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Highlights

• In this study we performed a thorough investigation on the use of event-

related potentials (ERP) and event-related (de)synchronization (ERD/ERS)

for early Alzheimer’s disease (AD) diagnosis.

• We compared behavioural results (reaction time and accuracy), ERP and

ERD/ERS responses when healthy elderly (HE) controls, Mild Cognitive

Impairment (MCI) and mild AD patients were performing a three-level

N-Back working memory task

• Our most important finding was that ERD/ERS analyses have revealed

themselves more valuable than ERP, since they showed significant differ-

ences in all three group comparisons: HE vs. MCI, HE vs. AD, and MCI

vs. AD.
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Abstract

Background and Objective: In this study we investigate whether or not event-

related potentials (ERP) and/or event-related (de)synchronization (ERD/ERS)

can be used to differentiate between 27 healthy elderly (HE), 21 subjects diag-

nosed with mild cognitive impairment (MCI) and 15 mild Alzheimer’s disease

(AD) patients. Methods: Using 32-channel EEG recordings, we measured ERP

responses to a three-level (N-back, N=0,1,2 ) visual working memory task. We

also performed ERD analysis over the same EEG data, dividing the full-band

signal into the well-known delta, theta, alpha, beta and gamma bands. Both

ERP and ERD analyses were followed by cluster analysis with correction for

multicomparisons whenever significant differences were found between groups.

Results: Regarding ERP (full-band analysis), our findings have shown both pa-

tient groups (MCI and AD) with reduced P450 amplitude (compared to HE

controls) in the execution of the non-match 1-back task at many scalp elec-

trodes, chiefly at parietal and centro-parietal areas. However, no significant

differences were found between MCI and AD in ERP analysis whatever was the
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task. As for sub-band analyses, ERD/ERS measures revealed that HE subjects

elicited consistently greater alpha ERD responses than MCI and AD patients

during the 1-back task in the match condition, with all differences located at

frontal, central and occipital regions. Moreover, in the non-match condition, it

was possible to distinguish between MCI and AD patients when they were per-

forming the 0-back task, with MCI presenting more desynchronization than AD

on the theta band at temporal and fronto-temporal areas. In summary, ERD

analyses have revealed themselves more valuable than ERP, since they showed

significant differences in all three group comparisons: HE vs. MCI, HE vs. AD,

and MCI vs. AD. Conclusions: Based on these findings, we conclude that ERD

responses to working memory (N-back) tasks could be useful not only for early

MCI diagnosis or for improved AD diagnosis, but probably also for assessing the

likelihood of MCI progression to AD, after further validated by a longitudinal

study.

Keywords: Alzheimer’s disease; mild cognitive impairment; working memory;

event-related potentials; event-related (de)synchronization

Introduction

The treatment and diagnosis of dementia has become a serious public health

problem in both developed and developing countries. Research to identify re-

liable markers that can effectively promove early diagnosis is very active, es-

pecially in the case of Alzheimer’s disease (AD). Waiting for the appearance5

of more pronounced symptoms to start treatment is risky, since it may be too

late to achieve full effectiveness of the drugs capable of controlling disease pro-

gression. As such, early diagnosis of AD has become a pressing need, with the

United Nations and Alzheimers Disease International calling on all governments

to implement national dementia plans focusing on (i) raising public awareness10

about the disease and reducing stigma, (ii) improving early diagnosis, and (iii)

providing better care and more support to caregivers. Very early detection al-

lows for treatments to slow disease progression to be administered early, thus
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making them more effective and reducing healthcare costs. The Alzheimer So-

ciety of Canada, for example, has reported that delaying the onset of AD by15

two years would result in 34% fewer individuals in long-term care [1].

Several studies have pointed out mild cognitive impairment (MCI) as an im-

portant risk factor in the development of AD [2, 3, 4, 5]. Statistics reveal that

about half the people who reported MCI symptoms to a clinician will develop

AD in a couple of years, with a 12% average annual conversion rate [6]. There-20

fore, there is an urgent need to find low-cost, highly sensitive and highly spe-

cific biomarkers for the early identification of subjects at risk of developing AD

within the next two to three years. Quantitative analysis of electroencephalo-

graphic signals is potentially one of the best candidates among possible markers

because EEG equipment is relatively cheap, non-invasive, and safe. More im-25

portantly, EEG biomarkers can investigate the neurophysiological “reserve” in

patients with dementia disorders. This was defined as the residual capacity of

the brain to ensure the synchronization of neural activity at different spatial

and frequency scales between subcortical and cortical neural networks [7].

The literature on EEG or MEG use in assisting AD diagnosis is clearly30

divided into two main approaches [8, 9, 10]. The first one deals with EEG or

MEG signals registered when participants are awake at rest, with eyes open

or closed (resting-state) [11, 12, 13, 14, 15, 16], while the other is dedicated to

the analysis of signals recorded with subjects performing some pre-defined tasks

(task-oriented)[17, 18, 19, 20, 21]. Both paradigms can be analyzed in time and35

frequency domains, bringing information about cognitive functions related to

the characteristics of brain signals [22, 23, 10].

Although resting-awake protocols have a good prognosis for early diagnosis

of AD [24], this study explores the use of EEG analysis during an executive

function test, since deficits in such tasks are characteristic in MCI [25, 26]. The40

neurological basis of executive dysfunction in MCI and AD remain somewhat

unclear, although some authors have postulated that alterations in functional

neural networks might have some influence [27, 28]. In fact, research has shown

that the risk of developing AD is higher in MCI-like patients who present at
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least one other cognitive impairment in addition to memory loss [29] . To inves-45

tigate these functional neural networks, event-related potential (ERP) analysis

has been explored [30, 31, 32], with some success in discriminating between

healthy controls, MCI, MCI-Progression-to-AD, and AD. ERP analysis, how-

ever, discards sub-band information that has been shown to be invaluable to

discriminate AD patients from healthy elderly in the resting-awake EEG proto-50

col [33, 34, 35, 36, 37].

