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ABSTRACT. Parrondo’s paradox appears in game theory which asserts that playing two losing games, A and

B (say) randomly or periodically may result in a winning expectation. In the original paradox the strategy of

game B was capital-dependent. Some extended versions of the original Parrondo’s game as history dependent

game, cooperative Parrondo’s game and others have been introduced. In all of these methods, games are

played by two players. In this paper, we introduce a generalized version of this paradox by considering three

players. In our extension, two games are played among three players by throwing a three-sided dice. Each

player will be in one of three places in the game. We set up the conditions for parameters under which player

one is in the third place in two games A and B. Then paradoxical property is obtained by combining these

two games periodically and chaotically and (s)he will be in the first place when (s)he plays the games in one

of the mentioned fashions. Mathematical analysis of the generalized strategy is presented and the results are

also justified by computer simulations.
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1 Introduction

Ajdari and Prost [1] introduced a Brownian ratchet, which was named as the flashing ratchet by Astumian and

Bier [5]. They showed that by switching the potential on and off alternately, a Brownian particle in a periodic

potential has a net drift in a given direction [5]. In fact in each case of the switch on or switch off, the particle

does not move systematically but by combining these actions, directed motion is resulted. The mechanism of

flashing ratchet system has been shown in Fig. 1 [24]. There are two states of potential, Uo f f and Uon which

are flat and sawtooth, respectively. Particles in the potentials tend to move to the direction with minimum

energy. When the potential Uon is applied, particles will concentrate around one of the potential valleys. On

the other hand when the potential is flashed off, particles will move freely and a Gaussian distribution for

the movement of particles will explain the movement around the minima as shown in Fig. 1 [24]. When the

potential is flashed on, some particles will move to the right of αL with probability Pf wd and some particles

will move to the left of−(1−α)L with probability Pbck. In fact, asymmetry of the sawtooth potential leads to

directed movement of particles. This asymmetry depends on the value of α where 0≤ α ≤ 1. When α > 1/2

then Pf wd > Pbck and this leads to the movement of particles to the right. Flashing ratchet system will still

work if there is gradient [5],[24].

In Parrondo’s paradox, playing two losing games in a random or periodic strategy leads to a winning game.

The original game was introduced by Parrondo [37], as a discrete-time version of flashing Brownian ratchet.

It was resulted from discretization of the Fokker-Planck equation [3]. It has been applied to several fields such

as economics [43], physical quantum systems [20], [40], [30],[22], [39], population genetics [42], [46], [31],

reliability theory [16], controlling chaos [2],[6], [14], [15], [13], spin systems [34], [17], chaotic dynamical

systems [4], noise induced synchronization [28]. Meyer and Blumer model the Parrondo’s games by prob-

abilistic lattice gas automata [32]. Buceta, Lindenberg and Parrondo used Parrondo’ paradox to introduce

a new system for pattern formation [7]. Lee and Johnson [29] showed that random switching has a useful

role for implementing quantum algorithms. Challet and Johnson [8] showed that perfect or near-perfect de-

vices can be obtained by combination of many imperfect objects. New Parrondo games are introduced using

discrete-time quantum walk on a line by Chandrashekar and Banerjee [9].

Pinsky and Schuetzow [41] showed that combining two transient diffusion processes randomly, will

result in a positive recurrent process and this can be considered as a continuous-time version of original Par-

rondo’s paradox. Key [27] produced an increasing branching process by combining two decreasing branching

processes. There are some speculation about the application of Parrondo’s paradox to biology [24]. However,

Fotoohinasab et al. [21] applied the paradox to model denoising of genetic switches. They showed that the

robustness of genetic switches to noise can be increased by combining the noisy switches.

As mentioned earlier, in Parrondo’s paradox two losing games can be combined in a manner which results in

a winning game. The combined rule is obtained by switching between two games periodically or randomly.
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Figure 1: Brownian ratchet system.(Reprinted from[24] with permission)

Every time a coin is tossed, time increases by one unit and the capital increases or decreases by one. For

game A there is a probability of winning p. The probability of winning in game B depends on the present

capital X(t), if it is a multiple of M, the probability of winning will be p1, if it is not the probability of

winning will be p2. It is obvious that the game A is a losing game, when p < 0.5. According to [24], game

B is a losing game when the inequality (1− p1)(1− p2)
M−1 > p1 pM−1

2 holds, and when we combine the

two games randomly, a winning game will be obtained if the inequality (1− p′1)(1− p′2)
M−1 < p′1(p′2)

