Improved upper bounds and lower bounds on broadcast function

Zhiyuan Li

A Thesis
in
e Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Computer Science) at Concordia University

Montréal, Québec, Canada

October 2017
(c) Zhiyuan Li, 2017

Concordia University
 School of Graduate Studies

This is to certify that the thesis prepared

By: Zhiyuan Li

Entitled: Improved upper bounds and lower bounds on broadcast function and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the Final Examining Committee:

> Chair

Dr. Jia Yuan, Yu
$\overline{\text { Dr. Guillaume Fertin }}$ External Examiner

Examiner
$\overline{D r . T h o m a s ~ G . ~ F e v e n s ~}$

Examiner
Dr. Lata Narayanan

Dr. M. Reza Soleymani
Examiner

Supervisor
Dr. Hovhannes A. Harutyunyan

Approved by

> | Dr. Sudhir Mudur, Chair |
| :--- |
| Department of Computer Science and Software Engineering |

12 December 2017
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Improved upper bounds and lower bounds on broadcast function

Zhiyuan Li, Ph.D.

Concordia University, 2017

Given a graph $G=(V, E)$ and an originator vertex v, broadcasting is an information disseminating process of transmitting a message from vertex v to all vertices of graph G as quickly as possible. A graph G on n vertices is called broadcast graph if the broadcasting from any vertex in the graph can be accomplished in $\lceil\log n\rceil$ time. A broadcast graph with the minimum number of edges is called minimum broadcast graph. The number of edges in a minimum broadcast graph on n vertices is denoted by $B(n)$. A long sequence of papers present different techniques to construct broadcast graphs and to obtain upper bounds on $B(n)$. In this thesis, we study the compounding and the vertex addition broadcast graph constructions, which improve the upper bound on $B(n)$. We also present the first nontrivial general lower bound on $B(n)$.

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Hovhannes A. Harutyunyan for his immeasurable support and guidance throughout the research.

I would also like to thank my father Jinxin Li, my mother Chenghong Liu, and my wife Jinlin Li for their excellent support in my daily life.

This thesis is dedicated to all pioneers.

Contents

List of Figures vii
1 Introduction 1
1.1 Minimum broadcast graph problem 3
1.1.1 Minimum broadcast graphs 3
1.1.2 Upper bounds on broadcast function 3
1.1.3 Lower bounds on broadcast function 5
1.2 Broadcast time problem 5
1.3 Minimum broadcast graphs and the broadcast time problem on other models 7
2 Previous results 9
2.1 Definitions and important graphs 9
2.2 Upper bounds 13
2.2.1 Compounding method based on Knödel graphs and hypercubes 13
2.2.2 Compounding Binomial trees and hypercubes 16
2.2.3 Vertex addition method using dominating set for $K G_{2^{m}-2}$ 19
2.2.4 Dominating set of Knödel graphs 21
2.3 Lower bounds 24
2.4 A summary of the bounds on $B(n)$ 26
3 New upper bounds 27
3.1 New compounding construction 27
3.1.1 Compounding Knödel graphs with binomial trees 27
3.1.2 Combined compounding 33
3.2 Improved vertex addition construction 41
3.2.1 New dimensional broadcast schemes for Knödel graph 41
3.2.2 Construction of broadcast graphs using newly obtained dimension- al broadcast schemes 46
3.2.3 A further improvement of the vertex addition method 51
3.3 Comparing the new and the existing upper bounds 60
4 A new lower bound 64
4.1 Definitions and observations 64
4.2 New lower bound 67
4.3 Comparing the new and the existing lower bounds 75
5 Minor results 77
5.1 A possibly existing minimum broadcast graph on $2^{m}-2$ vertices 77
5.2 Minimum regular broadcast graphs 79
6 Future work 82
6.1 Generalizing the compounding method 82
6.2 More vertex addition methods 83
6.3 More lower bounds 84
7 Conclusion 86
Bibliography 88

List of Figures

Figure 2.1 The binomial tree $B T_{4}$ 10
Figure 2.2 The Knödel graph on 14 vertices 11
Figure 2.3 The bipartite representation of $K G_{14}$ 12
Figure 2.4 Compounding Knödel graphs with hypercubes 14
Figure 2.5 Compounding binomial trees with hypercubes 18
Figure 2.6 The dominating set of $K G_{20}$ 23
Figure 2.7 The optimal broadcast tree rooted at a vertex u of degree $m-k-1$ 25
Figure 3.1 Compounding Knödel graphs with binomial trees 30
Figure 3.2 The broadcast scheme originating from w in a Knödel graph 32
Figure 3.3 Compounding Knödel graphs, hypercubes, and binomial trees 37
Figure 3.4 The broadcast scheme in the graph D part 1 38
Figure 3.5 The broadcast scheme in the graph D part 2 40
Figure 3.6 The dimensional broadcast scheme for $K G_{12}$ 45
Figure 3.7 The 3-distance dominating set of $K G_{24}$ 49
Figure 3.8 The idle vertices for the first dimensional broadcast scheme 53
Figure 3.9 The idle vertices for the second dimensional broadcast scheme 55
Figure 3.10 The idle vertices for the second broadcast scheme in general 56
Figure 3.11 The "broadcast dominated" set 59
Figure $4.1 \quad B T_{5} \backslash B T_{3}$ 65
Figure 4.2 The first k broadcast level tree 66

Figure 4.3 The broadcast tree rooted at a vertex of degree $m-k \ldots \ldots$
Figure 5.1 Regular compounding construction 80
Figure 6.1 One broadcast scheme, multiple broadcast trees 84

Chapter 1

Introduction

One-to-all information spreading is one of the major tasks on a modern interconnection network. This process, named broadcasting, originates from one node in the network, called originator, and finishes when every node in the network has the information. The broadcast time is one of the main measures of network performance.

Over the last four decades, a long sequence of research papers study broadcasting in networks under different models. These models differ at the number of originators, the number of receivers at each time unit, the distance of each call, the number of destinations, and other characteristics of the network. In this thesis, we focus on the classical model with the following assumptions:

- the network has only one originator;
- each call has only one informed node, the sender and one of its uninformed neighbors
- the receiver;
- every call requires one time unit.

A network is modeled as a simple connected graph $G=(V, E)$, where the vertex set V represents the nodes in the network, and the edge set E represents the communication links.

Definition 1.1. The broadcast scheme is a sequence of parallel calls in a graph G originating from a vertex v. Each call, represented by a directed edge, defines the sender and the receiver. The broadcast scheme generates a broadcast tree, which is a directed spanning tree of the graph G rooted at the originator.

Definition 1.2. Let G be a graph on n vertices and v be the broadcast originator in G. $b(G, v)$ defines the minimum number of time units required to broadcast from the originator v in the graph G. The broadcast time of the graph $G, b(G)=\max \{b(G, v) \mid v \in V(G)\}$ defines the maximum number of time units required from any originator to broadcast in the graph G.

Note that $b(G) \geq\lceil\log n\rceil$, since the number of informed vertices can at most double during each time unit.

Definition 1.3. A graph G on n vertices is called broadcast graph if $b(G)=\lceil\log n\rceil$. A broadcast graph with the minimum number of edges is called minimum broadcast graph (mbg). This minimum number of edges is called broadcast function and denoted by $B(n)$.

From the application perspective mbgs represent the cheapest graphs (with minimum number of edges), where broadcasting can be accomplished in the minimum possible time.

In this big research area of broadcasting messages in a graph, there are two major topics:
(1) minimum broadcast graph problem, construct the minimum broadcast graph on n vertices with the given integer n, or determine the value of broadcast function $B(n)$;
(2) broadcast time problem, determine the broadcast time of a given graph, or find the optimal broadcast scheme of the graph.

1.1 Minimum broadcast graph problem

1.1.1 Minimum broadcast graphs

The study of minimum broadcast graphs and the broadcast function $B(n)$ has a long history. Farley, Hedetniemi, Mitchell and Proskurowski have introduced minimum broadcast graphs in [22]. In the same paper, they have defined the broadcast function, determined the values of $B(n)$, for $n \leq 15$ and $n=2^{k}$, and proven that hypercubes are minimum broadcast graphs. Khachatrian and Haroutunian [50] and independently Dinneen, Fellows and Faber [17] have shown that Knödel graphs, defined in [52], are minimum broadcast graphs on $n=2^{k}-2$ vertices. Park and Chwa have proven that the recursive circulant graphs on 2^{k} vertices are minimum broadcast graphs [62]. The comparison of information dissemination properties of these three classes of minimum broadcast graphs can be found in [23]. Besides these three classes, there is no other known infinite construction of minimum broadcast graphs. The values of $B(n)$ have been also known for $n=17$ [61], $n=18,19[9,74], n=20,21,22[59], n=26[66,76], n=27,28,29,58,61[66]$, $n=30,31$ [9], $n=63$ [56], $n=127$ [30] and $n=1023,4095$ [69].

1.1.2 Upper bounds on broadcast function

Since minimum broadcast graphs are difficult to construct, a long sequence of papers present different techniques to construct broadcast graphs in order to obtain upper bounds on $B(n)$. Furthermore, proving that a lower bound matches the upper bound is also extremely difficult, because most of the lower bound proofs are based only on vertex degree. However, minimum broadcast graphs except hypercubes and Knödel graphs on $2^{k}-2$ vertices are not regular.

Upper bounds on $B(n)$ are given by constructions of sparse broadcast graphs. A. Farley
has constructed broadcast graphs recursively by combining two or three smaller broadcast graphs and shows $B(n) \leq \frac{n}{2}\lceil\log n\rceil$ [21]. This construction has been generalized in [10] using up to seven small broadcast graphs. A tight asymptotic bound on $B(n)=\Theta(L(n) \cdot n)$ has been given in [27] by proving that $\frac{L(n)-1}{2} n \leq B(n) \leq(L(n)+2) n$, where $L(n)$ is the number of consecutive leading 1's in the binary representation of $n-1$. In [50], the compounding method has been introduced which uses vertex cover of graphs. This method constructs new broadcast graphs by forming the compound of several known broadcast graphs. In [7], the compounding method has been generalized to any n by using solid vertex cover. A compounding method using center vertices has been introduced in [73] and shown to be equivalent to the method of using solid vertex cover in [18]. The authors in [38] have continued on the line of compounding and introduced a method of also merging vertices. And more recently $[3,35]$, compounding binomial trees with hypercubes has improved the upper bound on $B(n)$ for many values of n.

Vertex addition is another approach to construct good broadcast graphs by adding several vertices to existing broadcast graphs [9]. [30] has continued on this line and added one vertex to Knödel graphs on $2^{k}-2$ vertices. The added vertex is connected to every vertex in a dominating set of the Knödel graph. In [40], the same method has been applied to generalized Knödel graphs, in order to construct broadcast graphs on any odd number of vertices.

Adhoc constructions sometimes also provide good upper bounds. This method usually constructs broadcast graphs by adding edges to a binomial tree [27,38].

Vertex deletion has been studied in $[9,38]$. Several other constructions have been presented in [9, 26, 27, 38, 72-74].

1.1.3 Lower bounds on broadcast function

Lower bounds on $B(n)$ are also studied in the literature. In [26], Gargano and Vaccaro have shown $B(n) \geq \frac{n}{2}\left(\lfloor\log n\rfloor-\log \left(1+2^{\lceil\log n\rceil}-n\right)\right)$, for any n. $B(n) \geq \frac{n}{2}(m-p-1)$ has been proved in [53], where m is the length of the binary representation $a_{m-1} a_{m-2} \ldots a_{1} a_{0}$ of n and p is the index of the leftmost 0 bit. Harutyunyan and Liestman have studied k-broadcasting (every sender can inform at most k neighbors in each time unit) and given a lower bound on the broadcast function for k-broadcast graph in [39]. The latter bound has been the best known general lower bound for our model of broadcasting (which corresponds to the case $k=1$ in [39]). Let $n=2^{m}-2^{k}+1-d, 1 \leq k \leq m-2$ and $0 \leq d \leq 2^{k}-1$. $B(n) \geq \frac{n}{2}(m-k)$.

Besides the general lower bounds, the lower bounds for special values have been studied. Labahn has shown $B(n) \geq \frac{m^{2}\left(2^{m}-1\right)}{2(m+1)}$ for $n=2^{m}-1$ in [56] by considering the broadcast tree rooted at a vertex with the minimum degree. Saclé has followed this method and gives tight lower bounds on $B\left(2^{m}-3\right), B\left(2^{m}-4\right), B\left(2^{m}-5\right)$ and $B\left(2^{m}-6\right)$ in [66]. Grigoryan and Harutyunyan have further shown that $B\left(2^{m}-2^{k}+1\right) \geq \frac{2^{m}-2^{k}+1}{2}(m-k+$ $\left.\frac{m(2 k-1)-\left(k^{2}+k-1\right)}{m(m-1)-(k-1)}\right)$. Better lower bounds on $n=24,25$ have been given in [5]. Note that $23 \leq n \leq 25$ are the only values of $n \leq 32$ for which $B(n)$ is not known.

1.2 Broadcast time problem

Since Slater, Cockayne, and Hedetniemi [70] have proven that determining the broadcast time for an arbitrary vertex in an arbitrary graph is NP-complete, many researchers spend a lot of efforts on approximation and heuristic algorithms to solve the problem. An approximation finding the poise of a graph, which is an NP-hard problem, and an $O\left(\frac{\log ^{2} n}{\log \log n}\right)$-approximation algorithm for broadcasting using the poise has been given in
[65]. The poise of a tree is the sum of its diameter and the maximum degree. An $O(\sqrt{n})$ additive approximation for graphs in general and an $O\left(\frac{\log n}{\log \log n}\right)$-multiplicative approximation for graphs in the open-path model have been presented in [54]. In this model, every informed vertex can send the message to an uninformed vertex via a path of any length in each time unit. An $O(\log k)$-additive approximation for multicasting in a heterogeneous graph has been suggested in [4]. In multicasting, the process stops if every vertex in a given subset of all vertices are informed. A heterogeneous network connects devices with different operating systems and/or protocols. The NP-hardness of finding an efficient approximation for single-source broadcasting in a general graph and multi-source broadcasting in a ternary graph has been proven in [68]. An $O\left(\frac{\log k}{\log \log k}\right)$-approximation for k-broadcasting has been given in [19]. And the approximation has been later improved of a ratio between $\Omega(\sqrt{\log n})$ and $O(\sqrt{k})$ in [20].

A heuristic least-weight maximum matching has been given in [67]. A least-weight maximum matching is a subset of the edges with all vertices are matched and the total weight of the edges are minimum. The genetic algorithm on broadcasting in random graphs has been studied in [47]. Two different heuristics for gossiping have been given in [6]. Gossiping is an all-to-all information spreading process in contrast to the one-to-all process of broadcasting. A heuristic of the optimal broadcast scheme on some simple topologies, for example rings and trees and almost optimal broadcast scheme on torus is presented in [43]. A simple search heuristic algorithm for multicasting on random networks has been given in [32]. The performance of the algorithm on three different random graphs has also been presented in the same paper. A new heuristic has been studied in [45]. This heuristic gives the optimal broadcast time for rings, trees, and grids if the originator is on the corner. Simulations have shown that this heuristic also gives good solutions for two different models of Internet and ATM networks.

1.3 Minimum broadcast graphs and the broadcast time problem on other models

Variant of broadcasting on different models have been also studied with respect to many application reasons.

The network reliability has been considered in the fault-tolerant broadcasting. The k faulttolerant broadcast graph has been defined and the tradeoff among broadcast time, the number of link failures, and the number of edges of the graph has been studied in [58]. Minimum k fault-tolerant broadcast graphs for some values of n and k have been constructed in [1]. A survey of the fault-tolerant broadcasting and gossiping on networks has been given in [63].

A variant of broadcasting using universal lists aims reduce the local memory cost of each node in the network. In classical broadcasting, every node needs a large memory to store different transmission lists corresponding to different originators. In contrast with universal list, each vertex uses a little memory for a single ordered list of some of its neighbors and only informs its neighbors from its list in prescribed order. This model has been first studied for trees, rings, and 2D grids in [16]. Several different broadcst schemes with universal list for paths, k-ary trees, grids, complete graphs, and hypercubes have been designed in [51]. The nonadaptive broadcasting model with universal list has been studied in [41]. This model always uses the broadcast list. Thus, every nonoriginator sends the information back to the sender which it is received.

Considering a node in the real-world network may not know the topology of the whole network, knowledge bounded models have been studied. Radio broadcasting is one of the models, such that every node in the network only knows the topology in its knowledge range. A linear-time radio broadcast scheme on ad hoc multi-hop netwroks has been given in [11]. The trade-offs among the eccentricity of the originator, the broadcast time, and
the number of transmissions of an ad hoc network has been studied in [14]. The effect of knowledge radius on broadcasting in geometric radio networks has been discussed in [15]. The same paper has also given a linear-time broadcast scheme when the knowledge radius is large. A survey of the studies related to radio broadcasting has been presented in [64]. In a more general case, the messy broadcasting problem, a random broadcast model has been studied if nodes know nothing about their neighbors' topology in [2]. The same paper has also given the solutions in trees. An algorithm solving the messy broadcasting problem with three different further assumptions on networks has been presented in [25]. The first algorithm for directed graphs and the bounds on the messy broadcast time of directed toris have been given in [12]. The trade-offs between knowledge radius of each vertex and the broadcast time have been studied in [13]. The order of informed neighbors of each vertex which gives the minimum messy broadcast time in a 2D torus has been discussed in [44]. The average-case messy broadcast time of stars, paths, cycles, d-ary trees, hypercubes, and complete graphs has been shown in [57]. The worst case of messy broadcasting based on three different models, which depends on how much a vertex knows about its senders and receivers has been analyzed in [31].

For more on broadcasting and gossiping in general see the following survey papers [24,28, 42, 46, 48, 49, 55, 60, 69, 71, 75].

This thesis mainly focuses on general upper bounds and lower bounds on broadcast function. In Chapter 2, we review the existing constructions of broadcast graphs and general bounds. In Chapter 3, we follow the compounding method and the vertex addition method and further improve general upper bounds. In Chapter 4, we give a new general lower bound. Chapter 5 gives two minor results related to our research. Chapter 6 lists several topics for the future work. And Chapter 7 concludes the thesis.

Chapter 2

Previous results

This chapter reviews the major results on the topic of minimum broadcast graph. First, we introduce two types of minimum broadcast graphs. Then, we summarize the best known general upper and lower bounds on broadcast function $B(n)$.

2.1 Definitions and important graphs

Definition 2.1. A hypercube Q_{k} of order k, for any $k \in \mathbb{N}$ on 2^{k} vertices is recursively defined. When $k=0$, the hypercube Q_{0} is a single vertex. When $k \geq 1$, the hypercube Q_{k} can be constructed by having two copies of the hypercube Q_{k-1} (the vertices are labeled as $\left.v_{1}, v_{2}, \ldots, v_{2^{k-1}}\right)$ and connecting two vertices with the same label in the two copies.

It is easy to see that a hypercube Q_{k} is a k regular graph with $\frac{1}{2} k 2^{k}=k 2^{k-1}$ edges.

Definition 2.2. A binomial tree $B T_{k}$ of order k has 2^{k} vertices for any $k \geq 0$. When $k=0$, the binomial tree B_{0} is a single vertex. When $k \geq 1$, the binomial tree B_{k} consists of two binomial trees $B T_{k-1}$ having their roots r_{1} and r_{2} connected by an edge. Either of r_{1} or r_{2} is the root of the binomial tree B_{k}.

Figure 2.1: The binomial tree $B T_{4}$ is constructed by connecting the roots r_{1} and r_{2} of two binomial trees $B T_{3}$. The root of $B T_{4}$ can be either one of the roots r_{1} or r_{2}. The numbers show the broadcast scheme from r_{2} in $B T_{4}$.

Binomial trees are useful for constructing broadcast graphs, since the broadcast time of the root in a binomial tree $B T_{k}$ is k which is the minimum possible time. It is easy to see that a binomial tree $B T_{k}$ is a broadcast tree of any broadcast scheme from any vertex in a hypercube Q_{k}. Furthermore, any broadcast tree of a broadcast graph on n vertices is a subtree of $B T_{\lceil\log n\rceil}$. Figure 2.1 presents an example of a binomial tree $B T_{4}$, and a minimum time broadcast scheme from the root vertex r_{2}.

In 1975, Knödel defined a class of broadcast graphs on even number of vertices [52]. We follow the equivalent definition given in $[38,50]$.

Definition 2.3. A Knödel graph $K G_{n}=(V, E)$ is defined for even values of n, where the vertex set is $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and the edge set is $E=\left\{\left(v_{x}, v_{y}\right) \mid x+y \equiv 2^{s}-1\right.$ $\bmod n, 1 \leq s \leq\lfloor\log n\rfloor\}$, where $0 \leq x, y \leq n-1$.

By the definition above, if $\left(v_{x}, v_{y}\right) \in E$, we say that v_{x} and v_{y} are connected on dimension s. Furthermore, v_{x} is v_{y} 's neighbor on dimension s or vice versa. The following broadcast scheme of a Knödel graph on n vertices is called dimensional broadcast scheme [8]. That is in the first $\lceil\log n\rceil-1$ time units, every vertex with the message calls its neighbor on dimension t at time unit $t, 1 \leq t \leq\lceil\log n\rceil-1$. Then at the last time unit every vertex calls

Figure 2.2: (a): an example of $K G_{14}$; (b): the broadcast scheme from v_{0} in $K G_{14}$ its neighbor on dimension 1.