In this article, we seek to overcome this limitation of full band analysis

using not only ERP, but also a complementary technique called synchronization

/ (de) synchronization (ERS / ERD), which is associated with the classical

EEG frequency bands [38, 39]. To detect the so-called ERPs, signal averaging55

techniques are usually used. The fundamental hypothesis is that the evoked

activity has a somehow fixed time-delay with respect to the stimulus, while

the background EEG activity acts as additive noise. Thus, the idea behind the

averaging procedure is that it will significantly increase the signal-to-noise ratio.

However, it has also been shown, for instance, that visual stimuli can reduce60

ongoing EEG amplitude [40], thus implying that the basic model that an ERP

can be represented by a signal added to uncorrelated noise is not valid for all

cases. Some types of changes are synchronized with the event, but not with the

same phase and therefore cannot be extracted by a simple linear method, such

as the averaging procedure, but can only be detected by frequency analysis of65

the so-called induced oscillations [41, 42].

In order to get a better understanding of how ERP and ERD could be

complementarily used to discriminate MCI and AD patients from age-matched

elderly controls, in this study we employed both methods for the analysis of EEG

signals in response to working memory tasks. The N-back task is widely used70

to investigate the neurological basis of working memory. Previous studies using

the N-back paradigm have consistently found that this kind of task activates

several brain regions: dorsolateral and ventrolateral prefrontal cortex, premotor

cortex, supplementary motor area and reaching even parietal posterior areas

[43, 44, 45]. The N-back visual identification letter task requires participants to75
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maintain information in working memory in order to decide whether a currently

presented stimulus matches a stimulus presented N trials previously [46].

Likewise ERP, ERD/ERS and other types of oscillatory analysis of event-

related responses, like event-related oscillations (ERO) [47], have been used with

success to differentiate AD and/or MCI patients from healthy elderly. Some of80

these EEG studies found AD patients with reduced delta (1-4 Hz) ERO in the

classic auditory oddball paradigm [48, 49]. Further investigations revealed that

MCI patients also presented lower delta ERO both in the auditory [50] as well as

in the visual [51] oddball paradigm. Previously (2007), using ERO in the same

visual oddball paradigm, Yener et. al. [52] had found Alzheimer patients with85

weaker phase-locking in the theta (4-8 Hz) band. Using the very same N-back

working memory tasks we used in this study, Deiber et al. showed that induced

theta activity was lower in progressive MCI as compared to elderly controls

and stable MCI [53]. Still in the same theta band and also with EEG recorded

during execution of working memory tasks, but using a modified Sternberg90

word recognition task instead of N-back, Cummins et al. [54] encountered 12

MCI patients with significantly lower theta power when compared to 12 healthy

matched controls.

Moving to the next band, using MEG recordings of participants performing

a go/no-go task, Babiloni et al. found that AD and vascular dementia (VaD) pa-95

tients presented stronger alpha ERD peak when compared to elderly normal sub-

jects [55]. More recently and more close-related to our study, Deiber et al. [56]

found altered theta (4-7 Hz), alpha (8-13 Hz), and beta (14-25 Hz) ERS/ERD

in MCI cases compared to controls using EEG recordings during performance

of a 2-back working memory task. With MEG recorded during execution of the100

Sternberg’s memory recognition task by patients with early AD, patients with

MCI and by age-matched healthy controls, Kurimoto et al. [57] found signifi-

cant group differences in beta and gamma frequency bands: patients with AD

presented lower beta ERD compared to controls and reduced gamma ERD com-

pared to MCI patients. Using a simple visual oddball paradigm, Güntekin et al.105

[58] showed that both beta ERO and EEG-evoked beta power were significantly
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higher in elderly controls when comparing responses to target with responses to

non-target stimuli, while in age- and education-matched MCI patients no dif-

ferences were found between the two types of stimuli. Finally, in a recent study

(2016), Basar et al. investigated ERO gamma responses in a classical visual110

oddball paradigm and found that gamma target ERO latency was significantly

delayed in AD patients when compared to age-, gender- and education-matched

healthy controls [59].

In a previous study, using EEG recorded during execution of the same N-back

working memory tasks used in this paper, we also found ERS/ERD differences115

between MCI, AD and age-, gender- and education-matched healthy elderly,

but only in the alpha, beta and gamma bands [20]. However, as mentioned

above, other researchers encountered significant differences between patients

(AD and/or MCI) and elderly controls in the low-frequency delta and theta

bands [54, 48, 53, 49, 51, 50]. Consequently, we wondered whether this was due120

to the methods used to calculate the ERS/ERD measures, since there are several

different forms of computing these type of even-related responses [60, 61, 62].

In order to investigate this issue, we decided to try out a different method for

obtaining the ERS/ERD: instead of getting both the synchronized induced and

the in-phase evoked oscillations [41, 42], as we did in our recently published125

paper [20], we decided to use the first original Pfurtscheller’s methodology [39]

to analyze ERD/ERS, which gets only the induced response and discards the

in-phase evoked response, as will be described in the next section.

Methods

Participants130

The experiment was attended by 63 volunteers. From these participants, 15

were diagnosed with probable Alzheimer’s disease (AD), 21 had mild cognitive

impairment (MCI) and 27 were healthy elderly (HE) controls. All patients (sub-

jects with MCI and AD) were diagnosed and enrolled at the Memory Clinic of

the Sir Mortimer B. Davis-Jewish General Hospital (JGH) in Montreal, Canada,135
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which is a tertiary care referral center of McGill University. The healthy elderly

were selected from research databases at Concordia University and the JGH

Memory Clinic. Ethical approval was obtained from both Concordia University

and the General Jewish Hospital. The 63 participants provided written consent.

Patients underwent a general health questionnaire to select participants and140

exclude neurological conditions other than MCI or AD, such as medical condi-

tions that can affect cognition (e.g., B12 deficiency, uncontrolled thyroid dys-

function, alcohol abuse) and psychiatric disorders (other than mild depression).

