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The circular kernel density estimator, with the wrapped Cauchy kernel, is derived from the empirical version of Carathéodory
function that is used in the literature on orthogonal polynomials on the unit circle. An equivalence between the resulting circular
kernel density estimator, to Fourier series density estimator, has also been established.This adds further weight to the considerable
role of the wrapped Cauchy distribution in circular statistics.

1. Introduction

Consider an absolutely continuous (with respect to the Lebes-
gue measure) circular density 𝑓(𝜃), 𝜃 ∈ [−𝜋, 𝜋); that is, 𝑓(𝜃)
is 2𝜋-periodic,

𝑓 (𝜃) ≥ 0 for 𝜃 ∈ R,
∫𝜋
−𝜋

𝑓 (𝜃) 𝑑𝜃 = 1. (1)

In the literature on modeling circular data, starting from the
classical text of Mardia [1], the standard texts such as Fisher
[2], Jammalamadaka and SenGupta [3], and Mardia and
Jupp [4] cover parametric models along with many inference
problems.More recently various alternatives to these classical
parametric models, exhibiting asymmetry and multimodal-
ity, have been investigated with respect to their mathematical
properties and goodness of fit to some real data; see Abe
and Pewsey [5], Jones and Pewsey [6], Kato and Jones [7],
Kato and Jones [8], Minh and Farnum [9], and Shimizu and
Lida [10].

As elaborated in Nuñez-Antonio et al. [11], circular data
possess characteristics such as high skewness or kurtosis
and multimodality in many situations, for example, the
data on directions of clinical vectorcardiogram (see Downs
[12]), wind directions (see Fisher and Lee [13]), and animal

orientation (see Oliveira et al. [14]). Such data are not well
fitted by standard parametricmodels, and in such cases, semi-
parametric or nonparametric modeling may be considered
more appropriate.

Fernändez-Durän [15] and Mooney et al. [16] considered
modeling of circular data by semiparametric models based
on mixture of circular normal and von Mises distributions
whereas Hall et al. [17] and Bai et al. [18] considered nonpara-
metric kernel-based density estimation for data on sphere
and Fisher [19] and Taylor [20] considered kernel density
estimation for circular data. Whereas Fisher [19] adapted the
kernels used for linear data to the context of circular data,
Taylor [20] used von Mises circular distribution replacing
linear kernel used in the classical kernel density estimator that
naturally maintains the periodicity in the resulting density
estimator. More recently, Di Marzio et al. [21, 22] provided a
theoretical basis for circular kernel density estimator by con-
sidering the general setting of nonparametric kernel density
estimation on a 𝑑-dimensional torus; the special case of 𝑑 = 1
provides circular kernel density estimator that is described
below.

Given a random sample (𝜃1, . . . , 𝜃𝑁) from the density (1),
the circular kernel density estimator is given by

𝑓 (𝜃; 𝜅) = 1
𝑁
𝑁∑
𝑗=1

𝐾𝜅 (𝜃 − 𝜃𝑗) , (2)
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where𝐾𝜅(𝜃−𝜙) is a circular kernel where 𝜅 is a concentration
parameter and 𝜙 is the mean direction. Note that a circular
kernel is usually chosen to be a circular density, unimodal and
symmetric around its mean direction which is zero, and it is
characterized by a concentration parameter 𝜅 which governs
the amount of the smoothing (see, e.g., Di Marzio et al. [21,
22] for details). Classical examples of circular kernels include
the von Mises density and the densities of wrapped normal
and wrapped Cauchy distributions.

In this note we consider the circular kernel density
estimator using the wrapped Cauchy kernel that is given by

𝑓WC (𝜃; 𝜌) = 1
𝑁
𝑁∑
𝑗=1

𝐾WC (𝜃 − 𝜃𝑗; 0, 𝜌) , (3)

where

𝐾WC (𝜃; 𝜇, 𝜌) = 1
2𝜋

1 − 𝜌2
1 + 𝜌2 − 2𝜌 cos (𝜃 − 𝜇) ,

−𝜋 ≤ 𝜃 < 𝜋,
(4)

and we show that it is derived from the empirical version of
Carathéodory function, used in the literature on orthogonal
polynomials on the unit circle. We also show that this
approach leads to Fourier series density estimation; however
no truncation of the series is required.

In Section 2, some basic results from the literature on
orthogonal polynomials on the unit circle are presented first
and then the strategy of estimating 𝑓(𝜃) is introduced. This
in turn produces the nonparametric circular kernel density
estimator given in (3). The details are in Section 3. The next
section describes the Fourier series estimator of 𝑓(𝜃) that is
shown to be equivalent to the circular kernel density estima-
tor (2) in a limiting sense when wrapped Cauchy kernel is
employed.

