to the generic event types are provided, rest of the steps in our auditing system are platform-

agnostic. Table 3.6 enlists some examples of such mappings.

Handling Extreme Situations. There might be some extreme cases where our solution may

act differently. For instance, if the cloud logging system fails resulting from any disruption

or failure in the cloud, then our auditing system will be affected. As in our threat model (in

Section 3.2.3), we assume that our solution relies on the correctness of the input data (including

the logs) from the cloud. Any other failure or disruption in the cloud must be detected by our

system. Also, if our system including the formal verification tool (e.g., Sugar) fails, till now

there is no self-healing or self-recovery feature. Therefore, in this extreme case, the efficiency

of the system will be affected and a full (instead of incremental) verification will be required to

recover from this failure.

The Rationale behind our Incremental Approach. The incremental verification of a given

55

Generic

Event Type

OpenStack [89] Amazon EC2-

VPC [5]

Google GCP [38] Microsoft

Azure [77]

create user POST /v3/users aws iam create-

user

gcloud beta com-

pute users create

az ad user cre-

ate

delete user DELETE

/v3/users/{user_id}

aws iam

delete-user

–user-name

gcloud beta com-

pute users delete

az ad user

delete

assign role /v3/users/{user_id}

/roles/{role_id}

aws iam attach-

role-policy

gcloud projects

add-iam-policy-

binding

az role assign-

ment create

create role POST /v3/roles aws iam create-

role

gcloud beta iam

roles create

az role defini-

tion create

delete role DELETE

/v3/roles/{role_id}

aws iam delete-

role

gcloud beta iam

roles delete

az role defini-

tion delete

Table 3.6: Mapping event APIs of different cloud platforms to generic event types.

security property involves instantiating and solving the security property predicates for the af-

fected elements in the supports of the involved relations (as stated in Section 3.3.4). Therefore,

any modification to the system data resulted from cloud events (e.g., grant role, delete role, etc.)

would not directly change the security property expression itself although the corresponding

support may need to be changed. For example, if a role is granted, the only change is that

the relationships involving the entity role in the model would include a new element in their

supports.

3.7 Related Work

Table 4.6 compares existing related works for the cloud. Firstly, the existing approaches are

categorized into: retroactive, intercept-and-check and proactive. Secondly, these works mainly

cover three major levels: user, network and virtual infrastructure. Thirdly, we identify several

features to differentiate our work from others. The no-future-plan feature is checked when a

proactive or intercept-and-check approach does not require any future change plan; for retroac-

tive approaches this feature is not applicable (N/A). The first-order-logic feature is checked

when a work can verify any security property that is expressed in first order logic. We also

identify the works that support verification on RBAC, ABAC and SSO. Finally, the most works

are specifically designed for a particular cloud platform. In summary, our work differs from

56

the existing works as follows. First, this work offers an intercept-and-check approach to audit

the user-level at runtime. Second, only our work supports security properties related to RBAC,

ABAC and SSO. Thirdly, our approach requires no future change plan for the verification pro-

cess. Finally, this work explains how it can be adapted to other cloud platforms.

Verifying security compliance in the cloud has recently been explored. For instance, in [70,

73], formal auditing approaches are proposed for retroactive security compliance checking in

the cloud. The works in [108, 24] also support retroactive auditing. Unlike our proposal, those

approaches can detect violations only after they occur, which may expose the system to high

risks. There are several works (e.g., [62, 60, 96]) offering runtime security check in the cloud.

VeriFlow [62] and NetPlumber [60] monitor network events and check network policies at run-

time to capture bugs before or as soon as they occur. Designing cloud monitoring services based

on security service-level agreements have been discussed in [96]. There are several other works

that target auditing data location and storage in the cloud (e.g., [110, 58, 51, 112]) and others

target infrastructure change auditing (e.g., [108, 25]).

Several existing efforts (e.g., [30, 2, 7, 47]) verify access control policies at the design time.

In most of these works, cloud-related user-level security properties are not considered. There

are some efforts (e.g., [36, 107, 3, 40]) towards proposing multi-domain/tenant access control

models. Gouglidis et al. [41] utilize model-checking to verify custom extensions of RBAC

with multi-domain against security properties. Lu et al. [68] use set theory to formalize policy

conflicts in the context of inter-operation in the multi-domain environment. In contrast to those

works, we are dealing with the verification of not only the policies but also their implementa-

tions, which involve efficient techniques to collect, process, and verify large amount of data at

runtime.

There are few other works (e.g., [71, 16, 88]) offering runtime security policy checking in

the cloud. Our previous work in [71] proactively verifies security compliance very efficiently

through pre-computation by utilizing dependency models. However, there are several proper-

ties (e.g., minimum exposure, proper constraint checking, session time-out) which cannot be

captured through the dependency models. On the other hand, this work is capable of verifying a

wider range of properties. Weatherman [16] aims at mitigating misconfigurations and enforcing

57

Approaches Coverage Features Platforms

Proposals R
et

ro
ac

ti
v
e

In
te

rc
ep

t-
an

d
-c

h
ec

k

P
ro

ac
ti

v
e

U
se

r-
le

v
el

N
et

w
o

rk
-l

ev
el

V
ir

tu
al

In
f.

N
o

-f
u

tu
re

-p
la

n

F
ir

st
-o

rd
er

-l
o

g
ic

V
er

if
y

in
g

R
B

A
C

V
er

if
y

in
g

A
B

A
C

V
er

if
y

in
g

S
S

O

S
u

p
p

o
rt

in
g

O
p

en
S

ta
ck

S
u

p
p

o
rt

in
g

A
zu

re

S
u

p
p

o
rt

in
g

V
M

w
ar

e

A
d

ap
ta

b
le

to
o

th
er

s

CloudRadar [15] - • - - - • N/A - - - - - - • -

Weatherman [16] - • • - - • - - - - - - - • -

Majumdar et al. [73] • - - • - - N/A • • - - • - - -

Madi et al. [70] • - - - • • N/A • - - - • - - -

Majumdar et al. [71] - • • • • • • - • - - • - - -

Doelitzscher et al. [25] • - - - - • N/A - - - - • - - -

Ullah et al. [108] • - - - - • N/A - - - - • - - -

Congress [88] • • • • • • - - - - - • - - -

SecGuru [12] • - - - • - N/A • - - - - • - -

QRadar [49] • - - • • • N/A - - - • - - • -

This work - • - • - - • • • • • • - - •

Table 3.7: Comparing different existing solutions. The symbol (•) indicates that the proposal offers the corresponding feature.

5
8

security policies in a virtualized infrastructure. However, expensive computations after each

critical event causes significant delay. Our work overcomes this limitation by using incremental

verification. Congress [88] is an OpenStack project offering similar features as Weatherman.

Several industrial efforts include solutions to support auditing in specific cloud environments.

For instance, SecGuru [12] audits Microsoft Azure datacenter using the SMT solver Z3. IBM

provides a monitoring tool integrated with QRadar [49], to collect and analyze events in the

cloud. Amazon offers web API logs and metric data to their AWS clients by AWS CloudWatch

& CloudTrail [6] to facilitate auditing. Although those efforts may assist auditing tasks, we

support a wider set of user-level security properties.

3.8 Conclusion

Despite existing efforts, runtime security auditing in cloud still faces many challenges. In this

work, we proposed a runtime security auditing framework for the cloud with special focus on

the user-level including different access control and authentication mechanisms e.g., RBAC,

ABAC and SSO, and we implemented and evaluated the framework based on OpenStack, a

popular cloud management system. Our experimental results showed that our incremental ap-

proach in runtime verification reduces the response time to a practical level (e.g., less than 500

milliseconds to verify 100,000 users). This response time is satisfactory when the management

operations are manually done by the administrators. The current approach would be insufficient

to provide the same response time in the case of batch execution for management operations,

when these operations are executed in short intervals and if the subsequent operations impact the

same property. As future work, to address this use case, we consider maintaining a scheduler

including an event queue with different threads for different tasks in order to verify proper-

ties concurrently and therefore reduce the response time in this case. Also, verifying sequence

of events, in addition to our current method of verifying single event, may further reduce the

impact of this concern. Furthermore, currently we do not consider any incorrectness in the

formalization of the security properties. In out future work, we intend to address this concern

59

by validating these formalizations through unit-test-like approaches. Additionally, in our cur-

rent method, an update in the security property requires to re-launch the auditing process from

the initialization phase. Our future work will aim to provide an incremental way of updating

security properties.

60

Chapter 4

Proactive Security Auditing through

Caching and Pre-Computation

4.1 Introduction

The multi-tenant and self-service nature of clouds usually implies significant operational com-

plexity, which may prepare the floor for misconfigurations and vulnerabilities leading to viola-

tions of security compliance. Therefore, the security auditing w.r.t. security standards, policies,

and properties, is desirable to both cloud providers and users. Evidently, the Cloud Security

Alliance (CSA) has recently introduced the Security, Trust & Assurance Registry (STAR) for

security assurance in clouds, which defines three levels of certifications (self-auditing, third-

party auditing, and continuous, near real-time verification of security compliance) [19]. How-

ever, above-mentioned complexities coupled with the sheer size of clouds (e.g., a decent-size

cloud is said to have around 1,000 tenants and 100,000 users [92]) implies one of the main

challenges in cloud security auditing, specifically the scalability and response time, especially

in near real-time verification of security compliance.

To this end, existing approaches can be roughly divided into three categories (a more de-

tailed review of related work will be given in Section 4.7). First, the retroactive approaches

(e.g., [70, 73]) catch compliance violations after the fact by verifying different configurations

and logs of the cloud. As a result, they cannot prevent security breaches from propagating or

61

causing potentially irreversible damages (e.g., leaks of confidential information or denial of

service). Second, the intercept-and-check approaches (e.g., [16, 88]) verify the compliance of

each user request before either granting or denying it, which may lead to a substantial delay to

users’ requests, as will be further illustrated later in this section. Third, the proactive approaches

in [16, 88] verify user requests in advance, and somewhat overcome the limitations of first two

approaches.

However, existing proactive solutions still pose following limitations. i) To avoid the sig-

nificant delay at runtime, existing works (e.g., Weatherman [16]) alternatively require a future

change plan (which means configuration changes scheduled in near future) in advance from the

tenant admins; however, this requirement is not always practical for cloud due to its dynamic

and ad-hoc nature. ii) Moreover, non-optimization of the verification effort (e.g., repeated com-

putation for recurrent events) results longer response time for the existing methods. iii) Fur-

thermore, current proactive solutions (e.g., [16, 71]) fully rely on cloud tenants in providing a

complete list of security critical events (i.e., events that potentially may lead to a violation) to

ensure accurate proactive auditing; which lacks adaptability and may be error-prone and tedious

for tenants. iv) Finally, concurrent event instances at runtime may cause malfunctions in some

proactive auditing methods (e.g., [71]).

Motivating Example. Through this example, we further illustrate the above-mentioned limi-

tations and motivate our solution. Fig. 4.1 depicts three timelines (showing different steps of

typical retroactive and intercept-and-check approaches, and our proactive solution, respectively)

with a sequence of three cloud events. Among those events, the update port is the critical event,

which can potentially breach a security property. Here, we consider the “no bypass” security

property for the anti-spoofing mechanisms in the cloud, which can be violated by real world

vulnerabilities (e.g., OpenStack vulnerability [86] 1). We highlight the major limitations of the

existing approaches and position our solution as follows.

• A typical retroactive auditing is conducted periodically (e.g., at time t2 and t3) within a cer-

tain interval, and such auditing usually takes several seconds (e.g., eight seconds for auditing

1OpenStack [89] is an open-source cloud management platform.

62

10,000 tenants as reported in [70, 73]); which allow attackers to exploit the vulnerable sys-

tems for a considerable amount of time with irreversible damages (e.g., DoS and leakage of

sensitive information).

• A typical intercept-and-check approach overcomes the above-mentioned limitation of retroac-

tive auditing, however, it starts the verification only after the update port event occurs, and

thus results in a significant delay (e.g., four minutes as reported in [16]).

• To avoid such runtime delay, existing proactive approaches (e.g., [16, 88]) require a future

change plan (e.g., create port, create VM (2) and update port) before time t0. However,

providing such a concrete future plan in advance is not always practical considering the

dynamic and ad-hoc nature of cloud.

• Moreover, previous proactive solutions assume that a comprehensive list of critical events

(e.g., update port) are known in advance. This assumption might not be practical, and it

does not adapt to dynamically changing security requirements. Also, current solutions do

not provide any practical method to identify such critical events (out of more than 400 cloud

event types [89]); This limitation may lead to an incomplete list of critical events which later

may affect the accuracy of the proactive auditing.

• Finally, current solutions would treat the two consecutive occurrences of the VM creation

event (denoted as create VM (2) event in Fig. 4.1) as independent events and repeat almost

the same pre-computation tasks.

In this work, we propose a proactive security auditing system, namely, ProSAS, which ad-

dresses above-mentioned limitations and hence, provides significant improvements in both ef-

ficiency and accuracy of runtime auditing. The efficiency improvement is mainly achieved by

performing costly verification steps proactively, as soon as the system is a few steps ahead of

a critical event. The efficiency is further improved by reducing the efforts for recurrent events

with the use of a caching mechanism, which keeps track of our proactive steps on recently oc-

curred events. Additionally, unlike existing proactive solutions, ProSAS can handle concurrent

events in a sequential manner using a locking mechanism. On the other hand, the better accu-

racy of ProSAS is possible as we no longer only rely on initial identification of security critical

events, and instead propose a new feedback module, which leverages a retroactive approach

63

11/9/2017

Time

t0 t1 t2

11/9/2017 11/9/2017

1.2sec 6ms1ms

….

1min

t0 t1 t2

11/9/2017

Create port

11/9/2017

Create VM

11/9/2017

Update port

No Violation Violation (Remediation)

Verifying Verifying

Retroactive

Intercept-and-

check

Proactive

Intercepting and checking

Violation (Denied)

Violation (Denied)

VerifyingPre-computingIntialization

Figure 4.1: Comparison of the execution time of our solution with the typical intercept-and-

check and retroactive approaches.

using cloud states (e.g., configurations) to progressively improve the list of critical events.

The main contributions of our work are as follows.

• To the best of our knowledge, this is the first pre-computation-based proactive security audit-

ing approach for clouds. As demonstrated by our implementation and experimental results,

the proposed system, ProSAS, provides an automated, efficient, and scalable solution for

different cloud platforms to increase their transparency and accountability to tenants.

• ProSAS requires significantly less time than any existing proactive solutions to audit. First,

our dependency models help to identify the relationship between cloud events, and to dis-

tribute the verification overhead over the chain of events to improve the efficiency of the sys-

tem. Second, the ProSAS caching mechanism significantly optimizes the pre-computation

and verification efforts in case of recurrent events.

• Unlike existing proactive approaches, ProSAS provides a higher rate of accuracy by using an

adaptive and more comprehensive way of critical event identification. To this end, ProSAS

provides a hybrid solution where a proactive auditing system is supported by a retroactive

64

auditing tool at the backend to more accurately identify critical events over time.

4.2 Models

This section defines our threat model and presents the dependency models.

4.2.1 Threat Model

We assume that the cloud infrastructure management systems i) may have implementation

flaws, misconfigurations and vulnerabilities that can be potentially exploited to violate security

properties specified by the cloud tenants, and ii) may be trusted for the integrity of the API

calls, event notifications, logs and database records (existing techniques on trusted computing

and remote attestation may be applied to establish a chain of trust from TPM chips embedded

inside the cloud hardware, e.g., [10, 64, 101, 102]). Though our framework may assist to avoid

any violation of specified security properties due to either misconfigurations or exploits of vul-

nerabilities, our focus is not to detect specific attacks or intrusions. We focus on attacks directed

through the cloud management interfaces (e.g., CLI and GUI), and any violation bypassing such

interfaces is beyond the scope of this work. Our proactive solution mainly targets certain secu-

rity properties, which would require a sequence of operations. To make our discussions more

concrete, the following shows an example of in-scope threats based on a real vulnerability.

Running Example. Real world vulnerabilities, such as the one in OpenStack [86]1, can be

exploited to bypass anti-spoofing mechanisms. These mechanisms are implemented in Open-

Stack using firewall rules enforcing tenants’ layer 3 network isolation. Fig. 4.2 shows the attack

scenario to exploit this vulnerability. The exploit consists in changing the device owner (step 3

in Fig. 4.2) of an instance’s port to a string starting with the word network, right after the in-

stance is created (steps 1 & 2) and just before security group gets attached to it (race condition).

As a result, the firewall rules of the compute node are not applied to that port, since it is treated

as a network owned port. Consequently, a malicious tenant can launch IP, MAC, and DHCP

spoofing attacks (step 4).

1OpenStack [89] is an open-source cloud infrastructure management platform.

65

VM207

Port788

VM127

Port1187

Port2134 Port1187Port788 Port1209

Name: Port788

Device owner:

Compute 1

Name: Port1187

Device owner:

Network 1
Network 1

1

3

Create port1187

Create VM127 attached to port1187

Update deviceOwner(port 1187,network)

Launch spoofing attacks

1

2

3

4VM207

SG

Compute1

SG

4

Bypassing

security group

VM127

2

Figure 4.2: An exploit of a vulnerability in OpenStack [86], leading to bypassing the anti-

spoofing mechanism.

4.2.2 Dependency Models

Figures 4.3 and 4.4 illustrate the two dependency models that we derive for an OpenStack-

managed cloud covering virtual infrastructure (Fig. 4.3) and user access control (Fig. 4.4). Each

dependency model can be used for proactively auditing multiple security properties. We vali-

date these dependency models based on extensive study of OpenStack APIs [91] from different

related OpenStack services (e.g., Neutron, Nova, and Keystone) and Open vSwitch [32]. For

the user access control model, we are inspired by the OSAC model by Tang et al. [107]. To build

intuitions of these models, we start by providing an example on how the cloud infrastructure

dependency model (see Fig. 4.3) allows us to relate actual management operations or events

happening in the cloud to the “no bypass” security property presented in Section 4.2.1.

Example 8 According to the attack scenario presented in Fig. 4.2, the critical management

operation that leads to the violation of the “no bypass” security property is update port.

The model in Fig. 4.3 includes port (vertex 15) and VM (vertex 17). The vertex

16 is a specific vertex grouping a port and a subnet pair. The update port operation is

related to the entity port (vertex 15 in Fig. 4.3). As it can be seen in Fig. 4.3, update

port depends on other operations, such as create port (edge (12,15)) and create

VM (edge 16, 17). More precisely, create VM attaches a port (vertex 15) on a subnet

(vertex 14) to a VM (vertex 17).

66

3

Tenant

18

Router
12

Network

13

Security

Group

19

vNet

20

vPort

22

Physical

Resources

21

vSwitch

Tenant-

Virtual

Infrastructure

Cloud

Provider’s

Virtual Layer

17

VM

Cloud Provider’s

Physical Layer

14

Subent

15

Port
16

SPP

RelationshipEntity

Figure 4.3: Dependency model of cloud infrastructure

As the create port and create VM operations are closely related to the actual crit-

ical operation (update port), our model captures this dependency relationship and aids to

avoid the security violation by starting preparation from the create port operation. Fur-

thermore, these operations in turn depend on the existence or creation of a subnet, a network

and a tenant. This induces a chain of dependencies between a set of events that could be related

to this security property.

Formally, the dependency model is a graph, G = (V,E), where vertices Vi are individual

cloud entities (e.g., user, role, tenant, port, VM, etc.) or groups of entities (e.g., (port, subnet)

pair) and edges Ei j are dependency relationships between connected vertices. These relation-

ships are activated by events/operations in the cloud (e.g., create/delete port, attach VM to a

67

RelationshipEntity

2

User

1

Domain

6

Token

4

Group

3

Tenant

5

Role

11

TRP

7

Service

10

PRMS

8

Object

9

Operation

Figure 4.4: Dependency model of access control management

(port, subnet) pair, etc.). We use edges’ attributes to store information on which security prop-

erty are associated with the events that are related to the edge and on the type of this event

per property. We define four kinds of relationships. We use different types of edges (unidi-

rectional, bidirectional, or non-directional) to differentiate the following relationships based on

their semantics.

• Precedence relation, represented by a unidirectional edge, such that Ei j = (Vi,Vj) denotes

that the entity Vi must exist before creating entity Vj within Vi.

• Association relation, represented by a bidirectional edge, such that Ei j = (Vi,Vj) denotes that

entities Vi and Vj should both exist (i.e., created) to be able to make any association between

them.

• Mapping relation, represented by a non-directional edge, such that Ei j = {Vi,Vj} denotes

a correspondence relationship between entities Vi and Vj existing in different layers in the

cloud.

68

• Reflexive relation (omitted in the graph), representing a relation from a node to itself such as

updating attributes of the node.

We leverage the knowledge captured by these dependencies to appropriately identify the

intercepted events, relate them to the security property, identify their roles in the context of

proactive compliance verification, and determine the distance to a critical state. More details

are provided in Section 4.3. It is worth noting that these models are static and do not depend on

the execution context of the cloud. They consist of a relatively small set of entities and relation-

ships. For example, for Neutron, Nova, and Keystone services, we enumerated only 86 different

entities and about 400 events that are relevant to configuration changes and management.

Property Critical Event

(CE)

Watchlist

Event (WE)

Watchlist per tenant

No bypass [18] update port (15,15)
create VM

(16,17)
Ports except VM ports

create port

(12,15)

Port consistency [53, 18] create vPort

(21,20)

create port

(12,15)

ports at tenant layer

No abuse of resources [18]

create VM

(16,17),

create vNet

(14,19)

create VM

(16,17),

create vNet

(14,19)

Counters for VM/vNet

delete VM

(16,17),

delete vNet

(14,19)

Common port owner-

ship [18]

attach port to a

router (16,18)

create router

(3,18)

router-tenant pair

Port isolation [53, 18] add vPort to vNet

(19,20)

create vNet

(14,19)

vNets in a subnet

No co-residency1 [53, 18]
create VM

(16,17),

migrate VM

(17,22)

create VM

(16,17)

Hosts with no conflict-

ing

migrate VM

(17,22)

VMs

Table 4.1: An excerpt of the security properties supported by the cloud infrastructure model

with their corresponding critical and watchlist events, and the watchlist contents.

Tables 4.1 and 4.2 enlist excerpts of the security properties supported by the cloud infras-

tructure dependency model. Here, we categorize events mainly into two types: critical event

(CE) and watchlist event (WE). A CE (e.g., update port) potentially leads to the violation

69

of the associated property. A WE corresponds to an event that impacts the content of the watch-

list associated with the security property (e.g., create port and create VM). The third

type of event is the trigger event (TE), which is neither critical nor watchlist-related, however is

useful to determine the distance to a critical state. Note that an event may have multiple types

considering different security properties. For example, create VM is a WE event for the no

bypass property, but it is of type CE for the no co-residency property.

4.3 Proactive Security Auditing System (ProSAS)

This section details our proactive security auditing system.