Let $n=2^{m}-2^{k}-2 a, 0 \leq k \leq m-2$ and $0 \leq 2 a \leq 2^{k-1}$. It is easy to see that $K G_{n}$ has the following well known properties.

- $K G_{n}$ is $(m-1)$-regular. Each vertex has $m-1=\lfloor\log n\rfloor$ dimensional neighbors. Each edge has dimension i for all $1 \leq i \leq m-1$
- $K G_{n}$ is bipartite, v_{i} and v_{j} are adjacent only if i and j have different parities.
- $K G_{n}$ has $\frac{n\lfloor\log n\rfloor}{2}$ edges.

Figure 2.2 shows one example of a Knödel graph on 14 vertices for $k=4$ and the dimensional broadcast scheme from v_{0} in $K G_{14}$.

Figure 2.3a and 2.3 b show the bipartite representation and the corresponding dimensional broadcast scheme of $K G_{14}$. In particular, $1,2, \cdots, m-1$ denotes the dimensional broadcast scheme, where at time unit i, all of the informed vertices call their i-th dimensional neighbors for all $i=1,2, \cdots, m-1$ and call their first dimensional neighbors at time unit m. Authors of [8] also show that any cyclic shift of dimensions, $s, s+1, \cdots, m-1,1,2$,

Figure 2.3: The Knödel graph $K G_{14}$ and its broadcast scheme. An even vertex v_{i} locates its s 'th dimensional neighbor at the 2^{s-1},s position to the right of the odd vertex right under v_{i} (also v_{i} 's first dimensional neighbor).
$\cdots, s-1, s$ is also a valid broadcast scheme for the Knödel graph $K G_{n}$, and $1 \leq s \leq m-1$. The bipartite representation of a Knödel graph $K G(n)$ can be considered as a ring or an infinite tie if we take the modulus n of an arbitrary integer as the index of a vertex and repeating copies of $K G(n)$. For example, v_{n+2} is equivalence to v_{2} and adjacent to v_{1}, v_{3}, v_{7}, \cdots.

Theorem 2.1. The Knödel graph $K G_{2^{m}-2}$, for $m \geq 3$ is a minimum broadcast graph.

Proof. The dimensional broadcast scheme shows that Knödel graphs are broadcast graphs. Then, we prove that $K G_{2^{m}-2}$ is minimum by contradiction. Assume there is a broadcast graph G on $2^{m}-2$ vertices with strictly less than $\frac{1}{2}(m-1)\left(2^{m}-2\right)$ edges. By the pigeonhole principle, there must be one vertex $v \in G$ with degree at most $m-2$. Then considering the broadcasting from vertex v in the graph G, it takes at most $m-2$ time units to call v 's neighbors. So in the graph G, at most 2^{m-2} vertices are informed at time unit $m-2$. Then v has no uninformed neighbors and it will be idle at time units $m-1$ and m. Thus, at time unit $m-1$ and m, at most $2^{m-2}-1$ and $2^{m-1}-2$ vertices are informed respectively. In total, at most $2^{m}-3$ vertices in graph G are called within m time units, but G has $2^{m}-2$ vertices. Therefore $B\left(2^{m}-2\right) \geq \frac{1}{2}(m-1)\left(2^{m}-2\right)$. This implies $K G_{2^{m}-2}$ is a minimum
broadcast graph.

2.2 Upper bounds

2.2.1 Compounding method based on Knödel graphs and hypercubes

[38] has presented a broadcast graph construction by compounding an existing broadcast graph with a Knödel graph. Let $G=(V, E)$ be a broadcast graph on p vertices, $K G_{2^{m}-2}$ be a Knödel graph on $2^{m}-2$ vertices, and $\left\lceil\log p\left(2^{m}-2\right)\right\rceil=\lceil\log p\rceil+m$. The construction of a new broadcast graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ on $p\left(2^{m}-2\right)$ vertices is as follows:

- Create p copies of the Knödel graph $K G_{2^{m}-2}$, named $K G^{1}, K G^{2}, \ldots, K G^{p}$. Each $K G^{i}$ has the vertex set $V^{i}=\left\{v_{0}^{i}, v_{1}^{i}, \ldots, v_{2^{m}-3}^{i}\right\}$, where $1 \leq i \leq p$.
- Define the vertex set $V^{\prime}=\left\{v_{j}^{i} \mid v_{j}^{i} \in V^{i} \backslash\left\{v_{0}^{i}\right\}, 1 \leq i \leq p\right\} \cup\left\{v_{0}^{i} \mid i=1\right.$ or $r+1 \leq i \leq$ $p, 2 \leq r \leq p-1\}$.
- Define $E^{\prime}=E_{\text {local }} \cup E_{\text {product. }}$. $E_{\text {local }}$ is the edge set of each $K G^{i}$ and $E_{\text {product }}=$ $\left\{\left(v_{t}^{i}, v_{t}^{j}\right) \mid t\right.$ is odd, $\left.(i, j) \in E\right\}$

The new vertex set contains all the vertices from p copies of Knödel graph $K G_{2^{m}-2}$ and merging the vertices labeled v_{0} in $r+1$ copies of $K G_{2^{m}-2}$, where $2 \leq r \leq p-1$. The construction selects all vertices with the same odd index from each copy of the Knödel graph $K G_{2^{m}-2}$ and forms a copy of broadcast graph G. That is $2^{m-1}-1$ copies of G in total. The number of vertices in the graph G^{\prime} is $|V|=p\left(2^{m}-2\right)-r$ and the number of edges is $|E|=\left(2^{m-1}-1\right)(p(m-1)+e)$, where e is the number of edges in G. Figure 2.4 is an example of the construction with $K G_{6}, Q_{2}$ and no merging vertices.

To show G^{\prime} is a broadcast graph, we introduce the broadcast scheme. Recall that G is a broadcast graph. So broadcasting from any vertex $v \in G$ in the graph G takes $\lceil\log p\rceil$ time

Figure 2.4: Construction of new broadcast graph with $K G_{6}$ and Q_{2}.
units.

- If the originator is vertex v_{t}^{s}, where $t \in\left[0,2^{m}-3\right]$ is odd and $0 \leq s \leq p-1$, then v is on a copy of G. The broadcasting from v_{t}^{i} in the copy of G takes $\lceil\log p\rceil$ time. Then each copy of $K G_{2^{m}-2}$ has one vertex informed. Broadcasting from the vertex inside its copy of $K G_{2^{m}-2}$ finishes in m time units, which means the total broadcast time in G^{\prime} is equal to $\lceil\log p\rceil+m=\left\lceil\log \left(p\left(2^{m}-2\right)\right)\right\rceil$.
- If the originator is a vertex v_{t}^{s}, where t is even, then it is not in a copy of G. It has to take $m-1$ time units to inform its neighbors inside its copy of $K G_{2^{m}-2}$. Let the neighbor b_{i}^{s} of originator v_{t}^{s} adjacent on dimension i is informed at time unit i, $1 \leq i \leq m-1$. Note that b_{i}^{s} is in the copy of G_{i}. Once a neighbor b_{i}^{s} is informed, it starts broadcasting on its copy of G_{i} immediately. Then at time unit $i+\lceil\log p\rceil$ every vertex in G_{i} is informed.

Let v_{t}^{j} be the vertex in the copy of Knödel graph $K G^{j}$ and b_{i}^{j} be the neighbors of v_{t}^{j} on dimension i, where $0 \leq i \leq m-1$ and $0 \leq j \leq p-1$. It is important to note that the vertex b_{i}^{j} and the vertex b_{i}^{s} are in the same copy of broadcast graph G_{i}. So the neighbor b_{i}^{j} of the vertex v_{t}^{j} on dimension i in the copy of $K G^{j}$ is informed before time unit $i+\lceil\log p\rceil$ and can start broadcasting in $K G^{j}$ at time unit $i+\lceil\log p\rceil+1$. Consider the broadcasting from v_{t}^{j} in the copy of $K G^{j}, b_{i}^{j}$ is informed at time unit i and finishes broadcasting all vertices on b_{i}^{j}, s branch of the broadcast tree in the rest of $m-i$ time units. Thus, in the broadcast scheme originating from the vertex v_{t}^{s} in the graph $K G_{2^{m}-2}$ compounded by the broadcast graph G, every vertex b_{i}^{j} is infromed at the right time unit and dimensionally broadcasts in its copy of $K G^{j}$ in the rest of $k-i$ time units, except the vertex v_{t}^{j}. v_{t}^{j} can be informed by the vertex b_{0}^{j} at the last time unit, because b_{0}^{j} is idle. Therefore, the broadcasting finishes in $m+\lceil\log p\rceil$ time units.

This construction provides a method to create new broadcast graphs by compounding existing broadcast graphs. And more importantly, merging vertices enlarges the range of number of vertices, even for some odd numbers and prime numbers.

2.2.2 Compounding Binomial trees and hypercubes

[3] presents a new construction, compounding binomial trees and hypercubes. Their result is the tightest known general upper bound on broadcast function: for any $n=$ $\left(2^{m-k}-1\right) 2^{k}-d$, where $m \geq 3,0 \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-1, B(n) \leq$ $(m-k+1) n-\left(\frac{m}{2}+\frac{k}{2}+1\right) 2^{m-k}+k+1$. We should notice that any $n \in\left[2^{m-1}+1,2^{m}-1\right]$ can be represented by $n=2^{m}-2^{k}-d$, where $0 \leq k \leq m-2$ and $0 \leq d \leq 2^{k}-1$. The new broadcast graph G consists of $2^{m-k}-1$ binomial trees $B T_{1}, B T_{2}, \ldots, B T_{2^{m-k-1}}$ on 2^{k} vertices. Let vertex w be the leaf on the longest branch of binomial tree $B T_{1}$, which is at distance k from the root of $B T_{1}$. The root of each binomial tree $r_{1}, r_{2}, . ., r^{2^{m-k}-1}$ and the vertex $w\left(2^{m-k}\right.$ vertices in total) form a hypercube Q of dimension $m-k$. So, in total there are $n=\left(2^{m-k}-1\right) 2^{k}$ vertices in graph G. Then we remove d leaves, where $0 \leq d \leq 2^{k}-1$ from an arbitrary binomial tree $B_{j}, 1 \leq j \leq 2^{m-k}-1$ in the graph G to obtain general $n=\left(2^{m-k}-1\right) 2^{k}-d$ in the range $\left[2^{m-1}+1,2^{m}-1\right]$.

The hypercube Q can be partitioned into $m-k+1$ hypercubes $Q^{m-k-1}, Q^{m-k-2}, \ldots$, Q^{1}, Q^{0}, Q^{01}, where Q^{i} for $1 \leq i \leq m-k-1$ is a hypercube of dimension i containing the roots from $r_{2^{i}-1}$ to $r_{2^{i+1}-1} . Q^{0}$ and Q^{01} are both of dimension 0 and actually r_{1} and m respectively.

The edges E of G are of three types. The set of edges in the hypercube Q is denoted by E_{Q}. The set of edges in binomial trees $B T_{1}, B T_{2}, \ldots, B T_{2^{m-k-1}}$ is denoted by E_{T}. And the set of edges connecting a tree vertex to some root vertices in the hypercube Q is denoted by $E_{P}=\left\{\left(u, r_{l}\right) \mid u \in B T_{j}, l=2^{i}-1, i \neq\lfloor\log j+1\rfloor, 0 \leq i \leq k-1,0 \leq j \leq\right.$ $\left.2^{m-k}-1\right\} \cup\left\{\left(u, r_{l}\right) \mid u \in B T_{l}\right\}$. In other words, the vertex u is a non-root vertex in the
binomial tree $B T_{l}$. It is connected to the root r_{l} of its binomial tree $B T_{l}$ and the root r_{0}, $r_{1}, r_{3}, \ldots, r_{2^{i}-1}$ except $r_{\lfloor\log j+1\rfloor}$. In summary, every non-root vertex u has exactly one root neighbor in each of the hypercubes $Q^{0}, Q^{1}, \ldots, Q^{m-k-2}$.

The number of edges is counted separately. The hypercube of dimension $m-k-1$ has $\left|E_{Q}\right|=(m-k) 2^{m-k-1}$ edges. $2^{m-k}-1$ binomial trees have $\left|E_{T}\right|=\left(2^{m-k}-1\right)\left(2^{k}-1\right)$ edges. If a non-root vertex u is not on the first level of its binomial tree, it is connected to $m-k$ roots. vertices in the hypercube. If the vertex u is on the first level, it is connected to $m-k-1$ roots. By simple calculations, $\left|E_{P}\right|=(m-k)\left(2^{m-k}-1\right) 2^{k}-m 2^{m-k}+k$. Then $d(m-k+1)$ edges are deleted after removing d leaves from a binomial tree. Thus, the total number of edges in the graph G is $|E|=(m-k+1) n-\left(\frac{m}{2}+\frac{k}{2}-1\right) 2^{m-k}+k+1$ and the number of vertices is $n=2^{m}-2^{k}-d$.

Figure 2.5 gives an example of the construction above. The minimum time broadcast scheme for the constructed graph is as follows:
(1) If the originator is a vertex r_{i} in the hypercube, then it takes $m-k$ time units to finish informing all vertices in the hypercube. Then each vertex, a root of a binomial tree broadcasts to all vertices in its binomial tree in k time units. The broadcasting finishes in $m=\lceil\log n\rceil$ time units.
(2) If the originator is a non-root vertex u in a binomial tree, it takes $m-k$ time units to inform one vertex in each of the sub-hypercubes $Q_{0}, Q_{1}, \ldots, Q_{m-k-1}$. Once vertex r_{i} in hypercube Q^{m-k-i} is informed at time i, it broadcasts in hypercube Q^{m-k-i} in $m-k-i$ time units. Thus, the broadcasting in the whole hypercube (except vertex m) finishes in $m-k$ time units. Then the broadcasting in binomial trees informs all other non-root vertices in binomial trees. This broadcasting also takes m time units.

Figure 2.5: An example of compounding binomial trees and the hypercube Q_{3}. The hypercube is partitioned into Q^{2}, the hypercube on 4 vertices on the left side; Q^{1}, the hypercube on 2 vertices on the right upper corner; Q^{0} and Q^{01}, two hypercubes on a single vertex. Each dashed triangle represents a binomial tree.

2.2.3 Vertex addition method using dominating set for $K G_{2^{m}-2}$

[30] introduces a vertex addition method for constructing broadcast graphs. This method adds one vertex connecting to every vertex in the dominating set of a Knödel graph.

Definition 2.4. The dominating set S of a graph $G=(V, E)$ is a subset of V such that any vertex in $V \backslash S$ is adjacent to at least one vertex in S. The dominating number of $G, \gamma(G)$ is the cardinality of a minimum dominating set S.

A dominating set of a Knödel graph $K G_{2^{m}-2}$ is defined as follows.

Lemma 2.1. Let $K G_{2^{m}-2}=(V, E)$ be a Knödel graph on $2^{m}-2$ vertices, with $V=$ $\left\{v_{0}, v_{1}, \ldots, v_{2^{m}-3}\right\}$, where $m \geq 3$. Let S be the subset of V such that $S=\left\{v_{2 p} \mid 0 \leq p \leq\right.$ $\left.2^{m-3}-1\right\} \cup\left\{v_{2 p+1} \mid 2^{m-2} \leq p \leq 2^{m-2}+2^{m-3}-1\right\}$. Then S is a dominating set of $K G_{2^{m}-2}$ with dominating number $\gamma\left(K G_{2^{m}-2}\right) \leq 2^{m-2}$.

Proof. Let $S=S_{1} \cup S_{2}, S_{1}=\left\{v_{2 p} \mid 0 \leq p \leq 2^{m-3}-1\right\}$ and $S_{2}=\left\{v_{2 p+1} \mid 2^{m-2} \leq p \leq\right.$ $\left.2^{p-2}+2^{p-3}-1\right\}$. Intuitively, S_{1} contains all even vertices in the first quarter of the indices and S_{2} has all the odd vertices in the third quarter. Since a Knödel graph is bipartite and by definition of Knödel graphs, two vertices are adjacent only if they have different parities. Thus, every odd vertex in $K G_{2^{m}-2}$ is adjacent to at least one vertex in S_{1}, while an even vertex is adjacent to at least one vertex in S_{2}. The proof has two cases:
(1) For v_{j} with odd j :

- If $0 \leq j \leq 2^{m-2}-1, v_{j} \in\left\{v_{1}, v_{3}, \ldots, v_{2^{m-2}-1}\right\}$, each vertex can be denoted by $v_{2^{m-2}-1-t}$, where t is even and $0 \leq t \leq 2^{m-2}-2$. Then by definition of S_{1}, $v_{t} \in S_{1} \cdot v_{2^{m-2}-1-t}$ is adjacent to v_{t} on dimension $m-2$, since $2^{m-2}-1-t+t \equiv$ $2^{m-2}-1 \bmod 2^{m}-2$.
- If $2^{m-2}+1 \leq j \leq 2^{m-1}-1$, similarly each vertex is denoted by $v_{2^{m-1}+1-t}, t$ is even and $0 \leq t \leq 2^{m-2}-2$. Then $v_{2^{m-1}+1-t}$ and v_{t} are adjacent on dimension $m-1$.
- If $2^{m-1}+2^{m-2}+1 \leq j \leq 2^{m}-3$, each vertex is $v_{2^{m}-3-t}$, t is even and $0 \leq t \leq 2^{m-2}-4$. Then $v_{2^{m}-3-t}$ is adjacent to v_{t+2} on dimension 1 , since $2^{m}-3-t+t+2=2^{m}-1 \equiv 1 \bmod 2^{m}-2$.
(2) For v_{j} with even j, there are also three similar cases. Vertices in S_{2} are adjacent to vertices with indices between 2^{m-2} and $2^{m-1}-2$ on dimension 1 , vertices with indices between 2^{m-1} and $2^{m-1}+2^{m-2}-4$ on dimension $m-2$ and vertices with indices between $2^{m-1}+2^{m-2}-4$ and $2^{m}-4$ on dimension $m-1$.

The new broadcast graph G is a Knödel graph $K G_{2^{m}-2}$ with one additional vertex w connecting to every vertex in the dominating set. The broadcast scheme of G is as follows:
(1) If the originator is an arbitrary vertex in the dominating set denoted by v, it dimensionally informs all vertices in the Knödel graph and is idle before the last time unit. Then it informs w in the last time unit.
(2) If the broadcasting originated at an arbitrary vertex not in the dominating set denoted by v, it must has a neighbor u on dimension $i, 0 \geq i \geq k-1$ in the dominating set. v can inform all vertices in $K G_{2^{m}-2}$ on dimension $i, i+1, \ldots, m-1,0, \ldots, i-1$. Then u is idle at the last time unit. So, u can inform w at time unit m.
(3) If we broadcast from the additional vertex w, the broadcast scheme is similar to broadcasting from v_{1}. Consider the broadcast from v_{1} in $K G_{2^{m}-2}$, the neighbor b_{i} of vertex v_{1} on dimension i is informed at time unit $i+1$. It is easy to see that every neighbor b_{i} is in the dominating set except $v_{2^{m-1}-2}$. Thus, in the broadcasting from
vertex w in graph G, w plays the role of v_{1} in the minimum time broadcasting in $K G_{2^{m}-2}$. In particular, following the dimensional broadcast scheme $1,2, \cdots, m-$ 1,1 . Every neighbor b_{i} of vertex v_{1} is informed at time unit i. At time unit $m-1, w$ informs vertex $v_{2^{m-1}+1}$. Then at the last time unit, $v_{2^{m-1}+1}$ calls vertex $v_{2^{m-1}-2}$ and vertex v_{0} calls vertex v_{1}. So, the broadcasting is finished after time unit m.

2.2.4 Dominating set of Knödel graphs

A dominating set of a Knödel graph is defined as follows in [30,40]:
Theorem 2.2. [40] If $n=2^{m-1}+2 l, 1 \leq l \leq 2^{m-2}-1$, then $S=\left\{v_{x} \mid 2^{m-2} \leq x \leq 2^{m-1}-\right.$ $1\}$ is a dominating set of $K G_{n}$, and the domination number satisfies $\gamma\left(K G_{n}\right) \leq 2^{m-2}$.

Proof. (1) For $v_{x}, 0 \leq x \leq 2^{m-2}-1$

$$
\begin{aligned}
& 2^{m-1}-2^{m-2+1} \leq 2^{m-1}-x \leq 2^{m-1}-1 \\
& 2^{m-2}+1-1 \leq 2^{m-1}-1-x \leq 2^{m-1}-1
\end{aligned}
$$

Then we define $v_{z} \in S, z=2^{m-1}-1-x$. v_{z} and v_{x} are adjacent, since $z+x \equiv$ $2^{m-1}-1 \bmod \left(2^{m-1}+2 l\right)$
(2) For $v_{x}, 2^{m-1} \leq x \leq 2^{m-1}+2 l-1$, there exists $0 \leq y \leq 2 l-1$ such that $x=$ $2^{m-1}+2 l-1-y$. Then we construct $z=2^{m-2}+y$ and $z \in S . v_{z}$ and v_{x} are adjacent, since $x+z=2^{m-1}+2 l+2^{m-2}-1 \equiv 2^{m-2}-1 \bmod 2^{m-1}+2 l$.