M−1

holds, where p′1 = γ p+(1− γ)p1 and p′2 = γ p+(1− γ)p2. In fact each time game A is played with prob-

ability γ and game B is played with probability 1− γ , where 0 < γ < 1. Game B is a fair game, when

(1− p1)(1− p2)
M−1 = p1 pM−1

2 holds [24]. One solution of this equation is p1 = 1/10 and p2 = 3/4, when

M = 3. So according to the original Parrondo’s game for the choice, M = 3, p = 1/2− ε , p1 = 1/10− ε and

p2 = 3/4− ε and 0 < ε < 0.1, both the games are loosing games (the capital is a decreasing function of the

number of runs). However, the combined game with γ = 0.5 is a winning game for ε small enough[24]. It is

shown that combining two games periodically is also a winning game.

There are some similarities between Brownian ratchet and Prrondo’s paradox [23],[24],[25]. In the Brownian

ratchet, particles will move to a direction if the potential switches on and off. In Parrondo’s paradox one will

win the game if (s)he plays two loosing games alternately. Two states of Brownian ratchet are analogous to

two games in Parrondo’s game. Capital has the role of particles in Brownian ratchet and probabilities are

like the energy profile. When the potential is off, particles move to both directions with equal probability

and the condition is similar to the simple game A. Game B is analogous to the case when the potential is on.

Probabilities p1 and p2 in game B are similar to the parameter α in Brownian ratchet. Noise parameter, ε,
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is analogous to the gradient in a Brownian ratchet [23],[24],[25]. Table 1 shows these similarities [24]. One

of the properties of game B in the original Parrondo paradox is that it depends on a modulo rule based on

the capital of the player. This strategy is appropriate to explain the paradox in terms of energy level, but it is

not common for biological and biophysical processes [38]. Therefore several strategies have been presented

to extend the range of applications of the original paradox. In [38], capital dependent rule was replaced by

history dependent rule. In fact the outcome of each play depends on the winning or losing in the last two

runs.

Brownian ratchet Parrondo’s paradox
Electrostatic, Gravity Rules of games

Potential field gradient Parameter ε

Uon and Uo f f applied Games A and B played

Displacement x Capital or gain

Switching Uon and Uo f f Alternating games

Depends on α Branching of B to p1 and p2

Work done<energy in Total gain< gain with p2 alone

FokkerPlanck equation Discrete-time Markov chains

Table 1: Similarities between the Brownian ratchet and the Parrondo’s paradox. (Reprinted

from [24] with permission)

Another version of paradox is called cooperative Parrondo’s game [45]. In this version the game A is the

same as in the original paradox game, but game B is played by N number of players [45]. Mihailovic and

Rajkovic [33] in 2006 extended the cooperative Parrondo’s games on a two-dimensional lattice.

Cheong and Soo [10] analyzed the original paradox with different approach. They started with one process

and derived its complementary process. Some other extended Parrondo’s games are proposed in [12], [48],

[47], [49], [18].

In this paper, we introduce an extended version of Parrondo’s paradox by considering three players and

show that paradox could occur for three players. Here, we assume that there are three states for each player,

for example, player one can be in the first or the second or the third place. Paradox occurs when player one

is in the third place in two games A and B after long run, but (s)he will be in the first place when (s)he plays

the games alternatively.

In section two, our new strategies for game A and game B are introduced. The conditions of taking different

places by the players are obtained theoretically. We present ranges for parameters to obtain the desired condi-
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tions also, in this section. Section three presents the results of several computer simulations and conclusions

are given in section four.

2 A Generalized Model

In our model, two games are played among three players. So a three-sided dice is tossed in each run. Every

time a dice is thrown, time increases by one unit and the capital of each player increases by two units or

decreases by one. All three players have their own states at the end of each round, depending on the outcome

of the dice rolling. These states are namely; first, second and third. However, our strategy for game A is

modified as follows: we have three players in our model and call them as player 1, player 2 and player 3.

Consider a three-sided dice where the probabilities of rolling side 1, 2 and 3 are pA
1 , pA

2 and pA
3 , respectively.

Then the probabilities of taking the first place for each of the players at time t will be as follows:

• The probability of increasing the capital of player 1 by two will be pA
1 . If the outcome of dice rolling

is one, the capital of player 1 will be increased by two.