4.3.1 Overview

The security auditing process of ProSAS involves following major steps. First, we intercept

every cloud management event instance at runtime, and identify the type (i.e., critical or non-

critical) of the intercepted event. Second, for a non-critical event, (without holding the inter-

cepted event blocked) we consult the pre-computation cache, which stores recently occurred

event types for which pre-computation is required and their corresponding actions to be per-

formed, so that ProSAS can pre-compute the necessary conditions and build the watchlist in-

crementally. In case, the intercepted event type is not in the cache, the pre-computation is only

performed, if the distance of this event type from a critical event is less than a user-defined

threshold (how to set this threshold is discussed later). Third, for a critical event, (while holding

the intercepted event blocked) ProSAS verifies the parameters of the intercepted event consult-

ing the verification cache, which stores recently updated entries of the watchlist, and enforces

the decision (e.g., allow or deny) accordingly. In case the event type is not in the cache, we

check the whole watchlist and enforces the result. Fourth, we identify new critical events (if

any) mainly by periodically verifying the cloud configurations using a state-based verification

tool (e.g., [70, 73]) and analyzing cloud logs so that ProSAS can progressively improve its

accuracy.

Fig. 4.5 illustrates an overview of ProSAS. The inputs to ProSAS are security properties and

70

Property Critical Event Watchlist

Event

Watchlist per ten-

ant

Common role ownership [53, 18] grant role (2,11)
create

role

(3,5)

roles in a tenant

delete

role

(3,5)

No cross-tenant token create token (3,6)
grant

role

(2,11)

user-tenant-tole tuple

create

user

(1,2)

Cardinality [52, 81] grant role (2,11)

delete

role

(3,5)

counter for each role

deny

role

(2,11)

grant

role

(2,11)

Role activation [53, 18] create token (3,6) grant

role

(2,11)

user-role pair

Permitted action [53, 18] request an operation (8,9)
create

token

(3,6)

token-operation pair

grant

role

(2,11)

User-access validation [53, 18] request an operation (8,9)
create

token

(3,6)

token-operation pair

grant

role

(2,11)

Table 4.2: An excerpt of the security properties supported by the access control management

dependency model shown in Fig. 4.4 with their corresponding critical events, watchlist-related

events, and the content of the watchlists.

their corresponding critical events, and the output is the decision (allow/deny/warn) for each

intercepted cloud events to enforce the compliance. In ProSAS, there exist four major compo-

nents: interceptor, caching manager, proactive module, and feedback manager. The interceptor

71

ProSAS

Events Decision

Caching

Manager

Proactive

Module

Cache

Feedback

ManagerTenant

ProSAS Interceptor

Compute

Network

Identity

Storage

Cloud

Initializer

Security Properties

& Critical Events

Event

Queue
Pre-

computation

Manager

Proactive

Verifier

Verification

Tool

Log filters

Critical

Event

Inspector
ProSAS

Watchlists

Figure 4.5: An overview of ProSAS

situates as a middleware within the cloud platform to intercept each cloud event instance for

different cloud services, e.g., compute, network, storage, etc., to identify the type of the inter-

cepted event, and after the verification process, to enforce the decision (e.g., allow or deny). The

caching manager is mainly responsible to maintain two different caches for pre-computation and

verification, respectively. In case the intercepted event type is found in the cache, ProSAS skips

the steps in the proactive module, and responds more quickly. Otherwise, the caching manager

forwards the intercepted event type and its parameters to the proactive module. Additionally, the

caching manager manages a queue in cases an event occurs before the previous one is processed

by ProSAS. The proactive module contains initializer, pre-computation manager and proactive

verifier. First, the initializer takes a one-time effort to process the ProSAS inputs and initialize

the conditions for verification. Second, the pre-computation manager incrementally updates the

required conditions to preserve the security compliance. Third, the proactive verifier verifies

the parameters of a critical event based on the pre-computed results and provides a decision

to enforce compliance. The feedback manager is responsible to identify new critical events

by leveraging existing state-based auditing methods (e.g., [70, 73]) to progressively enrich and

update the initial inputs of critical events to ProSAS.

72

4.3.2 Interceptor

At runtime, our system intercepts all event instances performed in the cloud. The interceptor is

implemented as a middleware, which is placed between the tenants and different cloud services,

e.g., compute, network, storage, identity, etc. Usually, the intercepted event instances provide

implementation specific details. Therefore, with the help of the Event-operation table,

we identify the corresponding event type (so that the remaining steps in ProSAS become cloud-

platform-agnostic). Table 4.3 shows an excerpt of such mapping. We also identify the criticality

(i.e., CE, WE or TE) of the intercepted event type from the Model-event table. Only if the

intercepted event is critical, then we halt the event request till the verification is performed.

Otherwise, the event request is immediately processed. Additionally, the position of the event

type in the dependency model is identified so that the next step can measure the distance from

a critical event.

OpenStack Event Instances Event Types of ProSAS

POST /v2/servers HTTP/1.1 Create VM

POST /v2/os-security-groups HTTP/1.1 Create security group

GET /v2/os-security-groups HTTP/1.1 Eliminated

Table 4.3: Examples of OpenStack event instances and converted event types in ProSAS.

4.3.3 Caching Manager

The main responsibility of the caching manager is to prescribe necessary actions (if possible)

through a caching mechanism to both proactive verifier and pre-computation manager. Main-

taining the caching is performed in three steps: i) to build a cache storing actions performed

by ProSAS for recent cloud events during the pre-computation and verification steps, ii) to

consult the cache for the currently intercepted event, and iii) based on the cache search result,

either to perform the actions (e.g., deciding verification result) by itself, or to trigger the nec-

essary module (e.g., pre-computation manager or proactive verifier) to perform certain actions

(e.g., inserting into the watchlist or verifying the watchlist). To this end, the caching man-

ager maintains two kinds of cache: one for pre-computation and another for verification. The

73

pre-computation cache has three attributes: recent events, the condition to check whether the

distance is less than the threshold (i.e., N-cp < N-th), and how a watchlist update (add or re-

move) is performed. If the condition is false (i.e., N-cp > N-th), then obviously no action has

been taken for the event. In case of a miss of the cache, all steps of the n-step evaluator are

performed. On the other hand, the verification cache stores the recent critical events and re-

cently added or removed watchlist contents for the corresponding critical event. A hit in the

cache allows the caching manager to provide the verification result without the involvement of

the proactive verifier. Otherwise, the caching manager triggers the proactive verifier to perform

the verification step. The efficiency improvement due to our caching manager is evaluated in

Section 4.5. Additionally, the caching manager includes a first in first out (FIFO) event queue

to sequentially process concurrent events.

Recent Events N-cp < N-th Actions Taken

Create VM No -

Update Port Yes Insert into no_bypass watchlist

Delete VM Yes Remove from no_downgrade watchlist

Table 4.4: An excerpt of a pre-computation cache

Example 9 Tables 4.4 and 4.5 show excerpts of pre-computation and verification caches, re-

spectively. Table 4.4 depicts three different cases in the pre-computation caching. First, the

create VM event is further than the threshold, and no pre-computation has been performed.

Second, the update port event is close enough to perform an insert into the watchlist for

the no bypass security property. Third, similarly for the delete VM event, the content from

the watchlist of the no downgrade property is removed. Table 4.5 shows an excerpt of the ver-

ification cache, which stores the recently added and removed contents to/from the no_bypass

and no_downgrade watchlists for the update port, add/delete security group

rule events. To project the functionality of the verification cache, we depict three intercepted

events: add security group rule (2537), update port (1321) and delete

security group rule (2115) as follows. First, LeaPS allows the add security

group rule (2537) event just by checking the verification cache, as the VM ID 2537 is

present in the recently added attribute. Second, LeaPS denies the update port (1321)

74

event similarly, as the port ID 1321 is found in the recently removed list. Third, LeaPS re-

quires to check further in the full watchlist to verify the delete security group rule

(2115) event, as the VM ID 2115 is not in the cache.

Recent Events Recently Added Recently Removed

Update Port Port IDs: 1257, 1421, 1109 Port IDs: 2311, 1765, 1321

Add Security Group Rule VM IDs: 1788, 2537, 1733 VM IDs: 1921, 2139, 1165

Delete Security Group Rule VM IDs: 1921, 2139, 1165 VM IDs: 1788, 2537, 1733

Table 4.5: An excerpt of a verification cache

4.3.4 Proactive Module

The proactive module is mainly responsible for the proactive verification steps including initial-

ization and incremental update of the pre-computed results (including watchlists), and verifica-

tion of watchlists. In the following, we elaborate its different modules.

Initializer. The role of the initializer module is to process the ProSAS inputs, to collect neces-

sary data from different cloud services (e.g., compute, network and storage), and to pre-process

the data in order to initialize the conditions for the verification. More specifically, this module

initializes following tables.

• Event-operation: maps event types to operations in different cloud environment to

easily integrate different cloud implementations.

• Model-event: relates each security property with the elements of the dependency

models and tenant inputs including the types of events.

• Property-WL: stores the specification of the contents in a watchlist for each security

property.

• Property-N-thresholds: maps security properties and their associated thresholds

(denoted as N-th), where thresholds are security-property-specific and inputs from the

administrators. A brief guideline on choosing this threshold is provided in Section 4.6.

• Model-N-property: stores all possible values of N (denoted as N-cp) for each prop-

erty.

75

Furthermore, this module initializes the watchlist content with the current cloud context.

 Property Event Model Type

No anti-spoofing bypass create port 12->15 WE

No anti-spoofing bypass create vm 16->17 WE

No anti-spoofing bypass update port 15 CE

 Model-event

 Event OP-OpenStack OP-VMWare

create port neutron port-create AddPortGroup

update port neutron port-update UpdatePortGroup

create vm nova boot CreateVM_Task

 Event-operation

 Security Property N-th

 No anti-spoofing bypass 3

Property-N-thresholds

 Property Path N

No bypass 3 4

No bypass 3-12 3

No bypass 3-12-15 2

No bypass 3-12-15-17 1

Initialized Watchlist

Model-N-Property

No bypass

Port-ID

788

1187

 ...

Dependency model

3

13 12 18

17 14 15

16

Figure 4.6: The output of the initializer module for the no bypass property.

Example 10 Figure 4.6 shows the outcome of the initializer module for the no bypass prop-

erty. The Event-operation table shows that the create port event corresponds to the

neutron port-create operation in OpenStack. The Model-event table stores that the

create port event is the watchlist event (WE) for the no bypass property and situates at

the edge between nodes 12 and 15 in the dependency model. Also, the critical event update

port for the property with its position (i.e., the node 15) in the dependency model is stored

in this table. Other events of type TE, such as create network and create subnet,

are not shown in the figure. The minimal distance from the critical event at which our so-

lution should react is (N-th = 3), as shown in the Property-N-thresholds table. The

Model-N-property table stores all possible computed values of N taking into account the

security property and the dependency model. Finally, the watchlist is initialized for the no

bypass property based on data collected from the cloud. For each tenant, the watchlist is pop-

ulated with the list of virtual ports that are not attached to a VM as in the Property-WL

table.

Pre-Computation Manager. This module is in charge of pre-computing N, which consists

in traversing the dependency graph for each security property from the edge corresponding to

its critical event backward until reaching the root node of the graph, finding out all dependent

76

events and entities and storing pre-computed values of N for each possible configuration in

the Model-N-property table. A configuration is an abstract state that allows to determine,

whether the entities that the security properties depend on, actually exist. The minimal distance

to the critical event from the root node is the total number of events that the critical event

depends on. This distance represents N-max, the maximal value of N from which we can apply

our proactive approach for this property. The minimum value of N is 1 and it corresponds to the

configuration where the next event to be observed is possibly the critical event.

Example 11 For the no bypass property, the Model-N-property table stores five entries

that cover all possible values of N and the associated configuration (see Fig. 4.7). For instance,

if only a tenant already exists (vertex 3) without yet any network, subnet, ports, and VMs, we

need to observe at least five events before being able to intercept the critical event update

port. If we observe an event for the creation of network within this tenant (i.e., edge (3,12))

without yet any subnet, ports, and VMs, the minimal distance to see the update port event

would be N = 4. The event preceding update port is the create VM (i.e., edge (16,17))

event, and the minimal distance is one.

Create Network
N = 5

3

Tenant

18

Router

12

Network

13

Security

Group

Tenant-

Virtual

Infrastructure

17

VM

Create port
N = 3

Create Subnet
N = 4

Create VM
N = 1

14

Subent

15

Port

16
SPP

Attach Port
Subnet
N = 2

Update Port
N = 0

Figure 4.7: A part of the cloud infrastructure dependency model annotated with all possible

values of N that is relevant to the no bypass property.

77

N-Step Evaluator. The N-step evaluator evaluates at runtime the value of N-cp, which is

the estimated minimal distance from the current event to a violation, whenever the intercepted

event type is a non-critical event (i.e., WE or TE) concerning a given security property. To this

end, the related contextual data (e.g., corresponding tenant, network, subnet, etc.) is gathered

from the cloud to determine the path to be selected from the Model-N-property table.

Thus, we can measure the distance (i.e., N-cp) considering the current context. When the N-

cp becomes equal to the threshold value (N-th), ProSAS starts being proactive and updates

the pre-computation results corresponding to the security property with the current state of the

cloud. Afterwards (i.e., N-cp < N-th), whenever a WE event type is encountered, some pre-

computation (e.g., updating watchlist using the values of the parameters of the intercepted event

instance) is incrementally performed to ensure that the pre-computation result is up-to-date.

Proactive Verifier. The verifier is designed in a way so that by leveraging the pre-computed re-

sults it can perform the verification fast and provides the verification result in a practical time, as

ProSAS halts the requested critical event. The verification of ProSAS mainly involves search-

ing a set of values (e.g., values of the event parameters) in the corresponding watchlist. The

verification decision is either to allow the operation to continue or apply the planned enforce-

ment approach as specified by the administrator. The possible enforcement could be denying

the request or requiring an approval from the admin to execute the event.

Example 12 Figure 4.8 illustrates the runtime workflow for the no bypass property assuming

that a tenant, a network and a subnet already exist. To rectify the situation described in the

running example, our solution incrementally builds a watchlist with ports that are not attached

to VMs, and verifies the update port operation with this watchlist. Firstly, we intercept the

create port ID 1187 operation, identifies the event type (which is WE), and measure

the value of N (= 3), respectively, from the Model-event and Property-N-threshold

tables. Since the create port event is a WE event for the no bypass property and evaluating

N results in N-cp = N-th = 3, we add port ID 1187 to the watchlist without blocking it.

Secondly, we intercept create VM ID 127 attached to port ID 1187 operation

and measure N similarly. Then, port ID 1187 is removed from the watchlist, as it is now

78

Operation

interceptor and

matcher

Run-time

Management

op.

Cloud

Event-operation query

Model-event query

N-step

evaluator

Compliance

violation

detector
Update

Whitelist

Property-N-theshold query

Model-N-property query

Whitelist

 db

(N-cp = N-th)

or

(N-cp<N-th and

ev.type=WE)

trueEv.type =

CE?

false

true

false
Decision: allow/deny

Contextual data
allow

No anti-spoofing bypass

Port-ID

2134

1209

1187

1187

Operation sequence:

Create port (1187,network:rout) [WE]

Create vm (…,port1187) [WE]

Update port (1187,network:dhcp) [CE]

Compliance verifier checks:

Is port1187 in the whitelist?

Figure 4.8: An excerpt of runtime verification of the no bypass property.

attached to VM ID 127. Finally, after intercepting the update port(port ID 1187,

deviceOwner, network) operation and measuring N, we identify that this is a CE event.

Therefore, we verify with the watchlist with blocking the operation, find that port ID 1187

is not in the watchlist, and hence, ProSAS recommends denial of this operation to preserve the

no bypass property.

4.3.5 Feedback Manager

The feedback manager is an interactive process in ProSAS to improve the list of critical events

progressively over time; which mainly follows four major steps.

Step 1: The first step is to run a retroactive auditing tool (e.g., [70, 73]), periodically. Note that

these retroactive auditing tools are state-based, and therefore, do not rely on a list of critical

events. A violation detected at this step means that the corresponding critical event to the

violation is not yet included to ProSAS.

Step 2: The next step is to collect data from a specific service(s) based on the detected violation

of a security property in Step 1. During this step, ProSAS collects event logs from the specific

cloud service(s) (e.g., network, compute and storage).

79

Step 3: The third step is to filter out irrelevant events from the collected logs to prepare a

shortlist of candidate critical events for the violation detected in Step 1. This step first keeps only

those events that occurred between last two verifications in Step 1, because the critical event

must have occurred within this period. Furthermore, the irrelevant events such as generated by

interfaces and not by cloud users are also eliminated from the logs. Thus, we prepare a shortlist

for the next step.

Step 4: The final step is to identify the responsible critical event for the violation. This final

step involves an expert, who identifies the critical event that violates a security property from

the short list of Step 3 based on his/her discretion.

Cloud
(t2-t1)

Auditing ToolConfig.

Violation at t2

Filtering

Expert

Identifying

Crtical Event

Auditing

Shortlist of Candidates

Collecting

Configurations
Collecting Logs

Step 1

Step 2

Step 3
Step 4

Figure 4.9: The steps of the feedback manager module

Example 13 Figure 4.9 depicts the steps of our feedback manager. First, ProSAS periodically

collects cloud snapshots (e.g., at time t1 and t2), and verifies the no bypass property using one

of our retroactive auditing tools (e.g., [70, 73]). At time t1, there is no violation of the property,

however, at time t2, our retroactive auditing tool finds a violation. Second, the feedback manager

collects logs from the network service of the cloud for the period of t1 − t2; as we are sure that

the critical event that caused this violation happens within this period. Third, ProSAS filters out

all events with the GET requests, because these events are interface generated to show lists of

80

different resources on the interface. Finally, ProSAS presents a shortlist of events to an expert,

who finally identifies update port as the responsible critical event for the violation of the

no bypass property.

4.4 Implementation

This section describes how we integrate ProSAS into OpenStack.

4.4.1 Architecture

Figure 4.10 shows a high-level architecture of ProSAS. ProSAS consists of four major compo-

nents: dashboard & reporting engine, interceptor, verification engine and pre-computation en-

gine. The dashboard & reporting engine provides an interface to ProSAS users. The main users

of ProSAS are cloud tenants, who provide customized security properties and other ProSAS

configurations (e.g., a list of critical events and watchlist attributes) through the dashboard.

ProSAS maintains a repository to provide auditing reports to its users. The ProSAS interceptor

is placed within the cloud as a middleware, in between the cloud dashboard or command line

ProSAS Inputs (tenant-specific security properties, critical events and

watchlist contents) and Audit Requests

Cloud Infrastructure

System

(e.g., OpenStack)

Horizon/CLI

Audit Reports

Tenant

OpenStack Middleware

ProSAS Interceptor

Dashboard & Reporting Engine

Dashboard Reporting Engine
Verification

Result Repository

Verification Module

Cache Queue Cloud

Context WatchlistModel

N-Step Evaluator Proactive VerifierEvent Manager

Events

Decision

Pre-Computation Module

OpenStack

DB
Manager FeedbackIntializer

Formal

Tool

Watchlist1
Watchlist2

WatchlistN

+ Add

- Remove

Data Center Infrastructure

(switches, compute nodes,

middleboxes,…)

OpenStack
Watchlist1
Watchlist2

WatchlistN

ProSAS

Figure 4.10: A high-level architecture of ProSAS

81

interface and different services (e.g., Nova, Neutron, Swift, etc. in OpenStack). This module

intercepts all tenant initiated events and forwards them to ProSAS for a runtime verification,

and enforces the verification results (e.g., allow or deny). In the verification engine, the caching

manager contains caches and event queue, N-step evaluator measures N for each critical event

from the intercepted event using cloud context, which is actually populated from the current

cloud configurations (e.g., OpenStack database), and the proactive verifier queries watchlist

databases to verify the parameters of the intercepted events. The pre-computation engine first

initializes all watchlist databases for different databases storing the cloud configurations (e.g.,

OpenStack databases), then incrementally updates those watchlists based on the parameters

of intercepted events, and also progressively learns new critical events by executing a formal

verification tool (e.g., Sugar [106]) on cloud configurations (e.g., OpenStack databases).

4.4.2 Integration into OpenStack

Background. OpenStack [89] is an open-source cloud infrastructure management platform

that is being used almost in half of private clouds and significant portions of the public clouds

(see [21] for detailed statistics). Keystone [89] is the OpenStack identity service for authenti-

cation and authorization. Keystone implements the RBAC model [100]. Neutron [89] provides

tenants with capabilities to build networking topologies through the exposed APIs. Nova [89] is

the OpenStack project designed to provide on-demand access to compute resources, and relies

on VMs.

Interceptor Middleware. The interceptor module, which is implemented in Python, intercepts

operations based on the existing intercepting methods (e.g., audit middleware [90]) supported

in OpenStack. We intercept event instances requested to the Nova service as they are passed

through Nova pipeline, having the ProSAS middleware inserted in the pipeline. The body

of requests, contained in the wsgi.input attribute of the intercepted requests, is scrutinized to

identify the type of requested events. Also, we map all operations in OpenStack API [91]

corresponding to the events that are relevant to the monitored security properties. Finally, the

interceptor determines the criticality of the current event, and forwards the intercepted event

82

details (e.g., type and parameters) to the caching manager.

Caching Manager. The caching manager, which is mainly implemented in Python, consults

any of the pre-computation and verification caches. We implement two types of caching mech-

anisms: least recent update (LRU) and most recent update (MRU). Both cache memories are

implemented as hash maps, and the management of caches is maintained using doubly linked

list. Hash map maintains records of data in form of key value pairs in which data is stored in

value, and key is the hash value. If it is a hit in the cache, then we either perform the veri-

fication based on the cache entry or at least obtain information about the pre-computation to

skip the N-step evaluator, and directly conduct the pre-computation (if necessary). To handle

the concurrent events, we leverage the Python library EventQueue1 so that events are handled

sequentially (in case). Algorithm 2 shows the steps of the caching manager.

Algorithm 2 Event Manager

procedure BUILDCACHE(cache-type, event, cache-algo)

if cache(cache-type) is full then

removeCache(cache-type, cache-algo)

updateCache(cache-type, event)

procedure SEARCHCACHE(cache-type, event)

if cache-type is “verification” then

if event.type in cache & event.params in recently added then

return “allow”

else if event.type in cache & event.params in recently removed then

return “deny”

else

proactiveVerify(event, Properties)

else if cache-type is “precompute” then

if event.type in cache & N-cp > N-th then

return

else if event.type in cache & N-cp <= N-th then

perform actions mentioned in cache

else

Pre-Compute-Update(WL, Properties, event.params)

Proactive Verification Engine. Our pre-computation is mainly implemented in Python, and

our pre-computed results and tenant-specific watchlists are in a MySQL database, which al-

lows us to efficiently query OpenStack cloud data. The initializer module first populates all

1https://m7i.org/tutorials/python-event-queue-concurrency-modeling/

83

watchlist tables from Neutron, Nova and Keystone databases; this step allows to capture the

initial configurations into the watchlists. Our Python scripts derive the association between the

model provided in Fig. 4.3 and the security properties, and populate our database by adding the

dependency information and the values of the pre-computed N. After one-time initialization,

ProSAS incrementally updates these watchlists through the pre-computation manager, which is

triggered by the runtime modules, such as N-step evaluator and inserts/deletes watchlist con-

tents based on the parameters of the intercepted event. Algorithm 2 further explains the steps

during the pre-computation phase.

The N-step evaluator is implemented as MySQL stored procedures to measure the distances

from each critical event. Based on the outcome of both the caching manager and N-step evalua-

tor modules, any of the following is performed: i) the pre-computation manager is triggered to

update the watchlists, or ii) the proactive verifier searches the current values of the parameter(s)

in the corresponding watchlist, and accordingly takes a decision (e.g., allow or deny) through

the interceptor. Algorithm 3 further details the steps of the verification engine.