The dominating set constructed by Theorem 2.2 is not minimum. The minimum dominating set of Knödel graphs are unknown in general. But, [40] has given the minimum dominating set for some particular values of n and k.

Theorem 2.3. $\gamma\left(K G_{n}\right)=\frac{n}{m}$, where n is even, $m=\lceil\log n\rceil>2$ is a prime, m divides n, and for any integer $d<m-1$ which is a divisor of $m-1$ satisfies $2^{d} \not \equiv 1 \bmod m$. The dominating set $S=S_{1} \cup S_{2}$, where $S_{1}=\left\{v_{2 m p} \left\lvert\, 0 \leq p<\frac{n}{2 m}\right.\right\}$ and $S_{2}=\left\{v_{2 m p-1} \mid 1 \leq p<\right.$ $\left.\frac{n}{2 k}\right\} \cup\{n-1\}$

The proof of this theorem has three steps. First, we show that S is actually an independent set. Any two vertices in S are not adjacent. Then, any vertex $v_{p} \in V \backslash S$ is adjacent to at most one vertex in S. At the end, each v_{p} is adjacent to at least one vertex in S.

Proof. First, we prove that S is an independent set. Let v_{x} and v_{y} be two vertices in S. If v_{x} and v_{y} are adjacent, x and y cannot be both even or both odd. Otherwise it contradicts to the definition of $K G_{n}$. Therefore, we assume $x=2 m \alpha$ is even, $y=2 m \beta-1$ is odd and v_{x} is adjacent to v_{y} without loss of generality. Then $x+y=2 m(\alpha+\beta)-1 \equiv 2^{j}-1$ $\bmod n$, where $1 \leq j \leq m-1$, which is impossible since $2 k(\alpha+\beta) \equiv 2^{j} \bmod n$. But, k is a prime number, $\alpha+\beta>0$ and $j>0$.

If v_{p} of odd p is adjacent to v_{x} and v_{y} in $S . x$ and y have to be even numbers. Assuming $x=2 m \alpha, y=2 m \beta$ and $\alpha>\beta$, then $x+p=2 m \alpha+p \equiv 2^{i}-1 \bmod n, y+p=2 m \beta+p \equiv$ $2^{j}-1 \bmod n$ and $i>j$. If we subtract y from $x, x-y=2 m(\alpha-\beta) \equiv 2^{i}-2^{j} \bmod n$. By $v_{2 m \alpha}, v_{2 m \beta} \in S, 0 \leq \beta<\alpha<\frac{n}{2 m}$. Thus, $\alpha-\beta<\frac{n}{2 m}$ and $2 m(\alpha-\beta)<n$. Then $2 m(\alpha-\beta)=2^{i}-2^{j}$ and $\alpha-\beta=\frac{2^{j-1}\left(2^{i-j}-1\right)}{m}$. Since for any d, a divisor of $m-1$, $2^{d} \not \equiv 1 \bmod m$, any $1 \leq c \leq m-2,2^{c} \not \equiv 1 \bmod m$ by Lagrange's Theorem. Since $i \leq m-1$ and $1 \leq j, 1 \leq i-j \leq m-2,2^{i-j} \not \equiv 1 \bmod m$ and $2^{i-j}-1 \not \equiv 0 \bmod m$. Therefore, $\frac{2^{j-1}\left(2^{i-j}-1\right)}{m}$ is not an integer, which is a contradiction. If p is even we have the similar proof.

Each vertex in S has $m-1$ neighbors, because $K G_{n}$ is $m-1$ regular. And there are $\frac{n}{2 m}+\frac{n}{2 m}-1+1=\frac{n}{m}$ vertices in S. The set S^{\prime} of vertices adjacent to vertices in S has cardinality $\frac{n(m-1)}{m}$. By the previous two steps, $S^{\prime} \cap S=\emptyset . S^{\prime} \cup S$ has cardinality $\frac{n}{m}+\frac{n(m-1)}{m}=n$. Therefore, $S^{\prime} \cup S=V$.To summarize, S is a dominating set of $K G_{n}$.

Figure 2.6: $K G_{20}$ and dominating sets

Since S is also an independent set, then S is a minimum dominating set of $K G_{n}$.

Figure 2.6 shows one example of $K G_{20}$ and the dominating sets. Since $n=20$ is even and $\lfloor\log 20\rfloor=4$ is a divisor of 20 , the dominating set $S=\{0\} \cup\{9,10\} \cup\{19\} . V$ is actually partitioned into 5 dominating sets: $\{0,9,10,19\},\{1,8,11,18\},\{2,7,12,17\}$, $\{3,6,13,16\}$ and $\{4,5,14,15\}$.

Once the dominating set is defined, then a broadcast graph of $n+1$ vertices can be constructed by adding one vertex adjacent to every vertex in the dominating set. The
best general upper bound on broadcast function is $B(n) \leq \frac{n\lfloor\log n\rfloor}{2}$ by Knödel graphs for even n and $B(n) \leq \frac{(n-1)\lfloor\log n\rfloor}{2}+2^{\lfloor\log n\rfloor-2}$ for odd n. The above theorem improves the upper bound for odd, if $\lfloor\log n\rfloor>2$ is a prime number and a divisor of n, then $B(n+1) \leq \frac{n\lfloor\log n\rfloor}{2}+\frac{n}{\lfloor\log n\rfloor}+\lceil\log n\rceil-2$.

2.3 Lower bounds

First, we review the best existing general lower bound on $B(n)$ given in [39].

Theorem 2.4. Let $n=2^{m}-2^{k}-d$, where $1 \leq k \leq m-2$ and $0 \leq d \leq 2^{k}-1$.

$$
B(n) \geq \frac{n}{2}(m-k)
$$

Proof. Assume graph G is a broadcast graph on n vertices. Instead of directly estimating the number of edges in G, we show that the minimum degree of vertices in G is $m-k$ by contradiction. Then, the result will follow.

Assume there is a vertex u in graph G of degree $m-k-1$. We consider the broadcasting originated from u. The maximum number of vertices are informed if every vertex is busy in the broadcasting. The broadcast tree rooted at u consists of complete binomial trees $B T_{m-1}, B T_{m-2}, \cdots, B_{m-k-1}$ with their roots adjacent to u. The total number of vertices in this broadcast tree has the following number of vertices.

$$
\begin{aligned}
& 2^{m-1}+2^{m-2}+\cdots+2^{k+1}+1 \\
= & 2^{m}-2^{k+1}+1 \\
< & 2^{m}-2^{k}-d \\
= & n
\end{aligned}
$$

Thus, we cannot inform all vertices in graph G. By contradiction, the minimum degree of

Figure 2.7: The optimal broadcast tree rooted at a vertex u of degree $m-k-1$
any vertex in G is at least $m-k$. Therefore, $B(n) \geq \frac{n}{2}(m-k)$. Figure 2.7 illustrates the broadcast tree if its root has degree $m-k-1$.

Other than the general lower bound, [56] introduces an interesting lower bound on $B(n)$ for $n=2^{m}-1$. This lower bound is obtained by studying the degree of a certain vertex in the broadcast graph on $2^{m}-1$ vertices.

Lemma 2.2 ([56]).

$$
B\left(2^{m}-1\right) \geq \frac{m^{2}\left(2^{m}-1\right)}{2(m+1)}, \text { for any } m \in \mathbb{N}
$$

Proof. From the proof of Theorem 2.1, we know that there is no vertex of degree $m-2$ in a broadcast graph G on $2^{m}-2$ vertices.

Then, consider the broadcasting from an originator u of degree $m-1 . u$ has to be idle at the last time unit m. So in order to inform $2^{m}-2$ vertices (excluding the root u) in graph G, u has to call a vertex of degree at least m at the first time unit. Thus, every vertex of degree $m-1$ must have at least one neighbor of degree m. And a vertex of degree at least m can have at most m neighbors of degree $m-1$. Then graph G must have at least $\frac{2^{m}-1}{m+1}$ vertices of degree m or larger. Therefore, $B\left(2^{m}-1\right) \geq \frac{m^{2}\left(2^{m}-1\right)}{2(m+1)}$, for any $m \geq 0$.

By Fermat's little theorem, $m+1$ is a divisor of $2^{m}-1$ only if $m+1$ is a prime number. If $m+1$ is not a divisor of $2^{m}-1$, every vertex of degree $m-1$ cannot be adjacent to exactly one vertex of degree m. So, constructing such graphs holding Fermat's little theorem is intuitively easier than the other graphs. By following this idea, the minimum broadcast graph on 63 vertices is constructed when $m=6$ in [56] and $m b g(1023)$ and $m b g(4095)$ are constructed when $m=10$ and 12 respectively in [69].

2.4 A summary of the bounds on $B(n)$

Let $n=2^{m}-2^{k}-d, m \geq 3,0 \leq k \leq m-3$, and $0 \leq d \leq 2^{k}-1$. After a simple comparison, we list the best known general upper bounds

$$
U B(n)=\left\{\begin{array}{c}
(m-k+1) n-\left(\frac{m}{2}+\frac{k}{2}+1\right) 2^{m-k}+k+1, \\
\text { if } 2^{m-1}+1 \leq n \leq 2^{m}-2^{\frac{1}{2}(m+3)} \\
\frac{1}{2}(m-1) n, \\
\text { if } 2^{m}-2^{\frac{1}{2}(m+3)}<n \leq 2^{m} \text { for even } n[52] ; \\
\frac{1}{2}(m-1) n+2^{m-2}-\frac{1}{2}(m-1), \\
2^{m}-2^{\frac{1}{2}(m+3)}<n \leq 2^{m} \text { for odd } n[40] .
\end{array}\right.
$$

and the best known general lower bound

$$
L B(n)=\frac{n}{2}(m-k)
$$

In the next chapter, we will improve both of the upper bound and the lower bound.

Chapter 3

New upper bounds

In this chapter, we continue the studies of compounding and vertex addition construction of broadcast graphs. Our new constructions improve the upper bounds on $B(n)$.

3.1 New compounding construction

3.1.1 Compounding Knödel graphs with binomial trees

In this section, we introduce a new broadcast graph construction similar to the compounding method in [3] for any $2^{m-1}+1 \leq n \leq 2^{m}-1$, where $m \geq 5$, but using Knödel graphs as a base instead of a hypercube. The later comparison shows that this construction improve the upper bound on $B(n)$ for any $2^{m-1}+1 \leq n \leq 2^{m}-2^{\text {frac12(m+3) }}$, where $n=2^{m}-2^{k}-d, m \geq 5,2 \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-1$. It is clear that any value of $n \in\left[2^{m-1}+1,2^{m}-2\right]$ can be represented as $n=2^{m}-2^{k}-d$, where $1 \leq k \leq m-2$ and $0 \leq d \leq 2^{k}-1$. For convenience, we let $l=k-1, n=2^{m}-2^{l+1}-d, 0 \leq l \leq m-3$, and $0 \leq d \leq 2^{l+1}-1$ in the following constructions.

The new broadcast graph $L=(V, E)$ on $n=\left(2^{m-l}-2\right) 2^{l}$ vertices, where $m \geq 5$ and $0 \leq l \leq m-3$ is constructed from $2^{m-l}-2$ copies of binomial tree of degree l, denoted
by $B T_{0}, B T_{1}, \ldots, B T_{2^{m-l}-3}$. The roots of the binomial trees denoted by r_{i}, form a Knödel graph $K G_{2^{m-l}-2}$ on $2^{m-l}-2$ vertices, $0 \leq i \leq 2^{m-l}-3$. Figure 3.1 presents the new construction for $m=6$ and $l=2$.

The next step of the construction is to delete d vertices from L, where $0 \leq d \leq 2^{l+1}-1$, in order to obtain any $2^{m-1}+1 \leq n \leq 2^{m}-1$, the given number of vertices of the broadcast graph, where $m \geq 5$. This step can be done by deleting a leaf from any binomial tree repeatedly. Note that we do not delete the root of any binomial tree because it also belongs to $K G_{2^{m-l}-2}$. The number of deleted vertices is at most $2^{l+1}-1$.

Then the new construction connects the vertices of binomial trees $B T_{0}, B T_{1}, \ldots, B T_{2^{m-l}-3}$ to $m-l-1$ vertices of $K G_{2^{m-l}-2}$.

Let r_{i} be the root of binomial tree B_{i} and r_{h} be the first dimensional neighbor of r_{i} in $K G_{2^{m-l}-2}$. By the definition of Knödel graph, $h \equiv 1-i \bmod 2^{m-l}-2$. We connect each non-root vertex w in binomial tree $B T_{i}$ to all the neighbors of r_{h} in $K G_{2^{m-l}-2}$. Let r_{j} denote these neighbors, $j+h \equiv j+1-i \equiv 2^{s}-1 \bmod 2^{m-l}-2$ for all $s=1,2, \ldots, m-l-1$. The edges of E of graph L are of three types: the edges in the Knödel graph $K G_{2^{m-l}-2}$ denoted by E_{H}, the edges in all binomial trees $B T_{0}, B T_{1}, \ldots, B T_{2^{m-l}-3}$ denoted by E_{T}, and the edges between vertex $w \in B T_{i}$ and some vertices in the Knödel graph denoted by E_{P}. Therefore, the set of edges of graph $L=(V, E)$ is defined as $E=E_{H} \cup E_{T} \cup E_{P}$, where $E_{P}=\left\{\left(w, r_{j}\right) \mid j+1-i \equiv 2^{s}-1 \bmod 2^{m-l}-2,1 \leq s \leq m-l-1, w \in B T_{i} \backslash\left\{r_{i}\right\}, r_{j} \in\right.$ $\left.K G_{2^{m-l}-2}\right\}$. Thus, the number of edges in L is $|E|=\left|E_{H}\right|+\left|E_{T}\right|+\left|E_{P}\right|$. The Knödel graph $K G_{2^{m-l-2}}$ has

$$
\left|E_{H}\right|=\frac{(m-l-1)\left(2^{m-l}-2\right)}{2}
$$

edges. All $2^{m-l}-2$ binomial trees $B T_{0}, B T_{1}, \ldots B T_{2^{m-l-3}}$ together have

$$
\left|E_{T}\right|=\left(2^{m-l}-2\right)\left(2^{l}-1\right)-d
$$

tree edges. To count the number of edges in E_{P}, each binomial tree has $2^{l}-l-1$ vertices except the root and its l neighbors on the first level. In total, graph L has $\left(2^{m-l}-2\right)\left(2^{l}-\right.$ $l-1)-d$ such vertices remaining after removing d leaves. Each of these vertices needs $m-l-1$ edges to connect to the vertices in the Knödel graph. And each of the vertices on the first level of any binomial tree (the l neighbors of the root within a binomial tree) needs $m-l-2$ additional edges connecting to the vertices of $K G_{2^{m-l}-2}$, since it is already adjacent to its root. Thus,

$$
\left|E_{P}\right|=\left(\left(2^{m-l}-2\right)\left(2^{l}-l-1\right)-d\right)(m-l-1)+\left(2^{m-l}-2\right) l(m-l-2)
$$

The total number of edges of graph L is

$$
|E|=(m-l) n-(m+l+1) 2^{m-l-1}+m+l+1
$$

In summary, graph L has $|V|=n$ vertices for any $n=2^{m}-2^{l+1}-d$, where $0 \leq l \leq m-3$ and $0 \leq d \leq 2^{l+1}-1,2^{m-l}-2$ vertices and edges of $K G_{2^{m-l}-2}$, and every vertex of any binomial tree $B T_{i}, 0 \leq i \leq 2^{m-l}-2$ is connected to $m-l-1$ vertices of $K G_{2^{m-l}-2}$. Figure 3.1 demonstrates our construction of graph L for $l=2, m=6$, and $0 \leq d \leq 7$. We first construct a Knödel graph on $2^{4}-2$ vertices. The vertices of $K G_{14}$ are labeled as $r_{0}, r_{1}, r_{2}, \ldots, r_{13}$. Each vertex of $K G_{14}$ is attached a binomial tree on 4 vertices. Then, for example, we connect vertex $w \in B T_{0}$ to root vertices r_{0}, r_{2} and r_{6}, which are the neighbors of r_{1}. In this particular example, if $d=0,\left|E_{H}\right|=21,\left|E_{T}\right|=42,\left|E_{P}\right|=98$, and $n=56$.

Figure 3.1: An example of L, when $m-l=4$. Solid lines and vertices r_{i} form the Knödel graph $K G_{14}$. Each binomial tree of degree 2 is replaced by a dotted triangle. A tree vertex w of binomial tree $B T_{0}$ and the dashed edges show an example of the connections between a non-root vertex and the root vertices. w is connected to the neighbors of the first dimensional neighbor of the root vertex of tree $B T_{0}$.

Theorem 3.1. L is a broadcast graph and for any $n=2^{m}-2^{l+1}-d$, where $m \geq 5$, $1 \leq l \leq m-3$, and $0 \leq d \leq 2^{l+1}-1$

$$
B(n) \leq(m-l) n-(m+l+1) 2^{m-l-1}+m+l+1
$$

Proof. It is clear that $n \in\left[2^{m-1}+1,2^{m}-2\right]$ for any n above. Thus, $\lceil\log n\rceil=m$. To show that L is a broadcast graph, broadcast scheme for any originator is described below.
(1) If the originator is a root vertex r_{i} in $K G_{2^{m-l}-2}$, where $0 \leq i \leq 2^{m-l}-3$, then the broadcast scheme of r_{i} consists of the broadcast scheme from originator r_{i} in $K G_{2^{m-l}-2}$ concatenated with the broadcast scheme in all binomial tree from their roots. r_{i} first completes broadcasting within the Knödel graph using dimensional broadcast scheme by time unit $m-l$. So, after time $m-l$ the roots of all binomial trees have the message. Then it takes l time units to broadcast in its binomial tree. Thus, the broadcasting in L completes in m time units.
(2) If the originator is a non-root vertex w in $B T_{i}, 0 \leq i \leq 2^{m-l}-3$; the broadcasting is more complicated. By our construction, w is adjacent to all the neighbors of r_{h}, which is the first dimensional neighbor of r_{i} - the root of binomial tree $B T_{i}$. Consider the dimensional broadcast scheme of Knödel graphs from r_{h} in $K G_{2^{m-l}-2}$. r_{h} informs its neighbor on dimension t at time unit t for all $t=1,2, \ldots, m-l$. Since w is adjacent to all neighbors of r_{h}, w can play the role of r_{h} in the broadcast scheme from originator w in L. w informs the i-th dimensional neighbor of vertex r_{h} at time unit i, for all $i=1,2, \ldots, m-l-1$. Every informed vertex continues broadcasting as in the dimensional broadcast scheme from the originator r_{h}. As a result, every vertex in $K G_{2^{m-l}-2}$ except r_{h} can be informed by the same broadcast scheme from r_{h} in $K G_{2^{m-l}-2}$ at the same time, which is $m-l$. Then r_{h} can be informed by a call from r_{i} at time unit $m-l$. Note that since the degree of vertex r_{i} in $K G_{2^{m-l}-2}$ is $m-l-1$ and r_{i} is busy during the first $m-l-1$ time units, then r_{i} is idle at time unit $m-l$, and so it can call vertex r_{h}. The first $m-l$ time units of the broadcast scheme from w in L is shown in Figure 3.2.

Figure 3.2: The broadcast scheme from w in L in the first $m-l$ time units. $u_{t}, 1 \leq t \leq$ $m-l-1$ is t dimensional neighbor of r_{h}. Solid arcs denote the calls of the broadcast scheme from originator r_{h} in $K G_{2^{m-l}-2}$. Dashed arcs denote the calls from originator w in L. All the other calls of the broadcast scheme from originator r_{h} in $K G_{2^{m-l}-2}$, and the broadcast scheme of originator w in graph L are the same. The numbers besides the arcs are the times of calls.

Now, every vertex $r_{j}, 1 \leq j \leq 2^{m-l}-3$ in $K G_{2^{m-l}-2}$, which is also the root of $B T_{j}$, is informed after time $m-l$. Next, every root r_{j} broadcasts all vertices within its respective binomial tree in the remaining l time units. The broadcasting in L again takes m time units in total.

Therefore, L is a broadcast graph. And for any $n=2^{m}-2^{l+1}-d \in\left[2^{m-1}+1,2^{m}-2\right]$, where $m \geq 5,0 \leq l \leq m-3$, and $0 \leq d \leq 2^{l+1}-1$

$$
B(n) \leq(m-l) n-(m+l+1) 2^{m-l-1}+m+l+1
$$

By substituting $l=k-1$,

Theorem 3.2.

$$
B(n) \leq(m-k+1) n-(m+k) 2^{m-k}+m+k,
$$

where $n=2^{m}-2^{k}-d, m \geq 5,1 \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-1$

3.1.2 Combined compounding

The binomial-tree compounding method described above extends beyond using a Knödel graph on $2^{l}-2$ vertices as a base graph. Finding a better base for compounding is possible. In this section, we combine the binomial-tree compounding method with the compounding method [38] and show that this combined compounding method further improves the general upper bound on $B(n)$.