• The probability of increasing the capital of player 2 by two will be pA
2 . If the outcome of dice rolling

is two, the capital of player 2 will be increased by two.

• The probability of increasing the capital of player 3 by two will be pA
3 . If the outcome of dice rolling

is three, the capital of player 3 will be increased by two.

First, following [24] we obtain the conditions for which one can be in different places for the game A. Then

we derive the conditions under which the paradox happens.

Figure 2: Random walk on a triangle.
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As mentioned above, game A is a dice rolling or a random walk on a triangle in the plane (see Fig. 2).

Now assume for Game A,

p(dice rolling ends up with one) = pA
1 ,

p(dice rolling ends up with two) = pA
2 ,

p(dice rolling ends up with three) = pA
3 .

For game A, we assume that α1
j is the probability of the player 1’s capital reaches zero in a finite number of

plays, given that (s)he starts with a capital of j units. As in the case of player 1, we denote these values for

player 2 and player 3 by α2
j and α3

j respectively. Using Markov chain properties [26], we have the following

cases:

1) If α1
j = 1, α2

j = 1 and α3
j = 1 for all j ≥ 0, the game will be fair or the player 1 will be in the first

or the third places.

2) If α1
j < 1, α2

j = 1 and α3
j = 1 for all j > 0, the player 1 will be in the first place.

3) If α1
j < 1, α2

j < 1 and α3
j = 1 for all j > 0, the player 1 will not be in the third place.

4) If α1
j < 1, α2

j = 1 and α3
j < 1 for all j > 0, the player 1 will not be in the third place.

5) If α1
j = 1, α2

j < 1 and α3
j < 1 for all j > 0, the player 1 will be in the third place.

6) If α1
j = 1, α2

j = 1 and α3
j < 1 for all j > 0, the player 1 will not be in the first place.

7) If α1
j = 1, α2

j < 1 and α3
j = 1 for all j > 0, the player 1 will not be in the first place.

8) If α1
j < 1, α2

j < 1 and α3
j < 1 for all j > 0, the player 1 will be in the first place or will not be in the first

place.

The conditions for other two players are similar. For α1
j , we can write the following recursive formula:

α
1
j = pA

1 α
1
j+2 + pA

2 α
1
j−1 + pA

3 α
1
j−1, (2.1)

for j ≥ 0 with the initial condition α1
0 = 1.

The recursive equations for player 2 and player 3, similar to that for player 1 are:

α
2
j = pA

1 α
2
j−1 + pA

2 α
2
j+2 + pA

3 α
2
j−1,

α
3
j = pA

1 α
3
j−1 + pA

2 α
3
j−1 + pA

3 α
3
j+2,

for j ≥ 0 with the initial conditions α2
0 = 1 and α3

0 = 1.

The general solution of equation (2.1) with initial condition α1
0 = 1 is

α
1
j =C1((

−pA
1 +

√
(pA

1 )
2 +4pA

1 (pA
2 + pA

3 )

2pA
1

) j−1) +

C2((
−pA

1 −
√
(pA

1 )
2 +4pA

1 (pA
2 + pA

3 )

2pA
1

) j−1) + 1,
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in which C1 and C2 are constants. The solutions for the case of two other players, are analogous to this case.

Therefore we can conclude that game A is fair if

−pA
1 +

√
(pA

1 )
2 +4pA

1 (pA
2 + pA

3 )

2pA
1

= 1,

−pA
2 +

√
(pA

2 )
2 +4pA

2 (pA
1 + pA

3 )

2pA
2

= 1, =⇒ pA
1 = pA

2 = pA
3 = 1/3.

−pA
3 +

√
(pA

3 )
2 +4pA

3 (pA
1 + pA

2 )

2pA
3

= 1,

Now, we consider game B. The strategy of game B can be considered mathematically as follows:

p(dice rolling ends up with one|the capital of player1 is a multiple of 3) = pB
1,1.

p(dice rolling ends up with one|the capital of player1 is not a multiple of 3) = pB
2,1.

p(dice rolling ends up with two|the capital of player1 is a multiple of 3) = pB
1,2.

p(dice rolling ends up with two|the capital of player1 is not a multiple of 3) = pB
2,2.

p(dice rolling ends up with three|the capital of player1 is a multiple of 3) = pB
1,3.

p(dice rolling ends up with three|the capital of player1 is not a multiple of 3) = pB
2,3.