Feedback Engine. The feedback manager periodically invokes the formal verification tool

(e.g., [70, 73]) to verify OpenStack configurations for the requested security properties. When-

ever, the verification tool finds any violation, the feedback manager collects event logs from

the corresponding OpenStack service (e.g., Neutron, Nova and Swift). Finally, the feedback

engine filters out all system-initiated events (i.e., GET requests) and identify event type of other

requests (i.e., PUT, POST and DELETE) based on its request body. Algorithm 4 shows the

steps of the feedback engine.

Dashboard & Reporting Engine. We further implement the web interface (i.e., dashboard)

in PHP to place audit requests and view audit reports. In the dashboard, tenant admins can

initially select different standards (e.g., ISO 27017, CCM V3.0.1, NIST 800-53, etc.). After-

wards, security properties under the selected standards can be chosen. Additionally, admins

can select any of the following verification options: i) proactive verification ii) runtime ver-

ification, or iii) retroactive verification. Apart from the proactive enforcement of compliance

through the interceptor, the reporting engine of ProSAS provides a detailed report on recent

84

Algorithm 3 Proactive Verification

1: procedure INITIALIZE(DependencyModels, SecPropertyNth, CloudOS)

2: Events=GetEvents(DependencyModels)

3: Mapping=ReadEventOperationMapping(Events, CloudOS)

4: for each event e ∈ Events do

5: Populate Event-operation

6: for each property p ∈ SecPropertyNth do

7: Populate Property-N-thresholds

8: for each property p ∈ SecPropertyNth do

9: criticalRelation = getCriticalEdge(p, DependencyModels)

10: Allpaths = ComputeN-allpaths(DependencyModels, criticalRelation)

11: for each path in Allpaths.paths do

12: Populate Model-N-property

13: Edges = getEdges(DependencyModels)

14: for each ed ∈ Edges do

15: (event, model, type) =ReadAtributes(ed, DependencyModels)

16: Populate Model-event from DependencyModels

17: procedure PRE-COMPUTE-INITIALIZE(CloudOS, Property-WL)

18: for each property pi ∈ Properties do

19: WLi= initializeWatchlist(pi, Property-WL, CloudOS)

20: procedure PRE-COMPUTE-UPDATE(W L, property, parameters)

21: updateWatchlist(WL, property, parameters)

22: procedure EVALUATENSTEP(Event e, Property p, Params opparams)

23: Find N-th for p from Property-N-thresholds

24: Find entities in the model related to p

25: context = CollectCloudData(entities)

26: Find N-cp for p and context from Model-N-property

27: if N-cp=N-th then

28: updateWatchlist(p, opparams)

29: else if N-cp < N-th and e.type=WE then

30: updateWatchlist(p, opparams)

31: procedure PROACTIVEVERIFY(Event, Properties)

32: for each property pi ∈ Properties do

33: if Event.parameters in pi.watchlist then

34: Allow Event in the cloud

35: else

36: Deny Event in the cloud

85

Algorithm 4 Feedback Engine

procedure FEEDBACK(Properties, interval)

collectData(CloudOS)

while true do

for each property pi ∈ Properties do

results= verifyOffline(CloudOS, pi)

if results= “Violated” then

deltaLog= collectLogs(CloudOS, (currentTime-interval), pi)

Feedbacki= filterLogs(deltaLog)

consultExpert(Feedbacki)

Wait(interval)

intercepted events. Also, ProSAS dashboard provides a near real-time monitoring interface

showing most recent user-initiated events and their corresponding verification decisions taken

by ProSAS. Moreover, our reporting engine archives all the verification reports for a certain

period. Figures 4.11 and 4.12 show screenshots of the ProSAS dashboard.

4.5 Experimental Results

In this section, we first describe the experiment settings, and then present ProSAS experimental

results with both synthetic and real data.

4.5.1 Experiment Settings

Our conducted experiments on ProSAS involve datasets collected from both our testbed and the

real cloud. In the following, we describe both environmental settings.

Testbed Cloud Settings. Our testbed cloud OpenStack version is Mitaka with Keystone API

version v3 and Neutron API version v2. There are one controller node and 80 compute nodes,

each having Intel i7 dual core CPU and 2GB memory running Ubuntu 16.04 server. Based

on a recent survey [92] on OpenStack, we simulated an environment with maximum 100,000

users, 10,000 tenants, 500 domains, 100,000 VMs, 40,000 subnets, 20,000 routers and 100,000

ports. We conduct the experiments for 10 different datasets varying the most important factors

and fixing others to the largest values, e.g., for the no bypass property, both the number of

ports (from 10,000 to 100,000 with the gap of 10,000) and the number of tenants (from 1,000

86

Figure 4.11: Screenshots of the ProSAS monitoring dashboard.

8
7

Figure 4.12: Screenshots of the ProSAS audit report dashboard.

8
8

to 10,000 with the gap of 1,000) are varied, as the watchlist related to our example security

property contains a list of ports belonging to different tenants. For the common ownership1

property, the number of tenants is varied from 1,000 to 10,000 with the gap of 1,000 having five

roles in each tenant. We repeat each experiment 100 times.

Real Cloud Settings. We further test ProSAS using data collected from a real community

cloud hosted at one of the largest telecommunications vendors. To this end, we analyze the

management logs (size more than 1.6 GB text-based logs) and extract 128,264 relevant log

entries for the period of more than 500 days. As Ceilometer is not configured in this cloud, we

utilize Nova and Neutron logs that increases the log processing efforts.

4.5.2 Experimental Results with Testbed Clouds

The objective of the first set of experiments is to measure the effect of the ProSAS caching

system. Figures 4.13, 4.14 and 4.15 show the hit ratio (i.e., number of hits
total number of tries

) and the effects of

our caching system applying two different caching mechanisms, i.e., least recent update (LRU)

and most recent update (MRU), by varying the size of the cache. Figure 4.13 illustrates the hit

ratio for both LRU and MRU caches while increasing the size of the cache. Expectedly, the hit

ratio increases with the size of the cache and reaches up to 0.93 for the 45,000 cache entries.

Figure 4.14 shows the average response time (in nanoseconds) required when there is a hit (i.e.,

intercepted event is found in the cache). In such cases, ProSAS responds in maximum 4,000

nanoseconds for the smallest cache size. Even though the response time for the MRU cache

drops significantly for two cache sizes (10K and 25K), otherwise the response time for both

cache types remains quite similar. Figure 4.15 illustrates the delay (in nanoseconds) incurred to

ProSAS due to a miss (i.e., intercepted event type is not present in the cache). The delay remains

quite similar over the different cache sizes, and the maximum delay is 2,000 nanoseconds for

the largest cache size. As similar as in Figure 4.14, the cache with 25K entries results the lowest

delay.

The second set of experiments is to compare the time required to process a user request

1This property allows users to hold only the roles that are defined within their domains [53, 18].

89

0 10K 20K 30K 45k

Cache Size

0

0.5

1

H
it

 R
at

io

LRU MRU

Figure 4.13: Evaluation of caching: hit ratio (number of hits
total number of tries

) for both least recently used

(LRU) and most recently used (MRU) caches. In all cases, we vary cache size (in number of

entries) from 1,000 to 45,000, and verify the no bypass security property.

0 10K 20K 30K 45K

Cache Size

0

1,000

2,000

T
im

e
(n

s)

LRU MRU

Figure 4.14: Evaluation of caching: average response time (in nanoseconds) by ProSAS when

the intercepted event is found in the cache for both LRU and MRU caches. In all cases, we

vary cache size (in number of entries) from 1,000 to 45,000, and verify the no bypass security

property.

90

0 10K 20K 30K 45K

Cache Size

0

1,000

2,000

T
im

e
(n

s)

LRU MRU

Figure 4.15: Evaluation of caching: delay (in nanoseconds) caused by a miss for both LRU and

MRU caches. In all cases, we vary cache size (in number of entries) from 1,000 to 45,000, and

verify the no bypass security property.

0

0.5

1

CVM DVM SVM StVM ASG DSG

Event Type

0

5

10

15

T
im

e
(s

)

OpenStack Processing Time Our Auditing Time

Figure 4.16: Time (in seconds) required to process different requests by OpenStack and

ProSAS.

individually by OpenStack and ProSAS. Figure 4.16 shows the time (in seconds) to process

different event types by OpenStack and ProSAS. Note that the processing time measured for

OpenStack remains unaffected with or without ProSAS. The obtained results show that Open-

Stack requires seven to ten seconds to process the considered event types. In contrast, ProSAS

takes maximum 0.0082 second to process the delete security group rule event type. We observe

two major findings from this set of experiments. Firstly, Figure 4.16 shows that ProSAS causes

a negligible delay in comparison to the response time of OpenStack. Secondly, the period when

OpenStack processes a request may be utilized to handle single-step violation without resulting

a significant delay; which is considered as a potential future work.

91

0 50 100

of days

0

2

4

C
o

v
er

ag
e

G
ai

n

Common Ownership No Bypass

Figure 4.17: The coverage gain (measured in terms of number of new violations detected) by

ProSAS feedback module over 100 days with the 10,000 tenants for the common ownership

and no bypass security properties.

0 5,000 10,000
of tenants

4

6

8

T
im

e
(s

)

Common Ownership No Bypass

Figure 4.18: Time (in seconds) required to prepare feedbacks to improve the list of critical

events while varying the number of events for the common ownership and no bypass security

properties.

The objective of the third set of the experiments is to measure the coverage gain and time

requirement of our feedback manager. Figure 4.17 shows the number of new violations ProSAS

catches over 100 days after introducing the feedback manager in it for both common ownership

and no bypass security properties. During the first two months, we observe the highest gain. In

the last 20 days, there is no new security violation. Figure 4.18 measures the time (in seconds)

to prepare the feedback for the common ownership and no bypass security properties while

varying the number of tenants up to 10,000. Note that the reported time only includes the time

to perform automatic steps (e.g., executing verification tool and filtering logs). The feedback

92

preparation for the common ownership and no bypass properties takes maximum 5.55 seconds

and 7.88 seconds, respectively, for our largest dataset.

The fourth set of experiments is to demonstrate the time efficiency of our proactive verifica-

tion steps. Intercepting operations to identify the type of operation, which is the minimum time

we need to block for all operations (CE and WE, and all others), is taking constant time (0.266

ms) (INT in Fig. 4.19). Moreover, calculating N-step (NSE in Fig. 4.19) completes in constant

time (i.e., 0.133 ms) for the no bypass (NB) property, and in quasi constant time (varying from

0.773 ms to 0.794 ms) for the common ownership (CO) property. The violation detector blocks

only critical operations for a maximum extra delay of 8.2 ms (VD in Fig. 4.20) for the largest

dataset. Fig. 4.21 shows that pre-computing the watchlists for both no bypass and common own-

ership properties take 5,000 ms and 5,400 ms, respectively, for our largest dataset. As expected,

the watchlist pre-computation step, which involves access to the cloud databases, requires com-

paratively longer time. However, this step is performed only during the initialization phase. Any

later update of the watchlist is performed incrementally, and takes few milliseconds. Fig. 4.21

depicts the execution time for the largest dataset (10,000 tenants and 100,000 ports), and shows

that preparing watchlist is comparatively time consuming and beneficial to perform proactively,

as we spend about 5,400 ms in preparing watchlist during initialization. On the other hand, the

subsequent enforcement takes only eight milliseconds per critical operation call at runtime.

In the fifth part of the experiments, we measure the memory cost for the watchlists. Fig. 4.22

depicts that the memory requirement increases quasilinearly with the dataset size. We are able

to restrict the watchlist size in few MBs by choosing the content of the watchlist carefully.

Therefore, we show that our approach improves the execution time without excessive memory

costs. We store role names and corresponding tenants for the common ownership property, and

only port IDs for the no bypass property.

Finally, Tables 4.6 and 4.7 compare the execution time of ProSAS and our alternative imple-

mentation of intercept-and-check, in which after detecting a critical event we collect data from

the cloud and start verifying security properties using a SAT solver (e.g., Sugar [106]). We

observe that verifying with the intercept-and-check approach including data collection takes 15

93

0 2,000 4,000 6,000 8,000 10,000

of tenants

0

0.5

1

1.5

2

T
im

e
(m

s)

CO-INT CO-NSE NB-INT NB-NSE

Figure 4.19: Time duration (in ms) for different modules (INT: Interceptor and NSE: N-step

evaluator) of ProSAS for the common ownership (CO) and no bypass (NB) security properties

by varying the number of tenants. The number of ports is also varied from 10,000 to 100,000,

and each tenant contains five roles. Time required for the steps: intercepting operations and

evaluating N-step.

Number of Ports 10,000 20,000 30,000 40,000 50,000

Intercept-and-check 60,200 107,209 184,230 237,245 317,252

ProSAS 5.928 6.09 6.916 7.016 7.496

Table 4.6: Comparing execution time (in ms) between ProSAS and our alternative implemen-

tation of intercept-and-check for the common ownership and no bypass security properties for

the first set of dataset.

seconds (for common ownership) to 8 minutes (for no bypass) for our largest dataset. There-

fore, each critical operation would experience long response time. In contrast, LeaPS experi-

ences maximum response time of 8.5 ms. Our solution only permits allowed actions, hence any

further accuracy evaluation is irrelevant.

Number of Ports 60,000 70,000 80,000 90,000 100,000

Intercept-and-check 357,261 407,268 437,271 455,276 480,277

ProSAS 7.815 8.024 8.14 8.453 8.501

Table 4.7: Comparing execution time (in ms) between ProSAS and our alternative implemen-

tation of intercept-and-check for the common ownership and no bypass security properties for

the second set of dataset.

94

0 5,000 10,000

of tenants

5

6

7

8

9

T
im

e
(m

s)

CO-VD NB-VD

Figure 4.20: Time duration (in ms) for the Violation detector (VD) of ProSAS for the common

ownership (CO) and no bypass (NB) security properties by varying the number of tenants. The

number of ports is also varied from 10,000 to 100,000, and each tenant contains five roles. Time

required for detecting violations.

Properties Hit Ratio Pre-Compute Feedback Verification (W) Verification (C) Delay

No bypass 0.71 2500ms 5270ms 6.2ms 1250ns 890ns

Common

ownership

0.721 1700ms 3150ms 5.5ms 1000ns 810ns

Table 4.8: Summary of the experimental results with real data. The reported delay is the addi-

tional time required in LeaPS verification for a miss in the cache. Note that Verification (W)

and Verification (C) indicate the time required for verification through watchlist and verification

through cache, respectively.

4.5.3 Experimental Results with Real Clouds

Table 4.8 summarizes the obtained results for the real cloud dataset, which logs of total 5,279

event instances for the period of 506 days. For all experiments with real data, the cache size

remains 25K, and we utilize the MRU caching technique. In these experiments, we measure

the time for different steps of ProSAS and the hit ratio of the cache. Note that the obtained

results are shorter due to the smaller size of the community cloud compared to our much larger

simulated environment.

4.6 Discussions

In this section, we discuss different aspects of ProSAS.

95

0 5,000 10,000

of tenants

2,000

4,000

6,000

T
im

e
(m

s)

Common Ownership No Bypass

Figure 4.21: (a) Time required (in ms) for preparing watchlist for different properties varying

the number of tenants at the initialization step. The number of ports is also varied from 10,000

to 100,000 , and each tenant contains five roles.

Effects of Change in Cloud Design. As our experiment results shown in Section 4.5, ProSAS

can verify security properties for large size cloud in only few seconds at runtime. There could

be certain cases where the pre-computed information used at runtime needs to be updated. For

instance, when a change in the cloud dependency or in the cloud management API specifications

occurs, or when extending verification to new security properties, the ProSAS initialization must

be repeated. Even though the initialization can take several minutes, this task can be executed

in parallel with run time verification and the pre-computed information updated instantly to

minimize the impact on verifications at runtime. Note that there are few cases where the pre-

computation needs to be repeated and those cases regarding management API changes in the

cloud are by nature not frequent.

Supporting Operational Properties. In this work, we cover structural properties involving

cloud management operations (e.g., creating a tenant, granting a role, assigning instances to

physical hosts and configuring virtualization mechanisms). The properties involving session/-

context specific data are not yet considered. In our running example, if the malicious tenant can

somehow successfully bypass the firewall rules and launch a spoofing attack, our solution can-

not yet detect such spoofing attacks. As our solution relies on the information reported through

the management interface, any verification by extracting the information from the actual infras-

tructure components (e.g., virtual or hardware) is not covered in this work and considered as a

96

0 2,000 4,000 6,000 8,000 10,000

of tenants

0

2

4

S
iz

e
(M

B
)

Common Ownership No Bypass

Figure 4.22: Time required (in ms) for preparing watchlist for different properties varying the

number of tenants at the initialization step. The number of ports is also varied from 10,000 to

100,000 , and each tenant contains five roles.

Cloud Platform Interception Support

OpenStack WSGI Middleware [113]

Amazon EC2-VPC AWS Lambda Function [5]

Google GCP GCP Metrics [38]

Microsoft Azure Azure Event Grid [77]

Table 4.9: Interception supports in major cloud platforms

potential future work.

Adapting to Other Cloud Platforms. ProSAS is designed to work with most popular cloud

platforms (e.g., OpenStack [89], Amazon EC2 [5], Google GCP [38] and Microsoft Azure [77])

with a one-time effort for implementing a platform-specific interface. More specifically, ProSAS

interacts with the cloud platform (e.g., while collecting logs and intercepting runtime events)

through two modules: log processor and interceptor. These two modules require to interpret im-

plementation specific event instances and intercept runtime events. First, to interpret platform-

specific event instances to generic event types, we currently maintain a mapping of the APIs

from different platforms. Table 4.10 enlists some examples of such mappings. Second, the in-

terception mechanism may require to be implemented for each cloud platform. In OpenStack,

we leverage WSGI middleware to intercept and enforce the proactive auditing results so that

compliance can be preserved. Through our preliminary study, we identified that almost all

major platforms provide an option to intercept cloud events. In Amazon using AWS Lambda

97

ProSAS Event

Type

OpenStack [89] Amazon EC2-

VPC [5]

Google GCP

[38]

Microsoft Azure

[77]

create VM POST /servers aws opsworks

-region

create-instance

gcloud

compute

instances

create

az vm create

l

delete VM DELETE /servers aws opsworks

-region

delete-instance

-instance-id

gcloud

compute

instances

delete

az vm delete

update VM PUT /servers aws opsworks

-region

update-instance

-instance-id

gcloud

compute

instances

add-tags

az vm update

create security

group

POST

/v2.0/security-

groups

aws ec2

create-security

-group

N/A az network

nsg create

delete security

group

DELETE

/v2.0/security-

groups/{security_

group_id}

aws ec2

delete-security

-group

-group-name

N/A az network

nsg delete

Table 4.10: Mapping event APIs from different cloud platforms to ProSAS event types.

functions, developers can write their own code to intercept and monitor events. Google GCP

introduces GCP Metrics to configure charting or alerting different critical situations. Our un-

derstanding is that ProSAS can be integrated to GCP as one of the metrics similarly as the

dos_intercept_count metric, which intends to prevent DoS attacks. The Azure Event Grid is an

event managing service from Azure to monitor and control event routing which is quite similar

as our interception mechanism. Therefore, we believe that ProSAS can be an extension of the

Azure Event Grid to proactively audit cloud events. Table 4.9 summarizes the interception sup-

port in these cloud platforms. The rest modules of ProSAS deal with the platform-independent

data, and hence, the next steps in ProSAS are platform-agnostic.

Dealing with One-Step Security Breaches. The proactive auditing mechanisms fundamentally

leverage the dependency in a sequence of events. In other words, proactive security auditing

is mainly to detect those violations which involve multiple steps. However, there might be

violations of the considered security properties with a single step. Such violations cannot be

detected by the traditional steps of proactive auditing with the same response time as reported

in Figure 4.20, and may be detected by performing all steps at a single point in several seconds

(e.g., around six seconds for a decent-sized cloud with 10,000 tenants as shown in Figure 4.21);

98

which is still faster than any other existing works (which respond in minutes). However, this

response time might not be very practical. To reduce the response time or at least not to cause

any significant delay, we perform a preliminary study as follows. Our initial results conducted

in the testbed cloud show that OpenStack takes more than six seconds to perform almost all user

requests; which implies the possibility of not resulting in any additional delay by ProSAS even

for a single-step violation. Additionally, during our case studies, we observed that OpenStack

performs several internal tasks to complete a user request. We may leverage this sequence of

system events corresponding to a single user request to proactively perform ProSAS steps. We

elaborate those two ways of tackling single-step violations in our future work.

Choosing the Value of N−th. As described in Section 5.5, ProSAS schedules the pre-computaiton

based on a threshold value (N−th), and the distance (N−cp) from the current intercepted event

to a critical event. The ProSAS users (e.g., tenants) choose the value of N − th. The possible

values of N − th are in the range of {Nmax:1}, where Nmax is the longest possible distance be-

tween two events in the dependency model. Within this range, choosing a larger value may

allow ProSAS more time to perform the pre-computation. However, at the same time it might

not be much effective, as it requires more watchlist updates over the time. On the other hand,

choosing a smaller N− th may allow a precise watchlist content. However, in that case, ProSAS

may not get enough time to perform necessary pre-computation steps before the critical event

occurs.

4.7 Related Work

In this section, we first compare existing solutions with ProSAS, and then discuss several cate-

gories of related works.

4.7.1 Comparison between Related Works

Table 5.13 summarizes the comparison between existing works and ProSAS. The first and sec-

ond columns enlist existing works and their verification methods. The next two columns com-

pare the coverage such as supported environment (cloud or non-cloud) and cloud layers (virtual

99

Proposals Methods
Coverage Features Supporting Platforms

Environment Cloud Layer P
ro

ac
ti

v
e

E
n

fo
rc

iv
e

C
ac

h
in

g

Q
u

eu
in

g

E
x

p
re

ss
iv

e

S
el

f-
R

el
ia

n
t

O
p

en
S

ta
ck

A
zu

re

V
M

w
ar

e

A
d

ap
ta

b
le

Doelitzscher et al. [25] Custom Algorithm Cloud Virtual Infr. - - N/A N/A - • • - - •
Ullah et al. [108] Custom Algorithm Cloud Virtual Infr. - - N/A N/A - • • - - -

Majumdar et al. [73] CSP Solver Cloud User-level - - N/A N/A • • • - - -

Madi et al. [70] CSP Solver Cloud Virtual Infr. - - N/A N/A • • • - - -

Majumdar et al. [74] CSP Solver Cloud User-level - • - - • • • - - -

Ligatti et al. [66] Model Checking Non-Cloud N/A • • - - • • N/A N/A N/A N/A

PVSC [71] Custom Algorithm Cloud Both • • - - - - • - - -

LeaPS [72] Custom + Bayesian Cloud Both • • - - - - • - - •
Weatherman [16] Graph-theoretic Cloud Virtual Infr. • - N/A N/A - - - - • -

Congress [88] Datalog Cloud Both • - N/A N/A • - • - - -

Patron [69] Custom Algorithm Cloud User-level - • • - • • • - - -

ProSAS Custom Algorithm Cloud Both • • • • - ◦ • - - •

Table 4.11: Comparing existing solutions with LeaPS. The symbols (•), (◦)a, (-) and N/A mean fully supported, partially supported, not supported

and not applicable, respectively.

aThis symbol is used when a work supports a feature partially, but less then other works supporting the same feature fully.

