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Abstract 
 
Millimeter-wave Substrate Integrated Printed Ridge Gap Waveguide Leaky-Wave 
Antenna for WiGig Applications  
Mohammad Reza Rahimi, MASc. 

Concordia University, 2018 
 

Leaky-wave antennas have been an interesting topic for researchers for more than half a 

century. As millimeter-wave frequencies applications are in high demand for communication 

companies due their wider bandwidth, designing a leaky-wave antenna, for this frequency range 

is becoming more challenging with the demand for low-loss and low-cost components. Since 

high-performance hollow waveguides, as a low loss guiding structure, drives the cost to an 

unacceptable level and microstrip technology, as a low-cost transition, has an unacceptably 

high loss. Therefore, the requirements for a new technology that achieves both low cost and 

high performance feels more tangible. 

 

The new technology of substrate integrated printed ridge gap waveguide that was proposed in 

2016 shows promising characteristics as a new modified gap waveguide structure for millimeter-

wave applications in terms of low insertion loss and low cost. Therefore, it is necessary to 

propose a new desirable class of microwave components based on this technology. Here, we 

propose the use of this technology to design three leaky-wave antennas. 

 

The work of this thesis is divided into three major parts: (1) designing a periodic structure which 

has a leaky mode for a specific range of frequencies, and (2) designing a 1D-periodic leaky-

wave antenna based on a periodic structure and connecting the antenna to the standard 50 Ω 

equipment. For achieving this purpose a quasi-TEM transition and a transition from microstrip to 

substrate integrated ridge gap waveguide has been designed. In addition, the slots of the 

proposed antenna are designed in order to have an almost constant leakage ratio through the 

whole operating frequency band. (3) The third part will discuss a linear array of the proposed 

antenna in which a new termination has been considered which results in a shorter physical 

length. The proposed antennas can be easily fabricated with a low-cost multi-layered PCB 

technology. In addition, all these antennas designed for the WiGig applications which are more 

attractive for today's requirements. 
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Chapter 1 

 
Introduction 

  

1.1. Millimeter Wave Applications and Microwave Components 

Today, millimeter-frequency bands are more attractive for mobile communications and for the 

future fifth-generation because of the high demands for high data rate. Wireless data rates in 

microwave frequencies and below are now limited to about 1 Gbit/s [1]. However, with the 

exponential increase of the number of users, this limitation is more tangible, and engineers are 

more eager to use millimeter frequencies for millimeter-wave components due to their higher 

bandwidth. Millimeter-wave (mm-wave) has the frequency range 30-300 GHz with the 

corresponding wavelength of 10 to 1 millimeter. In the mm-wave band, data rates can reach 10 

Gbits/s and more [2]. However, the propagating signal suffers from attenuation due to the 

atmospheric absorption and cannot be used for long distance communications, but it is very 

attractive for short distance high-speed application. Typical applications included high-quality 

video transmission, which requires high data rate transfers. One of the most considerable 

frequency bands for high data rate wireless local area networks (WLANs) is 57 to 64 GHz band 

that can provide data rate up to 7 Gbits/s, which is called WiGig (Wireless Gigabit) [3]. There 

are a lot of considerable efforts to design microwave components for the WiGig application. 

Among the most common technology for microwave devices are the microstrip lines, substrate 

integrated waveguide (SIW) and hollow waveguide. The microstrip and SIW do not have 

acceptable performance at the mm-wave band due to the high insertion losses and dielectric 

losses. On the other hand, the hollow waveguide has a good performance in mm-wave 

frequencies, but the fabrication process is costly. 

A new technology for guiding structure that can fill the gap between the performance of 

hollow waveguide and the low-cost of printed boards is the ridge gap waveguide (RGW). As 

compared to other waveguides, this type of waveguide has a higher quality factor and lower 

losses at mm-wave frequencies, which makes it a suitable choice. In addition, the printed 

version of a RGW with a lower bandgap is of low cost and easier to fabricate. Several mm-wave 

components have been designed based on the RGW and printed version of RGW illustrating 
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the promising capability of this technology for the millimeter-wave application in terms of cost-

effectiveness and high-performance, which is desired for the today‘s requirements.   

1.2. Microstrip, Coplanar Waveguides and Grounded Coplanar                
Waveguides 
 

Microstrip, coplanar waveguides (CPW), and grounded coplanar waveguides (G-CPW) are  

kind of printed circuit guiding structures that have the capability to directly adapt to the antenna 

and microwave components [4], [5]. However, in the mm-wave bands, they suffer from 

significant losses due to the dielectric losses, conduction losses and radiation losses. In 

addition, using a thinner substrate requires using a narrower metal strip (usually matched to 50 

Ω) that causes an increase of the conduction losses due to the high resistance. In addition, to 

the presence of discontinuities, we have surface waves which radiate, interfere, and cause 

coupling between multiple microstrip circuits. Figure 1-1 (a) shows the structure for a microstrip 

line. There is another type of guiding structures that can reduce the dielectric losses, which is 

referred to a suspended microstrip line. There is a gap between the substrate and ground in this 

structure. Figure1-1 (b) shows the structure of the suspended microstrip line. The fields 

contained in the air gap between the ground and substrate. However, if we increase the 

thickness of air gap, then the microstrip line will radiate. 