Furthermore, Geriatric Depression Scale - GDS [63] was administered and only

participants with a score lower than six were admitted to this study.145

Healthy controls were recruited after undergoing the Montreal Cognitive As-

sessment test - MoCA [64], which is a cognitive screening tool sensitive to detect

MCI and able to perform a full review of their overall cognitive function. If an

individual scored under 26 on this measure, he/she was excused and therefore

excluded from the HE group.150

Mild cognitive impairment patients (or his/her kin companion) were re-

quired to make a subjective report about their cognitive decline, which is part

of the procedure to achieve a proper diagnosis according to agreed-upon criteria

[65, 66]. All MCI subjects reported a gradual cognitive decline in the past six

months, since this was a pre-requisite to be included in the experiment. Ad-155

ditionally, in order to guarantee the absence of significant impairment in daily

life activities, “candidates” to be incorporated in the MCI group underwent an

objective verification of cognitive impairment made through neuropsychological

tests. Also, failure to meet the ADRDA-NINCDS criteria for dementia [67] had

to be assured, which was determined by the assessing physician in the Memory160

Clinic. In summary, patients were diagnosed as amnestic MCI [26], demon-

strating a deficiency in episodic memory measures and some also demonstrated

deficits in other cognitive domains.

To be included in the AD group, participants had to demonstrate an es-

tablished progressive cognitive decline and the absence of any other condition165

capable of producing a dementia syndrome, according to the ADRDA-NINCDS
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criteria for probable AD [67]. Finally, only those patients who were competent

to sign the consent form without any assistance were included in the AD group.

This additional measure ensured that all subjects diagnosed with AD who par-

ticipated in the study had only a mild degree of the disease, thus no moderate170

or severe cases were included.

N-back task description

Participants performed a three-level visual N-back task (N = 0, 1, 2) [46].

These tasks are designed to carry out a working memory (WM) test with in-

creasing levels of memory load, where the individual must indicate (by pressing175

a button) if the current (visual) stimulus displayed on a screen (in this case, a

digit in the 1-9 range) is the same or different from (I) a digit the participant

has been asked to remember (0-back), (II) the digit he/she saw in the preceding

trial (1-back) or (III) the digit seen two trials previously (2-back). Any par-

ticular trial is labelled as “match” or “non-match”, based on whether or not it180

matches the digit presented N trials before (or the target digit in the 0-back

case), respectively.

The digits (1-9) were presented each time on a computer screen in white let-

ters (Arial font point 150) on a black background. Each condition of the three-

level N-back task (in ascending WM load: N = 0, 1, 2) consisted of 100 trials,185

with 60 non-match trials (match/non-match stimuli were distributed pseudoran-

domly). Every single digit was presented with the same probability in a pseudo-

random order, restricted by the requirements of the 40/60 match/mismatch ra-

tio. Each stimulus remained on screen for 600 ms, where the next stimulus

appeared after a 1,400 ms blank-screen interval. Every time a new stimulus190

appeared on screen, the individual should respond by pressing the left or right

button on a keyboard with the index finger of each hand. The designation of

which button (left or right) was the match or the non-match key was counterbal-

anced across participants. Figure 1 illustrate the task performing for the 1-back

condition. Immediately before each condition, subjects completed a short prac-195

tice block, which was repeated on demand until the participant understood the
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task completely. Only during the practice blocks a beep warned subjects ev-

ery time they made a mistake on their match/mismatch decision. During the

tests, button pressing from all trials were registered to further calculate reac-

tion times and accuracy for each participant performing the three-level N-back200

task. Participants also completed other tasks of executive function during the

testing session, but they are not relevant to this study and therefore will not be

reported herein.

EEG recording and pre-processing

EEG signals were registered with a 32-channel Neuroscan device operating at205

a 500 Hz sampling rate. The 32 Ag/AgCl electrodes were mounted in an elastic

Easycap according to the international 10-20 placement system. During EEG

recording impedance was maintained below 8 kΩ and the reference electrode was

positioned in the left earlobe, but for offline analysis all signals were re-referenced

to the average of the left and right ear electrodes. Of the existing 32 channels,210

we used two for monitoring vertical (blinks) and horizontal (saccades) eyeball

movements, and a third one was attached to the right earlobe and used for

referencing purposes (as mentioned above), thus resulting in 29 EEG channels.

We passed EEG data through a lowpass filter (57 Hz), then down-sampled

signals to 125 Hz and high-pass filtered (1.2 Hz) them to remove drifting effects.215

Following, using the Independent Component Analysis tool of the EEGLAB

software [68], we removed eye blinks, saccades, heart beats and other muscular

as well as electrode artifacts. In the last pre-processing step preceding ERP

and ERS/ERD analysis, since the inter stimulus interval (ISI) was exactly 2.0

seconds, we partitioned the sub-band signals into 2-second epochs (trials) in the220

-300 ms to 1700 ms interval, where 0 ms designates the time when visual stimuli

appeared on screen.

ERP and ERD/ERS analyses

Before performing both ERP and ERD/ERS analyses, the 2-second epochs of

each of the 63 participants were separated into six blocks of data corresponding225
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to each of the six N-back tasks (match and mismatch trials of the three-level

WM load). To avoid misjudgment issues, we did not analyze any trials where

the subject has provided incorrect responses (match or non-match), since we

do not know the underlying brain processes that led to the wrong answer. To

obtain the ERPs of each data block, we simply averaged the 29-channel EEG230

signals across epochs with correct responses, which mathematically corresponds

to obtaining the point-to-point inter-trial mean, according to equation 1

ERPi(t) = x̄i(t) =
1

M

m=M∑

m=1

xim(t), (1)

where xim(t) stands for the 29-channel (i = 1, 2, , 29) EEG signal of the 2-second

epoch (−300ms ≤ t ≤ 1700ms) of the m-th trial.