As in the case of the game A, for game B we assume that β 1
j is the probability of the capital of the player 1

reaches zero in a finite number of plays, given that (s)he starts with a capital of j units. We show these values

for player 2 and player 3 by β 2
j and β 3

j respectively. As for game A, using Markov chain theory we have:

1) If β 1
j = 1, β 2

j = 1 and β 3
j = 1 for all j ≥ 0, the game will be fair or the player 1 will be in the first or

the third places.

2) If β 1
j < 1, β 2

j = 1 and β 3
j = 1 for all j > 0, the player 1 will be in the first place.

3) If β 1
j < 1, β 2

j < 1 and β 3
j = 1 for all j > 0, the player 1 will not be in the third place.

4) If β 1
j < 1, β 2

j = 1 and β 3
j < 1 for all j > 0, the player 1 will not be in the third place.

5) If β 1
j = 1, β 2

j < 1 and β 3
j < 1 for all j > 0, the player 1 will be in the third place.

6) If β 1
j = 1, β 2

j = 1 and β 3
j < 1 for all j > 0, the player 1 will not be in the first place.

7) If β 1
j = 1, β 2

j < 1 and β 3
j = 1 for all j > 0, the player 1 will not be in the first place.

8) If β 1
j < 1, β 2

j < 1 and β 3
j < 1 for all j > 0, the player 1 will be in the first place or will not be in the first

place.

According to the definition of game B, β 1
j could be obtained from the following recursive formulas.

For i≥ 0 and jε{1,2} we have:

β
1
3i = pB

1,1β
1
3i+2 + pB

1,2β
1
3i−1 + pB

1,3β
1
3i−1,
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and

β
1
3i+ j = pB

2,1β
1
3i+ j+2 + pB

2,2β
1
3i+ j−1 + pB

2,3β
1
3i+ j−1,

for which we take the initial condition as β 1
0 = 1. We have similar recursive equations for β 2

j and β 3
j with

initial conditions β 2
0 = 1 and β 3

0 = 1. So with these initial conditions after some calculations we arrive at the

following solution:

β
1
3i+ j = D1i((−

(1− pB
2,1)

pB
2,1

− 1
2pB

1,1
−√√√√(

(1− pB
2,1)

pB
2,1

+
1

2pB
1,1

)2−
(1− pB

1,1)(1− pB
2,1)

2

pB
1,1(pB

2,1)
2 ) j−1)

+D2i((−
(1− pB

2,1)

pB
2,1

− 1
2pB

1,1
+√√√√(

(1− pB
2,1)

pB
2,1

+
1

2pB
1,1

)2−
(1− pB

1,1)(1− pB
2,1)

2

pB
1,1(pB

2,1)
2 ) j−1)+1,

in which D1i and D2i are constants. Using the above approach for player 2 and player 3, we arrive at the

following equations to get conditions for fairness in game B.

1+
(1− pB

2,1)

pB
2,1

+
1

2pB
1,1

=√√√√(
(1− pB

2,1)

pB
2,1

+
1

2pB
1,1

)2−
(1− pB

1,1)(1− pB
2,1)

2

pB
1,1(pB

2,1)
2 ,

1+
(1− pB

2,2)

pB
2,2

+
1

2pB
1,2

=√√√√(
(1− pB

2,2)

pB
2,2

+
1

2pB
1,2

)2−
(1− pB

1,2)(1− pB
2,2)

2

pB
1,2(pB

2,2)
2 ,

1+
(1− pB

2,3)

pB
2,3

+
1

2pB
1,3

=√√√√(
(1− pB

2,3)

pB
2,3

+
1

2pB
1,3

)2−
(1− pB

1,3)(1− pB
2,3)

2

pB
1,3(pB

2,3)
2 .

Thus game B will be fair in the following regions:

0 < pB
1,1 < 1, pB

2,1 =
1− pB

1,1

2
0 < pB

1,2 < 1− pB
1,1, pB

2,2 = 1− pB
1,1/2− pB

2,1− pB
1,2/2,

p1,3 = 1− pB
1,1− pB

1,2, pB
2,3 = 1− pB

2,1− pB
2,2. (2.2)
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As mentioned earlier, game A is fair when pA
1 = 1/3, pA

2 = 1/3 and pA
1 = 1/3, by considering positive noise

parameters ε1 and ε2 the probabilities could be written as pA
1 = 1/3−ε1, pA

2 = 1/3−ε2 and pA
3 = 1/3+ε1+ε2.

