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Abstract: In this note we provide a simple approximation theory moti-
vation for the circular kernel density estimation and further explore the
usefulness of the wrapped Cauchy kernel in this context. It is seen that
the wrapped Cauchy kernel appears as a natural candidate in connection
to orthogonal series density estimation on a unit circle. This adds fur-
ther weight to the considerable role of the wrapped Cauchy in circular
statistics.
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1. Introduction

Consider an absolutely continuous (with respect to the Lebesgue measure)
circular density f(0),0 € [—m,x], i.e f(6) is 2r—periodic,

FO)>0for6cRand [ F(6)d0 = 1. (1.1)

In the literature on modeling circular data, starting from the classical text
of Mardia (1972), there appear many standard texts such as Fisher (1993),
Jammalamadaka and SenGupta (2001) and Mardia and Jupp (1972) that
cover parametric models along with many inference problems. More recently
various alternatives to these classical parametric models, exhibiting asymme-
try and multimodality have been investigated with respect to their mathe-
matical properties and goodness of fit to some real data; see Abe and Pewsey
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(2011), Jones and Pewsey (2012)), Kato and Jones (2015), Kato and Jones
(2010), Minh and Farnum (2003) and Shimizu and lida (2002).

In cases where multimodal andor asymmetric models may be appropriate,
semiparametricr or nonparametric modelling may be considered more appro-
priate. Ferndndez-Durdn (2004) and Mooney et al. (2003) considered semi-
parametric analysis based on mixture of circular normal and von Mises dis-
tributions and Hall et al. (1987), Bai et al. (1988), Fisher (1989), Taylor
(2008) and Klemeld (2000) have considered nonparametric approaches.

Given a random sample (6q,....0y5) from the density (1.1), the circular
kernel density estimator is given by

F(O:h) = %Zkh(e) 9, (1.2)

where k(0 — ¢) is a circular kernel density function that is concentrated
around ¢ as h — hg for some known hy. As motivated in Taylor (2008), a
natural choice for the kernel function is one of the commonly used circular
probability densities, such as the wrapped normal distribution, or the von
Mises distribution. Taylor (2008) investigated the use of von Mises kernel,
in which case the density estimator is given by

Foaul®:) = S > el -5,) (13)

where Iy(v) is the Bessel function of order r and v is the concentration pa-
rameter. Di Marzio et al. (2009) considered the use of circular kernels to
circular regression while extending the use of von Mises kernels to more gen-
eral circular kernels. In the present note I demonstrate that the wrapped
Cauchy kernel presents itself as the kernel of choice by considering an esti-
mation problem on the unit circle. We also show that this approach leads to
orthogonal series density estimation, however no truncation of the series is re-
quired. It may be noted that the wrapped Cauchy distribution with location
parameter i and concentration parameter p is given by

1 1—p?
2 14 p? — 2pcos( — p)

fwel 0 1, p) = ,—T <0<, (1.4)

that becomes degenerate at 6 = p as p — 1. The estimator of f(#) based on
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the above kernel is given by

N
fiee0: ) = 5 D fuwc(6:65.) (1.5
j=1

In Section 2, we provide a simple approximation theory argument behind
the nonparametric density estimator of the type introduced in (1.2) and (1.3).
In Section 3, first we present some basic results from the literature on or-
thogonal polynomials on the unit circle and then introduce the strategy of
estimating f(0) by estimating an expectation of a specific complex function,
that in turn produces the non-parametric circular kernel density estimator
in (1.5). The next section shows that the circular kernel density estimator is
equivalent to the orthogonal series estimation in a limiting sense. This equiv-
alence establishes a kind of qualitative superiority of the kernel estimator
over the orthogonal series estimator that requires the series to be truncated,
however the kernel estimator does not have such a restriction.

2. Motivation for the Circular Kernel Density Estimator

The starting point of the nonparametric density estimation is the theorem
given below from approximation theory (see Mhaskar and Pai (2000)). Be-
fore giving the theorem we will need the following definition:

Definition 2.1. Let { K, } C C* where C* denotes the set of periodic analytic
functions with a period 2w. We say that {K,} is an approximate identity if

A K,0)>0V0¢e|-n,mn]
B. % f:r K,(0) =1,
C. limy, o maxg>s K, (0) = 0 for every 6 > 0.

The definition above is motivated from the following theorem which is simi-
lar to the one used in the theory of linear kernel estimation (see Prakasa Rao
(1983)).