The construction of a broadcast graph D on $n=\left(2^{m-l}-2\right) 2^{q} 2^{l-q}-d$ vertices, where $m \geq 5,1 \leq l \leq m-3,0 \leq q \leq l-1$, and $0 \leq d \leq 2^{l+1}-1$, is as follows. One should notice that the representation of n follows the previous section if the equation of n is simplified.

First, we construct a broadcast graph C on $\left(2^{m-l}-2\right) 2^{q}$ vertices by hypercube compounding method in [38]. This construction creates 2^{q} copies of Knödel graph $K G_{2^{m-l}-2}$ denoted by $K G^{1}, K G^{2}, \ldots, K G^{2^{q}}$. Each vertex in graph C is denoted by r_{i}^{j} indicating the vertex r_{i} with index i from j 'th copy of $K G^{j}$.

The edges of C are of two types: the edges E_{H} in the copies of Knödel graph $K G_{2^{m-l}-2}$ and the edges $E_{C}=\left\{\left(r_{i}^{s}, r_{i}^{t}\right) \mid i\right.$ is odd and $\left.\left(r^{s}, r^{t}\right) \in Q_{q}\right\}$, where Q_{q} is a hypercube of dimension q. The edges in E_{C} connect the vertices r_{i}^{j} from different copies of Knödel graph $K G_{2^{m-l}-2}$ with the same odd label i and form a hypercube Q^{i} of dimension q. Thus, graph C has two types of vertices. Vertex r_{i}^{j} is in a copy of hypercube Q_{q} when i is odd, and it is not in, otherwise. The construction, so far, is exactly the same as the hypercube compounding method in [38].

The next step of the combined compounding construction applies the binomial-tree compounding method to broadcast graph C as a base graph. The construction replaces each vertex r_{i}^{j} in C by a binomial tree B_{i}^{j} of degree $l-q$ on 2^{l-q} vertices with the root r_{i}^{j}. As in the binomial-tree compounding method, we remove d leaves from the binomial tree(s) to obtain a general value of n. Again, no root vertex is removed since it is a vertex in graph C.

The construction further adds two types of edges, $E_{P 1}$ and $E_{P 2}$. Let w be a non-root vertex in graph D and vertex r_{i}^{j} be w^{\prime} s root. Each edge in $E_{P 1}$ connects w to all neighbors of r_{i}^{j},s first dimensional neighbor if i is odd; each edge in $E_{P 2}$ connects w to all neighbors of r_{i}^{j}, otherwise. Intuitively, every neighbor of each non-root vertex in the base graph C belongs to a distinct copy of the hypercube. Half of the non-root vertices are adjacent to their roots, and the others are adjacent to the neighbors of the first dimensional neighbor of their roots. We count the number of edges $\left|E_{D}\right|$ of graph D separately. The graph has 2^{q} copies of Knödel graph $K G_{2^{m-l}-2}, 2^{m-l-1}-1$ copies of hypercube Q_{q} and $\left(2^{m-l}-2\right) 2^{q}$ copies of binomial tree of degree $l-q$. Thus,

$$
\begin{gathered}
\left|E_{H}\right|=\frac{1}{2}\left(2^{m-l}-2\right)(m-l-1) 2^{q} \\
\left|E_{C}\right|=\frac{1}{2} q 2^{q}\left(2^{m-l-1}-1\right) \\
\left|E_{T}\right|=\left(2^{l-q}-1\right)\left(2^{m-l}-2\right) 2^{q}
\end{gathered}
$$

To count $\left|E_{P 1}\right|$, every binomial tree has $2^{l-q}-(l-q)-1$ vertices adjacent to $m-l-1$ roots in the Knödel graph and $l-q$ vertices on the first level adjacent to $m-l-2$ roots (excluding its own root which is already counted in E_{T}). So,
$\left|E_{P 1}\right|=\frac{1}{2}(m-l-1)\left(2^{l-q}-(l-q)-1\right)\left(2^{m-l}-2\right) 2^{q}+\frac{1}{2}(m-l-2)(l-q)\left(2^{m-l}-2\right) 2^{q}$

To count $\left|E_{P 2}\right|$, every non-root vertex has $m-l-1$ neighbors connected by the edges in $E_{P 2}$. Therefore,

$$
\left|E_{P 2}\right|=\frac{1}{2}(m-l-1)\left(2^{l-q}-1\right)\left(2^{m-l}-2\right) 2^{q}
$$

If d leaves are removed, $(m-l) d$ edges are also removed simultaneously because every leaf is associated to $m-l$ edges.

Thus, the total number of edges in graph D is

$$
\begin{aligned}
\left|E_{D}\right| & =\left|E_{H}\right|+\left|E_{C}\right|+\left|E_{T}\right|+\left|E_{P 1}\right|+\left|E_{P 2}\right|-(m-l) d \\
& =(m-l) n-(m-2 q+1)\left(2^{m-l}-2\right) 2^{q-1}
\end{aligned}
$$

$\left|E_{D}\right|$ is a function of m, l and q, but $n=\left(2^{m-l}-2\right) 2^{q} 2^{l-q}-d=\left(2^{m-l}-2\right) 2^{l}-d$, by our representation, is not a function of q. For a particular value of n, there are multiple ways to construct graph D with different values of integer $q, 0 \leq q \leq l-1$. We analyze the monotonicity of the function $\left|E_{D}\right|$ to find when $\left|E_{D}\right|$ is the smallest.

$$
\left\{\begin{array}{l}
\left|E_{D}\right| \text { increases when } \frac{m-1}{2} \leq q \leq l \\
\left|E_{D}\right| \text { decreases when } 0 \leq q \leq \frac{m-1}{2}
\end{array}\right.
$$

$\left|E_{D}\right|$ valleys at $q=\frac{m-2}{2}$. However, $\frac{m-2}{2}$ is not an integer if m is odd. q has to be either $\frac{m-1}{2}$ or $\frac{m-3}{2}$. (The two possible values of q give the same value of $\left|E_{D}\right|$.) Furthermore, q is not necessarily larger than $\frac{m-1}{2}$ when $q=l-1<\frac{m-1}{2}$. Therefore, $\left|E_{D}\right|$ is minimum when $q=\min \left(\left\lfloor\frac{m-2}{2}\right\rfloor, l-1\right)$.

Figure 3.3 shows one example of the construction when $n=96$. First, n is represented by $n=2^{7}-2^{5}=\left(2^{3}-2\right) 2^{4}$, so $m-l=3$ and $l=4$. The value of q is decided by $\min \left(\left\lfloor\frac{7-2}{2}\right\rfloor, 4-1\right)=2$. Value n has the form $\left(2^{3}-2\right) 2^{2} 2^{2}$. Next, the construction creates 4 copies of Knödel graph $K G_{6}$ denoted by $K G^{1}, K G^{2}, K G^{3}$, and $K G^{4}$. The odd vertices with the same label from different copies of $K G_{6}$, for example $r_{1}^{1}, r_{1}^{2}, r_{1}^{3}$ and r_{1}^{4} are selected
to form a hypercube Q_{2} on 4 vertices. Then, every vertex in the current graph is attached a binomial tree B_{2} on 4 vertices. Last, we connect vertex $v \in B_{0}^{1}$ and vertex $u \in B_{1}^{1}$, for example, to root r_{5}^{1} and r_{1}^{1} because r_{5}^{1} and r_{1}^{1} are the neighbors of r_{0}^{1}, which is v 's root and r_{1}^{1} 's first dimensional neighbor.

Theorem 3.3.

$$
B(n) \leq(m-l) n-\left(2^{m-l}-2\right)(m-2 q+1) 2^{q-1}
$$

where $n=2^{m}-2^{l+1}-d, m \geq 5,1 \leq l \leq m-3,0 \leq d \leq 2^{l+1}-1$, and $q=$ $\min \left(\left\lfloor\frac{m-2}{2}\right\rfloor, l-1\right)$.

Proof. To show the theorem, we describe the broadcast scheme of graph D originating from any vertex. Each vertex can be a root or a non-root, and each binomial tree is in or not in a copy of the hypercube; therefore, the originator has four cases by combining the situations.
(1) If the originator is a root vertex r_{i}^{j}, and r_{i}^{j} is in a compounding hypercube, the broadcast scheme consists of three individual broadcast schemes. r_{i}^{j} informs all vertices inside its own copy of hypercube in the first q time units. Then, every copy of Knödel graph $K G_{2^{m-l-2}}$ has exactly one informed vertex. This vertex calls all vertices in its copy of $K G_{2^{m-l}-2}$ at time unit $m-l$. After this step, every copy of binomial tree has its root informed. The root informs all other vertices in time unit $l-q$. The broadcasting from vertex r_{i}^{j} in graph D finishes at time unit $q+m-l+l-q=m=\lceil\log n\rceil$. Figure 3.4 shows an example of the broadcast scheme originating from vertex r_{1}^{1}.
(2) If the originator is a root vertex r_{i}^{j}, and r_{i}^{j} is not in a compounding hypercube, the originator r_{i}^{j} calls all its neighbors $x_{1}^{j}, x_{2}^{j}, \ldots, x_{m-l-1}^{j}$ at time unit $m-l-1$. Once

Figure 3.3: An example of the construction of graph D when $n=96=\left(2^{3}-2\right) 2^{2} 2^{2}$. Solid lines are the edges in 4 copies of Knödel graph $K G_{6}$. Dashed lines are the edges in 3 copies of hypercube Q_{2}. Each dotted triangle represents a binomial tree B_{2}. The dotted dashed lines show the examples of the connections between the non-root vertices and the root vertices. v is connected to the neighbors of r_{0}^{1}, and u is connected to the neighbors of the first dimensional neighbor of its root r_{1}^{1}.

Figure 3.4: The broadcast scheme for the originator r_{1}^{1} in the graph D on 96 vertices.
each x_{p}^{j} in the distinct copy of hypercube Q^{p} is informed at time unit p, it immediately starts informing all the vertices in Q^{p} and finishes at time unit $p+q$. During this step, every copy of Knödel graph $K G^{c}$ has vertex x_{p}^{c} informed at time unit $p+q$, which is in the exactly same time unit as broadcasting from vertex r_{i}^{c} in graph D. (If root r_{i}^{c} is the originator in Case 1, it finishes broadcasting in its copy of hypercube at time unit q and informs its neighbor x_{p}^{c} in Knödel graph $K G^{c}$ at time unit $p+q$.) Every vertex in $K G^{c}$ except r_{i}^{c} is informed at the right time unit. Moreover, vertex r_{i}^{c} can be informed by vertex x_{1}^{c} at time unit $p+q$ since x_{1}^{c} is idle in the broadcasting from r_{i}^{c} in $K G^{c}$. Thus, every root vertex in the base graph C can be informed in time unit $m-l+q$. Then, each root vertex informs all vertices in its binomial tree in time unit $l-q$. All vertices in graph D are informed in time unit $m-l+q+l-q=m$. See Figure 3.5 for the example.
(3) If the originator w is a non-root vertex inthe binomial tree $B T_{i}^{j}$ with the root r_{i}^{j}, and r_{i}^{j} is in a copy of the hypercube Q^{i}, w is adjacent to all the neighbors of r_{f}^{j}, which is r_{i}^{j},s first dimensional neighbor in the Knödel graph $K G^{j}$. Each neighbor of w (also a neighbor of r_{f}^{j}) is in a distinct copy of the hypercube. The originator w can play exactly the same role in broadcasting from vertex r_{f}^{j} in the graph D in Case 2. See Figure 3.5 for the similar example if the vertex r_{0}^{1} is replaced by the vertex u.
(4) If the originator w is a non-root vertex, and w 's root r_{i}^{j} is not in a copy of hypercube. By the definition of the graph D, w is adjacent to all the neighbors of the root vertex r_{i}^{j}. Each neighbor is again in a distinct copy of the hypercube. Similar to Case 3, the originator w can play the same role as vertex r_{i}^{j} in the broadcasting in the graph D. See Figure 3.5 for the similar example if r_{0}^{1} is replaced by the vertex v.

Figure 3.5: The broadcast scheme for the originator r_{0}^{1} in the graph D on 96 vertices. We can also broadcast from the originator u or v by replacing r_{0}^{1} using the method described in Figure 3.2. u is in a binomial tree attached to a copy of hypercube, while v is not.

Therefore, the graph D is a broadcast graph. For any $n=2^{m}-2^{l+1}-d$ in the interval $\left[2^{m-1}+1,2^{m}-2\right]$,

$$
B(n) \leq(m-l) n-\left(2^{m-l}-2\right)(m-2 q+1) 2^{q-1}
$$

where $m \geq 5,1 \leq l \leq m-3,0 \leq d \leq 2^{l+1}-1$, and $q=\min \left(\left\lfloor\frac{m-2}{2}\right\rfloor, l-1\right)$.

By substituting $l=k-1$ in Theorem 3.3, we get

Theorem 3.4.

$$
B(n) \leq(m-k+1) n-\left(2^{m-k+1}-2\right)(m-2 q+1) 2^{q-1}
$$

where $n=2^{m}-2^{k}-d, m \geq 5,2 \leq k \leq m-2,0 \leq d \leq 2^{k}-1$, and $q=\min \left(\left\lfloor\frac{m-2}{2}\right\rfloor, k-2\right)$.

The comparison of the upper bounds is given at the end of this chapter.

3.2 Improved vertex addition construction

3.2.1 New dimensional broadcast schemes for Knödel graph

The problem of finding all dimensional broadcast schemes in the Knödel graph is a very difficult problem [8]. In this section, we describe new dimensional broadcast schemes for Knödel graphs and use them to construct new broadcast graphs. Our first result generalizes the basic result of [8]. Since all results in this section are about Knödel graphs, which is defined only on even number of vertices, we further assume the the variable d is always even for the representation $n=2^{m}-2^{k}-d$.

Theorem 3.5. Let $K G_{n}$ be a Knödel graph on n vertices, where $n=2^{m}-2^{k}-d, m \geq 5$ $2 \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-2$. The dimensional broadcast scheme $1,2,3, \ldots, m-1, t$, where $1 \leq t \leq k$ is a valid broadcast scheme.

Proof. This dimensional broadcast scheme is same as the dimensional broadcast scheme given in [8], except the last dimension could be any $1 \leq t \leq k$ instead of only dimension 1. To prove that this broadcast scheme is valid, we only need to show that the uninformed vertices before the last time unit can be called by their neighbors on dimension t, for any $1 \leq t \leq k$ during the last time unit m.

Since a Knödel graph is regular and vertex transitive, then without loss of generality, we can assume that the originator is v_{0}. Since every vertex broadcasts on dimension s at time unit s for all $1 \leq s \leq m-1$, then the informed vertices after time s are $v_{0}, v_{1}, \cdots, v_{2^{s}-1}$. After $m-1$ time units, the informed vertices are $V_{i}=\left\{v_{0}, v_{1}, \cdots, v_{2^{m-1}-1}\right\}$ and thus, the uninformed vertices are $V_{u}=\left\{v_{2^{m-1}}, \cdots, v_{n-1}\right\}$.

To prove the validity of our broadcast scheme, we must show that every vertex $v_{x} \in V_{u}$ is adjacent to a vertex in V_{i} on dimension t, for any $1 \leq t \leq k$. Let $x=2^{m-1}+c$, where $0 \leq c \leq 2^{m-1}-2^{k}-d-1$.

Assume v_{x} is adjacent to v_{y} on dimension t. Thus, we have

$$
x+y \equiv 2^{t}-1 \quad \bmod n
$$

by the definition of Knödel graph,

$$
x+y=n+2^{t}-1
$$

since $x \geq 2^{m-1}$, and

$$
\begin{array}{r}
2^{m-1}+c+y=n+2^{t}-1 \\
y=2^{m-1}-2^{k}+2^{t}-d-c-1
\end{array}
$$

From the above bounds on c, we get that $2^{t} \leq 2^{m-1}-2^{k}+2^{t}-d-c-1 \leq 2^{m-1}-1$. Thus, $0<y \leq 2^{m-1}-1$ and $v_{y} \in V_{i}$. Therefore, each vertex $v_{x} \in V_{u}$ has a neighbor $v_{y} \in V_{i}$ on dimension t, for any $1 \leq t \leq k$. Thus, every vertex broadcasts on dimension t at the last time unit. The broadcasting of $K G_{n}$ is accomplished in m time units.

We consider broadcasting on dimension t at the last time unit as $t-1$ dimension skipping from dimension 1 . Once the cyclic shifts is applied similar to the one in [8], the dimension at the last time unit is also shifted. From the proof of Theorem 3.5, it actually follows that during time unit m, vertices $v_{2^{t}}, v_{2^{t}+1}, \cdots, v_{2^{m-1}+2^{t}-d-2^{k}-1}$ call vertices $v_{n-1}, v_{n-2}, \cdots, v_{2^{m-1}}$ respectively.
Our next result shows that the validity of a dimensional broadcast scheme with one left shift of the dimensions $1,2, \cdots, m-1$ and then repeating dimension 1 .

Theorem 3.6. Let $K G_{n}$ be a Knödel graph on n vertices, where $n=2^{m}-2^{k}-d, m \geq 5$, $2 \leq k \leq m-2$ and $0 \leq d \leq 2^{k}-2$. Dimensional broadcast scheme $m-1,1, \cdots, m-2$, 1 is a valid broadcast scheme.

Proof. Without loss of generality, we again assume that the originator is v_{0}. At the first time unit, v_{0} calls $v_{2^{m-1}-1}$ on dimension $m-1$. Then, during the time units $2,3, \cdots, m-1$, v_{0} informs the odd vertices of $I_{1}=\left\{v_{i} \mid 1 \leq i \leq 2^{m-2}-1, i\right.$ is odd $\}$ and the even vertices of $I_{1}^{\prime}=\left\{v_{i} \mid 0 \leq i \leq 2^{m-2}-2, i\right.$ is even $\}$, while $v_{2^{m-1}-1}$ informs the odd vertices of $I_{2}=\left\{v_{i} \mid 2^{m-1}-1 \leq i \leq 2^{m-1}+2^{m-2}-3, i\right.$ is odd $\}$ and the even vertices in $I_{2}^{\prime}=$ $\left\{v_{i} \mid 2^{m-1}-2^{k}-d+2 \leq i \leq 2^{m-1}+2^{m-2}-2^{k}-d, i\right.$ is even $\}$. Thus, after time unit $m-1$,
the odd numbered uninformed vertices are

$$
\begin{aligned}
& U_{1}=\left\{v_{i} \mid 2^{m-2}+1 \leq i \leq 2^{m-1}-3, i \text { is odd }\right\} \\
& U_{2}=\left\{v_{i} \mid 2^{m-1}+2^{m-2}-1 \leq i \leq 2^{m}-2^{k}-d-1, i \text { is odd }\right\}
\end{aligned}
$$

and the even numbered uninformed vertices are

$$
\begin{aligned}
& U_{1}^{\prime}=\left\{v_{i} \mid 2^{m-2} \leq i \leq 2^{m-1}-2^{k}-d, i \text { is even }\right\} \\
& U_{2}^{\prime}=\left\{v_{i} \mid 2^{m-1}+2^{m-2}-2^{k}-d+2 \leq i \leq 2^{m}-2^{k}-d-2, i \text { is even }\right\} .
\end{aligned}
$$

We can verify that the first dimensional neighbors of the vertices in $U_{1}, U_{2}, U_{1}^{\prime}$, and U_{2}^{\prime} are all in $I_{2}^{\prime}, I_{1}^{\prime}, I_{2}$, and I_{1} respectively. For example, the first dimensional neighbor of vertex $v_{i} \in U_{1}$ (where $i=2^{m-2}+x, x$ is odd, and $1 \leq x \leq 2^{m-2}-3$) is vertex v_{j}, where $j=n+1-2^{m-2}-x=2^{m}-2^{k}-d+1-2^{m-2}-x=2^{m-1}-2^{k}-d+\left(2^{m-2}-x+1\right)$. $v_{j} \in I_{2}^{\prime}$, since $4 \leq 2^{m-2}-x+1 \leq 2^{m-2}$. Thus, at time unit m vertex $v_{2^{m-2}+x} \in U_{1}$, where x is odd, $1 \leq x \leq 2^{m-2}-3$, receives the message from vertex $v_{2^{m-1}-2^{k}-d+\left(2^{m-2}-x+1\right)} \in I_{2}^{\prime}$, for all $1 \leq x \leq 2^{m-2}-3$.

We omit the proof of the other three pairs of subsets $\left(U_{2}, I_{1}^{\prime}\right),\left(U_{1}^{\prime}, I_{2}^{\prime}\right)$, and $\left(U_{2}^{\prime}, I_{1}\right)$ since all proofs are similar to the proof above.

Thus, broadcast on dimension 1 at the last time unit completes the broadcast of $K G_{n}$ in m time units.

Figure 3.6a shows $K G_{12}$ and its dimensional broadcast scheme $3,1,2,1$.