1
0

0

infrastructure and/or user-level). We mark ‘both’, if a work supports both virtual infrastructure

and user-level cloud layers. The next six columns compare these works according to differ-

ent features. The proactive feature is checked when a solution supports proactive verification.

When a solution enforces the verification results to the cloud at runtime, we check the enforcive

feature. The caching feature is checked, when a work optimizes its verification computation

by storing previous results. The queuing feature refers to handling concurrent events for an

enforcive solution. We mark both caching and queuing features as ‘N/A’ for the works that do

not support the enforcive feature. The expressive feature is checked for the works, which utilize

well-known expressive policy languages (e.g., first order logic) to express security properties.

By the self-reliant feature, we mean the works which only depend on the user-provided security

properties for the accuracy of the verification. In the last four columns of the table, we compare

the works based on their supporting cloud platforms. The adaptable field is checked for those

works which support multiple cloud platforms or describe how their works can be ported to

other platforms.

In summary, ProSAS mainly differs from the state-of-the-art works as follows. Firstly,

ProSAS is the first proactive auditing approach, which captures dependencies among cloud

events. Secondly, ProSAS is the only proactive auditing solution, which supports caching

of recent verification computations and results to more efficiently (e.g., in nanoseconds) au-

dit clouds. Thirdly, unlike other proactive solutions, ProSAS can handle concurrent events by

maintaining an event queue. Fourthly, even though ProSAS is not as self reliant as most retroac-

tive approaches (e.g., [25, 108, 73]), ProSAS improves the current state-of-the-art for proactive

solutions by adding a feedback loop to progressively reduce the reliance on a list of critical

events. Finally, the ProSAS methodology is cloud-platform agnostic. However, there are still

few limitations in ProSAS. ProSAS is less expressive than other general purpose formal verifi-

cation approaches. ProSAS partially relies on an initial list of critical events provided by tenant

admins or security experts. In the following, we discuss existing works from several related

categories.

101

4.7.2 Cloud Security Auditing

The existing solutions in cloud security auditing can be categorized into three major approaches:

retroactive, intercept-and-check, and proactive. We discuss related works under these categories

as follows.

Retroactive Auditing Approach. Auditing security compliance in the cloud has recently been

explored. For instance, Solonas et al. [104] detect illegal activities in the cloud only based on

collected billing data in order to preserve privacy. In [73, 70], formal auditing approaches are

proposed for security compliance checking in the cloud. Unlike our work, those approaches can

detect violations only after they occur, which may expose the system to high risks.

VeriFlow [61] and NetPlumber [59] monitor network events and check network properties

and policies at runtime to capture bugs before or as soon as they occur. They rely on incremental

calculations to achieve the runtime verification. These works focus on operational network

properties (e.g., black holes and forwarding loops) in traditional networks, whereas our effort is

oriented toward preserving compliance with structural security properties that impact isolation

in cloud virtualized infrastructures.

Various mechanisms and concepts for designing security service-level-agreement-based

cloud monitoring services have been discussed in [96]. CloudSec [50] and CloudMonatt [116]

propose VM security monitoring. In contrast, our work covers a larger spectrum of properties

(beyond the scope of VMs) that require collecting data from various sources. In addition, un-

like intercepting security measurements, we intercept multiple kinds of events and assess their

impact on the cloud system before applying them. In [93], a host-based secure active monitor-

ing mechanism, where protected hooks into untrusted VMs are installed to intercept malicious

events, is proposed. Once a malicious action is intercepted, the control is transferred to se-

curity tools running on a trusted VM. They detect unwanted operations initiated by malicious

softwares; whereas, our contribution is at a higher level covering events initiated by potentially

untrusted users.

Intercept-and-Check Approach. Existing intercept-and-check approaches (e.g., [16, 88]) per-

form major verification tasks while holding the event instances blocked, and usually cause

102

significant delay to a user request. There are several other works (e.g., [61, 59]) monitoring

network events and checking network policies at runtime. Weatherman [16] and OpenStack

Congress [88] offer security verification of virtual infrastructure using the intercept-and-check

approach. These works focus on operational network properties (e.g., black holes and forward-

ing loops) in traditional networks, whereas our effort is oriented toward preserving compli-

ance with structural security properties that impact isolation in cloud virtualized infrastructures.

Cloud monitoring services based on security service-level agreements are discussed in [96].

Proactive Auditing Approach. Weatherman [16] is the most closely related work to ours.

Aiming at mitigating misconfigurations and enforcing security policies in a virtualized infras-

tructure, Weatherman has both online and offline approaches. Their online approach intercepts

management operations for analysis, and relays them to the management hosts, only if Weath-

erman confirms no security violation caused by those operations. Otherwise, they are rejected

with an error signal to the requester. The work defines a realization model, that captures the

virtualized infrastructure configuration and topology in a graph-based model. The latter is syn-

chronized with the actual infrastructure using the approach in [14]. Two major limitations of

this proposition are: i) the model capturing the whole infrastructure causes a scalability issue

for the solution, and ii) the time consuming operation-checking that should be performed on the

emergence of each event, makes security enforcement not feasible for large size data centers.

Our work overcomes these limitations by proposing a proactive auditing approach by leveraging

the dependency relationships among cloud events.

Congress [88] is an OpenStack project offering both online and offline policy enforcement

approaches. The offline approach requires submitting a future change plan to Congress, so that

the changes can be simulated and the impacts of those changes can be verified against specific

properties. In the online approach, Congress first applies the operation to the cloud, then checks

its impacts. In case of a violation, the operation is reverted. However, the time elapsed before

reverting the operation can be critical to perform some illicit actions, for instance, transferring

sensitive files before loosing the assigned role. Foley et al. [31] provide an algebra to assess the

effect of security policies replacement and composition in OpenStack. Their solution can be

considered as a proactive approach for checking operational properties violations, whereas our

103

work targets the runtime verification of structural security property violations.

4.7.3 Other Proactive Security Approaches

Proactive security analysis has been explored for software security enforcement through moni-

toring programs’ behaviors and taking specific actions (e.g., warning) in case security policies

are violated. Many state-based formal models are proposed for those program monitors over

the last two decades. First, Schneider [103] models program monitors using an infinite-state-

automata model to enforce safety properties. Those automata recognize invalid behaviors and

halt the target application before the violation occurs. Ligatti et al. [65] build on Schneider’s

model and defines a more general program monitors model based on the so called edit/security

automata. Rather than just recognizing executions, edit automata-based monitors are able to

suppress bad and/or insert new actions, transforming hence invalid executions into valid ones.

Mandatory Result Automata (MRA) is another model proposed by Ligatti et al. [66, 26] that

can transform both actions and results. Narain [80] proactively generates correct network con-

figurations using the model finder Alloy. Our work further expands the proactive monitoring

approach into cloud environments differing in scope and approach.

4.8 Conclusion

The continuous auditing with scalability and practical response time is important to both cloud

providers and their tenants. In this work, we proposed a proactive security auditing system,

namely, ProSAS, which significantly reduces the response time and enforces the auditing re-

sults on the cloud before any violation can take effect. More specifically, ProSAS first built a

dependency model of the relationships between cloud events so that the auditing process can be

launched proactively by leveraging this model. Second, we intercepted each runtime event in-

stances and built the watchlists for each security property incrementally. Third, when a critical

event occurs, we performed a light-weight verification by simply checking the intercepted event

parameters with the watchlists to decide whether to allow or deny the critical event. Fourth,

ProSAS stored the recent results in the cache from the verification and pre-computation steps

104

to further improve the response time on average. Finally, we prepared a feedback to progres-

sively improve the list of critical events, which directly impacts the accuracy of our solution,

by using a state-based verification tool. We integrated ProSAS to OpenStack, one of the most

popular cloud management platforms, and provided guidelines to port it to other cloud plat-

forms. Furthermore, we evaluated the efficiency and accuracy of our method, and showed that

the response time is reduced to a practical level (e.g., 1,041 nanoseconds and 8.2 milliseconds

to audit 10,000 tenants with and without caching, respectively), and the accuracy is improved

(19 new violations detected).

However, there exist several limitations in ProSAS, which we consider as future works.

First, the current method of improving the critical events involves manual inspection, which

could be error-prone. We intend to automate this step by using machine learning techniques to

build a comprehensive critical event list. Second, single-step violations are not yet efficiently

handled in ProSAS. An efficient runtime approach might help to address this concern. Third,

concurrent critical management operations may affect the performance of ProSAS. A parallel

or distributed approach might reduce the effect of this situation.

105

Chapter 5

Learning Probabilistic Dependencies

among Events for Proactive Security

Auditing in Clouds

5.1 Introduction

Security threats such as isolation breach in multi-tenant clouds cause persistent fear among ten-

ants while adopting clouds [98]. To this end, security auditing in clouds can possibly ensure the

accountability and transparency of a cloud provider to its tenants. However, the traditional ap-

proach of auditing, a.k.a. retroactive auditing, becomes ineffective with the unique nature (e.g.,

dynamics and elasticity) of clouds, which means the configurations of a cloud is frequently

changed and hence, invalidates the auditing results. To address this limitation and offer contin-

uous auditing, the intercept-and-check approach verifies each cloud event at runtime. However,

the sheer size of the cloud (e.g., 1,000 tenants and 100,000 users in a decent-sized cloud [92]),

can usually render the intercept-and-check approach expensive and non-scalable (e.g., over four

minutes for a mid-sized cloud [16]). Since the number of critical events (i.e., events that may

potentially breach security properties) to verify usually grows with the number of security prop-

erties supported by an auditing system, auditing larger clouds could incur prohibitive costs.

106

To this end, the proactive approach (e.g., [71]) is a promising solution and specifically de-

signed to ensure a practical response time. Such an approach prepares for critical events in

advance based on the so-called dependency models that indicate which events lead to the criti-

cal events [117, 71]. However, a key limitation of existing proactive approaches (including our

previous work [71]) is that their dependency models are typically established through manual

efforts based on expert knowledge or user experiences, which can be error-prone and tedious

especially for large clouds. Moreover, existing dependency models are typically static in nature

in the sense that the captured dependencies do not reflect runtime patterns. A possible solution

is to automatically learn probabilistic dependencies from the historical data (e.g., cloud logs).

However, the log formats in current cloud platforms (especially, in OpenStack [89], which is

one of the most popular cloud management platforms) are unstructured and not ready to be fed

into different learning tools. Furthermore, due to the diverse formats of logs in different versions

of the cloud platform, the log processing task becomes more difficult. Therefore, to enable log

analysis (e.g., learning dependency models for proactive auditing), the need of a log processing

approach addressing different real-world challenges (which are discussed in Section 5.3.2) and

preparing raw logs for different learning tools is evident.

To address those limitations, our key idea is to design a log processor, which prepares the

inputs for different learning techniques, to learn probabilistic (instead of deterministic) depen-

dencies, and to automatically extract such a model from processed logs. Specifically, we first

conduct case studies on cloud log formats in different OpenStack deployments including a real

community cloud, and enumerate all challenges related to raw log processing to automate differ-

ent learning mechanisms. Second, we design a log processor that addresses all challenges iden-

tified in our investigation, and provides inputs for different learning techniques (e.g., Bayesian

network and sequence pattern mining). Third, we propose a new approach to automatically gen-

erate the probabilistic dependency models from the processed logs. Fourth, we provide detailed

methodology and algorithms for our learning-based proactive security auditing system, namely,

LeaPS, including the log processor, learning component and proactive verification component.

We describe our implementation of the proposed system based on OpenStack [89], and demon-

strate how the system may be ported to other cloud platforms (e.g., Amazon EC2 [5] and Google

107

GCP [38]). Finally, we evaluate our solution through extensive experiments with both synthetic

and real data. The results confirm our solution can achieve practical response time (e.g., 6ms to

audit a cloud of 100,000 VMs) and significant improvement over existing proactive approaches

(e.g., about 50% faster), and our log processor can be adopted by different learning techniques

efficiently (e.g., only 18ms to execute different sequence pattern mining algorithms for 50,000

events).

In summary, our main contributions are threefold.

• To the best of our knowledge, this is the first approach for processing OpenStack logs

for identifying event sequences to learn dependencies. First, our study investigates cloud

logs from both real and testbed clouds, and enumerates all challenges in log processing.

Second, our log processing technique addresses these challenges, and supports different

learning techniques (e.g., Bayesian network and sequence pattern mining).

• We propose an automated learning-based proactive auditing system, namely, LeaPS,

which automatically learns probabilistic dependencies using the proposed log processor

to allow handling the uncertainty that is inherent to runtime events, and hence, addresses

the major limitations of existing proactive solutions. As demonstrated by our imple-

mentation and experimental results, LeaPS provides an automated, efficient, and scalable

solution for different cloud platforms to increase their transparency and accountability to

tenants.

• Unlike most learning-based security solutions, since we are not relying on learning tech-

niques to detect abnormal behaviors, we avoid the well-known limitations of high false

positive rates; any inaccuracy in the learning phase would only affect the efficiency, as

will be demonstrated through experiments later in this chapter. We believe this idea of

leveraging learning for efficiency, instead of security, may be adapted to benefit other

security solutions.

108

5.2 LeaPS Overview

In this section, we present a motivating example, describe the threat model, and provide an

overview of our proposed solution.

5.2.1 Motivating Example

The upper part of Figure 5.1 depicts several sequences of events in a cloud (from Session N

to Session N +M). The critical events, which can potentially breach some security properties,

are shown shaded (e.g., E2, E5 and E7). The lower part of the figure illustrates two different

auditing approaches of such events. We discuss their limitations below to motivate our solution.

P1E1 E2Session N

Session N+1

Session N+2

…

Session N+M

Runtime

Verification

Critical

Events

Background

Pre-

computation

Proactive Solutions:
Foreground

Proactive

Verification

Traditional Runtime

Verification:

S

S

S

Existing Solutions

Manually identifying static

patterns based on cloud design

Sessions Events
Security

Properties

E2

E4 E5

E6 E7

LeaPS+

Automatically learning the

probabilistic dependencies

aPaPS+

E1

E3

E3

P2

P3

P4

Figure 5.1: Identifying the main limitations of both traditional runtime verification and existing

proactive solutions, and positioning our solution.

• With a traditional runtime verification approach, most of the verification effort (depicted

as boxes filled with vertical lines) is performed after the occurrence of the critical events,

while holding the related operations blocked until a decision is made; consequently, such

solutions may cause significant delays to operations.

109

• In contrast, a proactive solution will pre-compute most of the expensive verification tasks

well ahead of the critical events in order to minimize the response time. However, this

means such a solution would need to first identify patterns of event dependencies, e.g.,

E1 may lead to a critical event (E2), such that it may pre-compute as soon as E1 happens.

• Manually identifying patterns of event dependencies for a large cloud is likely expensive

and non-scalable. Indeed, a typical cloud platform allows more than 400 types of oper-

ations [89], which implies 160,000 potential dependency relationship pairs may need to

be examined by human experts.

• Furthermore, this only covers the static dependency relationships implied by the cloud

design, whereas runtime patterns, e.g., those caused by business routines and user habits,

cannot be captured in this way.

• Another critical limitation is that existing dependency models are deterministic in the

sense that every event can only lead to a unique subsequent event. Therefore, the case

demonstrated in the last two sessions (N+2, N+M) where the same event (E3) may lead

to several others (E4 or E6) will not be captured by such models.

5.2.2 Threat Model

We assume that the cloud infrastructure management systems i) may have implementation

flaws, misconfigurations and vulnerabilities that can be potentially exploited to violate security

properties specified by the cloud tenants, and ii) may be trusted for the integrity of the API calls,

event notifications, logs and database records (existing techniques on trusted computing may be

applied to establish a chain of trust from TPM chips embedded inside the cloud hardware,

e.g., [10, 64]). Though our framework may assist to avoid any violation of specified security

properties due to either misconfigurations or exploits of vulnerabilities, our focus is not to detect

specific attacks or intrusions. We focus on attacks directed through the cloud management

interfaces (e.g., CLI, GUI), and any violation bypassing such interfaces is beyond the scope

of this work. We assume a comprehensive list of critical events are provided upon which the

110

accuracy of our auditing solution depends (however, we provide a guideline on identifying

critical events in Section 5.8). Our proactive solution mainly targets certain security properties

which would require a sequence of operations. To make our discussions more concrete, the

following shows an example of in-scope threats based on a real vulnerability.

VMA1 VMA2 VMA3 VMA3 VMB1 VMB2 VMB3 VMB3

VMB1: 1.10.0.7 Tenant BVMA1: 1.10.1.117 Tenant A

SGA1 SGA2 SGA3 SGA4 SGB1 SGB2 SGB3 SGB4

Virtual SwitchVirtual Switch

Security Group A1
Allow src 1.10.0.7

(requested to be deleted)

Allow src 10.0.0.12

 …..

Security Group B1

Allow src 1.10.1.117

Allow src 19.0.0.30

 …..

Virtual network 101
Virtual network 103
Virtual network 207
Virtual network 205

Figure 5.2: An exploit of a vulnerability in OpenStack [87], leading to bypassing the security

group mechanism.

Running Example. A real world vulnerability in OpenStack1, CVE-2015-7713 [87], can be

exploited to bypass security group rules (which are fine-grained, distributed security mecha-

nisms in several cloud platforms including Amazon EC2, Microsoft Azure and OpenStack to

ensure isolation between instances). Figure 5.2 shows a potential deployment configuration

which might be exploited using this vulnerability. The pre-requisite steps of this scenario are to

create VMA1 and VMB1 (step 1), create security groups A1 and B1 with two rules (i.e., allow

1.10.0.7 and allow 1.10.1.117) (step 2), and start those VMs (step 3). Next, when Tenant A

tries to delete one of the security rules (e.g., allow 1.10.0.7) (step 4), the rule is not removed

from the security group of the active VMA1 due to the afore-mentioned vulnerability. As a

result, VMB1 is still able to reach VMA1 even though Tenant A intends to filter out that traffic.

According to the vulnerability description, the security group bypass violation occurs only if

this specific sequence of event instances (steps 1-4) happens in the mentioned order (namely,

event sequence). In the next section, we present an overview of our approach and show how

we automatically capture probabilistic dependencies among cloud events for proactive security

1OpenStack [89] is a popular open-source cloud infrastructure management platform.

111

auditing.

5.2.3 Approach Overview

In the following, we briefly describe our learning-based proactive auditing techniques used by

LeaPS.

• First, it parses raw cloud logs into a structured format after marking each field of log

entries so that log processing in the next step can be efficient.

• Next, it processes these parsed logs to interpret event types, aggregate log entries from

different services (e.g., compute and network), and prepare inputs (as event sequences)

for learning techniques.

• Then, it learns probabilistic dependencies between different event types captured as a

Bayesian network from sequences of events processed from different cloud logs.

• Afterwards, based on the decreasing order of critical events’ conditional probabilities

in these dependency models, LeaPS incrementally prepares the ground for the runtime

verification.

• Finally, once one of these critical events is about to occur, we simply verify the parameters

associated with its event instance with respect to the pre-computed conditions of that

event, and enforce the security policy according to the verification result.

Figure 5.3 shows an overview of LeaPS. It consists of three major modules: log processor,

learning system and proactive verification system. The log processor is related to processing

the unstructured and incomplete raw log files, which will be detailed in Section 5.3.1, and pre-

pares the data to be used by the learning system. Our log processor consists of four major

parts. The parser is responsible to identify fields for each log entries and parse them into a

structured format. The filter extracts the relevant log entries and groups them based on tenant

IDs. The interpreter is to mark event types for each log entry. Finally, the sequence identifier is

responsible to extract the sequence out of those log entries and prepare inputs for various learn-

ing techniques. The learning system is dedicated for learning probabilistic dependencies for

112

Learning SystemLog

Processor Learning

Engine

Proactive Verification System

Pre-Computation

Manager

Proactive Verifier

LeaPS
+

Dependency Model

Events

Decision/Feedback

Tenant

Cloud

Security Properties

& Critical Events

Activity
Logs

P1 P2

P3 P4
P5

Dependency Model
Parser

Filter

Interpreter

Sequence

Identifier

Figure 5.3: An overview of LeaPS log processing, learning and auditing mechanisms.

the model. The proactive verification system consists of two major parts. The pre-computation

manager prepares the ground for the runtime verification. At runtime, a light-weight verification

tool (e.g., proactive verifier [71]), which basically executes queries in the pre-computed results,

is leveraged for the verification purpose. Based on the verification result, LeaPS provides a

decision on the intercepted critical event instance.

5.3 Case Studies and Log Processing

In this section, we detail our approach for processing unstructured raw cloud logs and present

the challenges and lessons learned from the analysis of the formats of real world cloud logs in

OpenStack [89].

5.3.1 Case Studies on Real-World Cloud Logs

As a first step, we conducted an investigation on how the executed operations at the cloud

management level are logged in OpenStack [89], one of the major cloud management systems

in today’s cloud environments. To this end, we used two different OpenStack deployments;

a real-life community cloud hosted at a real data center of a large telecommunication vendor

and a cloud testbed managed within our institution. All sensitive information in the logs is

113

anonymized based on the data owner’s policies.

User ID

Same log entries can be mapped

to different event types

Tenant ID

Request ID

Process ID

Create port event

Timestamp

ID of the

deleted resource

Hashed IP addresss

Figure 5.4: Identification of useful information in one of the logs collected from the real cloud.

Background on OpenStack Logging. Logging systems can provide an essential resource for

both troubleshooting and behavior analysis of the underlying clouds. To this end, tracing back

log entries to identify the root cause of a problem and subsequent actions, respectively, are

natural solutions which motivate the processing of logs. Furthermore, the high complexity and

ever-growing nature of cloud environments further increase the need for processing logs in a

cloud. To this end, OpenStack [89] logs different user and system actions performed within the

cloud. The most commonly used log format in OpenStack services starts with the timestamp,

process ID, log level, the program generating the log, an ID, followed by a message field,

which might be divisible into smaller informative segments such as request method and URL

Path. Furthermore, different OpenStack services write their log files to their corresponding

subdirectory of the /var/log directory in the node they are installed in. For example, the log

location of Nova is /var/log/nova. Figure 5.4 depicts an excerpt of the logs collected from a real

cloud highlighting the useful information stored in these logs.

Investigated Factors. In the following, we describe different factors in the logs that are relevant

to automate the learning of dependency models in LeaPS.

i) Layouts. The first factor that we investigated is the general layout of logs. While com-

paring the layouts of the logs, we found that there are different attributes in each log entry,

and those attributes vary based on the version and the logging service of OpenStack. This

114

was exasperated by the lack of detailed documentation describing the meaning of these

attributes. Through our study, we identified 11 fields that are used in OpenStack log-

ging: timestamp, process-ID, log-type, method, request-ID, user-ID,

tenant-ID, IP address, API URL, HTTP response and request-length.

Apart from common layout issues, we also observed discrepancies in layouts of the logs

collected from the two different cloud deployments as both environments were managed

by different versions of OpenStack1. The following example depicts the latter observa-

tion.

Figure 5.5: Excerpts of unique fields and entries found only in either studied version of Open-

Stack in (a) real cloud or (b) testbed cloud.

Figure 5.5 shows three examples of fields that are only present in one of the studied

versions2 of OpenStack: i) The logs from the real cloud does not have any user IDs;

instead they store none; ii) the real cloud logs have entries starting with OPTIONS; and

iii) the testbed log entries contain user-ID and tenant ID.

ii) Log Entries. After identifying these differences in the layout, we scrutinize each log en-

try to enable the understanding of the meaning of these entries and their related attributes.