         
 

(a)                                                                                          

                                            
 

(b) 

 

Figure1-1. (a) Microstrip line (b) Suspended microstrip line. 
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Another two guiding structures based on CPW and G-CPW, which are shown in Figure1-2 

[6]. CPW consists of one separated central strip line and two ground planes, which are 

separated by two gaps. CPW is more flexible to design because of all conductors are in the 

same layer. However, they are suffering from dielectric losses. CPW excited unwanted modes 

due to the discontinuity such as T-junction. This disadvantage of CPW can be avoided by 

inserting air bridges over the center conductors to have the same potential on both ground 

planes and provide a shield over the discontinues parts. These air bridges can cause a lot of 

difficulty in the fabrication process and make it more complicated. On the other hand, the 

grounded CPW has less losses compared to the CPW. In grounded CPW a metallic plate is 

used under the substrate to provide isolation from other circuits in the lower layers. Proper 

grounding is achieved by using via holes between the ground plane and the bottom shield. In 

addition, tuning the impedance of the grounded CPW is easily achieved by changing the space 

between the grounds and the signal line. The disadvantage of the grounded CPW is its suffering 

from losses in the mm-wave frequency range, which makes it less efficient for these ranges of 

frequencies. 

 
 

(a) 

 
 

(b) 
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Figure1-2. (a) Coplanar waveguide (b) Grounded coplanar waveguide. 

1.3. Hollow Waveguides and Substrate Integrated Waveguides 

 

Another kind of guiding metallic structure is the hollow waveguide. Figure1-3 shows the 

structure of hollow waveguide. The hollow waveguide in comparison with the microstrip 

transmission line has a lot of advantages. For instance, they have high power handling 

capability, their insertion loss is low because of high Q factor [7], the Voltage Standing Wave 

Ratio (VSWR) is close to 1, and the shielding effectiveness is very high [8] compared to the 

other waveguides. The hollow rectangular waveguide can propagate TM (transverse magnetic) 

and TE (transverse electric) modes, but not TEM (transverse electromagnetic). The dominant 

mode of the rectangular waveguide is TE10 because it has the lowest cutoff frequency. There is 

a difficulty in matching this waveguide because of their rigid, hollow-pipe shape. 

Special couplings at the joints are required to assure proper operation. For decreasing the skin 

effect losses, the inside surfaces of the waveguide are plated with silver or copper. In addition, 

the width of this waveguide must be the half wavelength of the operating frequency. Therefore, 

the waveguide is increasingly impractical for frequencies below 1 GHz. In addition, at the mm-

wave frequencies, the wavelength becomes very small, and the realization with current 

matching is very complicated and challenging. Moreover, manufacturing tolerances are a crucial 

problem at mm-wave frequencies, which can affect the performance of the hollow waveguide. 

All the above requirements increase the cost and make the fabrication more complicated for this 

kind of waveguide. 

 

 

 

Figure1-3. Hollow rectangular waveguide. 

http://enginemechanics.tpub.com/14037/css/Couplings-82.htm
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The dielectric-filled waveguide is another type of waveguide, which is referred to substrate 

integrated waveguide (SIW), which was introduced in [9] and [10]. This waveguide has less 

weight and is lower cost compared to the hollow waveguide. SIW has a high-quality factor, and 

their insertion losses are usually less than 0.4dB/m (lower than a microstrip line) in the Ka-band 

[11]. This planar waveguide is realized in the printed circuit technology. The geometry of SIW is 

shown in Figure1-4. The via diameters and the distance between them play a significant role in 

controlling the leakage in SIW structure. According to [12], to decrease the leakage, there are 

two points that must be considered in the design of SIW structures. First, the diameter of the via 

(d) must be less than λg / 5. Secondly, the periodicity of the vias (P) should be p < 2d. The field 

is traveling in the substrate between the two rows of vias hole. This via hole act as the metal 

side walls of the hollow waveguide. Therefore, the SIW presents similar dispersion 

characteristics as the standard waveguides. However, because of using the dielectric material in 

SIW structures, these structures suffer from high dielectric losses in mm-wave frequencies. In 

addition, they are suffering from radiation losses due to the vias holes, which do not provide a 

perfect metal shield [13]. 

 

  

(a) 

 

 

(b) 
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Figure1-4.(a) Substrate integrated waveguides and (b) The vias dimension and periodicity 

condition. 