Theorem 2.1. Let f € C*, {K,} be approzimate identity and forn = 1,2, ...

set
1 v

5O = 5= [ $Kaln—0)dn, (21)
Then we have
Tim - sup | f*(x) = f(x)] = 0. (2.2)

z€[—m,7]
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Note that taking the sequence of concentration coefficients p = p, such
that p, — 1, the density function of the Wrapped Cauchy will satisfy the
conditions in the definition in place of 27 K,,. The integral in the above the-
orem. In general 27 K,, may be replaced by a sequence of periodic densities
on [—m,m], that converge to to a degenerate distribution at 6 = 0.

For a given random sample of 6, ...,0y from the circular density f, the
Monte-Carlo estimate of f* is given by

FO) = e S Kt~ ), 2.3

the suffix n for the kernel K may be a function of the sample size N. The
kernel given by the wrapped Cauchy density satisfies the assumptions in the
above theorem that provides the estimator proposed in (1.5).

3. Some Preliminary Results from Complex Analysis

Let D be the open unit disk, {z | |z| < 1}, in Z and let x be a continuous
measure defined on the boundary 0D, i.e. the circle {z | |z| = 1}. The point
z € D will be represented by z = re® for r € [0,1),0 € [0,27) and i = v/—1.
A standard result in complex analysis involves the Poisson representation
that involves the real and complex Poisson kernels that are defined as

P60, 0) = Lo (3.1)
A 1472 —2rcos( — ) '
for 0, € [0,27) and r € [0,1) and by
w2z
C = 3.2
(z,w) = —— (3.2)

for w € 9D and z € D. The connection between these kernels is given by the
fact that o
P(6,¢) = Re O(re”, %) = (2m)fwe(6; ¢, p). (3.3)

~ The Poisson representation says that if g is analytic in a neighborhood of
D with ¢(0) real, then for z € D,

o= [ (52 ) Reto(e (3.4)

el —z 2m
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(see (Simon , 2005, p. 27)). This representation leads to the result (see (ii)
in §5 of Simon (2005)) that for Lebesgue a.e. 6,

lim F(re?) = F(e) (3.5)

11
exists and if dy = w(@)% + dus with dug singular, then

w(f) = ReF(e?), (3.6)

F(z) = / (;fzfj) du(0). (3.7)

Our strategy for smooth estimation is the fact that for dus = 0 we have

where

f0) = lhm Re F(re?), (3.8)

21 1

/ (ele - Z) 0)do. (3.9)

We define the estimator of f(6) motivated by considering an estimator of
F(z), the identity (3.6) and (3.8), i.e

where

~ 1 .
f-(0) = —Re FN(rew) (3.10)
2
where N
: 1 e 4 ret?
0\

where r has to be chosen appropriately. Recognize that

Z (z,w;), (3.12)

where w; = €% then using (3.4), we have

N
Re Fy(re Z (3.13)
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and therefore

fr(0) = QQ)NZ P,(0

=1

.

N
> fwel(0;0;,7) (3.14)

J=1

ZIH

that is of the same form as in (1.5).

4. Orthogonal Series Estimation

We get the orthogonal expansion of F'(z) with respect to the basis {1, z, 22, ...}
as

(2) =142 icnz” (4.1)

Cp = /e_mef(Q)dH

is the 7' trigonometric moment. The series is truncated at some term N* so
that the the error is negligible. However, we show below that estimating the
trigonometric moment ¢,,n = 1,2, ... as

1 N
&, = NZ znﬁ

where
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the estimator of F(z) is the same as given in the previous section. This can
be shown by writing

N 00
% 2 —inbj ,n
F(z) = 1+NZ{Ze 2"}
j=1 n=1
N 00

2 nb;
= NZ{Z }w]—e

j=1 n=1
N z
= 1
N Z<1_w1)
1
1 (I}jZ
- (5_'_1—(:))2)
7j=1
1+(I)j2’
1—@3‘2’
1

C(z,wj),

21\3

I
2]
] =

WE

1
N <

<.
Il

I
==

<
I
—_

which is the same as Fiy(z) given in (3.12). This ensures that the orthogonal
series estimator of the density coincides with the circular kernel estimator.

The determination of the smoothing constant may be handled based on
the cross validation method outlined in Taylor (2008).

Remark: Note that the simplification used in the above formulae does not
work for r = 1. Even though, the limiting form of (4.1) is used to define an
orthogonal series estimator as given by

N n*
fs(0) = % + % D) cosn(0 - 6;), (4.2)

where n* is chosen according to some criterion, for example to minimize the
integrated squared error. Thus the above discussion presents two contrasting
situations: in one we have to determine the number of terms in the series and
in the other number of terms in the series is allowed to be infinite, however,

we choose to evaluate Re F'(re') for some r close to 1 as an approximation
to Re F(e').
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