So the player 1 in game A will be in the third place after long run.

For game B, we consider the subset of the parameter space which leads to a fair game and denote it by:

FB = {pB
m,n,1≤ m,n≤ 3 : 0 < pB

1,1 < 1, pB
2,1 =

1− pB
1,1

2
,

0 < pB
1,2 < 1− pB

1,1, pB
2,2 = 1− pB

1,1/2− pB
2,1− pB

1,2/2,

pB
1,3 = 1− pB

1,1− pB
1,2, pB

2,3 = 1− pB
2,1− pB

2,2}.

As for game A we consider two noise parameters ε1 and ε2, so that the corresponding probabilities for game

B are as follows:

pB
1,1− ε1, pB

2,1− ε1, pB
1,2− ε2,

pB
2,2− ε2, pB

1,3 + ε1 + ε2, pB
2,3 + ε1 + ε2.

Hence, we have a subset of parameters which leads to a fair game and by considering positive noises ε1 and

ε2, we have a subset of games in which player 1 will be in the third place.

In the next section, we show that the paradox holds for certain parameters through computer simulations, that

is, for these parameters player 1 is in the third place in two games, but the player will ultimately be in the first

place when the games are combined periodically. Check the accuracy of the previous paragraph

3 Computer Simulation

We performed the following computer simulation for our generalized model, to investigate the results of

games A, B and the combined game. For game A the simulation was performed with ε1 = 0.005 and

ε2 = 0.001. Therefore the probabilities are pA
1 = 1/3− 0.005, pA

2 = 1/3− 0.001 and pA
3 = 1/3+ 0.006.

It is obvious that player 1 will ultimately be in the third place. This result is shown in Fig. 3. According to

this figure the capital of player 1 is decreasing so (s)he will ultimately go to the third place.

We simulated the fair game B, by choosing the parameters from the subset FB. Fig. 4 shows the conditions

for fairness for game B with probabilities pB
1,1 = 0.6, pB

2,1 = 0.2, pB
1,2 = 0.3, pB

2,2 = 0.35, pB
1,3 = 0.1 and

pB
2,3 = 0.45.

Noise parameters ε1 = 0.005 and ε2 = 0.001 are considered for game B, in which player 1 would be in

the third place. Fig. 5 shows that the capital of player 1 is decreasing in this case.

As shown by Fig. 3 and Fig. 5, player 1 would be in the third place in two games A and B, but by combining

these two games periodically this player will be in the first place (see Fig. 6). So, one can play two games

A and B in such an order as player 1 takes the first place after long run. If one plays twice B and once A
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Figure 3: Game A. The simulation of playing game A, 100 times.This game is played with

probabilities pA
1 = 1/3− ε1, pA

2 = 1/3− ε2 and pA
3 = 1/3+ ε1 + ε2 and noise parameters

are assumed to be ε1 = 0.005 and ε2 = 0.001. The capital of player 1 is decreasing so (s)he

will ultimately go to the third place.

Figure 4: Game B. Game B is played 100 times with probabilities pB
1,1 = 0.6, pB

2,1 = 0.2,

pB
1,2 = 0.3, pB

2,2 = 0.35, pB
1,3 = 0.1 and pB

2,3 = 0.45.

subsequently the paradoxical result will be obtained. The results of simulation are shown in Fig. 6. Now we

combine two games using a new strategy. Tang et al. [44] proposed a new strategy in switching from one

game to the another game based on various chaotic sequences. These numeric sequences are generated by

different chaotic systems that strongly depend on the initial conditions [44]. We implemented these series to

combine two new games A and B with three players. Some maps to generate chaotic time series sequences
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Figure 5: Simulation results for the unfair conditions in game B. Game B is played 100

times with probabilities pB
1,1 = 0.6− ε1, pB

2,1 = 0.2− ε1, pB
1,2 = 0.3− ε2, pB

2,2 = 0.35− ε2,

pB
1,3 = 0.1+ ε1 + ε2 and pB

2,3 = 0.45+ ε1 + ε2 . With noise parameters ε1 = 0.005 and

ε2 = 0.001. The capital of player 1 is decreasing so (s)he is in the third place.