Figure 3.6: Dimensional broadcast schemes for $K G_{12}$ originating from v_{0}. The empty circles are the informed vertices before the last time unit. In (a), $I_{1}=\left\{v_{1}, v_{3}\right\}, I_{2}=$ $\left\{v_{7}, v_{9}\right\}, I_{1}^{\prime}=\left\{v_{0}, v_{2}\right\}, I_{2}^{\prime}=\left\{v_{6}, v_{8}\right\}, U_{1}=\left\{v_{5}\right\}, U_{2}=\left\{v_{11}\right\}, U_{1}^{\prime}=\left\{v_{4}\right\}$, and $U_{2}^{\prime}=\left\{v_{10}\right\}$. So, the cyclic shift on dimension $3,1,2$, and 1 gives a valid broadcast scheme. However, in (b), the cyclic shift on dimension 2, 3, 1 , and 3 (skipping dimension 2) is not a valid broadcast scheme.

It turns out that the direct generalization of Theorem 3.5 with cyclic shifts similar to the result of [8] is not always true. Theorem 3.6 proves that one cyclic shift of dimensions $1,2, \cdots, m-1$ and then repeating the second dimension (skipping dimension 1) also generates a valid dimensional broadcast scheme. However, our example in Figure 3.6b shows that two cyclic shifts of dimensions $1,2, \cdots, m-1$ with repeating the second dimension (skipping dimension 1) does not always generate a valid dimensional broadcast scheme. In particular, the dimensional broadcast scheme $m-2, m-1,1, \cdots, m-3, m-1$ is not valid for $K G_{12}$ (when $m=4, k=2$, and $d=0$). Again, without loss of generality the originator is v_{0}. In this particular case, the dimensional broadcast scheme $m-2, m-1,1, \cdots, m-3, m-1$ is $2,3,1,3$. Then, the informed vertices before the last time unit are $v_{0}, v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, v_{9}$, and v_{10}. The uninformed vertices before the last time unit are v_{2}, v_{5}, v_{8}, and v_{11}. We can clearly see that broadcast on dimension 3
cannot complete broadcasting, neither does dimension 1. So, this cyclic shift is an invalid broadcast scheme, see Figure 3.6b for example.

3.2.2 Construction of broadcast graphs using newly obtained dimensional broadcast schemes

Since Knödel graph gives a good general upper bound on $B(n)$, but only for even values of n, vertex addition method from [30] adds one more vertex and some edges to Knödel graph to obtain new broadcast graphs for odd values of n. The construction uses dimensional broadcast schemes and their cyclic shifts.

Let vertex v_{s} be the neighbor of a particular originator v_{i} on dimension s, where $1 \leq s \leq$ $m-1$ under valid broadcast scheme $s, s+1, \cdots m-1,1, \cdots, s$. Then vertices v_{s} and v_{i} are idle at the last time unit. Then, the additional vertex added to the Knödel graph can be informed by vertex v_{i} if they are adjacent. Thus, v_{i} dominates all its s neighbors on different dimensions. Then, constructing a broadcast graph by adding one vertex to a Knödel graph is same as finding a dominating set. The same paper also introduces a dominating set of a Knödel graph of size 2^{m-2} and obtains an upper bound on $B(n)$ based on the dominating set.

$$
B(n) \leq \frac{1}{2} n\lceil\log n\rceil+2^{m-2}
$$

This is the best known general upper bounds for odd n. However, if $m>2$ is prime, m divides n, and for any integer $x<m-1$ which is a divisor of $m-1,2^{x} \not \equiv 1 \bmod m$, $K G_{n}$ has a dominating set of size $\frac{n}{m}$. Then [40] gives a better bound for these specific values of n. In particular,

$$
\begin{aligned}
B(n) & \leq \frac{1}{2}(n-1)\lfloor\log n\rfloor+\frac{n-1}{\lceil\log n\rceil}+\lfloor\log n\rfloor-2 \\
& =\frac{1}{2} n\lfloor\log n\rfloor+\frac{n-1}{\lceil\log n\rceil}+\frac{1}{2}\lfloor\log n\rfloor-2
\end{aligned}
$$

In this subsection, we follow the track given by [30,40] and construct a broadcast graph by adding one vertex to Knödel graph. The construction improves the general bound for almost all odd values of n to $B(n) \leq \frac{1}{2} n\lfloor\log n\rfloor+\left\lceil\frac{1}{7} n\right\rceil+\lfloor\log n\rfloor$.

Our method is similar to the one in $[30,40]$ but using 3-distance dominating sets. This also requires more careful consideration of the connections in Knödel graph.

Definition 3.1. Let $K G_{n}=(V, E)$ be a Knödel graph on n vertices, where $n=2^{m}-2^{k}-d$, $3 \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-2$, and let $e \equiv n \bmod 14$. Define $U=\left\{v_{0}\right\} \cup$ $\left\{v_{n-14 a} \left\lvert\, 1 \leq a \leq \frac{n}{14}\right.\right\} \cup\left\{v_{14 a+13} \left\lvert\, 1 \leq a \leq \frac{n}{14}\right.\right\} \cup X$, where $X=\left\{v_{e-7}\right\}$ if $e \geq 8$, and $X=\emptyset$ otherwise.

Theorem 3.7. U contains at least one idle vertex u at the last time unit under dimensional broadcast scheme $1,2,3, \cdots, m-1,3$ from any originator in graph $K G_{n}$.

Proof. First, from Theorem 3.5, the dimensional broadcast scheme $1,2, \cdots, m-1,3$ is a valid dimensional broadcast scheme for $K G_{n}$. Here $t=3 \leq k$ as stated in Theorem 3.5. So, we will show that under the dimensional broadcast scheme from any originator v_{i}, there is a vertex $u \in U$, such that v_{i} informs u and its third dimensional neighbor during the first 3 time units. Then, at the last time unit, when every vertex broadcasts on the third dimension, u and its third dimensional neighbor are both idle. We partition the vertices into 14 subsets and show the connections on dimensions 1,2 , and 3 between the sets.

For all $v_{i} \in V$, when i is even, $i=n-14 a+2 b$, where $0 \leq a \leq \frac{n}{14}, 0 \leq b \leq 6$, and $14 a-2 b \leq n-2$. When i is odd, $i=14 a+2 b+1$, where $0 \leq a \leq \frac{n}{14}, 0 \leq b \leq 6$ and $14 a+2 b+1 \leq n-1$. Then, we have 14 cases depending on the different parities of i and values of b.
(1) If i is even and $b=0, i=n-14 a$ and $v_{i} \in U$ by definition. The broadcast originating from v_{i} makes vertex v_{i} idle at the last time unit. If i is odd and $b=6$, the situation is the same.
(2) If i is odd and $b=0,1$, or $3, i=14 a+1,14 a+3$, or $14 a+7$. These three different vertices have a common neighbor $v_{n-14 a} \in U$ on dimension 1,2 , and 3 respectively. Thus, if the originator is one of these vertices, $v_{n-14 a}$ and $v_{14 a+7}$ are informed in time unit 3. And $v_{j} \in U$ is idle at the last time unit.

If i is even and $b=3,5$, and 6 , we have the same situation.
(3) If i is even and $b=1, i=n-14 a-2$. Vertex v_{i} is adjacent to vertex $v_{14 a+3}$, which is the case we discussed above. So, v_{i} informs $v_{14 a+3}$ at the first time unit. $v_{14 a+3}$ informs $v_{n-14 a} \in U$ at the second time unit. And $v_{n-14 a}$ informs $v_{14 a+7}$ at the third time unit. Thus, $v_{n-14 a} \in U$ and its third dimensional neighbor $v_{14 a+7}$ are both informed after time unit 3 , and $v_{n-14 a}$ is idle at the last time unit.

If i is odd and $b=5$, we have the same case.
(4) If i is even and $b=2, i=n-14 a-4 . v_{i}$ is adjacent to vertex $v_{14 a+7}$ on dimension 2. So, we broadcast from v_{i} and inform $v_{14 a+7}$ at time unit 2 . Then, $v_{14 a+7}$ informs $v_{n-14 a}$ at time unit 3. At the last time unit, $v_{n-14 a} \in U$ is idle.

If i is odd and $b=4$, the situation is the same.
(5) If i is odd and $b=2, i=14 a+5 . v_{i}$ is adjacent to $v_{n-14 a-4}$ on dimension 1 . So, v_{i} informs $v_{n-14 a-4}$ at the first time unit. Then, if we just follow Case 4, vertex $v_{n-14 a} \in U$ is idle at the last time unit. Again, we have the same case for even i and $b=4$.

Therefore, for any originator v_{i}, there is always a vertex in U, which is idle at the last time unit. Figure 3.7 shows one example of set U. Note that the vertex set U is a 3-distance dominating set for $K G_{n}$.

Figure 3.7: Knödel graph on $n=24$ vertices with only a part of the edges involved in the dimensional broadcast scheme 1,2 , and 3 . Solid lines are the edges on dimension 1. Dashed lines are the edges on dimension 2. And dotted lines are the edges on dimension 3. The circles are the vertices in vertex set U. We say that, for example, v_{10} covers v_{6}, v_{8}, v_{15}, v_{17}, v_{19}, and v_{21} on distance 3. So, vertex set U is a 3 -distance dominating set of V. Note that v_{3} is in U because $n \equiv e \bmod 14, e=10 \geq 8$, and $X=\left\{v_{10-7}\right\}$.

Next, we construct a new broadcast graph using the property of Knödel graph from Theorem 3.7 and a dimensional broadcast scheme from Theorem 3.5.

Let $K G_{n}=(V, E)$ be the Knödel graph on n vertices, where $n=2^{m}-2^{k}-d, 3 \leq k \leq m-$ 2 , and $0 \leq d \leq 2^{k}-2$. Let $U=\left\{v_{0}\right\} \cup\left\{v_{n-14 a} \left\lvert\, 1 \leq a<\frac{n}{14}\right.\right\} \cup\left\{v_{14 a+13} \left\lvert\, 1 \leq a<\frac{n}{14}\right.\right\} \cup X$, where $X=\left\{v_{e-7}\right\}$ if $e \geq 8$, and $X=\emptyset$ otherwise. We add one vertex v and two types of edges E_{1} and E_{2} to $K G_{n}$, where $E_{1}=\{(v, u) \mid u \in U\}$ and $E_{2}=\left\{\left(v, v_{i}\right) \mid\left(v_{1}, v_{i}\right) \in E\right\}$. Then, the new graph is defined as $G=\left(V \cup\{v\}, E \cup E_{1} \cup E_{2}\right)$.

By the definition of Knödel graph, $|E|=\frac{(m-1) n}{2}$. By the definition of vertex set U, $\left|E_{1}\right|=\left\lceil\frac{n}{7}\right\rceil$, if $n<8 \bmod 14$; or $\left\lceil\frac{n}{7}\right\rceil+1$, otherwise. Since Knödel graph is $(m-1)$ regular, v_{1} has $m-1$ neighbors. And one of the neighbors, v_{0} is already adjacent to v, so $\left|E_{2}\right|=m-2$. Thus, graph G has $\frac{1}{2}(m-1) n+\left\lceil\frac{n}{7}\right\rceil+m-2+x \leq \frac{1}{2}(m-1) n+\left\lceil\frac{n}{7}\right\rceil+m-1$ edges, since $x \leq 1$.

Theorem 3.8. The graph G, constructed above, is a broadcast graph, and

$$
B(n) \leq \frac{1}{2}(m-1) n+\left\lceil\frac{n-1}{7}\right\rceil+\frac{1}{2}(m-1)
$$

where $n=2^{m}-2^{k}-d+1,3 \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-2$.
The equation in Theorem 3.8 is slightly different from the equation above given for the number of edges in graph G. In Theorem 3.8, the number of vertices in graph G is equal to the number of vertices in Knödel graph $K G_{n}$ plus one additional vertex. So, in the rest of the paper, we have $K G_{n-1}$ instead of $K G_{n}$ as a subgraph of G.

Proof. To prove the theorem, we show a broadcast scheme for any originator of graph G. Graph G has two types of vertices, the vertices in Knödel graph $K G_{n-1}$ and the additional vertex. So, we have the following two cases.
(1) If the originator $v_{i} \in K G_{n-1}$, by Theorem 3.7, we know that there is a vertex $v_{k} \in U$ idle at the last time unit. Since every vertex in U is adjacent to the added vertex v, vertex v_{k} calls v at the last time unit.
(2) If the originator is the additional vertex v, v plays exactly the same role as vertex v_{1}, because v is adjacent to all v_{1} 's neighbors. And at the last time unit, vertex v_{0} informs v_{1} and completes the broadcasting.

Thus, the broadcast time of graph G is the same as broadcast time of $K G_{n-1}$. Therefore G is a broadcast graph, and since $x \leq 1$ we obtain

$$
B(n) \leq \frac{1}{2}(m-1) n+\left\lceil\frac{n-1}{7}\right\rceil+\frac{1}{2}(m-1)
$$

We observe that the subset of vertices U defined above and used in Theorem 3.73 .8 is a 3-distance dominating set for Knödel graph. The proof of this fact is simple.

For the veritces $\left\{v_{1}, v_{15}, \cdots\right\} \cup\left\{v_{3}, v_{17}, \cdots\right\} \cup\left\{v_{7}, v_{21}, \cdots\right\} \cup\left\{v_{n-6}, v_{n-20}, \cdots\right\} \cup\left\{v_{n-10}, v_{n-24}, \cdots\right\} \cup$
$\left\{v_{n-12}, v_{n-26}, \cdots\right\}$, they have distance 1 to the vertices in U. The vertices in $\left\{v_{9}, v_{23}, \cdots\right\} \cup$ $\left\{v_{11}, v_{25}, \cdots\right\} \cup\left\{v_{n-2}, v_{n-16}, \cdots\right\} \cup\left\{v_{n-4}, v_{n-18}, \cdots\right\}$ have distance 2 to the vertices in U. And the vertices in $\left\{v_{7}, v_{21}, \cdots\right\} \cup\left\{v_{n-6}, v_{n-20}, \cdots\right\}$ have distance 3 to the vertices in U. Thus, every vertex has at most distance 3 to a vertex in U.

3.2.3 A further improvement of the vertex addition method

In this section, we further improve the vertex addition method by following the same technique: making one particular vertex idle in the last time unit, but without using the dominating set. To simplify the notations, we let $n=2^{m}-2^{k}-d$ and $2 a=2^{k}+d$, where $1 \leq a \leq 2^{m-2}-1$.

Observation 3.1. For any originator vertex $x \in W \subsetneq V\left(K G_{n}\right)$ there exist a broadcast scheme under which vertex $v_{n-2^{m-1}+2}$ is idle during the last time unit, where

$$
\begin{align*}
& \qquad \begin{array}{l}
W=\left\{v_{n-2^{m-1}+2}\right\} \\
\\
\cup\left\{v_{0}, v_{n-2}, v_{n-4}, \cdots, v_{n-2 a+4}\right\} \cup\left\{v_{1}, v_{3}, \cdots, v_{2 a-3}\right\} \\
\cup\left\{v_{2^{m-1}-1}, v_{2^{m-1}+1}, \cdots, v_{2^{m-1}+2 a-5 s}\right\} \\
n=2^{m}-2 a
\end{array} \tag{case1}\\
& \text { Proof. and } 1 \leq a \leq 2^{m-2}-1 . \tag{case2}
\end{align*}
$$

Case 1. If the originator is $v_{n-2^{m-1}+2}$, then consider the dimensional broadcast scheme $1,2, \cdots, m-1,1$. Vertex $v_{n-2^{m-1}+2}$ informs $v_{2^{m-1}-1}$ in the first time unit, or vice versa. Thus, in the last time unit, the two vertices are idle, and $v_{n-2^{m-1}+2}$ is one of them.

Case 2. If the originator is v_{0} or v_{1}, and the dimensional broadcast scheme is $1,2, \cdots, m-$ 1,1 , then $v_{0}, v_{1}, \cdots, v_{2^{m-1}-1}$ are informed, while $v_{2^{m-1}}, v_{2^{m-1}+1}, \cdots, v_{n-1}$ are uninformed
before the last time unit. Then in the last time unit, every vertex broadcasts on dimension 1. The calls from odd vertices are

$$
\begin{aligned}
v_{3} & \rightarrow v_{n-2} \\
v_{5} & \rightarrow v_{n-4} \\
& \vdots \\
v_{2^{m-1}-2 a+1} & \rightarrow v_{n-2^{m-1}+2 a} .
\end{aligned}
$$

And the calls from even vertices are

$$
\begin{gathered}
v_{2} \rightarrow v_{n-1} \\
v_{4} \rightarrow v_{n-3} \\
\vdots \\
v_{n-2^{m-1}} \rightarrow v_{2^{m-1}+1}
\end{gathered}
$$

Thus, the odd vertices $v_{2^{m-1}-2 a+3}, \cdots, v_{2^{m-1}-1}$ and the even vertices $v_{n-2^{m-1}+2}, \cdots, v_{n-2^{m-1}+2 a-2}$ are idle in the last time unit, which includes vertex $v_{n-2^{m-1}+2}$.

If we change the originator to be v_{n-2} or v_{3} and keep the same broadcast scheme, the idle vertices become the odd vertices $v_{2^{m-1}-2 a+5}, \cdots, v_{2^{m-1}+1}$ and the even vertices $v_{n-2^{m-1}}, \cdots, v_{n-2^{m-1}+2 a-}$ Vertex $v_{n-2^{m-1+2}}$ is again idle in the last time unit.

Then, we can keep changing the originators $v_{n-2 a+4}$ and $v_{2 a-4}$ to keep $v_{n-2^{m-1+2}}$ always be idle. Figure 3.8 also shows this case by presenting two graphs.

\ddagger uninformed $\left.\longrightarrow|\quad|$| idle $\longrightarrow \mid$ |
| :--- |
| informed |$\longrightarrow \right\rvert\,$

(a)

(b)

Figure 3.8: 3.8 a shows the observation when the originator is v_{0} or v_{1}. In 3.8 b, we right shift the originators to $v_{n-2 a+6}$ or $v_{2 a+5}$. The originators are indicated by empty circles. All informed and uninformed vertices before the last time unit are indicated above or under the vertices. Arrows are the calls in the last time unit. And the idle vertices are also labeled. Vertex $v_{n-2^{m-1}+2}$ is always idle.

Case 3. Let the originator be v_{0} or $v_{2^{m-1}-1}$ and the broadcast scheme be dimension $m-$ $1, m-2, \cdots, 1, m-1$. Before the last time unit, the even vertices $v_{0}, v_{n-2}, \cdots v_{n-2^{m-1}+2}$ and the odd vertices $v_{1}, v_{3}, \cdots, v_{2^{m-1}-1}$ are informed. The even vertices $v_{2}, v_{4}, \cdots, v_{n-2^{m-1}}$ and the odd vertices $v_{2^{m-1}+1}, v_{2^{m-1}+3}, \cdots, v_{n-1}$ are uninformed. In the last time unit, when
every vertex broadcasts on dimension $m-1$, the calls from even vertices are

$$
\begin{gathered}
v_{n-2} \rightarrow v_{2^{m-1}+1} \\
v_{n-4} \rightarrow v_{2^{m-1}+3} \\
\vdots \\
v_{n-2^{m-1}+2 a} \rightarrow v_{n-1} .
\end{gathered}
$$

And the calls from odd vertices are

$$
\begin{aligned}
v_{2^{m-1}-3} & \rightarrow v_{2} \\
v_{2^{m-1}-5} \rightarrow & v_{4} \\
& \vdots \\
v_{2 a-1} & \rightarrow v_{n-2^{m-1}}
\end{aligned}
$$

Thus, the even vertices $v_{n-2^{m-1}+2}, \cdots, v_{n-2^{m-1}+2 a-2}$ and the odd vertices $v_{1}, \cdots, v_{2 a-3}$ are idle at the last time unit, which contains vertex $v_{n-2^{m-1}+2}$.

Similar to Case 2, we can also right shift the originators from v_{0} to $v_{n-2 a+4}$ and from $v_{2^{m-1}-1}$ to $v_{2^{m-1}+2 a-5}$ to keep vertex $v_{n-2^{m-1}+2}$ idle at the last time unit. Figure 3.9 and 3.10 show this case.

Figure 3.9: If the originator is v_{0} or v_{1}, vertex $v_{n-2^{m-1}+2 a-4}$ is idle in the last time unit.

By the same technique, we can prove that if the originator belongs to

$$
\begin{aligned}
&\left\{v_{2^{m-1}+2 a-3}\right\} \\
& \cup\left\{v_{n-2 a+2}, v_{n-2 a}, \cdots, v_{n-6 a+6}\right\} \\
& \cup\left\{v_{n-2^{m-1}}, v_{n-2^{m-1}-2}, \cdots, v_{2^{m-1}-a+4}\right\} \\
& \cup\left\{v_{2 a-1}, v_{2 a+1}, \cdots, v_{4 a-5}\right\}
\end{aligned}
$$

vertex $v_{2^{m-1}+2 a-3}$ is idle in the last time unit. And in general, if the indices are all modulo n, we have the following lemma.