Event-related synchronization (ERS) / desynchronization (ERD) are related235

respectively to the increase / decrease in firing synchrony of neurons involved

in frequency-specific event-related brain processes. According to Pfurtscheller,

“ERD characterizes cortical areas involved in task-relevant processing and ERS

marks cortical areas in an idling state” [69]. In order to obtain ERS/ERD

patterns, first the 29-channel full-band 2-second signals xim(t) of each trial m240

(m = 1, 2, ...,M) are band-pass filtered into the five classical sub-bands, i.e.:

delta (4 − 8 Hz), theta (4 − 8 Hz), alpha (8 − 12 Hz), beta (12 − 30 Hz) and

gamma (30− 45 Hz) [70], generating the signals sbim(t) for each of the five sub-

bands (b = 1, 2, 3, 4, 5). Next, we proceed to the calculation of the point-to-point

inter-trial variance [39], given by equation 2245

V ARbi(t) =
1

M − 1

m=M∑

m=1

[sbim(t) − s̄bi(t)]
2
, (2)

where s̄bi(t) is the point-to-point inter-trial mean of the bandpass signals sbim(t)

calculated with the same equation 1 used to generate the ERPs. It is important

to remark that after performing this step there is no more in-phase information

in the V ARbi(t) signals, since the “bandpass ERPs”, which are nothing more

than the inter-trial means s̄bi(t), were completely removed. In this way, we250

can be sure that ERS/ERD signals will carry information that is not present
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in the ERPs, thus assuring that ERP and ERD are complementary and not

redundant measures. In order to reduce the signal variability and therefore

get more robustness against noise [39], the sub-band V ARbi(t) signals passed

through a smoothing (lowpass) filter with 10 Hz cutoff frequency to produce255

the five (b = 1, 2, 3, 4, 5) bandpass energy signals Ebi(t) of the i-th channel

(i = 1, 2, ..., 29). Following the original study from Pfurtscheller [39], to compute

the ERS/ERD first of all we have to calculate the pre-stimulus baseline, which is

the average energy of the smoothed bandpass energy signals from -300 to 0 ms,

where 0 ms is the instant when the stimulus was presented. This baseline energy260

measure is herein called Rbi. Lastly, the percentage power increase (%ERS) or

decrease (%ERD) were computed exactly as in [39]:

%ERSbi(t) = 100 × Ebi(t) −Rbi

Rbi
. (3)

Therefore, when %ERSbi(t) is negative it means the power has decreased after

the stimulus as compared to the baseline, otherwise it means power increase,

respectively indicating activity or inactivity on frequency band b at the under-265

lying cortical area covered by electrode i [69]. The computation of ERS/ERD

patterns in this study follows the same steps used in [69, 71].

Cluster Analysis

A common procedure most researchers use to compare EEG data results

from different subjects is to assume that scalp channel sites are spatially equiv-270

alent for all of them. However, this assumption is actually an idealization,

since the spatial connection of any physical electrode location to the underlying

cortical areas producing the activities covered by that channel may be quite

different across subjects. It means that data recorded from equivalent channel

locations in different subjects may convey information from different cortical275

EEG sources, a point commonly overlooked in several EEG studies. To over-

come this issue, the EEGLAB software package [68] has recently launched a

new tool to perform cluster analysis [72]. This alternative form of analysing

electrophysiological data were successfully used in several EEG and MEG stud-
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ies [73, 74, 75, 76, 77]. It uses Principal Component Analysis (PCA) to find280

meaningful clusters across EEG data from different subjects, which leads to

a much more accurate statistical analysis when comparing different groups of

participants in a study [78]. The first step is identifying which scalp channels

are spatially equivalent, using clusters of the independent components previ-

ously calculated through the EEGLAB ICA tool. In order to do that, we used285

the well-known k-means clustering algorithm [79] with the rule of thumb of one

cluster per each subject participating in the study. After clustering, once the

ICA components are grouped, it is possible to calculate statistical differences at

scalp electrodes between the conditions (WM tasks) and groups (HE, MCI and

AD).290

Statistical Analysis

Statistical significance was established at 5% level for all tests. We used

Kolmogorov Smirnov test to determine if the data come from a normal distri-

bution; when normality holds, parametric ANOVA tests were used to determine

if there are significant differences between groups (AD, MCI and HE ). When295

the hypothesis that the data come from a normal distribution was rejected, the

non-parametric Kruskal Wallis test was used instead. Whenever significant dif-

ferences were found, we used multiple comparisons tests (Bonferroni correction)

to verify the existence of actual differences between the pairs of groups AD-MCI,

AD-HE and MCI-HE. To compare groups after cluster analysis of EEG data,300

the interactive EEGLAB tool was used, which on its turn uses the “Cluster-

based permutation tests on event related fields” Fieldtrip software plugin [80]

to implement the Monte Carlo method with statistical permutation.

Results

Participant demographics305

Before starting the analysis of any measures taken from HE, MCI and AD

participants, we must have a look at participant demographics, since if there
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were any significant differences between groups regarding age and education,

that could be a source of bias and would cast doubt on the validity of other com-

parisons between groups emerging from the analysis of N-back task responses310

[81]. In Table 1 we show the average demographic data (gender distribution,

mean and standard error of age and years of education) of the three groups.

One-way ANOVA did not reveal significant group differences neither in age (F

= 1.39, p = 0.2565) nor in years of education (F = 0.49, p = 0.618). Regarding

gender distribution, the AD group has proportionally less females than the MCI315

and HE groups, but we do not see this as an issue, since recent research on large

databases has shown men and women with AD performing similarly in the great

majority of neuropsychological tests [81].

N-back Behavioural Results

The primary goal of this study is to explore if event-related potentials (ERP)320

together with (de)synchronisation (ERD/ERS) can be used to distinguish be-

tween healthy controls, MCI and AD patients. However, it is also important to

investigate the behavioural responses (reaction time and accuracy in match/non-

match discrimination) for both the match and non-match trials because, if these

measures alone were enough to make a clear distinction between groups, there325

is no need to further analyse electrophysiological measures. Since the mental

effort in the N-back task increases with an increase in N , we have observed that

the number of correct answers decreased substantially with increasing N , as can

be seen in Table 2, where we show the average performance (reaction time in

ms and accuracy in % correct responses) of each group for both the match and330

non-match tasks. Just the opposite, there was a steady increase in the reaction

times of all participants with greater memory load.