2. Some Preliminary Results on Orthogonal
Polynomials on Unit Circle

Let D be the open unit disk, {𝑧 | |𝑧| < 1}, in the complex
plane, and let 𝜇 be a continuous measure defined on the
boundary 𝜕D, that is, the circle C = {𝑧 | |𝑧| = 1}. The point
𝑧 ∈ Dwill be represented by 𝑧 = 𝑟𝑒𝑖𝜃 for 𝑟 ∈ [0, 1), 𝜃 ∈ [0, 2𝜋)
and 𝑖 = √−1.The closure of D will be denoted by D.
Definition 1. A sequence of polynomials {𝜙𝑛(𝑧)} defined on
C are orthogonal with respect to a Borel measure 𝜇, if they
satisfy

∫
C

𝜙𝑟 (𝑧) 𝜙𝑠 (𝑧)𝑑𝜇 (𝑧) = 𝛿𝑟𝑠, (5)

where 𝛿𝑟𝑠 > 0 for 𝑟 = 𝑠 and it equals 0, otherwise.

The importance of these polynomials is in approximation
of bounded functions 𝑔(𝑧) defined on the unit circle by the
representation (see Cantero and Iserles [23])

𝑔 (𝑧) = ∞∑
𝑛=1

𝑔𝑛𝜙𝑛 (𝑧) , where 𝑔𝑛 = ⟨𝑔, 𝜙𝑛⟩󵄩󵄩󵄩󵄩𝜙𝑛󵄩󵄩󵄩󵄩2𝜇 , (6)

where

⟨𝑔, ℎ⟩ = ∫
|𝑧|=1

𝑔 (𝑧) ℎ (𝑧)𝑑𝜇,
󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝜇 = ⟨𝑔, 𝑔⟩1/2 .

(7)

Here ℎ(𝑧) refers to the complex conjugate of ℎ(𝑧). The reader
is referred to the excellent book on the subject of orthogonal
polynomials on the unit circle by Simon [24].We will use this
result for approximating 𝐹(𝑧) defined below,

𝐹 (𝑧) = ∫𝜋
−𝜋

(𝑒𝑖𝜃 + 𝑧
𝑒𝑖𝜃 − 𝑧)𝑓 (𝜃) 𝑑𝜃. (8)

The above function is a “special function,” known as
Carathéodory function, that plays an important role in the
study of orthogonal polynomials defined on the unit circle
(see Simon [24], pp. 25). The orthogonal expansion of 𝐹(𝑧)
with respect to the basis {1, 𝑧, 𝑧2, . . .} is given by (see (4.15)
and (4.16) of Simon [25])

𝐹 (𝑧) = 1 + 2∞∑
𝑛=1

𝑐𝑛𝑧𝑛, (9)

where

𝑐𝑛 = ∫𝜋
−𝜋

𝑒−𝑖𝑛𝜃𝑓 (𝜃) 𝑑𝜃 (10)

is the 𝑗th trigonometric moment of the circular distribution
with density 𝑓. The integrand in (8) involves the function

𝐶 (𝑧, 𝜔) = 𝜔 + 𝑧
𝜔 − 𝑧 (11)

that is known as the complex Poisson kernel in the theory of
complex analysis. Its relationwith thewrappedCauchy kernel
lies in the fact that

Re𝐶 (𝑟𝑒𝑖𝜃, 𝑒𝑖𝜑) = 𝑃𝑟 (𝜃, 𝜑) = 1 − 𝑟2
1 + 𝑟2 − 2𝑟 cos (𝜃 − 𝜑) (12)

for 𝜃, 𝜑 ∈ [−𝜋, 𝜋) and 𝑟 ∈ [0, 1), where “Re” denotes the real
part. The above function is known as the real Poisson kernel
and it is clearly related to the wrapped Cauchy kernel since

𝑃𝜌 (𝜃, 𝜑) = (2𝜋)𝐾WC (𝜃 − 𝜑; 0, 𝜌) . (13)

A standard result in complex analysis, known as the
Poisson representation (see ([24], p. 27)), says that if 𝑔 is
analytic in a neighborhood of D, with 𝑔(0) real, then for𝑧 ∈ D,

𝑔 (𝑧) = ∫𝜋
−𝜋

(𝑒𝑖𝜃 + 𝑧
𝑒𝑖𝜃 − 𝑧)Re (𝑔 (𝑒𝑖𝜃)) 𝑑𝜃

2𝜋 . (14)

This representation leads to the result (see (ii) in Section 5 of
Simon [24]) that for Lebesgue a.e. 𝜃

lim
𝑟↑1

𝐹 (𝑟𝑒𝑖𝜃) ≡ 𝐹 (𝑒𝑖𝜃) (15)

exists and that

𝑓 (𝜃) = 1
2𝜋Re (𝐹 (𝑒𝑖𝜃)) = 1

2𝜋 lim𝑟↑1 Re𝐹 (𝑟𝑒𝑖𝜃) . (16)
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3. Smooth Circular Density Estimator Derived
from an Estimator of 𝐹(𝑧)

Recognizing the expression for 𝐹(𝑧) as the expectation of
((𝑒𝑖𝜃 + 𝑧)/(𝑒𝑖𝜃 − 𝑧)), its empirical version is given by