Lemma 3.1. Let vertex v_{i} be an arbitrary vertex in $K G_{n}$, where $0 \leq i \leq n-1$. There exist a broadcast scheme from any originator of W such that v_{i} is idle during the last time

unit, where

$$
\begin{aligned}
W & =\left\{v_{i}\right\} \\
& \cup\left\{v_{2^{m-1}-2 a+2+i}, v_{2^{m-1}-2 a+4+i}, \cdots, v_{2^{m-1}-2+i}\right\} \\
& \cup\left\{v_{n+1-i}, v_{n+3-i}, \cdots, v_{n+2 a-3-i}\right\} \\
& \cup\left\{v_{n-2^{m-1}+3-i}, v_{n-2^{m-1}+5-i}, \cdots, v_{n-2^{m-1}+2 a-1-i}\right\} .
\end{aligned}
$$

We will borrow the word "dominating" from the dominating set used in the previous vertex addition method. We say that vertex x "broadcast dominates" the subset $W \subsetneq V$ if for any broadcast originator from W there exists a broadcast scheme under which vertex x is idle during the last time unit. For example, vertex v_{i} "broadcast dominates" the set of vertices the subset W from Lemma 3.1. Thus, to construct a broadcast graph by adding one vertex to a Knödel graph, we select the minimum number of vertices to "broadcast dominate" every vertex in the Knödel graph. Suppose the idle vertices $u_{1}, u_{2},, \cdots u_{l}$ "broadcast dominate" sets $W_{1}, W_{2}, \cdots W_{l}$ respectively.

Figure 3.11 shows the way that the idle vertices are selected. Every idle vertex "broadcast dominates" two parts of the vertices separately. The part on the left has $2 a-2$ vertices, $a-1$ vertices on each side, represented by a box. The other part on the right, a triangle, has only one vertex - the idle vertex on one side and $a-1$ vertices on the other side. The indices of the left most vertices in a box and the corresponding triangle differ by $2^{m-1}-2$. If the boxes and the triangles are selected as close as possible as they are in Figure 3.11, there is a gap containing $2 a-4$ vertices between two pairs of triangles. In the figure, we select vertex $v_{2^{m-1}+4 a-i-7}$ to "broadcast dominate" the vertices in the gap between the triangle W_{2} and W_{3}. So, u_{1}, u_{2}, and $v_{2^{m-1}+4 a-i-7}$ "broadcast dominate" $4 a-4$ vertices both on the left and the right sides. We define a new broadcast graph on odd number of vertices as follows.

Definition 3.2. Let H_{n} be a broadcast graph on $n=2^{m}-2 a+1$ vertices with Knödel graph $K G_{n-1}$ as a subgraph, where $1 \leq a \leq 2^{m-2}-1$. The vertex $v \notin K G_{n-1}$ is adjacent to every vertex in $U=U_{o} \cup U_{e} \cup U_{g} \cup N_{0}$, where $U_{o}=\left\{v_{n-2^{m-1}+2-x(4 a-4)} \left\lvert\, 0 \leq x \leq\left\lceil\frac{2^{m-1}-2 a}{2 a}\right\rceil\right.\right\}$, $U_{e}=\left\{v_{2^{m-1}-1+x(4 a-4)} \left\lvert\, 0 \leq x \leq\left\lceil\frac{2^{m-1}-2 a}{2 a}\right\rceil\right.\right\}, U_{g}=\left\{v_{6 a-7+x(4 a-4)} \left\lvert\, 0 \leq x \leq\left\lceil\frac{2^{m-1}-2 a}{2 a}\right\rceil\right.\right\}$, and N_{0} consist of all neighbors of v_{0}.

Note that U_{o} consists of the odd idle vertices dominating the vertices in W_{2}, W_{4}, \ldots in Figure 3.11, U_{e} consists of the even idle vertics dominating the vertices in W_{1}, W_{3}, \cdots, and U_{g} consists of the idle vertices dominating the vertices between the last box and the first triangle W_{1}.

Theorem 3.9. The graph H_{n} defined above is a broadcast graph and

$$
\begin{aligned}
B(n) & \leq \frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{n+1}{2^{k}+2 d-1}+1\right\rceil+m-1 \\
& =\frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{2^{m}}{2^{m}-(n+1)}\right\rceil+m-1
\end{aligned}
$$

where $n=2^{m}-2^{k}-2 d+1,1 \leq k \leq m-2$, and $0 \leq d \leq 2^{k-1}-1$.
Proof. Since Lemma 3.1 ensures there is always one vertex idle, the broadcast scheme becomes trivial. If the originator is a vertex in the Knödel graph, then we know there is a vertex in U which is idle in the last time unit. Thus, the additional vertex v can be informed by the idle vertex in the last time unit. If the originator is the additional vertex v, v can act as vertex v_{0}, since it is adjacent to all neighbors of v_{0}.

Now we count the number of edges in H_{n}. The Knödel graph has $\frac{1}{2}(n-1)(m-1)$ edges. Each vertex in U has one more edge connecting to vertex v, that is $3\left(\left\lceil\frac{2^{m-1}-2 a}{2 a}\right\rceil+1\right)+m-1$ edges. Thus, graph H_{n} has $\frac{1}{2}(n-1)(m-1)+3\left(\left\lceil\frac{2^{m-1}-2 a}{2 a}\right\rceil+1\right)+m-1$ edges in total. After substituting $2 a=2^{k}+2 d$ and $n=2^{m}-2^{k}-2 d+1$ and some simple calculations, we have $B(n) \leq \frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{n}{2^{k}+2 d-1}+1\right\rceil=\frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{2^{m}}{2^{m}-(n+1)}\right\rceil+m-1$.

Note that the new upper bound on $B(n)$ above improves the existing general upper bounds on $B(n)$ that use the vertex addition method for $n=2^{m}-2^{k}-2 d, 1 \leq k \leq m-2$, and $0 \leq d \leq 2^{k-1}-1$. In particular, when $k=m-2$ and $d=0$ then the new upper bound is approximately $\frac{1}{2}(m-1) n+\frac{n}{9}$. When $k=m / 2$ and $d=0$ then the new upper bound is $\frac{1}{2}(m-1) n+\frac{3}{4} \sqrt{n}$.

3.3 Comparing the new and the existing upper bounds

We denote the new upper bound in Theorem 3.2 by

$$
N B_{1}=(m-k+1) n-(m+k) 2^{m-k}+m+k,
$$

the one in Theorem 3.4 by

$$
N B_{2}=(m-k+1) n-\left(2^{m-k+1}-2\right)(m-2 q+1) 2^{q-1}
$$

the one in Theorem 3.8 by

$$
N B_{3}=\frac{1}{2}(m-1) n+\left\lceil\frac{n-1}{7}\right\rceil+\frac{1}{2}(m-1),
$$

and the one in Theorem 3.9 by

$$
N B_{4}=\frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{2^{m}}{2^{m}-(n+1)}\right\rceil+m-1,
$$

where $n=2^{m}-2^{k}-d, m \geq 5,2 \leq k \leq m-2,0 \leq d \leq 2^{k}-1, q=\min \left(\left\lfloor\frac{m-2}{2}\right\rfloor, k-2\right)$, and $N B_{3}$ and $N B_{4}$ are only defined for odd n. Since both of $N B_{1}$ and $N B_{2}$ are given by the compounding method, $N B_{3}$ and $N B_{4}$ are given by the vertex addition method, we compare the two pairs of bounds separately.

Before comparing $N B_{1}$ with $N B_{2}$ we first need to determine the value of q in $N B_{2}$. By the theorem, $q=\min \left(\left\lfloor\frac{m-2}{2}\right\rfloor, k-2\right)$. So, calculations show that $N B_{2}$ is monotonically decreasing when $q \in\left[1,\left\lfloor\frac{m-2}{2}\right\rfloor\right]$ and is maximized for $q=1$. Thus,

$$
N B_{2} \leq(m-k+1) n-(m-1)\left(2^{m-k+1}-2\right)
$$

and

$$
N B_{1}-N B_{2} \geq(m-k-2)\left(2^{m-k}-1\right)
$$

Since $m-k \geq 2, N B_{1}-N B_{2} \geq 0$. Therefore, $N B_{2}$ is a better upper bound than $N B_{1}$. Comparing $N B_{3}$ and $N B_{4}$ is simple. They have the first term in common. And the second term of $N B_{4}$ is clearly smaller than $N B_{3}$. So, $N B_{4}$ is the best upper bound given by the vertex addition method.

Next, we compare $N B_{2}$ and $N B_{4}$ for odd values of n. The first terms of the two bounds are the leading term. When $k \geq \frac{1}{2}(m+3), \frac{1}{2}(m-1) n$ is larger than $(m-k+1) n$. Thus, $N B_{2}$ is a smaller bound when $n \leq 2^{m}-2^{\frac{1}{2}(m+3)}$, and $N B_{4}$ is smaller otherwise.

Finally, we compare the new bounds with the old bound $U B$ given in Section 2.4. In the
range $2^{m-1}+1 \leq n \leq 2^{m}-2^{\frac{1}{2}(m+3)}$,

$$
\begin{aligned}
& U B-N B_{2} \\
&=(m-k+1) n-\left(\frac{m}{2}+\frac{k}{2}+1\right) 2^{m-k}+k+1 \\
& \quad-\left((m-k+1) n-\left(2^{m-k+1}-2\right)(m-2 q+1) 2^{q-1}\right) \\
& \geq(m-k+1) n-\left(\frac{m}{2}+\frac{k}{2}+1\right) 2^{m-k}+k+1 \\
& \quad-\left((m-k+1) n-(m-1)\left(2^{m-k+1}-2\right)\right) \\
&=(m-1)\left(2^{m-k+1}-2\right)-\left(\frac{m}{2}+\frac{k}{2}+1\right) 2^{m-k}+k+1 \\
&= \frac{1}{2}(3 m-k-6) 2^{m-k}-2 m+k+3 \\
&> 0
\end{aligned}
$$

Also, for the odd n in the range $2^{m}-2^{\frac{1}{2}(m+3)}<n \leq 2^{m}$,

$$
\begin{aligned}
& U B-N B_{4} \\
= & \frac{1}{2}(m-1) n+2^{m-2}-\frac{1}{2}(m-1) \\
& -\left(\frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{2^{m}}{2^{m}-(n+1)}\right\rceil+m-1\right) \\
= & 2^{m-2}-\frac{1}{2}(m-1)-\frac{3}{4}\left\lceil\frac{2^{m}}{2^{m}-(n+1)}\right\rceil-m+1 \\
< & 0
\end{aligned}
$$

if $n<2^{m}-3$. Thus, the best general upper bound is as follows.

$$
B(n) \leq\left\{\begin{array}{l}
(m-k+1) n-\left(2^{m-k+1}-2\right)(m-2 q+1) 2^{q-1}, \\
\quad \text { if } 2^{m-1}+1 \leq n \leq 2^{m}-2^{\frac{1}{2}(m+3)}\left(\text { our new bound } U B_{2}\right) ; \\
\frac{1}{2}(m-1) n, \\
\text { if } 2^{m}-2^{\frac{1}{2}(m+3)}<n \leq 2^{m} \text { for even } n[52] ; \\
\frac{1}{2}(m-1) n+\frac{3}{4}\left\lceil\frac{2^{m}}{2^{m}-(n+1)}\right\rceil+m-1, \\
\text { if } \left.2^{m}-2^{\frac{1}{2}(m+3)}<n \leq 2^{m}-5 \text { for odd } n \text { (our new bound } U B_{4}\right) ; \\
\frac{1}{2}(m-1) n+2^{m-2}-\frac{1}{2}(m-1), \\
\text { if } n=2^{m}-3 \text { or } 2^{m}-1[40] .
\end{array}\right.
$$

Chapter 4

A new lower bound

This chapter proposes a new method to improve the general lower bound of the broadcast function $B(n)$ based on new observations of partitioning broadcast graphs.

4.1 Definitions and observations

Definition 4.1. A binomial tree $B T_{m}$ on 2^{m} vertices of order m consists of
(1) a single vertex which is also the root, if $m=1$;
(2) two copies of binomial trees $B T_{m-1}$ having the two roots connected by an edge, if $m>1$.

Definition 4.2. Let $B T_{m}$ and $B T_{k}$ be two binomial trees of order m and k respectively, and $m>k . u$ is the root of $B T_{m} . B T_{m} \backslash B T_{k}$ is a tree obtained by removing a complete binomial tree $B T_{k}$ from u in $B T_{m}$ except the root u.

Figure 4.1 gives an example of a binomial tree and $B T_{m} \backslash B T_{k}$ for $m=5$ and $k=3$.
Definition 4.3. Let T be a broadcast tree of graph G originating from root u. Then $L_{k}(T)$, the first k broadcast level tree of T, consists of all the vertices of T which are informed in the first k time units following the broadcast scheme from originator vertex u in graph G.

Figure 4.1: (a) is an example of a binomial tree $B T_{5}$. (b) the solid edges and the associated vertices give an example of $B T_{5} \backslash B T_{3}$.

We know that any broadcast tree of a graph G on n vertices is a subtree of a binomial tree $B T_{\lceil\log n\rceil}$. So, the first k broadcast level tree $L_{k}(T)$ is a subtree of a binomial tree $B T_{k}$. Figure 4.2 gives one example of a broadcast tree $B T_{4}$ and its first 3 broadcast level tree. Let G be a minimum broadcast graph on $n=2^{m}-2^{k}+1$ vertices, where $m \geq 3$ and $1 \leq k \leq m-2$; u be a vertex of degree $m-k$ in $G ; T$ be the broadcast tree rooted at vertex u; and $L_{k}(T)$ be the first k broadcast level tree of T. If the neighbors of u are sorted in decreasing order of their degrees and the i-th neighbor corresponds to the i-th branch, we have the following observations.

Observation 4.1. $B T_{m} \backslash B T_{k}$ is a broadcast tree T of a broadcast graph G on $n=2^{m}-$ $2^{k}+1$ vertices rooted at a vertex u of degree $m-k$, where $m \geq 3$ and $1 \leq k \leq m-2$.

Proof. Graph G has $2^{m}-2^{k}+1$ vertices, so the broadcasting must be completed in m time units. It is clear that during this m time broadcasting from originator u in $B T_{m} \backslash B T_{k}$ there are no idle vertices (informed vertices but not transferring the message). Thus, branches of the root u are complete binomial trees $B T_{m-1}, B T_{m-2}, \cdots, B T_{k}$. There are in total $2^{m-1}+\cdots+2^{k}+1=2^{m}-2^{k}+1$ vertices, which is exactly the same as the number of

Figure 4.2: (a) is a broadcast graph G on 14 vertices. (b) is a binomial tree $B T_{4}$ on 16 vertices. 14 vertices with labels among them together with the solid and the dashed edges give a broadcast tree T of G. And the solid edges form a first 3 broadcast level tree $L_{3}(T)$.
vertices in G. Thus, the broadcast tree has to be $B T_{m} \backslash B T_{k}$.

Observation 4.2. Assume T is a broadcast tree of a broadcast graph G on $n=2^{m}-2^{k}+1$ vertices rooted at vertex u of degree $m-k$, where $m \geq 3$. If $\frac{m}{2} \leq k \leq m-2$, the i-th branch of u has 2^{k-i} vertices in $L_{k}(T)$, where $1 \leq i \leq m-k$.

Proof. If we ignore the first level (only one vertex: the root u), broadcast tree T becomes a forest of binomial trees $B T_{m-1}, B T_{m-2}, \cdots, B T_{k}$. So, the first k level broadcast tree $L_{k}(T)$ of T consists of the first $k-1$ level broadcast tree $L_{k-1}\left(B T_{m-1}\right)$ of the first branch, $L_{k-2}\left(B T_{m-2}\right)$ of the second branch, and $L_{k-i}\left(B T_{m-i}\right)$ of the i-th branch in general. If $k \geq \frac{m}{2}$, then the last neighbor is informed at time unit $m-k \leq k$. Thus, $L_{2 k-m}\left(B T_{m-k}\right)$ is a binomial tree $B T_{2 k-m}$. Then, each branch of $L_{k-i}\left(B T_{m-i}\right)$ becomes a binomial tree $B T_{k-i}$. So, there are 2^{k-i} vertices on the i-th branch.

Observation 4.3. Assume T is a broadcast tree of a broadcast graph G on $n=2^{m}-2^{k}+1$ vertices rooted at vertex u of degree $m-k$, where $m \geq 3$. If w is an arbitrary vertex in

Figure 4.3: An example of a broadcast tree rooted at vertex u of degree $m-k$. The triangle at the i-th branch is a binomial tree $B T_{m-i}$, where $1 \leq i \leq m-k$. The upper part of each triangle is in the first $k-i$ broadcast level tree $L_{k-i}\left(B T_{m-i}\right)$. And leaf w is an example of a vertex in $L_{k}(T)$. w has degree 1 in $L_{k}(T)$ and degree $m-k$ in $T-L_{k}(T)$. So, w has degree $m-k+1$ in broadcast tree T.
$L_{k}(T)$, then the w has degree strictly greater than $m-k$ in the broadcast tree T.

Proof. Observation 4.1 ensures that on i-th branch, $B T_{m-i}$ is a complete binomial tree. So, $L_{k-i}\left(B T_{m-i}\right)$ is indeed a complete binomial tree $B T_{k-i}$ of order $k-i$, and it can be obtained by replacing every vertex in $B T_{k-i}$ by a binomial tree $B T_{m-k}$. Thus, if a vertex w in $L_{k-i}\left(B T_{m-i}\right)$ (which is $B T_{m-k}$) has degree a, then vertex w has degree $a+m-k$ in $B T_{m-i}$ (also in broadcast tree T). Every leaf in any tree has the minimum degree 1 . Therefore, any leaf in $L_{k}(T)$ gives the minimum degree $m-k+1>m-k$ in broadcast tree T. Figure 4.3 shows an example of broadcast tree T when $k \geq \frac{m}{2}$.

4.2 New lower bound

In this section, we first give a lower bound on $B(n)$ when $n=2^{m}-2^{k}+1-d$, where $\frac{m}{2} \leq k \leq m-2$ and $d=0$. Then, we generalize the lower bound for any $0 \leq d \leq 2^{k}-1$. That is we give a lower bound on $B(n)$ for all $2^{m-1}+1 \leq n \leq 2^{m}-2^{\frac{m}{2}+1}+1$.

Theorem 4.1. Let $n=2^{m}-2^{k}+1$, where $m \geq 3$ and $\left\lceil\frac{m}{2}\right\rceil \leq k \leq m-2$.

$$
B(n) \geq \frac{n}{2}\left(m-k+\frac{1}{2}-\frac{1}{4 m-4 k+2}\right)+\frac{2^{k+1}-2^{2 k-m+1}-m+k}{2 m-2 k+1}
$$

Proof. Observation 4.1 shows that the minimum degree of any vertex in G is $m-k$. So, we partition the vertices of G into V_{m-k}, the vertices of degree $m-k$; and $V_{o t h e r}$, other vertices. We also partition the edges into E_{m-k}, the edges connecting two vertices in V_{m-k}; $E_{\text {inter }}$, the edges connecting one vertex in V_{m-k} and one vertex in $V_{\text {other }}$; and $E_{\text {other }}$, the edges connecting two vertices in $V_{\text {other }}$. Let $\left|V_{m-k}\right|,\left|V_{\text {other }}\right|,\left|E_{m-k}\right|,\left|E_{\text {inter }}\right|$, and $\left|E_{\text {other }}\right|$ be the cardinality of each of the respective sets. It is easy to see $n=\left|V_{m-k}\right|+\left|V_{o t h e r}\right|$ and $e=\left|E_{m-k}\right|+\left|E_{\text {inter }}\right|+\left|E_{\text {other }}\right|$.

Case 1. If there is no vertex of degree $m-k$ in graph G, then the minimum degree is $m-k+1$, we have

$$
\begin{equation*}
e \geq \frac{n}{2}(m-k+1) \tag{1}
\end{equation*}
$$

Case 2. If there is a vertex of degree $m-k$ in graph G, we consider the broadcast tree T originating from such a vertex u. In order to inform all vertices in graph G within m time units, every vertex except originator u cannot be idle during the minimum time broadcasting in G. So, the vertices informed by u (also the neighbors of u in broadcast tree T) must have degree $m, m-1, \ldots, k+1$. In other words the broadcast tree of originator u must be $B T_{m} \backslash B T_{k}$.