In Table 3 we display the results of post-hoc multiple-comparisons following

one-way ANOVA tests, using diagnosis (HE, MCI or AD) as a factor and keep-

ing constant the memory load (N = 0, 1, 2) and the match/non-match type.335

Differences in reaction times were found only when N = 1 (match and non-

match) and just for the ADxHE comparison. As for accuracy, we have found

14
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several differences when comparing AD with HE (HE > AD) but only two in

the ADxMCI comparison (MCI > AD). In figures 2 and 3, one can clearly see

that both for the match- as for the non-match-type, reaction times rise and340

accuracies drop, respectively, for the three groups (HE, MCI and AD) as the

memory load increases (from N = 0 to N = 2), as expected. To get an overview

of the behavioural results in graphical form, we also show in the same figures

the N-back tasks where significant differences (marked with an asterisk) were

found in the pairwise group comparison tests (Bonferroni correction).345

ERP Analysis

Since our ERP data did not have normal distribution, we used the nonpara-

metric Kruskal Wallis test and observed significant differences in the ERP of the

three groups (AD, MCI and HE) at several electrode locations. In order to know

between which pairs of groups (AD vs. MCI, AD vs. HE and MCI vs. HE)350

there were real differences, statistical tests were performed for multiple com-

parisons using cluster analysis, which allowed us to find significant differences

between the AD vs. HE and MCI vs. HE comparisons in 0-back non-match,

1-back non-match and 1-back match tasks.

Table 4 lists all significant differences encountered on the #-level WM-task355

match (M#) and non-match (N#) trials after post-hoc comparisons using clus-

ter correction. Most differences were found in the AD vs. HE group comparison

for the N0, N1 and M1 tasks. However, several significant differences were also

found in the MCI vs. HE comparison for the N1 and M1 tasks. No differences

were found in ERP cluster analysis for the AD vs. MCI comparison.360

Observing Table 4, it is interesting to note that, differently from AD pa-

tients, who present significant differences in the ERP both in the 0-back and

the 1-back tasks, MCI patients, having less cognitive impairment than the AD

subjects, have shown differences only for the 1-back tasks, which are more de-

manding since they have a higher level of memory load. Finally, no differences365

were found when participants were performing the 2-back tasks, probably be-

cause the memory load was so high that even the HE controls had difficulty to
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properly perform the tasks.

Figure 4(a) shows the grand average ERP at parietal electrode P4 repre-

sentative of all subjects during execution of the 0-back non-match task; the370

post-stimulus time interval where ERP of HE controls is significantly higher

than AD patients is highlighted in yellow. Similarly, in Fig. 4(b) one can see

that at the same electrode there is also a significant difference between HE and

MCI individuals, but now only when participants were performing the 1-back

non-match task.375

ERD/ERS Analysis

Herein we show the frequency sub-bands, time intervals and scalp locations

where significant group differences were found in the ERD/ERS analysis. Ta-

ble 5 reports the results obtained in cluster analysis (post-hoc comparisons) for

the “match” trials when participants performed the three N-back tasks. As can380

be seen in the table, the first level of memory load (0-back) elicited significant

differences between the HE and MCI groups in the high-frequency gamma band.

On the contrary, significant differences between HE and AD groups were shown

in lower frequency bands (theta and delta) and for more demanding WM tasks

(i.e., N=1 and 2).385

Table 6, on the other hand, presents findings related to the “non-match” tri-

als. As observed, MCI and AD groups showed significant (post-hoc) differences

in the 0-back task. HE and MCI, in turn, showed significant differences across

frequency bands (delta, alpha, beta) and across all three WM task levels. On

the other hand, the HE and AD groups did not show any significant differences390

under the non-match scenario.

Figure 5 depicts a representative grand average (from all participants) ERS/ERD

pattern of the high-frequency sub-band gamma at the right temporal-parietal

location TP8, where significant ERD% differences (highlighted in yellow) were

observed for the HE vs. MCI post-hoc comparison with subjects performing the395

0-back match task. Figure 6, in turn, shows differences between MCI and AD

groups on the low-frequency band theta at the left hemisphere (electrode T3),
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when participants were performing the 0-back non-match task.

Discussion

To the best of our knowledge, this is the second study combining ERP400

(in-phase evoked) and ERS/ERD (synchronized induced) responses to work-

ing memory tasks for both Alzheimer’s and Mild Cognitive Impairment inves-

tigation, thus builds on the cross-sectional and longitudinal study performed

by Missonnier et al. in 2007 [31]. Other research on the topic was done ei-

ther with ERP alone [82, 30, 32] or only with ERS/ERD [83, 84]. Our first405

finding herein was that behavioural measures were not sufficient to discrimi-

nate groups, with reaction times separating only AD from HE and accuracy

in the match/mismatch choice capable of distinguish both patient groups from

controls, but unable to tell MCI apart from AD.

Regarding our results on in-phase evoked electrophysiological responses, they410

revealed that ERPs where able to differentiate patients (MCI and AD) from

controls at latencies between 450 and 550 ms, with both patient groups showing

reduced amplitude of the P450 component (Table 4 and Fig. 4). This is

consistent with previous literature findings reporting alterations of the P450

wave on visual tasks related to working memory update [85, 86]. Although the415

P450 component is somehow different from the P300 component, since the latter

is elicited in the context of an oddball task and the former in working memory

tasks, some researchers did not formally differentiate them both [82]. Given

that, since higher P300 amplitude has been always interpreted in literature

[18, 21] as the subject having more attentional resources devoted to the task, our420

finding corroborates such interpretation because it means that patients (MCI

and AD) present less attentional skills than healthy controls, as expected.