We observe that OpenStack logs a wide-range of system-initiated events related to the

coordination between different cloud services (e.g., compute, network and storage). Such

events are usually logged with a special tenant ID (tenant-service). The first row of

Table 5.1 shows an example of such a log entry, where the ID of the tenant-service

1We avoid disclosing the exact version details for the sake of security
2Despite that the studied versions are directly consecutive, there are multiple differences in the logging system

115

is dsfre23de8111214321def6e1e834re31. Moreover, there are requests to list

resources or their corresponding details, which are made with GET in their method

field. For instance, the second row of Table 5.1 shows a logged event for the tenant ID

(77c433dsf43123edcc12349d9c16fcec) to render the Flavors (the component

to show different resource consumptions by a VM). Both resource rendering and system-

initiated logged events has no effect on changing cloud configurations, and therefore,

these events are not useful for the auditing purpose.

Additionally, we notice that user-generated requests made under different tenants, are

jointly logged into the same log file. Furthermore, their log entries could be distinguished

from each other based on the associated tenant ID field identifying the tenant initiating

the request. Figure 5.6 highlights the different tenant IDs present in some entries within

the log files of both real and testbed clouds.

Figure 5.6: Parts of log entries belonging to different tenants (highlighting corresponding tenant

IDs) in (a) real cloud or (b) testbed cloud.

OpenStack Log Entry

"...POST /v2/dsfre23de8111214321def6e1e834re31/

os-server-external-events HTTP/1.1..."

"...GET /v2/77c433dsf43123edcc12349d9c16fcec/

flavors/detail HTTP/1.1..."

Table 5.1: An excerpt of the log entries corresponding to system initiated events in the real

cloud.

116

iii) Type of Events. In this part of the case studies, we investigate the process of identifying

event types from user-generated requests. Usually, OpenStack user requests are transmit-

ted to the server as REST API calls. Thus, our next step is to obtain the event type from

each log entry. However, relying only on the REST methods (e.g., POST, GET, PUT,

etc.) does not help as it does not uniquely map to a specific event type. Therefore, we

study the API documentation of OpenStack to identify specific path information along

with the REST methods (called URL path) to pinpoint each corresponding event type.

Figure 5.7 shows examples of log entries highlighting URL paths corresponding to differ-

ent event types. The URL paths in the figure actually refer to the event types create VM,

delete VM and create port, respectively. However, there are event types for which we ob-

serve the same URL paths. For instance, Table 5.2 shows three examples of such URL

paths from some log entries in the real cloud. Even though the three rows in the table cor-

respond to three different events, their URL paths look identical except the VM ID field,

which indicates that these are VM related events, but does not help to uniquely identify

the event type. As a result, using only those URL paths to identify their corresponding

event types is insufficient.

Figure 5.7: The format (highlighted URL paths as REST APIs) of OpenStack logs collected

from (a) real cloud and (b) testbed cloud, to show different cloud events (e.g., delete VM and

create VM).

iv) Correlations of Events. Once event types of different log entries are identified, we need

to investigate the relationships between these events and how they correlate. We find out

that multiple log entries in different log files of different services correspond to the same

user request; which implies that to complete certain user-requests, OpenStack internally

117

OpenStack Log Entry Event Name

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/

servers/f6128951-0c48-4a11-8b8b-5e96da77b698/"

Stop VM

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/

servers/1223d052-bc35-485a-9237-1830bca80fd7/"

Start VM

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/

servers/4c886192-43ad-4f98-90dd-34e24c84fcd0/"

Add security

group

Table 5.2: Examples of similar URL paths corresponding to different cloud event types.

calls multiple APIs involving different services, thus generating multiple logged events.

Table 5.3 shows an example, where the actual user request is to create a VM. However,

we observe at least two entries (create VM and create port) in nova-api.log

and neutron-server.log log files, respectively, to complete the related request.

Additionally, we notice that there are log entries in nova-api.log and neutron-server.log

with the same timestamps (2017-11-01 18:17:16.345) corresponding to two

different events (Add security group and Create port). Thus, distinguishing

the right precedence relations between events cannot only rely on logged timestamps.

OpenStack Log Entry Log File

2017-04-09 15:56:14.866 ... "POST

/v2/e04c7abb844a422cbfd892f68b88a14f/servers

HTTP/1.1"...

nova-api.log

2017-04-09 15:56:11.848 ... "POST

/v2.0/ports.json HTTP/1.1"...

neutron-server.log

Table 5.3: Multiple entries in different logs corresponding to the same user request (i.e., create

VM).

v) Session Identification. Finally, we need to split the log files into groups of events mainly

based on the contexts (e.g., same user events) or session. The main intention behind this

step is to prepare inputs for different learning techniques, many of which accept inputs

as a sequence of events. However, in OpenStack logs, we observe that there exists no

session specific information. Moreover, most log entries do not include the requestor ID,

which could have been useful to identify the context.

118

5.3.2 Real-World Challenges to Log Processing

In this section, we summarize the main challenges in processing cloud logs, from the above-

mentioned study.

• Heterogeneous Formats: Our study shows that the cloud logs may have heterogeneous

formats. The log formats vary within the same cloud platforms as well as for different

versions of the management system; which includes varieties of different specifications

(e.g., fields or attributes). In most cases, the logged information (fields) is not explicitly

mentioned in the log file. As a result, it is non-trivial to interpret the log entries. Addi-

tionally, the log entries are not systematically generated. Therefore, processing such logs

efficiently and systematically is challenging. To handle this challenge, we parse logs and

store them in a structured manner by marking each attribute of logs. We will design a

method for parsing in Section 5.3.3.2.

• Ungrouped and Irrelevant Log Entries: Log entries of OpenStack jointly log all ten-

ants’ requests, and contain system initiated entries which are typically irrelevant to the

auditing system. However, to detect / prevent security concerns at the tenant-level, it is

essential to separately analyze the log entries related to each tenant and hence, current log

formats are not appropriate for this purpose. Additionally, cloud generates many inter-

nal events to process a user request and store log entries corresponding to those system-

initiated events in the same log files. As a result, the analyses requiring to distinguish user

actions from system actions can be hampered. This challenge will be tackled by grouping

tenant-specific log entries and eliminating entries related to system-initiated events. More

details are in Section 5.3.3.3.

• Difficulties in the Identification of Event Types: Identifying event types corresponding

to each log entry is non-trivial due to the following reasons. First, while most clouds

support REST APIs to request different operations (e.g., create VM, create port and up-

date port), the event types are not obvious from the API and require to check the whole

URL paths. Second, in some cases, URL paths for different events are the same, and

119

hence, such paths are not sufficient to identify these events uniquely. We call this kind

of events ambiguous event. Ambiguous events will be properly identified by leveraging a

special log option called request body in OpenStack. We detail the solutions to these

challenges in Section 5.3.3.4.

• Distributed Logging for Different Services: Activities in different services (e.g., com-

pute, network and storage) are logged separately. However, for a log analysis, which

involves different services combinedly such as ours, merging logs from these services

is essential, but not trivial. There are certain requests that result in multiple log entries

distributed over different log files by different services. Additionally, due to time syn-

chronization issues between the services, multiple events may be logged with the same

timestamp, which hinders analysis tools to extract the right precedence relationships be-

tween them. However, we noticed that the synchronization issue does not concern events

related to the same tenant but concerns different concurrent tenants behaviors. As we are

tackling tenants separately, this turns out not affecting our analysis. Other challenges in

this finding will be addressed by merging logs from different services and eliminating

duplicate entries corresponding to the same user request. We provide more details of the

solution in Section 5.3.3.5.

• Need for a Sequence Identification Solution: There exists no session specific informa-

tion in the logs. Also, the requester ID for a user request is missing in most log entries.

Therefore, there is a need for a solution to identify sequences of events from these spe-

cific formats of logs fulfilling all the requirements (e.g., preserving transitions and their

relative order) for a specific or a group of analyses purposes. To this end, we have already

requested to the OpenStack community to include requestor ID (at least) within each log

entry to facilitate log analysis. Till then, we propose a custom algorithm to identify se-

quences of events, in which all transitions and their relative orders of the actual log entries

are preserved. More details on this solution are presented in Section 5.3.3.6.

120

5.3.3 Our Solution: LeaPS Log Processing

In this section, we discuss our log processing approach, which addresses all of the above-

mentioned challenges, and provides more structured and meaningful processed logs for different

analyses. A high-level algorithm of our log processor is shown in Algorithm 5.

Algorithm 5 High-Level Algorithm of LeaPS Log Processing

Input: Predefined parsing and matching rules

Output: Sequences of events to different log analysis tools (e.g., LeaPS and sequence pattern

mining)

1: procedure PROCESSLOGS(CloudOS)

2: for each component ∈ CloudOS do

3: Parse the raw logs;

4: Group parsed logs based on tenant IDs;

5: Prune irrelevant log entries (system-initiated and UI rendering);

6: Mark event types based on information in URL path and request body;

7: Combine logs from different services (e.g., compute and network)

8: for each log entry ∈ combinedLogs do

9: Identify Sequences from the combined logs

10: return Sequences

In the following, we briefly describe main steps of the log processing algorithm.

• Line 3: parses raw logs into a structured format. This step extracts identified fields in the

log entries and uses them together with a set of pre-defined rules to parse the raw log into

a structured log (e.g., CSV) file. This allows handling the heterogeneity of log formats.

• Line 4: groups parsed logs based on tenant IDs. The latter, easily identified in the ob-

tained structured log file, allows grouping log entries based on the tenants under which

the events are being logged. This tackles the issue of ungrouped events.

• Line 5: prunes irrelevant log entries. System-initiated log entries can be grouped and

discarded easily based on the system tenant ID (i.e., tenant-service) present in each of the

related log entries. Those related to the UI rendering actions are identified by inspecting

the method used in the URL (e.g., GET) in the entries related to the logged API calls.

• Line 6: identifies the type of events for each log entry. We first identify event types from

the method and path information available from Line 3. However, there are several event

121

types (a.k.a. ambiguous events), which have the same method and path information. To

tackle this, we further check the request body, which contains detailed information for

each log entry, mainly by tuning logging options to include the missing information.

• Line 7: combines logs from different services (e.g., compute and network) based on

different attributes (e.g., tenant id and request id) and timestamps. This step draws the

correlation among events logged in different services so that it can handle the challenges

mentioned in Section 5.3.2.

• Lines 8-10: construct the event sequences based on the occurrences of events in the actual

log fulfilling the requirements mentioned in Section 5.3.2. Our log processor provides

these event sequences as outputs, which can be later used by different analysis methods

(e.g., LeaPS learning system in Section 5.4 and sequence pattern mining algorithms in

Section 5.7.2).

Figure 5.8 illustrates an example of the outputs of each of these steps. In the following, we

first describe the inputs to our log processing and then provide more details on each processing

step.

5.3.3.1 Inputs to LeaPS Log Processing

Apart from raw cloud logs, our log processing algorithm requires two inputs: parsing rules to

handle different log entries into a structured format and matching rules to identify the event

types. Building these inputs is a one-time effort obtained from our investigations in the afore-

mentioned case study.

Building Parsing Rules. To build the parsing rules, we first study different formats of logs and

their corresponding structure. Next, we obtain different fields (e.g., timestamp, process ID and

tenant ID) in the log entries and their relative positions in the logs. Finally, we build rules based

on the fields and their corresponding orders in logs to support the parsing in Section 5.3.3.2.

Building Matching Rules. To identify the matching rules, we study the API documentation of

OpenStack along with the log formats. To build a relationship between those fields in the logs

122

and their corresponding event types. However, there exist several events for which all these

fields are identical and hence, the event types of those events cannot be identified using this

procedure. To tackle this, we leverage the request body, which contains detailed information

for each log entry. Finally, we provide a complete mapping to identify different event types in

Section 5.3.3.4.

5.3.3.2 Parsing Logs

The main purposes of this step are to mark all useful fields of different cloud logs and

store them in a more structured way to enhance log analysis effort in terms of effi-

ciency. We achieve these purposes, by parsing logs based on the pre-defined rules so

that each identified field is marked with a meaningful name, and storing the logs in a

more structured manner (e.g., in CSV) converting from a text-based file. For example,

as shown in Step 1 of Figure 5.8, we collect OpenStack logs from compute and net-

work services. The first log entry 2017-12-03 18:50:03.410 .. [req- -

- -] 10.0.0.101 "POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/

servers/4c886192-43ad-4f98-90dd-34e24c84fcd0/ action HTTP/1.1"

contains the fields timestamp, process ID, request ID, IP address, method,

path info, tenant ID, respectively. The next step is to parse each entry of the logs

based on these fields and their relative positions, and to store them in a table (Parsed Logs in

Figure 5.8).

5.3.3.3 Grouping and Pruning of Parsed Logs

Extracting the contextual information, and separating both system and user initiated activities

from the logs are the main goals of this step. First, we identify different contextual information

such as tenant ID and accessed resource IDs (e.g., port ID, VM ID and subnet ID). Then, we

group log entries based on the tenant ID so that we can obtain tenant specific activities together.

Next, we extract the accessed resource IDs by the activities of all log entries. Finally, we

separate log entries of user initiated activities from that of system initiated activities. Note that,

the tenant ID field of the log entries for system-initiated events contains a special value (i.e.,

123

2017-12-03 18:50:03.410 .. [req- - - -]

10.0.0.101 "POST /v2.1/

a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/

4c886192-43ad-4f98-90dd-34e24c84fcd0/

action HTTP/1.1" ...

2017-11-01 19:14:27.014 30929 ... [req- - - -]

10.0.0.101 "POST /v2.1/

a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/

565f9b28-2665-470d-a440-556a456b9613/

action HTTP/1.1" ...

2017-11-01 19:14:27.154 4811... "GET /v2.0/

security-

. . ..

Raw Logs from Cloud Parsed Logs Grouped and Pruned Logs

1 2

Marked Event Types

3a

Compute Logs

3b

Network Logs

4

5

Output of the Log Processor

Resolved Ambiguous Events

Timestamps

2017-11-01 17:50:03.410

2017-11-01 18:12:27.014

2017-11-01 18:16:28.111

2017-11-01 19:14:27.014

2017-11-01 19:14:27.154

...

2017-02-07 10:23:28.109

Process ID

6027

30929

4811

8374

12304

…

39102

Tenant ID

T-1234

T-4567

T-Service

T-4567

T-Service

…

T-Service

Method

POST

POST

GET

GET

POST

…

GET

Path Info

/v2.1/x..

/v2.1/s..

/v2.1/3..

/v2.1/y..

/v2.1/e...

…

/v2.1/z..

Timestamps

2017-11-01 17:50:03.410

2017-11-01 18:12:27.014

2017-11-01 19:14:27.014

2017-11-01 18:16:28.111

2017-11-01 19:14:27.154

...

2017-02-07 10:23:28.109

Tenant ID

T-1234

T-4567

T-4567

T-Service

T-Service

…

T-Service

Method

POST

POST

GET

GET

POST

…

GET

Type of Events

Create VM

Create Security Group

TBD

TBD

…

TBD

Method

POST

POST

POST

POST

…

POST

Path Info

/v2.1/../servers/...

/v2.1/…/os-security-groups

/v2.1/…/servers/…/action

/v2.1/…/servers/…/action

…

/v2.1/…/servers/…/action

Method

POST

POST

POST

Path Info

/v2.1/…/servers/…/action

/v2.1/…/servers/…/action

/v2.1/…/servers/…/action

Request Body

{“os-stop”:null

{“os-start”:null}

{“addfloatingip”:null}

Type of Events

Stop VM

Start VM

Add floating IP

Type of Events

Create port

Create Security Group

Method

POST

POST

Path Info

/v2.1/../ports

/v2.1/…/os-security-groups

Type of Events

Create VM

Create security group

Start VM

…

Stop VM

Add floating IP

Create Port

Aggregated Logs

Sequeence #

1

2

3

Sequence of Events

[‘Create router’, ‘Update router’, ‘Create network’, ‘Create subnet’, ‘Add interface to router’, ‘Create securi ty group’, ‘stop VM’]

[‘stop VM’, ‘Create VM’, ‘Add security group rule’, ‘Delete VM’]

[‘Delete VM’, ‘Start VM’, ‘Create security group’]/v2.1/…/servers/…/action

Figure 5.8: An excerpt of outputs after each step of our log processor.

1
2

4

tenant-service) in OpenStack. However, there exist exceptions where system initiated events

are stored under an existing tenant. Therefore, we maintain a list of such exceptions and match

them with the log entries while separating user-initiated events.

For instance, the Parsed Logs in Figure 5.8 contain entries from tenants T-1234,

T-4567, T-6789 and T-Service. After Step 2, in the Grouped and Pruned Logs, we

first store all entries from the T-1234 tenant, and then, similarly store entries for T-4567,

T-6789 and T-Service. Afterwards, we identify all log entries with the tenant ID

T-Service and store them separately.

5.3.3.4 Marking Event Types

Marking the corresponding event types using the pre-defined matching rules (as shown) for

each log entry is the main objective of this step. Based on the set of fields used in marking,

there are two categories of event types. For the first category, we use the URL path (which

includes method, resources, etc.). For example, from the Grouped Logs in Figure 5.8, we

identify method, resources, resource ID and action as the potential fields which

together may provide unique information about each event type. Based on this assumption,

we build the matching rules as shown in Table 5.4. The first entry in the table shows that

the fields method: POST and resources: ports indicate the create port event

type. Whereas, to identify the add interface to router event type, we require the

action: add_router_interface field along with the method, resources and

resource ID fields. However, for the last entry in the table, these fields are not sufficient

to obtain the event type, as they have the same values for method, resources, resource

ID and action fields for multiple event types. These event types are considered as the second

category and marked in the following manner.

For the second category of event types, we identify event type of a log entry, we match

the request ID in the log file and request body, and look into the matching rules for that par-

ticular request body. For instance, Table 5.5 shows examples of matching rules between re-

quest body and event types. The first and second rows of the table show that the request body

values {"os-start": null} and {"os-stop": null} ensure that the requested

125

Method Resources Resoruce ID Action Event Type

POST ports NaN NaN Create port

PUT ports port ID NaN Update port

DELETE ports port ID NaN Delete port

PUT routers router ID add_router

_interface

Add interface to

router

PUT routers router ID remove_router

_interface

Remove interface to

router

POST floating-

IPs

NaN NaN Create floating IP

PUT floating-

IPs

VM ID NaN Associate floating IP

POST servers VM ID actions TBD

Table 5.4: An excerpt of the mapping to obtain the event types from URL-method and path_info.

Note that, the term ‘NaN’ is used by OpenStack to indicate the unrepresentable value for the

specific fields, and the term ‘TBD’ is to indicate that the corresponding event type is not con-

clusive based on the identified fields.

Request Body Event Type

req_body: {"os-start": null} Start VM

req_body: {"os-stop": null} Stop VM

req_body: {"addSecurityGroup":

{"name": "essential"}}

Add security group

req_body: {"addFloatingIp": {"name":

"leapsVM"}}

Add floating IP

Table 5.5: Examples of identifying event types from request bodies for the event types as the

last row of Table 5.4.

event types are start VM and stop VM, respectively. The third and fourth rows provide

event types (Add security group and Add floating IP) along with their involved

security group name (essential) and instance name (leapsVM), respectively.

In summary, we utilize the method, resource, resource id, action and request body fields to

mark all event types.

5.3.3.5 Aggregating Logs

Merging logs from different services (e.g., compute, network and storage) is the main goal

of this step. To this end, we first combine multiple log files and sort them based on times-

tamp. Next, we identify entries with the same timestamp (if any), and mark them specially

to later identify that they occurred at the same time in different services (if that helps any log

126

OpenStack Log Entry Event Type Initiated by

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/

servers HTTP/1.1"

Create VM User

"POST /v2.0/ports.json HTTP/1.1" Create

Port

System

Table 5.6: Showing part of multiple log entries in compute and network services referring to

one user request (Create VM).

analysis mechanism). Also, we identify any duplicate entry in different logs (as mentioned

in Section 5.3.1 that the same event might be logged in multiple services), and only keep the

corresponding log to the actual user request.

For example, Stage 5 in Table 5.6 shows two entries each from the compute service (Nova)

and network service (Neutron), respectively. The first row of the table is for the Create VM

event, which is actually initiated by a cloud user. On the other hand, the Create port event

is a system initiated event as a result of the user request. In other words, OpenStack creates a

port by itself while creating a VM.

5.3.3.6 Generating Outputs

Our log processor provides outputs as sequences of events. In this work, we mainly observe

the following three requirements for identifying events sequences. First, we preserve all transi-

tions that are present in the actual logs. Second, we maintain the relative order between events.

Third, in each sequence, we avoid cycles (by starting a new sequence when there is a repe-

tition) to facilitate capturing relationships between events (e.g., dependencies in our model),

flowing from top to bottom. To validate our approach, we use the generated events sequences

to build a Bayesian network and to perform sequence pattern mining in Sections 5.4 and 5.7.2,

respectively.

To generate the final output (i.e., sequences of events), the log processor performs the fol-

lowing steps:

• Read event types sorted by timestamp in the Aggregated Logs, and group event types in a

sequence till any event type is observed for the second time. In other words, a sequence

Seqi contains all event types from Eventm to Eventn−1, where the Eventn (the successor

127

of Eventn−1) has already been observed in the sequence Seqi. Thus, no sequence contains

any repeated event types and hence, we avoid cycles in sequences.

• Start the next sequence from the last element of the previous sequence so that all transi-

tions within the sequences are preserved. In other words, the following sequence, Seqi+1,

starts with the Eventn−1, which is the last event of the Seqi sequence.

Aggregated Log Content

{Create router, Update router, Create network, Create VM,

Add interface to router, Create security group, Start VM,

Create VM, Add security group rule, Delete VM, Create VM, Create

security group, Start VM}

Output

Seq1 = {Create router, Update router, Create network, Create VM,

Add interface to router, Create security group, Start VM}

Seq2 = {Start VM, Create VM, Add security group rule, Delete VM}

Seq3 = {Delete VM, Create VM, Create security group, Start VM}

Table 5.7: An excerpt of outputs from LeaPS log processor.

In summary, our log processing approach addresses all challenges discussed in Section 5.3.2.

As an example, it provides sequences of events as shown in Table 5.7. Later, these sequences

will be utilized by our learning system to learn the dependency model presented in the next

section. The implementation details including the algorithms for our log processing are pre-

sented in Section 5.6.3. Also, the performance evaluation of our log processor is shown in

Section 5.7.2.

5.4 LeaPS Learning System

This section first describes the dependency model and then, presents the steps to learn proba-

bilistic dependencies for this model.

128

5.4.1 The Dependency Model

We first demonstrate our dependency model through an example and then formally define the

model. The model will be the foundation of our proactive auditing solution (detailed in Sec-

tion 5.5).

Figure 5.9 shows an example of a dependency model, where nodes represent different event

types in a cloud and edges represent transitions between event types. For example, nodes,

create VM and create security group, represent the corresponding event types, and the edge

from create VM to create security group indicates the likely order of occurrence of those event

types. The label of this edge, 0.625, means 62.5% of the times an instance of the create VM

event type will be immediately followed by an instance of the create security group event type.

Create

Security

Group

Delete VM Start VM

Stop VM

Delete

Security

Group

Rule

Add

Security

Group

Rule

Create VM

1.0

0.5

0.125
0.625

0.25

0.667

0.333

0.125

0.125 0.25

Critical Event

P

Dependency

Relationship

Event Type

Legend

The probability

of the transition

P

Figure 5.9: An example dependency model represented as a Bayesian network.