Since $k \geq \frac{m}{2}$, then the last neighbor of u has degree $k+1>m-k$. Thus, there is no vertex of degree $m-k$ having a neighbor of degree $m-k$. Furthermore, if an edge is incident to
a vertex of degree $m-k$, then it must be incident to a vertex of degree at least $m-k+1$.

$$
\begin{gathered}
\left|E_{m-k}\right|=0 \\
\left|E_{\text {inter }}\right|=(m-k)\left|V_{m-k}\right|
\end{gathered}
$$

Again we consider the broadcast tree T and estimate $\left|E_{\text {other }}\right|$. By Observation 4.3, every vertex in the first k broadcast level tree $L_{k}(T)$ except the root u has degree greater than $m-k$. Thus, every edge except the ones on the first level in $L_{k}(T)$ has both of its endpoints of degree greater than $m-k$. And by Observation 4.2, $L_{k}(T)$ becomes a forest of $L_{k-1}\left(B T_{m-1}\right), \cdots, L_{2 k-m}\left(B T_{m-k}\right)$ by ignoring the root and its incident edges. Then, $\left|E_{\text {other }}\right|$ can be estimated by counting the number of edges in the forest. Therefore,

$$
\left|E_{\text {other }}\right| \geq 2^{k+1}-2^{2 k-m+1}-(m-k)
$$

Combining $\left|E_{m-k}\right|,\left|E_{\text {inter }}\right|$, and $\left|E_{\text {other }}\right|$,

$$
\begin{align*}
e & =\left|E_{m-k}\right|+\left|E_{\text {inter }}\right|+\left|E_{\text {other }}\right| \\
e & \geq(m-k)\left|V_{m-k}\right|+2^{k+1}-2^{2 k-m+1}-(m-k) \\
\left|V_{m-k}\right| & \leq \frac{e-2^{k+1}-2^{2 k-m+1}-(m-k)}{m-k} \\
n-\left|V_{m-k}\right| & \geq n-\frac{e-2^{k+1}+2^{2 k-m+1}+(m-k)}{m-k} \\
v_{m}+\cdots+v_{m-k+1} & \geq n-\frac{e-2^{k+1}+2^{2 k-m+1}+(m-k)}{m-k} \tag{2}
\end{align*}
$$

We have the following trivial inequalities.

$$
\begin{align*}
& 2 e \geq(m-k)\left|V_{m-k}\right|+\cdots+m v_{m} \\
& 2 e \geq(m-k) n+v_{m-k+1}+2 v_{m-k+2}+\cdots+k v_{m} \\
& 2 e \geq(m-k) n+v_{m-k+1}+v_{m-k+2}+\cdots+v_{m} \tag{3}
\end{align*}
$$

By substituting inequality (2) we get

$$
\begin{align*}
2 e & \geq(m-k) n+n-\frac{e-2^{k+1}+2^{2 k-m+1}+(m-k)}{m-k} \\
e & \geq \frac{n}{2}\left(m-k+\frac{1}{2}-\frac{1}{4 m-4 k+2}\right) \\
& \quad+\frac{2^{k+1}+2^{2 k-m+1}+(m-k)}{2 m-2 k+1} \tag{4}
\end{align*}
$$

Now we combine inequality (1) and inequality (4) given by the two different cases. Let $R H S_{1}$ and $R H S_{2}$ be the right hand side of the two inequalities respectively.

$$
\begin{aligned}
& R H S_{1}-R H S_{2}= \frac{m-k+1}{2(2 m-2 k+1)} n-\frac{2^{k+1}-2^{2 k-m+1}-m+k}{2 m-2 k+1} \\
&= \frac{1}{2(2 m-2 k+1)}\left((m-k+1)\left(2^{m}-2^{k}+1\right)\right. \\
& \frac{\left.-\left(2^{k+2}-2^{2 k-m+2}-2 m+2 k\right)\right)}{\geq} \frac{1}{2(2 m-2 k+1)}\left(3\left(2^{k+2}-2^{k}+1\right)\right. \\
&= \frac{\left.-\left(2^{k+2}-2^{2 k-m+2}-2 m+2 k\right)\right)}{2(2 m-2 k+1)}\left(\left(2^{k+3}+2^{k+1}+3\right)\right. \\
&\left.\quad-\left(2^{k+2}-2^{2 k-m+2}-2 m+2 k\right)\right) \\
&>0
\end{aligned}
$$

Thus, inequality (4) is the worst case and gives the lower bound, which completes the
proof.

Theorem 4.1 can be further generalized to other n.

Theorem 4.2. Let $n=2^{m}-2^{k}-d+1$, where $m \geq 3$, $\left\lceil\frac{m}{2}\right\rceil \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-1$.

$$
B(n) \geq \frac{n}{2}\left(m-k+\frac{1}{2}+\frac{\alpha-1}{4 m-4 k-2 \alpha+2}\right)+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1}
$$

where

$$
\alpha=\left\lfloor\frac{-W_{-1}\left(-2^{-d-2^{2 k-m+1}+2 k-m+1} \ln (2)\right)}{\ln (2)}\right\rfloor-d-2^{2 k-m+1}
$$

and $W_{-1}(x)$ is the lower branch of Lambert-W function.

Proof. Observation 4.1 is not true for general n; but when $k \geq\left\lceil\frac{m}{2}\right\rceil$, the minimum degree is always $m-k$. Assume a vertex r has degree $m-k-1$ in a broadcast graph G on $n=2^{m}-2^{k}+1-d$ vertices, where $0 \leq d \leq 2^{k}-1$. Minimum time broadcasting from originator r informs at most 2^{m-1} vertices on the first branch, 2^{m-2} vertices on the second branch, \cdots, and 2^{k+1} vertices on the last branch. Together with the originator r, there are $2^{m}-2^{k+1}+1$ vertices in total, which is $2^{m}-2^{k+1}+1>2^{m}-2^{k+1} \geq 2^{m}-2^{k}+1-d$. Thus, the minimum degree has to be $m-k$. Then, we have the two cases similar to theorem 4.1.

Case 1. If the minimum degree is greater than $m-k$, then

$$
\begin{equation*}
e \geq \frac{n}{2}(m-k+1) \tag{5}
\end{equation*}
$$

Case 2. If the minimum degree is $m-k$, we again have $\left|E_{m-k}\right|,\left|E_{\text {inter }}\right|$, and $\left|E_{\text {other }}\right|$ indicating the cardinalities of the different edge sets as in the proof of Theorem 4.1. However,
the value of $\left|E_{m-k}\right|,\left|E_{\text {inter }}\right|$, and $\left|E_{\text {other }}\right|$ are different after removing d vertices.
Let u be a vertex of degree $m-k$. Assume α neighbors of u become degree $m-k$ after removing d vertices.

$$
\begin{aligned}
\left|E_{m-k}\right|+\left|E_{\text {inter }}\right| & \geq \frac{1}{2} \alpha\left|V_{m-k}\right|+(m-k-\alpha)\left|V_{m-k}\right| \\
& =\frac{1}{2}(2 m-2 k-\alpha)\left|V_{m-k}\right|
\end{aligned}
$$

$\left|E_{m-k}\right|+\left|E_{\text {inter }}\right|$ is minimized when α is maximized, which is the worst case for the lower bound. Consider the broadcast tree T rooted at vertex u. The neighbors $s_{1}, s_{2}, \cdots, s_{m-k}$ of u have degree $m, m-1, \cdots, k+1$ respectively. And s_{i} is the root of a binomial tree $B T_{m-i}$. To maximize α, we remove vertices and make neighbors of u of degree $m-k$ from s_{m-k} to s_{1}, because the last neighbor s_{m-k} has the smallest degree. So, $2 k-m+1$ neighbors of s_{m-k} are removed. $2^{2 k-m+1}-1$ vertices are removed from the last branch. And the binomial tree $B T_{k}$ attached to s_{m-k} becomes $B T_{k} \backslash B T_{2 k-m+1}$. In general, to make s_{i} of degree $m-k, 2^{k-i+1}-1$ vertices are removed from the i-th branch. Thus, if α neighbors of u are of degree $m-k$, we need to remove $2^{2 k-m+1}-1+2^{2 k-m+2}-$ $1+\cdots+2^{2 k-m+\alpha}-1=2^{2 k-m+\alpha+1}-2^{2 k-m+1}-\alpha$ vertices from broadcast tree T. Since the number of removed vertices cannot exceed d, we have the following inequality:

$$
\begin{align*}
d & \geq 2^{2 k-m+\alpha+1}-2^{2 k-m+1}-\alpha \tag{6}\\
2^{2 k-m+1} 2^{\alpha} & \leq d+\alpha+2^{2 k-m+1} \\
2^{\alpha} & \leq 2^{2 k-m+1} \alpha+2^{-(2 k-m+1)} d+1
\end{align*}
$$

Let $\alpha=-x-d-2^{2 k-m+1}$

$$
\begin{align*}
2^{-x-d-2^{2 k-m+1}} & \leq-x 2^{-(2 k-m+1)} \\
-2^{-2^{2 k-m+1}-d+2 k-m+1} & \geq x 2^{x} \\
-2^{-2^{2 k-m+1}-d+2 k-m+1} \ln (2) & \geq x \ln (2) e^{x \ln (2)} \tag{7}
\end{align*}
$$

The right hand side of inequality (7) has the form $z \cdot e^{z}$. It can be solved by Lambert-W function $W\left(z \cdot e^{z}\right)=z$. However, $W(z)$ is a multivalued relation. $W(z)$ increases when $z \geq-\frac{1}{e}$ and $W(z) \geq-1$; while it decreases when $-\frac{1}{e} \leq z<0$ and $W(z) \leq-1$. Let $W_{0}(z)$ and $W_{-1}(z)$ define the two single-valued function for the two different branches of $W(z)$ respectively. We need to estimate the value of $x \ln (2)$ to decide which single-valued function is used. We know that $\alpha \geq 0,0 \leq d \leq 2^{k}-1$, and $\frac{m}{2} \leq k \leq m-2$.

$$
\begin{aligned}
-x-d-2^{2 k-m+1} & \geq 0 \\
-x-2^{2 k-m+1} & \geq 0 \\
-x & \geq 2 \\
x \ln (2) & <-1
\end{aligned}
$$

Thus, $W_{-1}(z)$ is used.

$$
W_{-1}\left(-2^{-2^{2 k-m+1}-d+2 k-m+1} \ln (2)\right) \leq x \ln (2)
$$

Solve α by substitution.

$$
\alpha \leq-\frac{W_{-1}\left(-2^{-2^{2 k-m+1}-d+2 k-m+1} \ln (2)\right)}{\ln (2)}-d-2^{2 k-m+1}
$$

Since α is an integer,

$$
\alpha=\left\lfloor-\frac{W_{-1}\left(-2^{-2^{2 k-m+1}-d+2 k-m+1} \ln (2)\right)}{\ln (2)}\right\rfloor-d-2^{2 k-m+1}
$$

$\left|E_{\text {other }}\right|$ is analyzed as in the proof of Theorem 4.1 by counting the number of vertices in the first k broadcast level tree $L_{k}(T)$. If all the removed d vertices are in $L_{k}(T)$, then we have a trivial bound as follows.

$$
\left|E_{\text {other }}\right| \geq 2^{k+1}-2^{2 k-m+1}-(m-k)-d
$$

Therefore, we have the following inequality

$$
e \geq \frac{1}{2}(2 m-2 k-\alpha)\left|V_{m-k}\right|+2^{k+1}-2^{2 k-m+1}-(m-k)-d
$$

After reformatting,

$$
v_{m}+\cdots+v_{m-k+1} \geq n-\frac{2 e-2^{k+1}+2^{2 k-m+1}+(m-k)+d}{2 m-2 k-\alpha}
$$

Then, by substituting the inequality to $2 e \geq(m-k)\left|V_{m-k}\right|+\cdots+m v_{m}$ and by the similar technique given in the proof of Theorem 4.1,

$$
\begin{equation*}
e \geq \frac{n}{2}(m-k+1) \frac{2 m-2 k-\alpha}{2 m-2 k-\alpha+1}+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1} \tag{8}
\end{equation*}
$$

Again by the similar comparison, we can see that this bound is worse than bound 5 given in the first case. Thus, inequality (8) is the general lower bound on broadcast function, which completes the proof.

4.3 Comparing the new and the existing lower bounds

Before comparing the old and the new lower bound, we first estimate the value of α. Let $n=2^{m}-2^{k}-d+1, m \geq 3,\left\lceil\frac{m}{2}\right\rceil \leq k \leq m-2$, and $0 \leq d \leq 2^{k}-1$. Recall Inequality 6.

$$
\begin{align*}
d & \geq 2^{2 k-m+\alpha+1}-2^{2 k-m+1}-\alpha \\
d & >2^{2 k-m+\alpha+1} \\
\log d & >2 k-m+\alpha+1 \\
\alpha & <\log d-2 k+m-1 \tag{9}
\end{align*}
$$

Since $d \leq 2^{k}-1<2^{k}$,

$$
\alpha<m-k-1
$$

Let the new lower bound in Theorem 4.2 be $N B_{5}$. We compare it with the lower bound given in Section 2.4.

$$
\begin{aligned}
& N B_{5}-L B \\
= & \frac{n}{2}(m-k+1) \frac{2 m-2 k-\alpha}{2 m-2 k-\alpha+1}+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1}-\frac{n}{2}(m-k) \\
= & \frac{n}{2} \frac{m-k-\alpha}{2 m-2 k-\alpha+1}+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1} \\
= & \frac{n}{2}\left(1-\frac{m-k}{2 m-2 k-\alpha+1}\right)+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1}
\end{aligned}
$$

By substituting Inequality 9,

$$
\begin{aligned}
& N B_{5}-L B \\
> & \frac{n}{2}\left(1-\frac{m-k}{m-k+2}\right)+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1} \\
> & \frac{n}{m-k+2}+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1}
\end{aligned}
$$

which is definitely positive. Therefore, the new lower bound is larger than the old one. Since the new lower bound is only valid when $k \geq \frac{m}{2}$, the best general lower bounds are as follows.

$$
B(n) \geq\left\{\begin{array}{l}
\frac{n}{2}(m-k+1) \frac{2 m-2 k-\alpha}{2 m-2 k-\alpha+1}+\frac{2^{k+1}-2^{2 k-m+1}-m+k-d}{2 m-2 k+1} \\
\quad \text { if } 2^{m-1}+1 \leq n \leq 2^{m}-2^{\frac{m}{2}} \text { (the new bound) } \\
\frac{n}{2}(m-k), \\
\text { if } 2^{m}-2^{\frac{m}{2}}<n \leq 2^{m}[39] .
\end{array}\right.
$$

Chapter 5

Minor results

This chapter lists two minor results related to the topic of minimum broadcast graphs.

5.1 A possibly existing minimum broadcast graph on $2^{m}-$ 2 vertices

In [56], the author gives the lower bound on $B\left(2^{m}-1\right)$ and also constructs a broadcast graph on 63 vertices with the same number of edges as the lower bound. The author of [69] constructs the minimum broadcast graph on 1023 and 4095 vertices by following the same idea and also conjectures that the star-cycle graph is the minimum broadcast graph on $2^{m}-1$ vertices, where $m+1$ is a prime number. The star-cycle graph is defined as follows.

Definition 5.1. The vertices of a star-cycle graph are of two types: $\frac{m\left(2^{m}-1\right)}{m+1}$ cycle vertices of degree $m-1$, denoted by $c_{0}, c_{1}, \cdots, c_{\frac{m\left(2^{m}-1\right)}{m+1}-1}$; and $\frac{2^{m}-1}{m-1}$ star vertices of degree m, denoted by $s_{0}, s_{1}, \cdots, s_{\frac{2^{m-1}}{m+1}-1}$.
The edges are also of two types: the edges between two cycle vertices $\left(c_{i}, c_{j}\right)$, where $\mid i-$ $j \left\lvert\, \equiv 2^{2 i} \bmod \frac{m\left(2^{m}-1\right)}{m+1}\right.$ and $0 \leq i \leq \frac{m-4}{2}$; and the edges between a cycle vertex and a star vertex $\left(c_{i}, s_{j}\right)$, where $i \equiv j \bmod \frac{2^{m}-1}{m+1}$.

It is currently unknown that if a star-cycle graph is a minimum broadcast graph for any m, because there is no broadcast scheme for the graph in general. However, if it is a minimum broadcast graph, then one can construct a new minimum broadcast graph on $2^{m+1}-2$ vertices, distinct to Knödel graphs.

Let S be a star-cycle graph on $2^{m}-1$ vertices as defined above and S^{\prime} be a copy of S. Then we construct a new graph G on $2^{m+1}-2$ vertices by connecting all cycle vertices with the same label in S and S^{\prime}.

To show graph G is a broadcast graph, we give the broadcast scheme. If the originator v is a cycle vertex in S (or S^{\prime}), it informs its copy v^{\prime} in S^{\prime} (or S) in the first time unit. Then, v and v^{\prime} use the broadcast scheme of the star-cycle graph to finish the broadcasting. If the originator is a star vertex s_{a}, it informs the cycle vertex $c_{a \times i}$ at time unit i. Then the cycle neighbors of s_{a} informs their copies $c_{a \times i}^{\prime}$ in S^{\prime} at time unit $i+1$. Next, every vertex follows the broadcast scheme of the star-cycle graph to inform all vertices except s_{a}^{\prime}, the copy of the originator in $S^{\prime} . s_{a}^{\prime}$ can be informed by c_{a}^{\prime} at the last time unit, because the first informed cycle vertex must be idle at the last time unit.

Next, we show that graph G is not isomorphic to the Knödel graph on $2^{m+1}-2$ vertices. By the definition of G, there is a path $c_{0}, c_{1}, \cdots, c_{\frac{2^{m-1}}{m+1}}$ of length $\frac{2^{m}-1}{m+1}+1$. And since c_{0} and $c_{\frac{2^{m-1}}{m+1}}$ are both adjacent to s_{0}, there is a cycle of length $\frac{2^{m}-1}{m+1}+2$ in graph G . We know that $2^{m}-1$ and $m+1$ are both odd. So, $\frac{2^{m}-1}{m+1}$ is also odd and so is $\frac{2^{m}-1}{m+1}+2$. Thus, graph G has an odd cycle. But, a Knödel graph is bipartite. The two graphs are not isomorphic. This fact also shows us there may be another way to construct a minim broadcast graph on $2^{m}-1$ vertices, which matches the lower bound in [56]. We can try to construct a new minimum broadcast graph on $2^{m+1}-2$ vertices first, and decompose the graph to obtain a minimum broadcast graph on $2^{m}-1$ vertices second.

5.2 Minimum regular broadcast graphs

With the respect to the restrictions of the classic model given in the introduction, we further add the regular property to broadcast graphs in addition. Similar to minimum broadcast graphs, we define the regular broadcast function $B_{r}(n)$ as the number of edges in the minimum regular broadcast graph on n vertices. Then, all the works done on the classic model can also be extended to the regular model, such as the exact value, upper bound, lower bound, and the monotonicity of $B_{r}(n)$.

Here is a list of known facts about $B_{r}(n)$.
(1) If a minimum broadcast graph is regular, then this graph is a minimum regular broadcast graph. And the converse is not necessarily true.
(2) $B_{r}\left(2^{m}\right)=\frac{1}{2} m 2^{m}$, which is given by hypercubes;
(3) $B_{r}\left(2^{m}-2\right)=\frac{1}{2}(m-1)\left(2^{m}-2\right)$, which is given by Knödel graphs;
(4) $B_{r}\left(2^{m}-2^{k}\right) \geq \frac{1}{2}\left(m-\frac{k}{2}-\frac{1}{2}\right)\left(2^{m}-2^{k}\right)$, where $k \geq 3$ is odd.

The upper bound on $B_{r}\left(2^{m}-2^{k}\right)$ is given by the modified compounding construction in [38]. The original construction put the odd vertices in each copy of Knödel graph into a hypercube of dimension $k-1$. In the modified construction, the odd vertices with the same label form a hypercube of dimension x, while the even vertices with the same label form a hypercube of dimension $k-1-x$. So, any originator broadcasts in its own hypercube first and acts as an even vertex in the broadcast scheme in [38] to finish broadcasting. Then, all odd vertices have degree $m-k+x$, and even vertices have degree $m-k+k-1-x=m-x-1$. If $m-k+x=m-x-1$ or $x=\frac{k-1}{2}$, the constructed graph is regular. Figure 5.1 gives an example of the construction when $m=5$ and $k=3$, using Knödel graph $K G_{6}$ and hypercube $H Q_{2}$.

Figure 5.1: An example of the modified compounding construction

Other than the problems similar to the classic model, there is one completely different question. What is the maximum n such that there is an $m-a$ regular broadcast graph, where $2^{m-1}+1 \leq n \leq 2^{m}$ and $0 \leq a \leq m-3$? Here is an upper bound obtained by counting the maximum number of vertices in the possible broadcast tree.

Assume the broadcast graph is $m-a$ regular. Let n_{x} be the number of informed vertices up to time unit x and c_{x} be the number of vertices such that all of its neighbors are informed
up to time unit x. Since the graph is $m-a$ regular, the originator is busy in the first $m-a$ time units. Then, $n_{m-a}=2^{m-a}$ and $c_{0}=c_{1}=\cdots=c_{m-a-1}=0$. The originator and its first informed neighbor have informed all their neighbors in time unit $m-a$. So, $c_{m-a}=2$. In the next time unit $m-a+1$, these two vertices are idle, which implies $n_{m-a+1}=2 n_{m-a}-c_{m-a}$ and $c_{m-a+1}=2 c_{m-a}$. Thus, we have the recurrence relation.

$$
\begin{cases}n_{m-a+i}=2 n_{m-a+i-1}-c_{m-a+i-1} & \text { if } i>0 \\ n_{m-a}=2^{m-a} & \text { if } i=0 \\ c_{m-a+i}=2 c_{m-a+i-1} & \text { if } i>0 \\ c_{m-a}=2 & \text { if } i=0\end{cases}
$$

After solving the recurrence relation, $n_{m-a+i}=2^{m-a+i}-i 2^{i}$. We also need to make sure that $2^{m-a+i-1}+1 \leq n^{m-a+i}$ otherwise the broadcast time will exceed $\lceil\log n\rceil$. Therefore, $i 2^{i} \leq 2^{m-a+i-1}-1$. (Lamber W function is again needed to solve this inequality.)
Thus, $m-a$ regular broadcast graphs are only possible when $2^{m-1}+1 \leq n \leq 2^{m-a+i}-i 2^{i}$, where $i 2^{i} \leq 2^{m-a+i-1}-1$.