In a recent study (2016), Zunini et al. [82] used EEG recorded during visual

N-back tasks to compare MCI patients to healthy older adults. Their ERP anal-

ysis revealed lower P450 (they called it P300) amplitudes in MCI for all theee425

N-back conditions (N = 0, 1, 2), a result quite similar to ours, with the difference
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that theirs was a two-group study, as they did not evaluate AD patients.

Proceeding to synchronized induced responses, our findings in delta band

showed AD patients during execution of 2-back match trials with more ERD

(more negative ERS) than HE controls at temporal and temporal-parietal elec-430

trodes. The same effect was observed at parietal and centro-parietal electrodes

in the HE vs. MCI comparison (HE with more ERD than MCI). These results

cannot be directly compared with previous literature, since most studies in this

band used ERO instead of ERD and observed reduced delta ERO in both MCI

and AD groups when compared to HE, with participants performing simple vi-435

sual or auditory oddball tasks instead of working memory tasks [48, 49, 51, 50].

In our experiment we have found significant differences in theta band ERD/ERS

patterns (match condition, Table 5) between HE and AD, but no differences were

found on this band for the HE vs. MCI comparison. Similar to what happened

in the case of delta band, these results cannot be directly compared with some440

important findings of previous literature because several studies on theta band

used ERO instead of ERD [52, 54, 53]. Notwithstanding, in a relatively recent

study, ERS analysis during an attention/prediction task has shown decreased

theta ERS in the MCI group relative to controls [87]. Missonnier et al. (2007)

obtained similar results with N-back tasks, where significant lowering of theta445

ERS for progressive MCI patients relative to stable MCI was found [31]. As

such, we hypothesize that our study did not find any significant differences in

the HE vs. MCI comparison on theta band probably because the MCI patients

were likely stable. Since we did not monitor the cognitive decline of our MCI

patients, we are not able at this time to validate this hypothesis. However, there450

is an important finding of our study that helps to corroborate this: we find sig-

nificant differences between MCI and AD patients only on that very theta band,

when participants were performing the 0-back non-match task (Table 6). The

reasoning goes as follows: as we did not find any difference between HE and

MCI patients on theta band like previous studies [87, 31] did, but on the other455

hand found significant differences in the MCI vs. AD comparison on the same

band, it seems that our MCI participants were closer to the HE than to the
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AD group, thus unlikely to progress to AD in a short period of time, therefore

they were probably stable MCI patients. Nevertheless, as we were not able to

monitor the cognitive decline of the MCI patients include in this study, perhaps460

this effect was observed simply because it was a mixed group of MCI patients,

some of which will remain stable and some that will progress, thus masking the

effect due to heterogeneity within the group.

It has been extensively shown in the literature that alpha band rhythm

presents desynchronization (ERD) over broad scalp regions in judgement and465

memory tasks [88, 89, 90, 91] performed by healthy individuals. More specifi-

cally, a previous study by Krause et al. [92] suggested that long-lasting desyn-

chronization could be observed in the low alpha bands (i.e., 6-10 Hz) during a

2-back task. In a previously mentioned study, Missonnier et al. [31] observed

the effectiveness of beta-band ERD resultant from the visual 2-back task to dis-470

criminate progressive MCI from stable MCI. The ERD (negative ERS) values

we observed on alpha band when HE and MCI participants were performing the

1-back match task (Table 5) corroborate such findings. Furthermore, it has also

been previously reported that an increase in task complexity and/or attention

results in greater ERD (more negative) magnitudes on high-frequency bands475

(alpha and beta) [93, 94], an effect also observed in this study, but only for the

match tasks and just for the alpha band, with gamma band showing an opposite

result (ERS instead of ERD) for HE in the match condition (Table 5).

Surprisingly, in the non-match condition, we observed that MCI patients

presented greater alpha ERD than HE controls, who in fact presented ERS480

(Table 6), at frontal and fronto-parietal scalp locations, which was just the

opposite of what we have found in the match trials, where HE have more ERD

than MCI at frontal, central and occipital electrodes (Table 5). Such opposite

findings could be due to the fact that, based on our behavioural results (Table

2), the non-match condition seems to be a bit easier than the match condition,485

since HE participants had better performance (accuracy) in the former one.

Since a previous study [92] found long-lasting alpha ERD in a high-demanding

memory task (2-back task), it is just consistent that a least demanding task (the
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non-match condition, in our case) would present ERS instead of ERD. However,

this somehow unexpected result in the 2-back non-match trials (MCI with more490

alpha ERD than HE) was similar to the findings of Babiloni et al., who showed

that AD and vascular dementia (VaD) patients have stronger alpha ERD peak

when compared to healthy elderly [55].

Interestingly, in the match condition (Table 5), several significant differences

were found in the HE vs. MCI and in the HE vs. AD post-hoc comparisons, but495

none were found between the AD and MCI groups. Such findings suggest that

ERD/ERS during N-back match tasks could potentially be used for early MCI

diagnosis or for improved AD diagnosis, but not for differentiating MCI from

AD. Similar findings have been obtained with an auditory-verbal Sternberg

memory task [95], where significant alpha ERD/ERS differences were found500

between the control and MCI groups during the encoding phase and between

the control and AD groups during retrieval [38].

In beta band we found differences between HE and MCI only in the non-

match condition (0-back task), with patients presenting ERD and controls show-

ing ERS at temporal and temporal-parietal electrodes (Table 6). As for gamma,505

exactly the same result was observed (HE with ERS and MCI with ERD) for the

same 0-back task and at the same scalp locations, but now just for the match

trials. Comparing our results to previous literature, in a three-group (HE, MCI

and AD) study somehow similar to ours and also using working memory tasks,

Kurimoto et al. [57] found AD patients with reduced beta ERD in the right510

central area compared to HE, and reduced gamma ERD in the left prefrontal

and medial parietal cortex compared to MCI during during execution of a mod-

ified version of the Sternberg’s memory recognition task [95]. These results in

beta and gamma bands are quite different from ours, perhaps because herein we

used N-back tasks instead of Sternberg’s task and calculated ERS/ERD accord-515

ing to Pfurtscheller’s methodology [39], which completely removed the in-phase

evoked responses.