𝐹𝑁 (𝑟𝑒𝑖𝜃) = 1
𝑁
𝑁∑
𝑗=1

(𝑒𝑖𝜃𝑗 + 𝑟𝑒𝑖𝜃
𝑒𝑖𝜃𝑗 − 𝑟𝑒𝑖𝜃) . (17)

Thus wemay define an estimator of 𝑓(𝜃)motivated by 𝐹𝑁(𝑧),
the identities (15) and (16), as

𝑓𝑟 (𝜃) = 1
2𝜋 Re𝐹𝑁 (𝑟𝑒𝑖𝜃) . (18)

Nowwe show that the above estimator is of the same form
as the circular density estimator given in (3). Recognize that

𝐹𝑁 (𝑟𝑒𝑖𝜃) = 1
𝑁
𝑁∑
𝑗=1

𝐶 (𝑟𝑒𝑖𝜃, 𝜔𝑗) , (19)

where 𝜔𝑗 = 𝑒𝑖𝜃𝑗 ; then using (12), we have

Re𝐹𝑁 (𝑟𝑒𝑖𝜃) = 1
𝑁
𝑁∑
𝑗=1

𝑃𝑟 (𝜃, 𝜃𝑗) , (20)

and therefore

𝑓𝑟 (𝜃) = 1
(2𝜋)𝑁

𝑁∑
𝑗=1

𝑃𝑟 (𝜃, 𝜃𝑗)

= 1
𝑁
𝑁∑
𝑗=1

𝐾WC (𝜃 − 𝜃𝑗; 0, 𝑟) ,
(21)

which is of the same form as in (3).

4. A Connection of the Circular Density
Estimator to Fourier Series Estimator

The orthogonal series for 𝐹(𝑧) given in (9) may be directly
used to define an estimator of𝑓(𝜃).Thismethod also provides
the same estimator as derived in the previous section that is
demonstrated as follows. Estimating the coefficients 𝑐𝑛, 𝑛 =1, 2, . . ., by

𝑐𝑛 = 1
𝑁
𝑁∑
𝑗=1

𝑒−𝑖𝑛𝜃𝑗 , (22)

an estimator of 𝐹(𝑧) is given by

𝐹 (𝑧) = 1 + ∞∑
𝑛=1

𝑐𝑛𝑧𝑛. (23)

Substituting the expression for 𝑐𝑛 from (22), we can write

𝐹 (𝑧) = 1 + 2
𝑁
𝑁∑
𝑗=1

{∞∑
𝑛=1

𝑒−𝑖𝑛𝜃𝑗𝑧𝑛}

= 1 + 2
𝑁
𝑁∑
𝑗=1

{∞∑
𝑛=1

(𝜔𝑗𝑧)𝑛} ;

𝜔𝑗 = 𝑒𝑖𝑛𝜃𝑗 = 1 + 2
𝑁
𝑁∑
𝑗=1

( 𝜔𝑗𝑧
1 − 𝜔𝑗𝑧)

= 2
𝑁
𝑁∑
𝑗=1

(1
2 + 𝜔𝑗𝑧

1 − 𝜔𝑗𝑧)

= 1
𝑁
𝑁∑
𝑗=1

(1 + 𝜔𝑗𝑧
1 − 𝜔𝑗𝑧)

= 1
𝑁
𝑁∑
𝑗=1

𝐶 (𝑧, 𝜔𝑗) ,
(24)

which is the same as 𝐹𝑁(𝑧) given in (19).
Equation (9) may be used to derive the Fourier series

estimator. The reader may be referred to Efromovich [26] for
the details about Fourier series density estimator. Truncating
the infinite sum in (9) at some large index 𝑛∗, we have an
estimator of 𝑓(𝜃)

𝑓𝑆 (𝜃) = 1
2𝜋 + 1

𝜋𝑁
𝑁∑
𝑗=1

𝑛∗∑
𝑛=1

cos 𝑛 (𝜃 − 𝜃𝑗) . (25)

Here 𝑛∗ is chosen according to some criteria, for example,
to minimize the integrated squared error. The reader may be
referred to Efromovich [26]. Thus we have two contrasting
situations; in one we have to choose 𝑛∗ and in the other case
we have to choose a suitable concentration parameter (𝜌).
Numerically as well as technically, the second choice, that is,
the circular kernel density estimator,may be consideredmore
suitable.
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[11] G. Nuñez-Antonio, M. C. Auśın, and M. P. Wiper, “Bayesian
nonparametric models of circular variables based on Dirichlet
process mixtures of normal distributions,” Journal of Agricul-
tural, Biological, and Environmental Statistics, vol. 20, no. 1, pp.
47–64, 2015.

[12] T. D. Downs, “Spherical regression,” Biometrika, vol. 90, no. 3,
pp. 655–668, 2003.

[13] N. I. Fisher and A. J. Lee, “Time series analysis of circular data,”
ournal of the Royal Statistical Society. Series B (Methodological),
vol. 56, no. 2, pp. 327–339, 1994.

[14] M. Oliveira, R. M. Crujeiras, and A. Rodŕıguez-Casal, “A plug-
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