If $a=3$ and $i=3$, the upper bound of $m-3$ regular broadcast graph is $n=2^{m}-24$. There is no $m-3$ regular broadcast graph when $n=2^{m}-8$. Furthermore, the construction above gives us an $m-2$ regular broadcast graph on $2^{m}-8$ vertices. Thus, this graph is a minimum regular broadcast graph and

Theorem 5.1. $B_{r}\left(2^{m}-8\right)=\frac{1}{2}(m-2)\left(2^{m}-8\right)$.

Chapter 6

Future work

This chapter gives three topics that we can further study in the future.

6.1 Generalizing the compounding method

Section 3.1.2 introduces a new method of compounding binomial trees and Knödel graphs. In the future, the compounding method can be further improved.

Let $G=(V, E)$ be an arbitrary broadcast graph on n vertices, $v \in G$ be a random vertex with degree $k<\lceil\log n\rceil$ and $b_{1}, b_{2}, \ldots, b_{k} \in G$ be the neighbors of v. Then we can construct a new broadcast graph $G^{\prime}=\left(V \cup\{w\}, E \cup E_{w}\right)$, where w is an additional vertex to graph G and $E_{w}=\left\{\left(w, b_{i}\right) \mid 1 \leq i \leq k\right\}$ (or one more edge (w, v) if every b_{i} is busy in the broadcasting from v. So, w has to inform v at the last time unit). Since vertex v and the additional vertex w share the common neighbors, w can play the same role in the broadcasting from w in graph $G \cup w$. Thus, every vertex in G except v can be informed in $\lceil\log n\rceil$ time units. To inform v, there are two cases. If there is a neighbor $b_{j}, 1 \leq j \leq k$ which is idle after a time unit $0 \leq t<\lceil\log n\rceil$, vertex v can be informed by b_{j}. If there is no idle neighbor in the broadcasting, v has to be informed by w. The construction needs one edge connecting w and v. Also $\operatorname{deg}(w) \leq\lceil\log n\rceil-1$ is also important, where $\operatorname{deg}(w)$
is the degree of vertex w.
The next step of the construction is replacing every vertex in graph G by a binomial tree B_{k} on 2^{k} vertices and connect every non-root vertex to v 's neighbors (and v, if the case above happens). Every non-root vertex can be considered as vertex w described above. Thus, broadcasting from any non-root vertex in the graph G compounded by binomial tree B_{k} takes $k+\lceil\log n\rceil$ time units.

To minimize the edges used in the construction, we need to carefully select v with the minimum degree. Therefore, the first topic will be investigated in the future is finding the broadcast scheme from a root vertex in the graph described above and finding the best broadcast graph G and vertex v for the generalized compounding method.

6.2 More vertex addition methods

In the thesis, the vertex addition method is greatly improved by using different broadcast schemes of Knödel graph. However, we currently do not know if it is the best result we can achieve by this method. We believe that the degree of the additional vertex is no smaller than $\Theta\left(\frac{n}{2^{m}-d}\right)$ and the vertex addition method result is $B(n) \leq \frac{n}{2}(m-1)+c \frac{n}{2^{m}-d}$, where $c \geq 1$ is a constant. In other words, our new result is approaching to the optimal solution.

The reason is that all dimensional broadcast schemes except $1,2, \cdots, m-1,1$ and $m-$ $1,1,2, \cdots, m-1$ create complete different broadcast trees and make different vertices idle in the last time unit for different Knödel graphs. Figure 6.1 gives an example of one broadcast scheme acting differently in different Knödel graphs. In $K G_{10}, v_{4}$ and v_{7} are idle in the third time unit, but no vertex is idle in the last time unit. In contrast, there is no vertex idle in the third time unit, v_{6} and v_{9} are idle in the last time unit in $K G_{12}$.

This fact implies that the vertex addition method can only use two broadcast schemes: $1,2, \cdots, m-1,1$ and $m-1,1,2, \cdots, m-1$ in general. It also provides a strong evidence

Figure 6.1: The examples of dimensional broadcast scheme 2,3,1,2 in Knödel graph $K G_{10}$ and $K G_{12}$. The numbers beside the vertices indicate the informed time unit.
to support our estimation on the degree of the additional vertex.
If this topic is fully studied, the research on the vertex addition method based on Knödel graph is complete.

6.3 More lower bounds

There are two more works related to lower bounds that can be further explored in the future.

The first work is generalizing the lower bound to any $2^{m-1}+1 \leq n \leq 2^{m}$. We assume $\frac{m}{2} \leq k \leq m-2$ in the previous estimation. However when $2^{m}-2^{\frac{m}{2}} \leq n \leq 2^{m}$, the value of k is smaller than $\frac{m}{2}$. Then, our lower bound is invalid. So, generalizing the lower bound to $k<\frac{m}{2}$ can be done by a similar technique in the future.

The second work is combining our result with the result given in [29]. In the paper, the authors estimate the number connections between vertices of different degrees and give the
following inequalities. Let $n=2^{m}-2^{k}+1$ and v_{i} be the number of vertices of degree i.

$$
\begin{array}{r}
\sum_{i \geq m}(i-1) v_{i} \geq v_{m-k} \\
\sum_{i \geq m-1}(i-1) v_{i} \geq 2 v_{m-k} \\
\sum_{i \geq m-2}(i-1) v_{i} \geq 3 v_{m-k} \\
\ldots \\
\sum_{i \geq m-k+1}(i-1) v_{i} \geq k v_{m-k}
\end{array}
$$

In our estimation, Inequality 3

$$
2 e \geq(m-k) n+v_{m-k+1}+v_{m-k+2}+\cdots+v_{m}
$$

is independent to all inequalities above. Thus, there is a way to combine our new lower bound with the inequalities and may further improve the result.

Chapter 7

Conclusion

This thesis discusses the general upper bound and the general lower bound on broadcast function.

The upper bound is given by broadcast graph construction. When $2^{m}-1+1 \leq n \leq$ $2^{m}-2^{\frac{1}{2}(m+3)}$, the compounding construction gives the best upper bound. When n is even and $2^{m}-2^{\frac{1}{2}(m+3)}<n \leq 2^{m}$, Knödel graphs give the best upper bound; while if n is odd, the vertex addition method based on Knödel graph obtains the lowest upper bound. Our research improves both the compounding method and the vertex addition method. The improvement of the compounding method has two phases. First, we use the Knödel graph on $2^{m}-2$ vertices instead of hypercubes in [3]. The Knödel graph on $2^{m}-2$ vertices has the advantage comparing with hypercubes because every vertex in the Knödel graph has one fewer degree, and two vertices are always idle in the last time unit of broadcasting. In the second phase, we discover that every non-root vertex in binomial trees can act as any vertex in the base graph. So, a base graph with the smaller minimum degree possibly improves the construction. Thus, we use the compounded graph in [38] as the base and further reduce the upper bound.

The improvement on the vertex addition method also has two steps. In the first step, we use the newly discovered broadcast schemes to improve the broadcast graph construction
when $n=2^{m}-2^{k}-d$ and $2^{k}+d$ is large. The new broadcast schemes make more vertices idle in the last time unit of broadcasting, which allows us using 3-distance dominating set instead of 1-distance dominating set. And in the second step, the dimensional broadcast schemes on $1,2, \cdots, m-1,1$ and $m-1,1,2, \cdots, m-1$ always make a block of vertices idle in the last time unit. Therefore, if one vertex v in the block of vertices is adjacent to the additional vertex, vertex v "dominates" a block of vertices of size $\Theta\left(\frac{n}{2^{k}-d}\right)$, which greatly improves the upper bound.

For the general lower bound, we introduce the first non-trivial general lower bound on $B(n)$ by partitioning the vertices and the edges. However, this lower bound has two limitations: only valid when $n \leq 2^{m}-2^{\frac{m}{2}}$ and not as good as the bound when $n=2^{m}-2^{k}+1$ in [29]. To overcome the first limitation, we can generalize our lower bound to any n, but it needs more analysis based on different assumptions. For the second limitation, we can combine our bound with some results in [29] and further improve the lower bound.

We present some of the results of the thesis in [33-37].

Bibliography

[1] R. Ahlswede, L. Gargano, H.S. Haroutunian, and L.H. Khachatrian. Fault-tolerant minimum broadcast networks. Networks, 27(4):293-307, 1996.
[2] R. Ahlswede, H.S. Haroutunian, and L.H. Khachatrian. Messy broadcasting in networks. In Communications and Cryptography, pages 13-24. Springer, 1994.
[3] A. Averbuch, R.H. Shabtai, and Y. Roditty. Efficient construction of broadcast graphs. Discrete Applied Mathematics, 171:9-14, 2014.
[4] A. Bar-Noy, S. Guha, J.S. Naor, and B. Schieber. Multicasting in heterogeneous networks. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 448-453. ACM, 1998.
[5] G. Barsky, H. Grigoryan, and H.A Harutyunyan. Tight lower bounds on broadcast function for $n=24$ and 25. Discrete Applied Mathematics, 175:109-114, 2014.
[6] R. Beier and J.F. Sibeyn. A powerful heuristic for telephone gossiping. In Proceedings of the 7th Colloquium on Structural Information and Communication Complexity, pages 17-35. Carleton Scientific, 2000.
[7] J.-C. Bermond, P. Fraigniaud, and J.G. Peters. Antepenultimate broadcasting. Networks, 26(3):125-137, 1995.
[8] J.-C. Bermond, H.A. Harutyunyan, A.L. Liestman, and S. Perennes. A note on the dimensionality of modified Knödel graphs. International Journal of Foundations of Computer Science, 8(02):109-116, 1997.
[9] J.-C. Bermond, P. Hell, A.L. Liestman, and J.G. Peters. Sparse broadcast graphs. Discrete Applied Mathematics, 36(2):97-130, 1992.
[10] S.-C. Chau and A.L. Liestman. Constructing minimal broadcast networks. Journal of Combinatorics, Information, and System Sciences, 10:110-122, 1985.
[11] B.S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic broadcasting in ad hoc radio networks. Distributed computing, 15(1):27-38, 2002.
[12] F. Comellas, H.A. Harutyunyan, and A.L. Liestman. Messy broadcasting in multidimensional directed tori. Journal of Interconnection Networks, 4(01):37-51, 2003.
[13] G. De Marco and A. Pelc. Deterministic broadcasting time with partial knowledge of the network. Theoretical computer science, 290(3):2009-2020, 2003.
[14] A. Dessmark and A. Pelc. Deterministic radio broadcasting at low cost. Networks, 39(2):88-97, 2002.
[15] A. Dessmark and A. Pelc. Broadcasting in geometric radio networks. Journal of Discrete Algorithms, 5(1):187-201, 2007.
[16] K. Diks and A. Pelc. Broadcasting with universal lists. In System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International Conference on, volume 2, pages 564-573. IEEE, 1995.
[17] M.J. Dinneen, M.R. Fellows, and V. Faber. Algebraic constructions of efficient broadcast networks. In International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pages 152-158. LNCS, vol 539, 1991.
[18] M.J. Dinneen, J.A. Ventura, M.C. Wilson, and G. Zakeri. Compound constructions of broadcast networks. Discrete Applied Mathematics, 93(2):205-232, 1999.
[19] M. Elkin and G. Kortsarz. Sublogarithmic approximation for telephone multicast : Path out of jungle (extended abstract). In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '03, pages 76-85. Society for Industrial and Applied Mathematics, 2003.
[20] M. Elkin and G. Kortsarz. A combinatorial logarithmic approximation algorithm for the directed telephone broadcast problem. SIAM journal on Computing, 35(3):672689, 2005.
[21] A.M. Farley. Minimal broadcast networks. Networks, 9(4):313-332, 1979.
[22] A.M. Farley, S. Hedetniemi, S. Mitchell, and A. Proskurowski. Minimum broadcast graphs. Discrete Mathematics, 25(2):189-193, 1979.
[23] G. Fertin and A. Raspaud. A survey on Knödel graphs. Discrete Applied Mathematics, 137(2):173-195, 2004.
[24] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual networks. Discrete Applied Mathematics, 53(1-3):79-133, 1994.
[25] L. Gargano, A. Pelc, S. Perennes, and U. Vaccaro. Efficient communication in unknown networks. Networks, 38(1):39-49, 2001.
[26] L. Gargano and U. Vaccaro. On the construction of minimal broadcast networks. Networks, 19(6):673-689, 1989.
[27] M. Grigni and D. Peleg. Tight bounds on mimimum broadcast networks. SIAM Journal on Discrete Mathematics, 4(2):207-222, 1991.
[28] H. Grigoryan. Problems Related to Broadcasting in Graphs. PhD thesis, Concordia University, 2013.
[29] H. Grigoryan and H.A. Harutyunyan. New lower bounds on broadcast function. In Algorithmic Aspects in Information and Management, 2014.(AAIM), pages 174-184. LNCS, vol 8546, 2014.
[30] H.A. Harutyunyan. An efficient vertex addition method for broadcast networks. Internet Mathematics, 5(3):211-225, 2008.
[31] H.A. Harutyunyan, P. Hell, and A.L. Liestman. Messy broadcasting-decentralized broadcast schemes with limited knowledge. Discrete Applied Mathematics, 159(5):322-327, 2011.
[32] H.A. Harutyunyan, R. Katragadda, and C.D. Morosan. Efficient heuristic for multicasting in arbitrary networks. In Advanced Information Networking and Applications Workshops, 2009. WAINA'09. International Conference on, pages 61-66. IEEE, 2009.
[33] H.A. Harutyunyan and Z. Li. A new construction of broadcast graphs. Submitted for publication.
[34] H.A. Harutyunyan and Z. Li. New vertex addition method for broadcast graph construction. Submitted for publication.
[35] H.A. Harutyunyan and Z. Li. A new construction of broadcast graphs. In Conference on Algorithms and Discrete Applied Mathematics, 2016.(CALDAM), pages 201-211. LNCS, vol 9602, 2016.
[36] H.A. Harutyunyan and Z. Li. Broadcast graphs using new dimensional broadcast schemes for knödel graphs. In Conference on Algorithms and Discrete Applied Mathematics, 2017.(CALDAM), pages 193-204. Springer International Publishing, 2017.
[37] H.A. Harutyunyan and Z. Li. Improved lower bound on broadcast function based on graph partition. In International Workshop On Combinatorial Algorithms, 2017.(IWOCA). Springer International Publishing, 2017.
[38] H.A. Harutyunyan and A.L. Liestman. More broadcast graphs. Discrete Applied Mathematics, 98(1):81-102, 1999.
[39] H.A. Harutyunyan and A.L. Liestman. Improved upper and lower bounds for k broadcasting. Networks, 37(2):94-101, 2001.
[40] H.A. Harutyunyan and A.L. Liestman. Upper bounds on the broadcast function using minimum dominating sets. Discrete Mathematics, 312(20):2992-2996, 2012.
[41] H.A. Harutyunyan, A.L. Liestman, K. Makino, and T.C. Shermer. Nonadaptive broadcasting in trees. Networks, 57(2):157-168, 2011.
[42] H.A. Harutyunyan, A.L. Liestman, J.G. Peters, and D. Richards. Broadcasting and gossiping. In Handbook of Graph Theory, pages 1477-1494. Chapman and Hall, 2013.
[43] H.A. Harutyunyan and B. Shao. An efficient heuristic for broadcasting in networks. Journal of Parallel and Distributed Computing, 66(1):68-76, 2006.
[44] H.A. Harutyunyan and P. Taslakian. Orderly broadcasting in a 2d torus. In Proceedings of Eighth International Conference on Information Visualisation, 2004. IV, pages 370-375. IEEE, 2004.
[45] H.A. Harutyunyan and W. Wang. Broadcasting algorithm via shortest paths. In IEEE 16th International Conference on Parallel and Distributed Systems, 2010. (ICPADS), pages 299-305. IEEE, 2010.
[46] S.M Hedetniemi, S.T. Hedetniemi, and A.L. Liestman. A survey of gossiping and broadcasting in communication networks. Networks, 18(4):319-349, 1988.
[47] C.J. Hoelting, D.A. Schoenefeld, and R.L. Wainwright. A genetic algorithm for the minimum broadcast time problem using a global precedence vector. In Proceedings of the 1996 ACM symposium on Applied Computing, pages 258-262. ACM, 1996.
[48] J. Hromkovič, R. Klasing, B. Monien, and R. Peine. Dissemination of Information in Interconnection Networks (Broadcasting \& Gossiping), pages 125-212. Springer US, Boston, MA, 1996.
[49] J. Hromkovič, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger. Dissemination of information in communication networks: broadcasting, gossiping, leader election, and fault-tolerance. Springer Science \& Business Media, 2005.
[50] L.H. Khachatrian and H.S. Harutounian. Construction of new classes of minimal broadcast networks. In International Conference on Coding Theory, Dilijan, Armenia, pages 69-77, 1990.
[51] J.-H. Kim and K.-Y. Chwa. Optimal broadcasting with universal lists based on competitive analysis. Networks, 45(4):224-231, 2005.
[52] W. Knödel. New gossips and telephones. Discrete Mathematics, 13(1):95, 1975.
[53] J.-C. König and E. Lazard. Minimum k-broadcast graphs. Discrete Applied Mathematics, 53(1-3):199-209, 1994.
[54] G. Kortsarz and D. Peleg. Approximation algorithms for minimum-time broadcast. SIAM Journal on Discrete Mathematics, 8(3):401-427, 1995.
[55] A. Koster and X. Muñoz. Graphs and algorithms in communication networks: studies in broadband, optical, wireless and ad hoc networks. Springer Science \& Business Media, 2009.
[56] R. Labahn. A minimum broadcast graph on 63 vertices. Discrete Applied Mathematics, 53(1-3):247-250, 1994.
[57] C. Li, T.E. Hart, K.J. Henry, and I.A. Neufeld. Average-case "messy" broadcasting. Journal of Interconnection Networks, 9(04):487-505, 2008.
[58] A.L. Liestman. Fault-tolerant broadcast graphs. Networks, 15(2):159-171, 1985.
[59] M. Maheo and J.-F. Saclé. Some minimum broadcast graphs. Discrete Applied Mathematics, 53(1-3):275-285, 1994.
[60] Ed. Maraachlian. Optimal broadcasting in treelike graphs. PhD thesis, Concordia University, 2010.
[61] S. Mitchell and S. Hedetniemi. A census of minimum broadcast graphs. Journal of Combinatorics, Information, and System Sciences, 5:141-151, 1980.
[62] J.-H. Park and K.-Y. Chwa. Recursive circulant: A new topology for multicomputer networks. In International Symposium on Parallel Architectures, Algorithms and Networks, 1994.(ISPAN), pages 73-80. IEEE, 1994.
[63] A. Pelc. Fault-tolerant broadcasting and gossiping in communication networks. Networks, 28(3):143-156, 1996.
[64] D. Peleg. Time-efficient broadcasting in radio networks: a review. In Distributed Computing and Internet Technology, pages 1-18. Springer, 2007.
[65] R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time. In Proceedings of 35th Annual Symposium on Foundations of Computer Science, 1994, pages 202-213. IEEE, 1994.
[66] J.-F. Saclé. Lower bounds for the size in four families of minimum broadcast graphs. Discrete Mathematics, 150(1-3):359-369, 1996.
[67] P. Scheuermann and G. Wu. Heuristic algorithms for broadcasting in point-to-point computer networks. IEEE Transactions on Computers, (9):804-811, 1984.
[68] C. Schindelhauer. On the inapproximability of broadcasting time. In Approximation Algorithms for Combinatorial Optimization, pages 226-237. Springer, 2000.
[69] B. Shao. On K-broadcasting in Graphs. PhD thesis, Concordia University, 2006.
[70] P.J. Slater, E.J. Cockayne, and S.T. Hedetniemi. Information dissemination in trees. SIAM Journal on Computing, 10(4):692-701, 1981.
[71] I. Stojmenovic. Handbook of wireless networks and mobile computing, volume 27. John Wiley \& Sons, 2003.
[72] J.A. Ventura and X. Weng. A new method for constructing minimal broadcast networks. Networks, 23(5):481-497, 1993.
[73] M.X. Weng and J.A. Ventura. A doubling procedure for constructing minimal broadcast networks. Telecommunication Systems, 3(3):259-293, 1994.
[74] J. Xiao and X. Wang. A research on minimum broadcast graphs. Chinese J. Computers, 11:99-105, 1988.
[75] X. Xu. Broadcast networks on $2^{p}-1$ nodes and minimum broadcast network on 127 nodes. Master's thesis, Concordia University, 2004.
[76] J. Zhou and K. Zhang. A minimum broadcast graph on 26 vertices. Applied Mathematics Letters, 14(8):1023-1026, 2001.