Our objective is to automatically construct such a model from logs in clouds. As an example,

the following shows an excerpt of the event types event-type and historical event sequences hist

for four days related to the running example of Section 5.2.2.

129

• event-type = {create VM (CV), create security group (CSG), start VM (SV), delete secu-

rity group rule (DSG)}; and

• hist = {day 1 : CV , CSG, SV ; day 2 : CSG, SV ; day 3 : CSG, DSG; day 4 : CV , DSG},

where the order of event instances in a sequence indicates the actual order of occurrences.

The dependency model shown in Figure 5.9 may be extracted from such data (note above

we only show an excerpt of the data needed to construct the complete model). For instance, in

hist, CV has three immediate successors (i.e., CSG, SV , DSG), and their probabilities can be

calculated as P(CSG|CV) = 0.5, P(SV |CV) = 0.5 and P(DSG|CV) = 0.5.

As demonstrated in the above example, Bayesian network [94] suits our needs for capturing

probabilistic patterns of dependencies between events types. A Bayesian network is a proba-

bilistic graphical model that represents a set of random variables as nodes and their conditional

dependencies in the form of a directed acyclic graph. We choose Bayesian network to rep-

resent our dependency model for the following reasons. Firstly, the event types in cloud and

their precedence dependencies can naturally be represented as nodes (random variables) and

edges (conditional dependencies) of a Bayesian network. Secondly, the need of our approach

for learning the conditional dependencies can be easily implemented as parameter learning in

Bayesian network. For instance, in Figure 5.9, using the Bayes’ theorem we can calculate the

probability for an instance of add security group rule to occur after observing an instance of

create VM to be 0.52. More formally, the following defines our dependency model.

Given a list of event types event-type and the log of historical events hist, the dependency

model is defined as a Bayesian network B = (G,θ), where G is a DAG in which each node

corresponds to an event type in event-type, and each directed edge between two nodes indicates

the first node would immediately precede the other in some event sequences in hist whose

probability is part of the list of parameters, θ .

We say a dependency exists between any two event types if their corresponding nodes are

connected by an edge in the dependency model, and we say they are not dependent, otherwise.

We assume a subset of the leaf nodes in the dependency model is given as critical events that

might breach some given security properties.

130

5.4.2 Learning Engine

The next step is to learn the probabilistic dependency model from the sequences of event in-

stances in the processed logs. To this end, we choose the parameter learning technique in

Bayesian network [79, 44, 94] (this choice has been justified in Section 5.4.1). We now first

demonstrate the learning steps through an example, and then provide further details.

Figure 5.10 shows the dependency model of Figure 5.9 with the outcomes of different learn-

ing steps as the labels of edges. The first learning step is to define the priori, where the nodes

represent the set of event types received as input, and the edges represent possible transitions

from an event type, e.g., from the create VM event to the delete VM, start VM and create secu-

rity group events. Then, P(DV |CV), P(CSG|CV), P(SV |CV) and other conditional probabilities

(between immediately adjacent nodes in the model) are the parameters; all parameters are ini-

tialized with equal probabilities. For instance, we use 0.33 to label each of the three outgoing

edges from the create VM node. The second learning step is to use the historical data to train the

model. For instance, the second values in the labels of the edges of Figure 5.10 are learned from

the processed logs obtained from the log processor. The third values in the labels of Figure 5.10

represent an incremental update of the learned model using the feedback from a sequence of

runtime events.

This learning mechanism mainly takes two inputs: the structure of the model with its pa-

rameters, and the historical data. The structure of the model, meaning the nodes and edges

in a Bayesian network, is first derived from the set of event types received as input. To this

end, we provide a guideline on identifying such a set of event types in Section 5.8. Initially,

the system considers every possible edge between nodes (and eventually deletes the edges with

probability 0), and conditional probabilities between immediately adjacent nodes (measured as

the conditional probability) are chosen as the parameters of the model. We further sparse the

structure into smaller groups based on different security properties (the structure in Figure 5.10

is one of the examples). The processed logs containing sequences of event instances serve as

the input data to the learning engine for learning the parameters. Finally, the parameter learn-

ing in Bayesian network is performed as follows: i) defining a priori (with the structure and

131

Create

Security

Group

Delete VM Start VM

Stop VM

Delete

Security

Group

Rule

Add

Security

Group

Rule

0.33 → 0.125 →0.111

Create VM

0.33 → 0.625 →0.667 0.33 → 0.25 →0.222

0.5 → 0.667 →0.75

0.5 → 0.333 →0.25

0.25 → 0.125 →0.111

0.25 → 0.125

→0.111

0.25 → 05 →0.5550.25 → 0.25

→0.222

1.0

Event Type

Critical

Event

P1 (Priori) → P2 (After

Initial Learning)

→ P3 (After Continuous

Learning)

Dependency

Relationship

Legend

Pi

Figure 5.10: The outcomes of three learning steps for the dependency model.

initialized parameters of the model), ii) training the initial model based on the historical data,

and iii) continuously updating the learned model based on incremental feedbacks.

5.5 LeaPS Proactive Verification System

This section presents our learning-based proactive verification system.

5.5.1 Likelihood Evaluator

The likelihood evaluator is mainly responsible for triggering the pre-computation. To this end,

the evaluator first takes the learned dependency model as input, and derives offline all indirect

dependency relationships for each node. Based on these dependency relationships, the evalua-

tor identifies the event types for which an immediate pre-computation is required. Additionally,

132

at runtime the evaluator matches the intercepted event instance with the event type, and de-

cides whether to trigger a pre-computation or verification request.2 The data manipulated by

the likelihood evaluator based on the dependency model will be described using the following

example.

Pre-compute_Event Properties

 Create VM (CV) No bypass

 Start VM (SV) No bypass

 ……….

Property-PEDependency model

O2

O3 O6

O8 O5 O4

0.125
O1

0.625

0.25

1.0

0.25
0.5

0.125

.125

0.333

 Property Critical Event Threshold

No bypass add SG rule (ASG) 0.5

No bypass delete SG rule (DSG) 0.6

Property-CE-Threshold

 ASG=1 DSG=1 SV=1 CSG=1

CV=1 0.52 0.12 0.68 0.667

Conditional Probability Table

Figure 5.11: An excerpt of the likelihood evaluator steps and their outputs.

Figure 5.11 shows an excerpt of the steps and their outputs in the likelihood evaluator mod-

ule. In this figure, the Property-CE-Threshold table maps the no bypass of security group prop-

erty [18] with its critical events (i.e., add security group rule and delete security group rule) and

corresponding thresholds (i.e., 0.5 and 0.6). Then, from the conditional probability in the model,

the evaluator infers conditional probabilities of all possible successors (both direct and indirect),

and stores them in the Conditional-Probability table. The conditional probability for ASG hav-

ing CV (i.e., P(ASG/CV)) is 0.52 in the Conditional-Probability table in Figure 5.11. Next, this

value is compared with the thresholds of the no bypass property in the Property-CE-threshold

table. As the reported probability is higher, the CV event type is stored in the Property-PE table

so that for the next CV event instance, the evaluator triggers a pre-computation.

5.5.2 Pre-Computing Module

The purpose of the pre-computing module is to prepare the ground for the runtime verification.

In this work, we mainly discuss watchlist-based pre-computation [71]; where watchlist is a list

containing all allowed parameters for different critical events. The specification of contents in

a watchlist is defined by the cloud tenant, and is stored in the Property-WL table. We assume

2This is not to respond to the event as in incident response, but to prepare for the auditing, and the incident

response following an auditing result is out of the scope of this work.

133

that at the time LeaPS is launched, we initialize several tables based on the cloud context and

tenant inputs. For instance, inputs including the list of security properties, their corresponding

critical events, and the specification of contents in watchlists are first stored in the Property-WL

and Property-CE-Threshold tables. The watchlists are also populated from the current cloud

context. We maintain a watchlist for each security property. Afterwards, each time the pre-

computation is triggered by the likelihood evaluator, this module incrementally updates the

watchlist based on the changes applied to the cloud in the meantime. The main functionality of

the pre-computing module is described using the following example.

Updated Watchlist

Pre-Compute_Event Properties

 Create VM (CV) No bypass

 Start VM (SV) No bypass

Property-PE

 Property Watchlist content

No bypass Instances allow SG update

Property-WL

No bypass of

security group

1

3

Instance-ID

1788

2537

1733

 …

1733

Event sequences

1 Create VM (1733)

2 Add security group rule (…, 1733)

3 Start VM (1733)

4 Delete security group rule (…, 1733)

Figure 5.12: Showing steps of the updating watchlist for a sample event sequences.

Left side of Figure 5.12 shows two inputs (Property-WL and Property-PE tables) to the pre-

computing module. We now simulate a sequence of intercepted events (shown in the middle

box of the figure) and depict the evolution of a watchlist for the no bypass property (right side

box of the figure). (1) We intercept the create VM 1733 event instance, identify the event

in the Property-PE table, and add VM 1733 to the watchlist without blocking it. (2) After

intercepting the add security group rule (..., 1733) event instance, we identify that this is a

critical event. Therefore, we verify with the watchlist keeping the operation blocked, find that

VM 1733 is in the watchlist, and hence, we recommend to allow this operation. (3) We intercept

the start VM 1733 operation and identify the event in the Property-PE table. VM 1733 is then

removed from the watchlist, as the VM is active. (4) After intercepting the delete security group

rule (..., 1733) event instance, we identify that this is a critical event. Therefore, we verify with

the watchlist keeping the event instance blocked, find that VM 1733 is not in the watchlist, and

hence, identify the current situation as a violation of the no bypass property.

134

5.5.3 Feedback Module

The main purposes of the feedback module are: i) to provide feedback to the learning engine,

and ii) to provide feedback to the tenant on thresholds for different properties. These purposes

are achieved by three steps: storing verification results in the repository, analyzing the results,

and providing the necessary feedback to corresponding modules.

Firstly, the feedback module stores the verification results in the repository. Additionally,

this module stores the verification result as hit or miss after each critical event, where the hit

means the requested parameter is present in the watchlist (meaning no violation), and the miss

means the requested parameter is not found in the watchlist (meaning a violation). Additionally,

we store the sequence of events for a particular time period (e.g., one day) in a similar format

as the processed log described in the learning module. In the next step, we analyze these results

along with the models to prepare a feedback for different modules. From the sequence of events,

the analyzer identifies whether the pattern is already observed or is a new trend, and accordingly

the updater prepares a feedback for the learning engine either to fine-tune the parameter or to

capture a new trend. From the verification results, the analyzer counts the number of misses for

different properties to provide a feedback to the user on their choice of thresholds (stored in the

Property-CE-Threshold table) for different properties. For more frequently violated properties,

the threshold might be set to a lower probability to trigger the pre-computation earlier.

5.6 Implementation

In this section, we detail the LeaPS implementation and its integration into OpenStack along

with the architecture of LeaPS (Figure 5.13) and a detailed algorithm.

5.6.1 Background

OpenStack [89] is an open-source cloud management platform that is being used almost in

half of private clouds and significant portions of the public clouds (see [92] for detailed statis-

tics). Neutron is its network component, Nova is its compute component, and Ceilometer is its

135

telemetry for receiving event histories from other components. Each component of OpenStack

generates notifications, which are triggered by predefined activities such as VM creation, secu-

rity group addition, and are sent to Ceilometer for monitoring purposes. Ceilometer extracts the

information from the notifications, and transforms them into events.

5.6.2 LeaPS Architecture

Figure 5.13 shows an architecture of LeaPS. It has four main components: log processor, learn-

ing system, verification system and dashboard & reporting engine.

• The first component, namely, the log processor, obtains sequences of events from the re-

trieved raw cloud logs. To this end, the parser module first processes the raw logs to retrieve

identified fields in each log entry and systematically generates structured content stored as

CSV files. Then, the filter module groups the log entries tenant-wise and separates log entries

corresponding to the user initiated events. The interpreter module consults the mapping of

URL paths and request body to identify the corresponding event type of a log entry. The

merger module combines logs from different services (e.g., Neutron and Nova) of Open-

Stack. The sequence builder generates the sequences of events from the logs.

• The second component, namely, the learning system, is responsible for learning the proba-

bilistic dependencies using Bayesian network from the output of the log processing compo-

nent. To this end, the appropriate input formats of the learning engine are obtained from the

log processor. Then, the learning engine, which is a Bayesian network learning tool, learns

the probabilistic dependencies from the sequences of events.

• The third component, namely, the proactive verification system, incrementally prepares for

the verification and verifies the preconditions of the security critical events that are about to

occur. To this end, the likelihood evaluator consists of three modules. The interceptor in-

tercepts runtime event instances, the event matcher obtains the event type of the intercepted

event instances, and the critical event identifier detects the critical events from the intercepted

event type. Triggered by the likelihood evaluator, the pre-computation manager is to initial-

ize (by the initializer) and update (by the updater) watchlists. LeaPS leverages a proactive

136

verification tool [71] to perform the runtime verification utilizing the pre-computed results.

The feedback module is to analyze the previous verification results and to provide feedback

to update the probabilities in the model.

• The fourth component, namely, the dashboard & reporting engine, is to provide an interface

to LeaPS users to interact with the system and to observe different verification results.

In the following, we describe the implementation details of different components of LeaPS.

5.6.3 Log Processor

The log processor first automatically collects logs from different OpenStack components, e.g.,

Nova, Neutron, Ceilometer, etc. We use Logstash [27], a popular open-source data processing

tool, for transforming un-structured and semi-structured logs into CSV format and available

for further processing. To enable Logstash transformation, we use the parsing rules that we

build for OpenStack logs in our case study. Afterwards, we implement filters in Python to

group and eliminate log entries. Then, we build a mapping between URL paths with request

body and event types, and consult this map to identify event type of each log entry. Next, we

merge Neutron and Nova logs based on the timestamps while handling conflicting issues. For

example, while a user requests to create a VM, the event (i.e., create port) happening at Neutron

is done by the tenant-service, and is removed while dividing events into different tenant

groups. Finally, to prepare the logs to be used in the LeaPS learning system and for other log

analysis purposes, we run a custom algorithm, which preserves all transitions in the actual logs,

implemented in Python to identify sequences in combined logs. The processLogs procedure in

Algorithm 6 implements all above-mentioned steps of our log processor.

5.6.4 Learning System

For learning, we leverage SMILE & GeNIe [9], which is a popular tool for modeling and learn-

ing with Bayesian network. SMILE & GeNIe uses the EM algorithm [22, 63] for parameter

learning. The learning module is responsible for preparing inputs to GeNIe, and conducting

the learning process using GeNIe. The sequences obtained from the log processor are further

137

Parser (e.g., Logstash)

Filter (e.g., tenant-wise)

Merger (Nova+Neutron)

Sequence Builder

Log Processor Learning System Proactive Verification System

Learned Model

Security

Properties

Critical

Events

Input Files to

Learning Engine

Sequences

Decision
Nova

Neutron

Keystone

Ceilometer

Tenant Inputs

Watchlist Contents

Admin
Critical Events and Thresholds

Security Properties

Cloud

Verification Tool

(e.g., ProSAS)

Result

Analyzer

Result

Repository

Feedback Module
Pre-Computation

Manager

Likelihood

Evaluator
Learning Engine

(e.g., GeNIe)
Interceptor

Event

matcher

Critical

Event

Identifieer

Watchlist

Initializer

Watchlist

Updater

Triggers

Dashboard & Reporting EngineLeaPS
+

Interpreter (Req_body)

Figure 5.13: An architecture of LeaPS auditing system.

1
3

8

Algorithm 6 Log Processing ()

Input: CloudOS, parsing-rules, matching-rules

Output: sequence[]
1: procedure PROCESSLOGS(CloudOS)

2: for each component ci ∈ CloudOS do

3: rawLogs = collectLog(ci)

4: Fields[] = identifyLogFields(rawLogs, parsing-rules)

5: parsedLogs[ci] = parseLogs(rawLogs, Fields[], parsing-rules)

6: systemEvents[] = identifySystemEvents(CloudOS)

7: prunedLogs[ci] = pruneLogs(parsedLogs[ci], systemEvents[])
8: groupedLogs[ci] = groupLogs(prunedLogs[ci], CloudOS.tenants[])
9: markedEvents[ci] = markEvents(groupedLogs[ci],matching-rules)

10: combinedLogs = combineLogs(markedEvents[])

11: for each log entry entryi ∈ combinedLogs do

12: if entryi is not already in sequence[j] then

13: sequence[j] = sequence[j] + entryi

14: else

15: j++;

16: sequence[j] = sequence[j] + entryi

17: return sequence[]

processed to convert them into the input format (in .dat) of GeNIe. Additionally, the structure

of the Bayesian network and its parameters are provided to GeNIe. Furthermore, we choose

the uniform option, where the assumption is that all parameters in the network form the uni-

form distribution with confidence is equal to one. Finally, GeNIe provides an estimation of the

parameters, which are basically probabilities of different transitions in the dependency model.

Additionally, to execute sequence pattern mining algorithms with log processor outputs, we

leverage SPMF [33], which is a popular open-source data mining library. The Learn procedure

in Algorithm 7 implements the learning steps of LeaPS.

5.6.5 Proactive Verification System

We intercept all requests to the Nova service as they are passed through the Nova pipeline,

having the LeaPS middleware inserted in the pipeline. The body of requests, contained in the

wsgi.input attribute of the intercepted requests, is scrutinized to identify the type of requested

events. Next, the pre-computing module stores the result of inspection in a MySQL database.

The feedback module is implemented in Python. Those modules work together to support the

139

methodology described in Section 5.5, as detailed in Algorithm 7.

Algorithm 7 Learning-Based Proactive Verification ()

Input: CloudOS, Properties, structure, sequence[]
Output: decision

1: procedure LEARN(sequence[], structure, Properties)

2: for each property pi ∈ Properties do

3: learnedParameters = learnModel(structure, sequence[])
4: dependencyModel = buildModel(structure, learnedParameters, pi.critical-events)

return dependencyModels

5: procedure EVALUATE-LIKELIHOOD(CloudOS, Properties, dependencyModels)

6: for each event type ei ∈ CloudOS.event do

7: Conditional-Probability-Table = inferLikelihood(ei, dependencyModels)

8: if checkThreshold(Conditional-Probability-Table,Property-CE-Threshold) then

9: insertProperty-PE(ei,Property-CE-Threshold.property)

10: interceptedEvent = intercept-and-match(CloudOS, Event-Operation)

11: if interceptedEvent ∈ Properties.critical-events then

12: decision = verifyWL(Properties.WL, interceptedEvent.params)

13: return decision

14: else if interceptedEvent ∈ Property-PE then

15: Pre-compute-update(Properties, interceptedEvent.params)

16: procedure PRE-COMPUTE-INITIALIZE(CloudOS, Properties)

17: for each property pi ∈ Properties do

18: WLi= initializeWatchlist(pi.WL, CloudOS)

19: procedure PRE-COMPUTE-UPDATE(Properties, parameters)

20: updateWatchlist(Properties.WL, parameters)

21: procedure FEEDBACK(Result, dependencyModels, Properties)

22: storeResults(Result, dependencyModels)

23: if analyzeSequence(Result.seq) = “new-trend” then

24: updateModel(Result.seq,‘new’)

25: else

26: updateModel(Result.seq,‘old’)

27: for each property pi ∈ Properties do

28: change-in-threshold[i] = analyzeDecision(Result.decision, pi)

5.6.6 Dashboard & Reporting Engine

LeaPS users interact with the system through a dashboard, which is implemented using a web

interface in PHP. Through this dashboard, users can enable proactive auditing so that LeaPS

starts intercepting cloud events and verify them. In the dashboard, tenant admins can initially

140

select security properties from different standards (e.g., ISO 27017, CCM V3.0.1, NIST 800-53,

etc.). Through the monitoring panel, LeaPS continuously updates the summary of the verifica-

tion results. Furthermore, the details of any violation with a list of evidence are also provided.

Moreover, our reporting engine archives all the verification reports for a pre-defined period.

5.7 Experimental Results

In this section, we first describe the experiment settings, and then present LeaPS experimental

results with both synthetic and real data.

5.7.1 Experimental Settings

Both experiments on LeaPS log processor and proactive verification system involve datasets

collected from our testbed and the real cloud. In the following, we describe both environmental

settings.

Testbed Cloud Settings. Our testbed cloud is based on OpenStack version Mitaka. There

are one controller node and up to 80 compute nodes, each having Intel i7 dual core CPU and

2GB memory running Ubuntu 16.04 server. Based on a recent survey [92] on OpenStack, we

simulate an environment with maximum 1,000 tenants and 100,000 VMs. We conduct the

experiment for 10 different datasets varying the number of tenants from 100 to 1,000 while

keeping the number of VMs fixed to 1,000 per tenant. For Bayesian network learning, we use

GeNIe academic version 2.1. For sequential pattern mining, we use SPMF v.2.20. Table 5.8

describes the datasets for experiments on log processing. We repeat each experiment 100 times.

Dataset Nova Neutron

DS1 9,997 7,998

DS2 20,000 15,998

DS3 29,998 23,999

DS4 39,998 32,000

DS5 48,995 40,293

Table 5.8: The number of events in both Neutron and Nova logs for different datasets generated

in our testbed cloud.

141

Real Cloud Settings. We further test LeaPS using data collected from a real community cloud

hosted at one of the largest telecommunication vendors. To this end, we analyze the manage-

ment logs (sized more than 1.6 GB text-based logs) and extract 128,264 relevant log entries for

the period of more than 500 days. As Ceilometer is not configured in this cloud, we utilize Nova

and Neutron logs which increases the log processing efforts significantly.

DS1 DS2 DS3 DS4 DS5

Datasets

0

100

200

300
T

im
e

(s
)

Compute (Nova) Network (Neutron)

Figure 5.14: Time (in Seconds) required for parsing raw logs while varying the number of

events provided in different datasets.

5.7.2 Results on Log Processor

In the following, we present obtained experiment results for our log processor both in testbed

and real clouds.

Experiments with Testbed Cloud. The objective of the first set of the experiments is to mea-

sure the efficiency of our log processor for two different cloud services, e.g., compute (Nova)

and network (Neutron). Figure 5.14 shows the time required (in seconds) to parse logs of differ-

ent datasets. The results show that the parsing is the most time consuming step in log processing,

as this step parses text-based logs and stores them into CSV files. The parsing of our largest

dataset (DS5) requires around 3 minutes and around 2 minutes for Nova and Neutron logs,

respectively. Figure 5.16 shows the time required (in seconds) to group the log entries based

on tenant IDs and to eliminate system-initiated entries (from tenant-service). For the

largest dataset of Nova, the required time remains within 80 milliseconds. Grouping Neutron

142

DS1 DS2 DS3 DS4 DS5

Datasets

0

10

20

T
im

e
(s

)

Compute (Nova) Network (Neutron)

Figure 5.15: Time (in Seconds) required for interpreting event types while varying the number

of events provided in different datasets.

logs, which is comparatively smaller in size, requires maximum 55 milliseconds. Figure 5.15

presents the results (in seconds) to interpret event types of all entries from the grouped logs for

Nova and Neutron. The trend for both services shows almost a linear increase while varying the

number of log entries. Interpreting event types for the largest dataset takes 16.72 seconds and

11.14 seconds for Nova and Neutron, respectively.