Finally, since we have recently published an ERS/ERD study [20] using the

same database we used in this paper, but without removing the in-phase evoked
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response as we did herein, we must now compare the findings of both studies.520

The first remarkable difference between the results of that publication [20] and

the findings of this one is we did not find any significant difference between

patients (MCI and AD) and controls (HE) in the low-frequency delta and theta

bands in our previous investigation. Just the opposite, in this study we got

plenty of differences in delta for the MCI vs. HE comparison and in theta the525

MCI vs. AD comparisons in the non-match condition (Table 6). Also, several

differences between HE controls and AD patients in both bands were found

in the match trials (Table 5). Such mismatch between the studies results can

only be explained by the fact that the in-phase evoked response, which was

not removed in our previous study [20], has somehow masked the differences530

between groups in these low-frequency bands.

Regarding the high-frequency alpha, beta and gamma bands, in our 2017

paper [20] we found alpha ERD differences between patients and controls (HE

ERD > MCI and AD ERD) in just a few electrodes and only when partici-

pants were performing the 2-back match task, while herein we found similar535

differences (HE ERD > MCI ERD) in the match condition at much more scalp

locations. However, as mentioned above, in this study we found and opposite

result (HE ERD < MCI ERD) in the non-match trials, an effect that can only be

explained (again) by the different methodologies we used to calculate ERS/ERD

responses. An opposite result was also observed in the beta band: in our previ-540

ous ERS/ERD study [20] we had HE ERD > MCI ERD in the 0-back non-match

task, while herein we have HE ERD < MCI ERD exactly in the same condition.

Lastly, in this study we got ERS/ERD gamma differences between HE and MCI

(HE ERD < MCI ERD) in just a few temporal and temporal-parietal electrodes

and only in the match trials, while in our previous study [20] we got plenty of545

gamma differences both in the match as well as in the non-match condition. In

this case, however, the findings of both studies pointed in the same direction,

with HE controls presenting less gamma ERD than patients.

A limitation of our study is that, since we did not evaluate patients suffering

from other types of dementia, we cannot comment on whether these findings550
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would differentiate AD/MCI from other causes of cognitive impairment. An-

other limitation comes from the fact our sample was small, so tests over larger

databases would be useful to further validate our results. In summary, our

main findings were: 1) behavioral measures (reaction time and accuracy on

match/mismatch judgement) were not enough to fully differentiate the three555

groups, since no differences were found in the MCI vs. AD comparison; 2) ERP

analysis, while important because it corroborated the recent (2016) research re-

sult [82] of P450 reduction for MCI (and AD too, in our study), also did not find

any difference between MCI and AD patients; 3) ERS/ERD analysis was the

most valuable because it showed significant differences in all three group com-560

parisons (HE vs. MCI, HE vs. AD and MCI vs. AD). The distinction between

MCI and HE our ERS/ERD analyses have provided means that responses to a

working memory (N-back) task could be useful for early MCI diagnosis. On the

other hand, the differentiation the same analyses provided between MCI and AD

will probably also help for assessing the likelihood of MCI progression to AD,565

after such differences were further validated by a longitudinal study. Finally,

in order to verify the true discriminating power of the ERP and ERS/ERD

features derived herein, it would be interesting to employ such features to train

an automatic three-class (HE, MCI and AD) classifier (using machine learning

techniques) and evaluate the results in terms of sensibility and specificity for570

MCI and AD early diagnosis.
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M. Laine, H. Hämäläinen, The effects of memory load on event-related

EEG desynchronization and synchronization, Clin Neurophysiol 111 (11)

(2000) 2071–8.975

[93] F. Boiten, J. Sergeant, R. Geuze, Event-related desynchronization: the

effects of energetic and computational demands, Electroencephalogr Clin

Neurophysiol 82 (4) (1992) 302–9.

[94] K. Dujardin, P. Derambure, L. Defebvre, J. L. Bourriez, J. M. Jacquesson,

J. D. Guieu, Evaluation of event-related desynchronization (ERD) during a980

recognition task: effect of attention, Electroencephalogr Clin Neurophysiol

86 (5) (1993) 353–6.

[95] S. Sternberg, High-speed scanning in human memory, Science 153 (3736)

(1966) 652–4.

Tables and Figures985

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 1: Group (HE, MCI and AD) mean and standard error estimates of demographic

data (age and years of education) from subjects participating in the study. The number of

participants and their gender distribution are displayed in the first and second rows.

Group HE MCI AD

No. Particip. 27 21 15

No. Female 16 10 5

Age 77.6±1.0 79.9±1.1 79.7±1.3

Education 14.9±0.7 13.8±0.8 14.1±1.0

Table 2: Group (HE, MCI and AD) mean and standard error estimates of behavioural results

(reaction time in ms and accuracy in % correct responses) from participants performing the

match and non-match N-back (N = 0, 1, 2) tasks.

Measure Reaction time (ms) Correct responses (%)

Group HE MCI AD HE MCI AD

0-back match 487.4±13.7 499.5±15.5 491.6±17.7 96.5±3.0 94.8±3.4 79.7±3.9

1-back match 539.7±21.4 601.4±24.3 638.7±28.8 90.7±2.3 82.9±2.6 76.5±3.1

2-back match 720.4±38.1 756.9±43.4 797.8±48.6 76.5±3.4 65.9±3.9 60.7±4.4

0-back non-match 497.7±13.9 504.9±15.8 515.5±18.1 95.3±1.2 94.4±1.4 94.2±1.6

1-back non-match 580.5±26.3 667.0±29.8 690.9±35.3 95.5±2.1 88.5±2.4 83.2±2.9

2-back non-match 737.4±36.9 787.4±42.1 846.3±47.1 80.1±3.7 68.7±4.2 49.1±4.8
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Table 3: Pairwise group comparison (p-values after Bonferroni correction) of behavioural

performance (reaction time and accuracy) of participants performing the match and non-

match N-back (N = 0, 1, 2) tasks. Only comparisons with significant differences (p < 0.05)

are shown.