Figure 6: Simulation results for the combined game. The simulation was performed by

switching between game A and game B. The simulation starts by playing game B, this

game is played twice and game A is played once, upto 100 runs. The capital of player 1 is

increasing so (s)he is in the first place.

are the Logistic map, the sinusoidal map, and the Tent map [44]. We apply them to combine two games in

this paper. The series are defined as:
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1) Logistic Map

xn+1 = axn(1− xn)

2) Sinusoidal Map

xn+1 = ax2
n sin(πxn)

3)Tent Map {
axn i f xn ≥ 0.5.

a(1− xn) otherwise

The coefficients of these chaotic generators determine their stability. It is shown that under the stable

regions, the systems behave periodically. According to Tang et al. [44] there are many ways to switch from

the game A to game B based on this strategy, but the easiest and the most used strategy is to compare each

value of a chaotic sequence with an appropriate constant γ.

As mentioned above, the chaotic sequence generators depend on the initial conditions so it is obvious that we

can find different solutions. Some simulations and results using these strategies are shown as follows. Player

1 in all of the following example is in the third place in two games but by combining two games (s)he will be

in the first place.

The paradox results for probabilities pB
1,1 = 0.9061, pB

2,1 = 0.0470, pB
1,2 = 0.0316, pB

2,2 = 0.4842, pB
1,3 =

0.0623 and pB
2,3 = 0.4689 and γ = 0.2, a = 4, x0 = 0.1 are shown in Fig. 7, in which we compare the results

of periodic runs by logistic map switching. Fig. 8 shows the result using periodic strategy [BBABBA...] and

Tent map strategy, for probabilities pB
1,1 = 0.7866, pB

2,1 = 0.1067, pB
1,2 = 0.0226, pB

2,2 = 0.4887, pB
1,3 = 0.1907

and pB
2,3 = 0.4046 and γ = 0.4, a = 1.9, x0 = 0.1. Using periodic strategy, better gain is produced for player

1 compared to the chaotic time series sequences case.

Fig. 9 shows the results using periodic strategy [BBABBA...] and Sinusoidal map strategy, for proba-

bilities pB
1,1 = 0.7207, pB

2,1 = 0.1397, pB
1,2 = 0.1231, pB

2,2 = 0.4384, pB
1,3 = 0.1562 and pB

2,3 = 0.4219 and

γ = 0.6, a = 2.3, x0 = 0.5.

4 Conclusions

In this paper, we have extended the original Parrondo’s paradox game by considering the games which are

played among the three players using three-sided dice. We have obtained analytical expressions for our

generalized model using discrete-time Markov chain theory and all conditions are investigated by solving

difference equations. We have shown that the paradox also occurs in this new extended model by switching

between two games periodically and chaotically. We have done comprehensive calculations and simulations
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Figure 7: Simulation result for the combined game using periodic strategy[BBABBA...]

(left) and logistic map switching (right). In the both cases the player 1 will be in the first

place.

Figure 8: Simulation result for the combined game using periodic strategy[BBABBA...]

(left) and Tent map switching (right). The player 1 is in the first place.

and considered several values for parameters and various combinations of game A and game B, but we could

only find the combination [BBABBA...] to obtain paradoxical results. Also, we have considered different

values for parameters and combined two games randomly, but paradox did not occur in any of these situations.

So it might be concluded that the conditions to arrive at paradox in this extended model is much more limited

than those of original Parrondo’s games.

An speculative example of Parrondo’s paradox in molecular biology is sexual reproduction [36],[19],[35].

As in Muller ratchet, in a sexual population the fitness is declined since the harmful mutation accumulation

only proceeds in one direction and sexual reproduction breaks Muller ratchet by recombination, which allows

selection of beneficial mutation. This model has been used to explain why there are two sexes. In this model

recombination as second game in Parrondo’s game may not be precise and the combination of two losing
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Figure 9: Simulation result for the combined game using periodic strategy[BBABBA...]

(left) and Sinusoidal map switching (right). The player 1 is in the first place.

games (mutation and recombination) can reduce errors and more information is correctly transformed.

Although most cells of organisms with sexual reproduction are diploid and have paired set of chromosomes

but polyploidy is found in some organisms, especially in plants [11]. Extension of Parrondo’s paradox may

be considered as triploid cell with three players. But as our results show, in the game with more than two

players, the tolerance to noise and order of combination of two games are reduced and this might explain why

polyploidy is not common in most of sexual organism and there are two sexes and not more.

The paradox property may appear in games in which the number of players is more than three, therefore an

extension of the Parrondo’s paradox to these games is proposed to be investigated in a future work.
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