The second set of experiments is to measure the efficiency of aggregating logs from different

services and generating outputs by our log processor. Figure 5.17 shows the time in seconds to

aggregate logs from Nova and Neutron, and to generate inputs to the sequence pattern mining

algorithms implemented in the SPMF library [33]. The time to aggregate logs remains within

112 milliseconds for the largest dataset. The time for the input generation remains within two

milliseconds for the largest dataset and shows a linear increase. Figure 5.18 depicts the time re-

quired for the steps, i.e., eliminating and counting repeated entries, identifying sequences as the

outputs of the log processor, performed on the aggregated logs. In both steps, the larger datasets

show less increase in the required time. The time required for identifying sequences remains

within 2.6 seconds, and the eliminating repeated entries step takes maximum 4.2 seconds for

our largest dataset.

Applying Alternative Learning Techniques. To demonstrate the applicability of our log pro-

cessor, we further apply its outputs to run three popular sequence pattern mining (which is a

143

DS1 DS2 DS3 DS4 DS5

Datasets

0

0.1

0.2

T
im

e
(s

)

Compute (Nova) Network (Neutron)

Figure 5.16: Time (in Seconds) required for grouping log entries based on tenant IDs while

varying the number of events provided in different datasets.

DS1 DS2 DS3 DS4 DS5

Datasets

0

0.005

0.01

0.015

T
im

e
(s

)

Aggregating Generating Inputs for SPMF

Figure 5.17: Time required (in seconds) for merging nova_api and neutron_server logs, and

generating inputs for the pattern mining library (SPMF).

data mining approach with broad range of applications) algorithms. Specifically, we first run

the PrefixSpan [95] algorithm, which mines the complete set of patterns. One potential applica-

tion could be to identify structures of dependencies among cloud events using this algorithm to

further enhance the proactive security solutions. Second, we execute the MaxSP [34] algorithm,

which mines maximal sequential patterns. Using this algorithm, we can easily identify the most

common patterns, which potentially can facilitate anomaly-based security solutions. Third, we

run the ClaSP [37] algorithm, which identifies the largest pattern with a minimum frequency.

This algorithm might be useful to identify unique patterns to profile a security violation or a

144

DS1 DS2 DS3 DS4 DS5

Datasets

0

2

4

6

T
im

e
(s

)

Eliminating repeated Entries Generating Log Processor Output

Figure 5.18: Time required (in seconds) for eliminating repeated entries and generating log

processor output.

legitimate use. To this end, we generate inputs to SPMF, which is a sequence pattern mining

tool, and report the input generation time in Figure 5.18. We also report the efficiency results to

run these algorithms with the outputs of our log processor in Figure 5.19. We observe constant

time (one millisecond) while running ClaSP algorithm for different datasets. The MaxSP and

PrefixSpan algorithms take around 18 milliseconds and 6.5 milliseconds, respectively, for our

largest dataset.

Experiments with Real Cloud. The main objective of this part of the experiments is to evaluate

the applicability of our log processor in a real cloud environment. Table 5.9 shows the summary

of the results that we obtain for the real data. Due to the much larger size (e.g., 1.6 GB text-based

logs) of the real-life logs, the parsing time is quite long (4 hours and 40 minutes). However,

once LeaPS is active, it may potentially log intercepted events in an incremented manner to

avoid the delays at the parsing step. After parsing, we eliminate the log entries related to listing

resources and their details, as the corresponding events to these entries are beyond our interest.

The time for the remaining steps is quite similar to what is measured for our testbed cloud

logs with much smaller size of logs. Note that the grouping step is not measured for Neutron,

as the tenant ID is missing in the Neutron logs collected from the real cloud (as discussed in

Section 5.3.1). However, we group them arbitrarily to measure the time for next steps. From the

results of the real data, our observation is that our log processor is scalable once the parsing step

145

DS1 DS2 DS3 DS4 DS5

Datasets

0

10

20

T
im

e
(m

s)

MaxSP PrefixSpan ClaSP

Figure 5.19: Time required (in milliseconds) for running PrefixSpan, MaxSP and ClaSP algo-

rithms in the SPMF library.

is performed; which possibly allows our approach to process huge logs in a reasonable time.

Services # of Log Entries Parsing Grouping Interpretation Merging Generating Sequences

Nova 1,450,011
4h 40m

0.0777s 99.271s
0.02206s 1.4483s

Neutron 3,992,644 - 51.820s

Table 5.9: Summary of the experimental results with real data for Nova and Neutron services.

The parsing, merging and generating sequences steps are performed together for both services.

Note that the grouping step is not measured for Neutron, as the tenant ID is missing in the

Neutron logs collected from the real cloud.

5.7.3 Results on Proactive Verification System

In the following, we discuss the obtained experimental results for our proactive verification

system both in testbed and real clouds.

Experiments with Testbed Cloud. The objective of the first set of experiments with our proac-

tive verification system is to demonstrate the time efficiency. Figure 5.20 shows the time in

milliseconds required by LeaPS to verify the no bypass of security group [18] and no cross-

tenant port [53] properties. Our experiment shows the time for both properties remains almost

the same for different datasets, because most operations during this step are database queries;

SQL queries for our different datasets almost take the same time. Figure 5.21 shows the time

(in seconds) required by GeNIe to learn the model while we vary the number of events from

146

2,000 to 10,000. In Figure 5.22, we measure the time required for different steps of the offline

pre-computing for the no bypass property. The total time (including the time of incrementally

updating WL and updating PE) required for the largest dataset is about eight seconds which jus-

tifies performing the pre-computation proactively. A one-time initialization of pre-computation

is performed in 50 seconds for the largest dataset. Figure 5.23 shows the time in seconds re-

quired to update the model and to update the list of pre-compute events. In total, LeaPS requires

less than 3.5 seconds for this step.

0 5,000 10,000

of Tenants

0

2

4

6

8

T
im

e
(m

s)

No Bypass No Cross-Tenant

Figure 5.20: Showing time required for the online runtime verification by varying the number

of VMs for the no bypass and no cross-tenant properties. The verification time includes the

time to perform interception, matching of event type and checking in the watchlist.

200 400 600 800 1,000

of Events

0

2

4

6

8

T
im

e
(m

s)

No Bypass No Cross-Tenant

Figure 5.21: Showing time required for the offline learning process by varying the number of

event instances in the logs for the no bypass and no cross-tenant properties.

147

0 20,000 40,000

of VMs

0

5

10

T
im

e
(s

)

updating CPT updating PE updating WL total

CPT: Conditional Probability Table

PE: Pre-Compute Event

WL: Watchlist

Figure 5.22: Showing time required in seconds for the pre-computation considering the no

bypass property by varying the number of instances.

In the second set of experiments, we demonstrate how much LeaPS may be affected by a

wrong prediction resulted from inaccurate learning. For this experiment, we simulate differ-

ent prediction error rates (PER) of a learning engine ranging from 0 to 0.4 on the likelihood

evaluator procedure in Algorithm 7. Figure 5.24 shows in seconds the additional delay in the

pre-computation caused by the different PER of a learning engine for three different number of

VMs. Note that, the pre-computation in LeaPS is an offline step. The delay caused by 40% PER

for up to 100k VMs remains under two seconds, which is still acceptable for most applications.

In the final set of experiments, we compare LeaPS with a baseline approach (similar to [71]),

where all possible paths are considered with equal weight, and the number of steps in the model

is the deciding factor for the pre-computation. Figure 5.25 shows the pre-computation time for

both approaches in the average case, and LeaPS performs about 50% faster than the baseline

approach (the main reason is that, in contrast to the baseline, LeaPS avoids the pre-computation

for half of the critical events on average by leveraging the probabilistic dependency model). For

this experiment, we choose the threshold, N-th (an input to the baseline), as two, and the number

of security properties as four. Increasing both the value of N-th and the number of properties

increase the pre-computation overhead for the baseline. Note that a longer pre-computation

time eventually affects the response time of a proactive auditing.

Experiments with Real Cloud. Table 5.10 summarizes the obtained results. We first measure

148

0 20,000 40,000 60,000 80,000100,000

of VMs

0

2

4

6

8

T
im

e
(s

)

updating CPT updating PE updating WL

CPT: Conditional Probability Table

PE: Pre-Compute Event

WL: Watchlist

Figure 5.23: Showing time required in seconds for the feedback modules considering the no

bypass property by varying the number of instances.

the time efficiency of LeaPS. Note that the results obtained are shorter due to the smaller size

of the community cloud compared to our much larger simulated environment. Furthermore, we

measure the prediction error rate (PER) of the learning tool using another dataset (for 5 days)

of this cloud. For the 3.4% of PER, LeaPS affects maximum 9.62 milliseconds additional delay

in its pre-computation for the measured properties.

Properties Learning Pre-Compute Feedback Verification PER Delay*

No bypass 7.2s 424ms 327ms 5.2ms 0.034 9.62ms

No cross-tenant 5.97s 419ms 315ms 5ms 0.034 9.513ms

Table 5.10: Summary of the experimental results with real data. The reported delay is in the

pre-computation of LeaPS due to the prediction error (PER) of the learning engine.

5.8 Discussions

Adapting to Other Cloud Platforms. LeaPS is designed to work with most popular cloud

platforms (e.g., OpenStack [89], Amazon EC2 [5], Google GCP [38] and Microsoft Azure [77])

with a one-time effort for implementing a platform-specific interface. More specifically, LeaPS

interacts with the cloud platform (e.g., while collecting logs and intercepting runtime events)

149

0 0.1 0.2 0.3 0.4

Simulated PER

0

1

2

A
d
d
it

io
n
al

 D
el

ay
 (

s)

100k VMs 60k VMs 20k VMs

Figure 5.24: The additional delay (in seconds) in LeaPS pre-computation time caused by dif-

ferent simulated prediction error rates (PER) of a learning tool.

0 20,000 40,000

of VMs

0

20

40

T
im

e
(s

)

Baseline LeaPS

Figure 5.25: the comparison (in seconds) between LeaPS and a baseline approach.

through two modules: log processor and interceptor. These two modules require to inter-

pret implementation specific event instances and intercept runtime events. First, to interpret

platform-specific event instances to generic event types, we currently maintain a mapping of

the APIs from different platforms. Table 5.11 enlists some examples of such mappings. Sec-

ond, the interception mechanism may require to be implemented for each cloud platform. In

OpenStack, we leverage WSGI middleware to intercept and enforce the proactive auditing re-

sults so that compliance can be preserved. Through our preliminary study, we identify that

almost all major platforms provide an option to intercept cloud events. In Amazon, using AWS

Lambda functions, developers can write their own code to intercept and monitor events. Google

GCP introduces GCP Metrics to configure charting or alerting different critical situations. Our

150

understanding is that LeaPS can be integrated to GCP as one of the metrics similarly as the

dos_intercept_count metric, which intends to prevent DoS attacks. The Azure Event Grid is

event managing service from Azure to monitor and control event routing which is quite similar

as our interception mechanism. Therefore, we believe that LeaPS can be an extension of the

Azure Event Grid to proactively audit cloud events. Table 5.12 summarizes the interception sup-

port in these cloud platforms. The rest modules of LeaPS deal with the platform-independent

data, and hence, the next steps in LeaPS are platform-agnostic.

LeaPS Event

Type

OpenStack [89] Amazon EC2-

VPC [5]

Google GCP

[38]

Microsoft

Azure [77]

create VM POST /servers aws opsworks

-region

create-instance

gcloud

compute

instances

create

az vm

create

l

delete VM DELETE /servers aws opsworks

-region

delete-instance

-instance-id

gcloud

compute

instances

delete

az vm

delete

update VM PUT /servers aws opsworks

-region

update-instance

-instance-id

gcloud

compute

instances

add-tags

az vm

update

create security

group

POST

/v2.0/security-

groups

aws ec2

create-security-

group

N/A az network

nsg create

delete security

group

DELETE

/v2.0/security-

groups/{security_

group_id}

aws ec2

delete-security-

group

-group-name

{name}

N/A az network

nsg delete

Table 5.11: Mapping event APIs from different cloud platforms to LeaPS event types.

Cloud Platform Interception Support

OpenStack WSGI Middleware [113]

Amazon EC2-VPC AWS Lambda Function [5]

Google GCP GCP Metrics [38]

Microsoft Azure Azure Event Grid [77]

Table 5.12: Interception supports in major cloud platforms

Effects of False Positives in the Learning Technique. LeaPS leverages learning techniques

in a different manner so that the false positive/negative rates cannot affect the security of our

151

system directly, and rather affects the performance of our system. In LeaPS, learning param-

eters of Bayesian network is utilized to learn the probabilistic dependencies. Any error in

learning results a dependency model with incorrect probabilities. Later, while consulting this

dependency model by the pre-computation module (as described in Section 5.5.2), LeaPS may

choose wrong highly-likely events and perform unnecessary pre-computation for them. At the

same time, LeaPS may delay the pre-computation for actual highly-likely events. The final

result of such mistakes in LeaPS due to the false positives/negatives in the learning tool is the

increase in the response time (as reported in Figure 5.24).

Possibility of a DoS Attack against LeaPS. To exploit the fact that a wrong prediction may

result in a delay in the LeaPS pre-computation, an attacker may conduct a DoS attack to bias the

learning model step by generating fake events and hence, to exhaust LeaPS pre-computation.

However, Figure 5.24 shows that an attacker requires to inject a significantly large amount (e.g.,

40% error rate) of biased event instances to cause a delay of two seconds. Moreover, biasing

the model is non-trivial unless the attacker has prior knowledge of patterns of legitimate event

sequences. Our future work will further investigate this possibility and its countermeasures.

Granularity of Learning. The above-mentioned learning can be performed at different levels

(e.g., cloud level, tenant level and user level). The cloud level learning captures business nature

only for companies using a private cloud. The tenant level learning depicts a better profile of

each business or tenant. This level of learning is mainly suitable for companies strictly following

process management, where users mainly follow the steps of processes. In contrast, the user

level learning is suitable for smaller organizations (where no process management is followed)

with fewer users (e.g., admins) who perform cloud events. Conversely, if a company follows

process management, user level learning will be less useful, as different users would exhibit

very similar patterns.

Dependency on Critical Event Lists. The list of critical events provided by LeaPS users for

each security property is very critical for LeaPS to accurately prevent any security violation.

Any incompleteness in this list may result in violations undetected by LeaPS. Therefore, we

provide a guideline on identifying different LeaPS inputs including lists of critical events. The

152

steps to identify sets of event types as the inputs to the learning engine are as follows: i) from

the property definition, we identify involved cloud components; ii) we enlist all event types in

a cloud platform involving those components; and iii) we identify the critical events (which

is already provided by the tenant) from the list, and further shortlist the event types based

on the attack scenario. The specification of watchlist is a LeaPS input from the tenant. The

specification of watchlist can be decided as follows: i) from the property definition, the asset

to keep safe is identified; ii) the objectives of a security property are to be highlighted; and

iii) from the attack scenario, the parameters for the watchlist for each critical event is finalized.

Tackling Single-Step Violation. The proactive auditing mechanisms fundamentally leverage

the dependency in a sequence of events. In other words, proactive security auditing is mainly

to detect those violations which involve multiple steps. However, there might be violations of

the considered security properties with a single step. Such violations cannot be detected by the

traditional steps of proactive auditing with the same response time as reported in Figure 5.20,

and may be detected by performing all steps at a single point in several seconds (e.g., around six

seconds for a decent-sized cloud with 60,000 VMs as shown in Figure 5.22); which is still faster

than any other existing works (which respond in minutes). However, this response time might

not be very practical. To reduce the response time or at least not to cause any significant delay,

we perform a preliminary study as follows. Our initial results conducted in the testbed cloud

show that OpenStack takes more than six seconds to perform almost all user requests; which

implies the possibility of not resulting in any additional delay by LeaPS even for a single-step

violation. Additionally, During our case studies, we observed that OpenStack performs several

internal tasks to complete a user request. We may leverage this sequence of system events

corresponding to a single user request to proactively perform the LeaPS steps. We elaborate

those two ways of tackling single-step violations in our future work.

The Concept of Proactive Security Auditing for Clouds. The concept of proactive security

auditing for clouds is different than the traditional security auditing concept. Apart from ours,

proactive security auditing for clouds is also proposed in [16]. Additionally, the Cloud Security

Alliance (CSA) recommends continuous auditing as the highest level of auditing [19], from

153

which our work is inspired. The current proactive and runtime auditing mechanisms are more

of a combination of traditional auditing and incident management. For example, in LeaPS, we

learn from incidents and intercepted events to process or detect in a similar manner as a tradi-

tional incident management system. At the same time, LeaPS verifies and enforces compliance

against different security properties, which are mostly taken from different security standards,

and provide detailed evidence for any violation through the LeaPS dashboard. Therefore, the

concept of proactive security auditing is a combination of incident management and security

auditing.

5.9 Related Work

Table 5.13 summarizes the comparison between existing works and LeaPS. The first and second

columns enlist existing works and their verification methods. The next two columns compare

the coverage such as supported environment (cloud or non-cloud) and main objective (auditing

or anomaly detection). The next six columns compare these works according to different fea-

tures. The proactive feature is checked when a solution supports proactive verification. When

a solution offers an automated dependency learning, we check the automatic feature. We mark

this feature as ‘N/A’ for the works, which do not involve any dependencies. The dynamic fea-

ture refers to the dynamic and runtime pattern capturing. The probabilistic feature is marked

when a work involves non-deterministic or probabilistic dependencies. For non-dependency-

model-based works, we put ‘N/A’. The expressive feature is checked for the works, which

utilize well-known expressive policy languages (e.g., first order logic) to express security prop-

erties. By the self-reliant feature, we mean the works, which only depend on the user-provided

security properties for the accuracy of the verification. In the last four columns of the table, we

compare the works based on their supporting cloud platforms. The adaptable field is checked

for those works, which support multiple cloud platforms or describe how their works can be

ported to other platforms.

In summary, LeaPS mainly differs from the state-of-the-art works as follows. Firstly, LeaPS

is the first proactive auditing approach, which captures the dependency automatically from the

154

patterns of event sequences. Secondly, LeaPS is the only learning-based work, which aims

at improving proactive auditing and not (directly) at anomaly detection. Thirdly, the dynamic

dependency model allows LeaPS to evolve over time to adapt to new trends. Finally, the LeaPS

methodology is cloud-platform agnostic. However, there are still few limitations in LeaPS.

LeaPS is less expressive than other general purpose formal verification approaches. LeaPS

relies on a complete list of critical events provided by tenant admins or security experts to

provide 100% accuracy.

Retroactive and Intercept-and-Check Auditing. Retroactive auditing approach (e.g., [70,

73, 110, 112, 108, 25] in the cloud is a traditional way to verify the compliance of different

components of a cloud. Unlike our proposal, those approaches can detect violations only after

they occur, which may expose the system to high risks. Existing intercept-and-check approaches

(e.g., [16, 88]) perform major verification tasks while holding the event instances blocked, and

usually cause significant delay to a user request. Unlike those works, LeaPS provides a proactive

auditing approach.

Proactive Auditing. Proactive security analysis in the cloud is comparatively a new domain

with fewer works (e.g., [16, 71, 114]). Weatherman [16] verifies security policies on a future

change plan in a virtualized infrastructure using the graph-based model proposed in [14, 13].

PVSC [71] proactively verifies security compliance by utilizing the static patterns in depen-

dency models. Both in Weatherman and PVSC, models are captured manually by expert knowl-

edge. In contrast, this work adopts a learning-based approach to automatically derive the depen-

dency model. Congress [88] is an OpenStack project offering similar features as Weatherman.

Foley et al. [31] propose an algebra for anomaly-free firewall policies for OpenStack. Many

state-based formal models (e.g., [103, 65, 66, 26]) are proposed for program monitoring. Our

work further expands the proactive monitoring approach to cloud differing in scope and method-

ology.

Learning-Based Detections. There are many learning-based security solutions (e.g., [104, 43,

45, 55, 78, 46, 75]), which offer anomaly detection. Unlike above-mentioned solutions, this

work proposes a totally different learning-based technique to facilitate the proactive auditing.

155

Proposals Methods
Coverage Features Supporting Platforms

Environment Objective P
ro

ac
ti

v
e

A
u

to
m

at
ic

D
y

n
am

ic

P
ro

b
ab

il
is

ti
c

E
x

p
re

ss
iv

e

S
el

f-
R

el
ia

n
t

O
p

en
S

ta
ck

A
zu

re

V
M

w
ar

e

A
d

ap
ta

b
le

Doelitzscher et al. [25] Custom Algorithm Cloud Auditing - N/A • N/A - • • - - •
Ullah et al. [108] Custom Algorithm Cloud Auditing - N/A - N/A - • • - - -

Majumdar et al. [73] CSP Solver Cloud Auditing - N/A - N/A • • • - - -

Madi et al. [70] CSP Solver Cloud Auditing - N/A - N/A • • • - - -

Jiang et al. [55] Regression Technique Non-cloud Anomaly Det. • • - • - • N/A N/A N/A N/A

Solanas et al. [104] Classifiers Cloud Anomaly Det. - • - • - • • - - -

Ligatti et al. [66] Model Checking Non-Cloud Auditing • N/A • - • • N/A N/A N/A N/A

PVSC [71] Custom Algorithm Cloud Auditing • - - - - - • - - -

Weatherman [16] Graph-theoretic Cloud Auditing • - • - - - - - • -

Congress [88] Datalog Cloud Auditing • - - - • - • - - -

ProSAS Custom + Bayesian Cloud Auditing • • • • - - • - - •

Table 5.13: Comparing existing solutions with LeaPS. The symbols (•), (-) and N/A mean supported, not supported and not applicable, respec-

tively.

1
5

6

Log Processing in Clouds. There exist several works (e.g., [67, 115, 76, 4, 39]) on log process-

ing in clouds. Lin et al. [67] leverage the big data analytics, Hadoop, and in-memory computing

capacity of Spark, to propose a cloud platform which can efficiently process and analyze logs in

batches. Similarly, Yu et al. [115] leverage cloud computing and distributed big data analytics to

process large amounts of logs. Unlike those works, we focus more on processing logs retrieved

from OpenStack clouds. However, leveraging such big data analytics and memory-efficient

methods may enhance the performance of our log processing. Sahara [76] offers a real-time

log analysis using Spark. Right after each log entry is created, it is fed into Sahara, parsed into

separate fields, stored and visualized at an HTTP endpoint. Although Sahara’s methodology

on real-time analysis can inspire our future attempt on this matter, Sahara currently does not

offer next stages (e.g., identifying event types and their sequences) of our log processing. Addi-

tionally, Amazon CloudWatch [4] and Google Cloud Dataflow [39] perform advanced real-time

analysis provided for troubleshooting of systems by other existing technologies. Unlike those

works, we focus more on identifying event types and their sequences in logs to facilitate various

learning techniques for analysis.

5.10 Conclusion

In this work, we proposed an automatic learning-based proactive security auditing system,

LeaPS, which completes a mandatory pre-requisite step (e.g., log processing) and addresses

the limitations of existing proactive solutions (by automating the dependency learning). To this

end, we first conducted a case study on real-world cloud logs and highlighted the challenges

in processing such logs. Then, we designed and implemented a log processing approach for

OpenStack to feed its outputs to the learning tools to capture dependencies. Afterwards, we

leveraged learning techniques (e.g., Bayesian network) to learn probabilistic dependencies for

the dependency model. Finally, using such dependency models, we perform proactive secu-

rity auditing. Our proposed solution is integrated to OpenStack, a popular cloud management

platform. The results of our extensive experiments with both real and synthetic data show that

LeaPS can be very scalable for a decent-size cloud (e.g., 6 milliseconds to audit a cloud of

157

100,000 VMs) and a significant improvement (e.g., about 50% faster) over existing proactive

approaches. In addition, we demonstrated that other learning techniques such as sequence pat-

tern mining algorithms can be executed on the outputs of our log processor efficiently (e.g., 18

milliseconds to find frequencies of all possible patterns using PrefixSpan). As future work, we

will investigate the feasibility of applying runtime data streaming to process logs incrementally

and in a more scalable manner. We also intend to conduct case studies on logging of other cloud

platforms to offer a platform-agnostic log processing solution, which might be very useful for

LeaPS-like security solutions.