Measure Reaction time (ms) Correct responses (%)

Task ADxHE p ADxMCI p ADxHE p ADxMCI p

0-back match — — 0.00356 0.01542

1-back match 0.02320 — 0.00138 —

2-back match — — 0.01765 —

0-back non-match — — — —

1-back non-match 0.04451 — 0.00324 —

2-back non-match — — 0.00001 0.00982

Figure 1: Illustration of N-back (N = 0, 1, 2) task execution for the case N = 1, where the

participant should press the left button after the two match trials (digits 5 and 7) and the

right button after the four non-match trials (digits 5, 7, 4 and 8)
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Table 4: Mean group (HE, MCI and AD) potentials (µV ), time intervals (ms) and electrode

locations where significant ERP differences in post-hoc group comparisons (cluster analy-

sis) were found during execution of of N-back tasks for match (M#) and Non-match (N#)

conditions after cluster correction, where # is the WM load level of the task.

Task Interval (ms) Electrode HE MCI AD

M1 824-920 P3 -0.69 0.19

816-920 Pz -0.85 0.21

864-896 P4 -0.49 0.43

824-864 P3 -0.79 0.01

816-888 Pz -0.85 0.04

816-848 P4 -0.48 0.30

N0 472-496 C4 0.99 0.34

464-552 CPz 1.70 0.51

448-560 CP4 1.16 0.28

480-544 P3 0.96 0.12

440-552 Pz 1.39 0.22

456-544 P4 1.09 0.13

N1 504-600 C4 0.40 -0.28

496-592 CPz 1.00 0.17

496-624 CP4 0.58 -0.37

496-600 Pz 0.81 -0.03

472-576 P4 0.59 -0.31

480-584 CPz 0.95 0.24

512-576 CP4 0.72 0.15

488-536 P3 0.59 -0.01

488-544 Pz 0.88 0.07

488-576 P4 0.61 0.01
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Table 5: Frequency sub-bands, time intervals and electrode locations where we found ERS%

differences (negative percentages indicate ERD) in the post-hoc group comparisons for

“match” trials when participants were performing the 0,1,2-back tasks.

Task Sub-band Interval (ms) Electrode HE ERS% MCI ERS% AD ERS%

0-back Gamma 560-616 T3 13.46 -6.15

528-584 TP7 9.90 -4.81

456-576 TP8 7.29 -9.13

520-576 T5 12.62 -5.96

456-560 T6 9.65 -8.35

1-back Theta 336-640 CP4 -42.06 -23.73

120-616 T5 -48.75 -25.75

176-480 P3 -46.69 -27.79

336-376 P4 -40.38 -26.22

384-432 T6 -45.75 -29.25

160-424 O1 -46.89 -26.79

Alpha 848-992 Fz -56.07 -36.78

784-992 F4 -52.52 -31.03

808-992 C3 -54.79 -38.74

784-992 Cz -49.68 -23.61

832-992 C4 -52.41 -36.45

776-992 O1 -61.10 -36.28

800-992 O2 -62.53 -38.19

2-back Delta 72-184 T3 -71.39 -54.27

40-200 TP7 -71.56 -53.05

152-232 TP8 -76.09 -65.02

32-240 T5 -71.83 -59.28

80-240 T6 -71.24 -57.96
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Table 6: Frequency bands, time intervals and scalp locations where significant differences were

observed between groups in cluster analysis for the non-match condition, when participants

were performing the three-level N-back task.

Task Sub-band Interval (ms) Electrode HE ERS% MCI ERS% AD ERS%

0-back Theta 112-448 FT7 -44.29 -26.96

344-592 FT8 -48.80 -33.93

136-480 T3 -43.05 -23.98

136-424 T5 -46.72 -30.21

Beta 176-592 FT8 5.35 -8.52

312-400 T3 3.50 -10.73

432-496 TP7 3.05 -9.66

440-736 TP8 2.44 -12.81

344-376 T5 3.55 -8.67

448-528 T6 -0.45 -16.97

1-back Delta 448-992 CP3 -63.67 -51.68

536-592 CPz -56.79 -45.89

528-544 CP4 -54.57 -42.32

240-992 P3 -64.18 -48.49

272-304 Pz -68.98 -61.73

2-back Alpha 288-536 FP1 17.83 -8.89

280-536 FPz 20.29 -12.03

304-528 FP2 15.98 -13.75

168-472 F7 18.50 -6.88

240-360 F3 16.34 -3.90

232-480 Fz 17.34 -6.64

288-416 F4 10.04 -10.07
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Figure 2: Average reaction times (in ms, with error bars) in match/non-match discrimina-

tion for each group (HE, MCI and AD) and N-back (N = 0, 1, 2) task. Post-hoc multiple-

comparisons where significant differences were found are marked with an asterisk.

Figure 3: Average accuracy (in %, with error bars) in match/non-match discrimination for

each group (HE, MCI and AD) and N-back (N = 0, 1, 2) task. Post-hoc multiple-comparisons

where significant differences were found are marked with an asterisk.
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Figure 4: Grand average ERP at electrode P4. Intervals where significant ERD% differences

are seen are highlighted in yellow and correspond to the HE vs. AD comparison (a) during

execution of 0-back non-match task and to the HE vs. MCI comparison (b) during execution

of 1-back non-match task. 44
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Figure 5: Grand average ERS/ERD patterns on frequency band gamma at electrode TP8.

Intervals where significant ERS% differences were found are highlighted in yellow and corre-

spond to the HE vs. MCI comparison during execution of 0-back match task.
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Figure 6: Grand average of ERS/ERD response on sub-band theta at left temporal scalp

location T3. Intervals with ERS% differences between MCI and AD patients are highlighted

in yellow and relate to the 0-back non-match task.
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