158

Chapter 6

Conclusion

The ever-changing and self-service nature of clouds brings the necessity to audit the cloud

at runtime to ensure continuous security compliance, which is essential for cloud provider’s

accountability and transparency towards their tenants. To this end, there exist two types of

cloud-specific security auditing approaches: intercept-and-check and proactive. However, ex-

isting works under these approaches either fail to provide a practical response time due to the

sheer scale of the cloud, or require a future change plan in advance which may be impractical

in most cloud environments. In this thesis, we addressed these major limitations of the existing

runtime auditing solutions and proposed a proactive security auditing system for clouds. To this

end, we first proposed a runtime security auditing system for the user level of the cloud; which

verifies different authentication and authorization mechanisms (e.g., RBAC, ABAC and SSO)

incrementally. Second, to reduce the response time of runtime auditing, this thesis delivered a

proactive security auditing system; which offers a novel proactive auditing approach, where we

leverage the dependency relationships among cloud events to incrementally pre-compute the

major auditing efforts. As a result, the runtime effort in our proactive approach remains light-

weight and results in a practical response time (e.g., 8.5 milliseconds for 100,000 virtual ports).

Third, to extend the coverage of our auditing system and improve its practicality, we leveraged

learning techniques to design and implement an automated approach to process raw cloud logs

and utilize them to capture various dependency relationships.

However, our work still has a few limitations, which can be addressed in future works. First,

159

our auditing approach is signature-based and hence, cannot detect any zero-day security viola-

tions. Potentially, an anomaly-based or hybrid (i.e., combining signature and anomaly based)

auditing approach may improve the coverage of our solution; which we consider as a future

work. Second, the efficiency of the current approach may be affected when multiple user re-

quests appear simultaneously. A parallel or distributed approach might reduce the effect of this

situation; which we consider as a potential future work. Third, our current proactive solution

cannot efficiently handle single-step violations. An efficient runtime approach might help to

address this concern. Fourth, our watchlist content identification process is currently static and

manual; which may affect the accuracy of our solution. Adapting similar approach as our feed-

back module in Section 4.3.5 may progressively and semi-automatically update the content of

watchlists; which will be covered in the upcoming work. Fifth, this work cannot prevent po-

tential privacy concerns from the audit results. We target this problem in our future work. As a

future work, we will also investigate the feasibility of applying runtime data streaming to pro-

cess logs incrementally and in a more scalable manner. We also intend to conduct case studies

on logging of other cloud platforms to offer a platform-agnostic log processing solution, which

might be useful for security solutions, which are involved with cloud logs.

In summary, this thesis work significantly contributes towards improving security, efficiency

and automation of cloud security auditing. Our hope is that this work can show a path to

future research as follows. Our proposed proactive approach may be adopted to other security

solutions (especially those which involve high computational overhead) to enable incremental

pre-computation and reduce the response time. Also, our idea of leveraging learning techniques

for efficiency, instead of security, may be useful to benefit other security solutions.

160

Bibliography

[1] E. Aguiar, Y. Zhang, and M. Blanton. An overview of issues and recent developments in

cloud computing and storage security. In High Performance Cloud Auditing and Appli-

cations. Springer, 2014.

[2] G.-J. Ahn, H. Hu, J. Lee, and Y. Meng. Representing and reasoning about web access

control policies. In COMPSAC, 2010.

[3] Q. Alam, S. U. Malik, A. Akhunzada, K.-K. R. Choo, S. Tabbasum, and M. Alam. A

cross tenant access control (CTAC) model for cloud computing: Formal specification and

verification. IEEE TIFS, 2016.

[4] Amazon. Amazon CloudWatch. Available at: https://aws.amazon.com/

cloudwatch/, last accessed on: February 15, 2018.

[5] Amazon. Amazon virtual private cloud. Available at: https://aws.amazon.com/

vpc.

[6] Amazon Web Services. Security at scale: Logging in AWS. Technical report, Amazon,

2013.

[7] K. Arkoudas, R. Chadha, and J. Chiang. Sophisticated access control via SMT and

logical frameworks. ACM TISSEC, 2014.

[8] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra. Formal analysis of

SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on for

Google apps. In ACM FMSE, 2008.

161

[9] BayesFusion. GeNIe and SMILE. Available at: https://www.bayesfusion.

com, last accessed on: February 14, 2018.

[10] M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report, Citeseer,

1997.

[11] M. Ben-Ari. Mathematical logic for computer science. Springer Science & Business

Media, 2012.

[12] N. Bjørner and K. Jayaraman. Checking cloud contracts in Microsoft Azure. In Dis-

tributed Computing and Internet Technology. Springer, 2015.

[13] S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson. Automated information flow anal-

ysis of virtualized infrastructures. In European Symposium on Research in Computer

Security (ESORICS), pages 392–415. Springer, 2011.

[14] S. Bleikertz, C. Vogel, and T. Groß. Cloud Radar: near real-time detection of security

failures in dynamic virtualized infrastructures. In Proceedings of the 30th annual com-

puter security applications conference (ACSAC), pages 26–35. ACM, 2014.

[15] S. Bleikertz, C. Vogel, and T. Groß. Cloud radar: near real-time detection of security

failures in dynamic virtualized infrastructures. In ACSAC, 2014.

[16] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security analysis of

changes in virtualized infrastructure. In ACSAC, 2015.

[17] Cloud Security Alliance. Security guidance for critical areas of focus in cloud computing

v 3.0, 2011.

[18] Cloud Security Alliance. Cloud control matrix CCM v3.0.1, 2014. Available at:

https://cloudsecurityalliance.org/research/ccm/.

[19] Cloud Security Alliance. CSA STAR program and open certification framework in 2016

and beyond, 2016. Available at: https://cloudsecurityalliance.org.

162

[20] CUMULUS. Certification infrastructure for multi-layer cloud services project (cumulus).

EU project, 2012.

[21] datacenterknowledge.com. Survey: One-third of cloud users’ clouds are private, heavily

OpenStack, 2015. Available at: http://www.datacenterknowledge.com.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the royal statistical society. Series B (methodolog-

ical), pages 1–38, 1977.

[23] Distributed Management Task Force, INC. Cloud auditing data federation, 2016.

https://www.dmtf.org/standards/cadf.

[24] F. Doelitzscher. Security Audit Compliance for Cloud Computing. PhD thesis, Plymouth

University, 2014.

[25] F. Doelitzscher, C. Fischer, D. Moskal, C. Reich, M. Knahl, and N. Clarke. Validating

cloud infrastructure changes by cloud audits. In SERVICES, 2012.

[26] E. Dolzhenko, J. Ligatti, and S. Reddy. Modeling runtime enforcement with mandatory

results automata. International Journal of Information Security, 14(1):47–60, 2015.

[27] Elasticsearch. Logstash. Available at: https://www.elastic.co/products/

logstash, last accessed on: February 14, 2018.

[28] ENISA. European union agency for network and information security, 2016. https://

www.enisa.europa.eu.

[29] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed

NIST standard for role-based access control. ACM TISSEC, 4(3), 2001.

[30] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and

change-impact analysis of access-control policies. In ICSE, 2005.

[31] S. N. Foley and U. Neville. A firewall algebra for OpenStack. In Conference on Com-

munications and Network Security (CNS), pages 541–549. IEEE, 2015.

163

[32] L. Foundation. Open vSwitch, 2018. Available at: https://www.openvswitch.

org.

[33] P. Fournier-Viger. SPMF, an open-source data mining library. Available at: http://

www.philippe-fournier-viger.com/spmf/index.php, last accessed on:

February 14, 2018.

[34] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng. Mining maximal sequential patterns with-

out candidate maintenance. In International Conference on Advanced Data Mining and

Applications, pages 169–180. Springer, 2013.

[35] getcloudify..org. OpenStack in numbers - the real stats, 2014. Available at: http://

getcloudify.org.

[36] N. Ghosh, D. Chatterjee, S. K. Ghosh, and S. K. Das. Securing loosely-coupled collabo-

ration in cloud environment through dynamic detection and removal of access conflicts.

IEEE Trans. on Cloud Comp., 2014.

[37] A. Gomariz, M. Campos, R. Marin, and B. Goethals. Clasp: an efficient algorithm for

mining frequent closed sequences. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining, pages 50–61. Springer, 2013.

[38] Google. Google cloud platform. Available at: https://cloud.google.com.

[39] Google. Processing Logs at Scale Using Cloud Dataflow. Available at: https://

cloud.google.com/solutions/processing-logs-at-scale-using-

dataflow, last accessed on: February 15, 2018.

[40] A. Gouglidis and I. Mavridis. domRBAC: An access control model for modern collabo-

rative systems. Computers & Security, 2012.

[41] A. Gouglidis, I. Mavridis, and V. C. Hu. Security policy verification for multi-domains

in cloud systems. Int. Jour. of Info. Sec., 2014. 13(2).

164

[42] T. Groß. Security analysis of the SAML single sign-on browser/artifact profile. In AC-

SAC, 2003.

[43] S. Guha. Attack Detection for Cyber Systems and Probabilistic State Estimation in Par-

tially Observable Cyber Environments. PhD thesis, Arizona State University, 2016.

[44] D. Heckerman. A tutorial on learning with bayesian networks. In Learning in graphical

models, pages 301–354. Springer, 1998.

[45] R. A. Hemmat and A. Hafid. SLA violation prediction in cloud computing: A machine

learning perspective. Technical report, Université de Montréal, 2016.

[46] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt. P2 CySeMoL: Predictive, proba-

bilistic cyber security modeling language. IEEE Transactions on Dependable and Secure

Computing, 12(6):626–639, 2015.

[47] S.-J. Horng, S.-F. Tzeng, Y. Pan, P. Fan, X. Wang, T. Li, and M. K. Khan. b-SPECS+:

Batch verification for secure pseudonymous authentication in VANET. IEEE TIFS, 2013.

[48] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone.

Guide to attribute based access control (ABAC) definition and considerations. NIST SP,

800, 2014.

[49] IBM. Safeguarding the cloud with IBM security solutions. Technical report, IBM Cor-

poration, 2013.

[50] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy. CloudSec: A security

monitoring appliance for virtual machines in the IaaS cloud model. In 5th International

Conference on Network and System Security (NSS), pages 113–120. IEEE, 2011.

[51] Z. Ismail, C. Kiennert, J. Leneutre, and L. Chen. Auditing a cloud provider’s compliance

with data backup requirements: A game theoretical analysis. IEEE TIFS, 2016.

[52] ISO Std IEC. ISO 27002:2005. Information Technology-Security Techniques, 2005.

[53] ISO Std IEC. ISO 27017. Information technology- Security techniques (DRAFT), 2012.

165

[54] W. Jansen. Inheritance properties of role hierarchies. In NISSC, 1998.

[55] Y. Jiang, E. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and Y. Gao. Exploiting sta-

tistical correlations for proactive prediction of program behaviors. In Proceedings of the

8th annual IEEE/ACM international symposium on Code generation and optimization,

pages 248–256. ACM, 2010.

[56] X. Jin. Attribute Based Access Control Model. Available at: https://blueprints.

launchpad.net/keystone/%2Bspec/attribute-based-access-

control.

[57] X. Jin. Attribute Based Access Control and Implementation in Infrastructure as a Service

Cloud. PhD thesis, The University of Texas at San Antonio, 2014.

[58] H. Kai, H. Chuanhe, W. Jinhai, Z. Hao, C. Xi, L. Yilong, Z. Lianzhen, and W. Bin.

An efficient public batch auditing protocol for data security in multi-cloud storage. In

ChinaGrid, 2013.

[59] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time

network policy checking using header space analysis. In Proceedings of the 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2013.

[60] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time

network policy checking using header space analysis. In NSDI, 2013.

[61] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Veriflow: Verifying network-wide

invariants in real time. In roceedings of the 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2013.

[62] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: verifying

network-wide invariants in real time. In NSDI, 2013.

[63] S. L. Lauritzen. The EM algorithm for graphical association models with missing data.

Computational Statistics & Data Analysis, 19(2):191–201, 1995.

166

[64] M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. Mycloud: supporting user-configured privacy

protection in cloud computing. In Proceedings of the 29th Annual Computer Security

Applications Conference (ACSAC), pages 59–68. ACM, 2013.

[65] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM

Transactions on Information and System Security (TISSEC), 12(3):19, 2009.

[66] J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In European

Symposium on Research in Computer Security (ESORICS, pages 87–100. Springer, 2010.

[67] X. Lin, P. Wang, and B. Wu. Log analysis in cloud computing environment with hadoop

and spark. In 5th IEEE International Conference on Broadband Network & Multimedia

Technology (IC-BNMT), pages 273–276. IEEE, 2013.

[68] Z. Lu, Z. Wen, Z. Tang, and R. Li. Resolution for conflicts of inter-operation in multi-

domain environment. Wuhan University Journal of Natural Sciences, 12(5), 2007.

[69] Y. Luo, W. Luo, T. Puyang, Q. Shen, A. Ruan, and Z. Wu. OpenStack security mod-

ules: A least-invasive access control framework for the cloud. In IEEE 9th International

Conference on Cloud Computing (CLOUD). IEEE, 2016.

[70] T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang. Auditing secu-

rity compliance of the virtualized infrastructure in the cloud: Application to OpenStack.

In CODASPY, 2016.

[71] S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang, and

M. Debbabi. Proactive verification of security compliance for clouds through pre-

computation: Application to OpenStack. In ESORICS, 2016.

[72] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi, L. Wang, and

M. Debbabi. Leaps: Learning-based proactive security auditing for clouds. In European

Symposium on Research in Computer Security (ESORICS), pages 265–285. Springer,

2017.

167

[73] S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Debbabi. Se-

curity compliance auditing of identity and access management in the cloud: Application

to OpenStack. In CloudCom, 2015.

[74] S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Debbabi.

User-level runtime security auditing for the cloud. IEEE Transactions on Information

Forensics and Security, 13(5):1185–1199, 2018.

[75] S. Mehnaz and E. Bertino. Ghostbuster: a fine-grained approach for anomaly detection

in file system accesses. In Proceedings of the Seventh ACM on Conference on Data and

Application Security and Privacy (CODASPY), pages 3–14. ACM, 2017.

[76] M. Michael, R. Chad, M. Pete, and K. Nikita. This is Sparkhara: OpenStack Log Process-

ing in Real-time Using Spark on Sahara. Available at: https://www.openstack.

org/videos/tokyo-2015/this-is-sparkhara-openstack-log-

processing-in-real-time-using-spark-on-sahara, last accessed on:

February 15, 2018.

[77] Microsoft. Microsoft Azure virtual network. Available at: https://azure.

microsoft.com.

[78] R. Mitchell and R. Chen. Behavior rule specification-based intrusion detection for safety

critical medical cyber physical systems. IEEE Transactions on Dependable and Secure

Computing, 12(1):16–30, 2015.

[79] K. Murphy. A brief introduction to graphical models and Bayesian networks. Springer,

1998.

[80] S. Narain. Network configuration management via model finding. In Proceedings of the

19th Conference on Large Installation System Administration Conference (LISA), pages

15–15, 2005.

[81] NIST, SP. NIST SP 800-53. Recommended Security Controls for Federal Information

Systems, 2003.

168

[82] OASIS. Security assertion markup language (SAML), 2016. Available at: http://

www.oasis-open.org/committees/security.

[83] H.-K. Oh and S.-H. Jin. The security limitations of SSO in OpenID. In 10th International

Conference on Advanced Communication Technology, 2008.

[84] Open Data Center Alliance. Open data center alliance usage: Cloud based identity gov-

ernance and auditing rev. 1.0. Technical report, 2012.

[85] OpenID Foundation. OpenID: the internet identity layer, 2016. Available at: http://

openid.net.

[86] OpenStack. Neutron firewall rules bypass through port update, 2015. Available at:

https://security.openstack.org/ossa/OSSA-2015-018.html.

[87] OpenStack. Nova network security group changes are not applied to running in-

stances, 2015. Available at: https://security.openstack.org/ossa/

OSSA-2015-021.html, last accessed on: February 14, 2018.

[88] OpenStack. OpenStack Congress, 2015. Available at: https://wiki.openstack.

org/wiki/Congress.

[89] OpenStack. OpenStack open source cloud computing software, 2015. Available at:

http://www.openstack.org.

[90] OpenStack. OpenStack audit middleware, 2016. Available at: http://docs.

openstack.org/developer/keystonemiddleware.

[91] OpenStack. OpenStack command list, 2016. Available at: http://docs.

openstack.org/developer/python-openstackclient/command-

list.html, last accessed on: February 14, 2018.

[92] OpenStack. OpenStack user survey, 2016. Available at: https://www.openstack.

org.

169

[93] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure active

monitoring using virtualization. In IEEE Symposium on Security and Privacy (SP), pages

233–247. IEEE, 2008.

[94] J. Pearl. Causality: Models, reasoning and inference, 2000.

[95] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu.

Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transac-

tions on knowledge and data engineering, 16(11):1424–1440, 2004.

[96] D. Petcu and C. Craciun. Towards a security SLA-based cloud monitoring service. In

CLOSER, 2014.

[97] N. Pustchi and R. Sandhu. MT-ABAC: A multi-tenant attribute-based access control

model with tenant trust. In NSS, 2015.

[98] K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud. IEEE Internet

Computing, 16(1):69–73, 2012.

[99] R. Sandhu. The authorization leap from rights to attributes: maturation or chaos? In

SACMAT, 2012.

[100] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. IEEE Computer, 1996.

[101] N. Schear, P. T. Cable II, T. M. Moyer, B. Richard, and R. Rudd. Bootstrapping and main-

taining trust in the cloud. In Proceedings of the 32nd Annual Conference on Computer

Security Applications, pages 65–77. ACM, 2016.

[102] J. Schiffman, Y. Sun, H. Vijayakumar, and T. Jaeger. Cloud verifier: Verifiable auditing

service for iaas clouds. In Services (SERVICES), 2013 IEEE Ninth World Congress on,

pages 239–246. IEEE, 2013.

[103] F. B. Schneider. Enforceable security policies. Transactions on Information and System

Security (TISSEC), 3(1):30–50, 2000.

170

[104] M. Solanas, J. Hernandez-Castro, and D. Dutta. Detecting fraudulent activity in a cloud

using privacy-friendly data aggregates. Technical report, arXiv preprint, 2014.

[105] N. Tamura and M. Banbara. Sugar: A CSP to SAT translator based on order encoding.

Proceedings of the Second International CSP Solver Competition, 2008.

[106] N. Tamura and M. Banbara. Sugar: A CSP to SAT translator based on order encoding.

In Proceedings of the Second International CSP Solver Competition, pages 65–69, 2008.

[107] B. Tang and R. Sandhu. Extending OpenStack access control with domain trust. In

Network and System Security, pages 54–69. Springer, 2014.

[108] K. Ullah, A. Ahmed, and J. Ylitalo. Towards building an automated security compliance

tool for the cloud. In TrustCom, 2013.

[109] VMware. VMware vCloud Director. Available at: https://www.vmware.com.

[110] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing

for secure cloud storage. IEEE TC, 2013.

[111] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts through Facebook and

Google: A traffic-guided security study of commercially deployed single-sign-on web

services. In IEEE S&P, 2012.

[112] Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu. Identity-based data outsourcing

with comprehensive auditing in clouds. IEEE TIFS, 2017.

[113] WSGI. Middleware and libraries for WSGI, 2016. Available at: http://wsgi.

readthedocs.io/en/latest/libraries.html, last accessed on: February

15, 2018.

[114] S. S. Yau, A. B. Buduru, and V. Nagaraja. Protecting critical cloud infrastructures with

predictive capability. In 8th International Conference on Cloud Computing (CLOUD),

pages 1119–1124. IEEE, 2015.

171

[115] H. Yu and D. Wang. Mass log data processing and mining based on hadoop and cloud

computing. In 7th International Conference on Computer Science & Education (ICCSE),

pages 197–202. IEEE, 2012.

[116] T. Zhang and R. B. Lee. CloudMonatt: An architecture for security health monitoring

and attestation of virtual machines in cloud computing. In 42nd Annual International

Symposium on Computer Architecture (ISCA), pages 362–374. IEEE, 2015.

[117] X. Zhu, S. Song, J. Wang, S. Y. Philip, and J. Sun. Matching heterogeneous events with

patterns. In 30th International Conference on Data Engineering (ICDE), pages 376–387.

IEEE, 2014.

172

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Runtime Security Auditing for Clouds
	Proactive Security Auditing for Clouds
	Learning-Based Proactive Security Auditing

	Contributions
	Thesis Structure

	Background
	Security Auditing for Clouds
	Categorization of Cloud Security Auditing
	Structure of the Automated Security Auditing Process

	Literature Review
	Retroactive Auditing
	Intercept-and-Check Auditing
	Proactive Auditing

	Notations

	Runtime User-Level Auditing for Clouds
	Introduction
	User-Level Security Properties
	Models
	Security Properties
	Threat Model

	Runtime Security Auditing
	Overview
	Initialization Phase
	Runtime Phase
	Formalization of Security Properties

	Implementation
	Architecture
	Integration into OpenStack
	Integration to OpenStack Congress

	Experiments
	Experimental Settings
	Results

	Discussion
	Related Work
	Conclusion

	Proactive Security Auditing through Caching and Pre-Computation
	Introduction
	Models
	Threat Model
	Dependency Models

	Proactive Security Auditing System (ProSAS)
	Overview
	Interceptor
	Caching Manager
	Proactive Module
	Feedback Manager

	Implementation
	Architecture
	Integration into OpenStack

	Experimental Results
	Experiment Settings
	Experimental Results with Testbed Clouds
	Experimental Results with Real Clouds

	Discussions
	Related Work
	Comparison between Related Works
	Cloud Security Auditing
	Other Proactive Security Approaches

	Conclusion

	Learning Probabilistic Dependencies among Events for Proactive Security Auditing in Clouds
	Introduction
	LeaPS Overview
	Motivating Example
	Threat Model
	Approach Overview

	Case Studies and Log Processing
	Case Studies on Real-World Cloud Logs
	Real-World Challenges to Log Processing
	Our Solution: LeaPS Log Processing
	Inputs to LeaPS Log Processing
	Parsing Logs
	Grouping and Pruning of Parsed Logs
	Marking Event Types
	Aggregating Logs
	Generating Outputs

	LeaPS Learning System
	The Dependency Model
	Learning Engine

	LeaPS Proactive Verification System
	Likelihood Evaluator
	Pre-Computing Module
	Feedback Module

	Implementation
	Background
	LeaPS Architecture
	Log Processor
	Learning System
	Proactive Verification System
	Dashboard & Reporting Engine

	Experimental Results
	Experimental Settings
	Results on Log Processor
	Results on Proactive Verification System

	Discussions
	Related Work
	Conclusion

	Conclusion
	Bibliography