 

 

1.4. Soft and Hard Surfaces 

Soft and hard surface structures were introduced by Kildal in 1988 [14]. The basic idea of 

soft and hard surfaces is related to controlling the propagation of the electromagnetic waves 

along the corrugated surfaces. Generally, a soft surface stops the waves from propagation, 

whereas a hard surface allows the wave to propagate along the corrugation. A typical soft 

surface is realized by transverse corrugations as shown in Figure1-5 (a) where the depth of the 

corrugation, d, is a quarter wavelength, the short circuit is transformed to an open circuit at the 

top of the corrugation, and the surface impedance will be infinite along the direction of 

propagation. Therefore, for narrow, smooth corrugation, there is approximately no 

electromagnetic wave propagation. By the other term, the power flux density at the surface is 

equal to zero. This means that this structure can suppress the transverse electric field and 

transverse magnetic field along the surface. Therefore, the waves will be stopped from 

propagation. Soft surfaces are used in many applications such as corrugated horn antennas as 

feeds for reflector antennas [15], [16]. It can be used as isolation between the aperture of the 

horn and the feeding network, in addition, it can improve the back-lobe radiation of the horn 

antenna. On the other hand, hard surfaces can eliminate only the longitudinal field components, 

and this structure supports the propagation of the only TEM mode. The corrugation of the hard 

surface can be realized by metal strips over grounded dielectric substrate or dielectric filled 

corrugated grooves. The grooves and the dielectric thickness are quarter guiding wavelength 

depth. The dielectric material should have a dielectric constant higher than the permittivity of the 

medium above the surface as shown in       Figure1-5 (b) with the depth: 

                                                             d = λ / (4√𝜀𝑟 − 1)                                                         (1.1) 

Hard surfaces can be used in many applications. We usually use hard surfaces when we need 

strong propagation on the surface. It is mostly applied to the concept of the hard waveguide in 

which quasi-TEM modes can propagate along the longitudinally dielectric filled corrugation. This 

structure is usually used in horn antenna for increasing the aperture efficiency [17]. In addition, 

hard surfaces can be used in miniaturized array elements for multi-frequency applications [18]. 

However, the disadvantage of hard surfaces is their losses and narrow band.   
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Periodic strips of PMC/PEC strips can model soft and hard surfaces as shown in Figure 1-

6(a). When the strips are longitudinal, the electromagnetic wave can propagate, and it acts as 

hard surface, and for transverse strips, it acts as soft surfaces, and it stops the electromagnetic 

wave from propagation. In [19], it was demonstrated that local quasi-TEM modes could 

propagate along the ridges of corrugation when we have a metal plate on the top of the 

corrugation surfaces, at a distance less than a quarter wavelength as shown in Figure1-6 (b). 

The operating principle of this structure is the same as PEC/PMC strips with a metal plate on 

top. The wave is profoundly attenuated after crossing a few of these PEC/PMC strips in the 

transverse direction due to the anisotropic characteristic of the PEC/PMC strips. Therefore, the 

electromagnetic waves propagate only in the longitudinal direction as shown in Figure1-7. The 

concept of soft and hard surfaces explains a 1D periodic structure where the PEC/PMC strips 

are repeated in one direction. There are other periodic structures that implement the periodicity 

in two dimensions. These structures called Electromagnetic Band Gap (EBG) structures. A brief 

discussion about the EBG structures will be addressed in the following section. This concept 

has been improved in [20] to introduce a new type of waveguide, which is referred to a gap 

waveguide. The gap waveguide can be defined as a new type of hard waveguide with the 

advantage of being a wideband and low loss (high Q factor) for mm-wave frequencies 

compared to the hard waveguides [21].  

 

                       

(a)                                                                                        (b) 

Figure1-5. (a) Soft surface realized with transverse corrugations. (b) Hard surface realized with 

longitudinal dielectric filled corrugations. 



 8 

                           

                             (a)                                                                                         (b) 

Figure1-6. (a) Soft-Hard surface ideally realized with PEC/PMC strips. (b) Single hard wall 

waveguide. 

 

 

Figure1-7. Ideal PEC/PMC interpretation of the corrugated surface and its overall effect on the 

waves. 

 

1.5. Gap Waveguide Technology 

 

In the last few years, there has been a lot of research on the gap waveguide guiding 

structures [22], [23], and [24]. Gap waveguide technology is a recently developed technology for 

the soft and hard surfaces. Gap waveguide uses the basic cutoff of a PEC-PMC parallel plate 

waveguide configuration to control the wave propagation between the two parallel plates. If the 

distance between the top metal plate and the PMC surface is less than λ/4, then no waves can 

propagate in any direction between the two surfaces. However, if we put a metal strip on the 

PMC surface, then the wave can propagate only along the metal strip, and waves in other 

directions are evanescent when h < λ/4 for the vertical polarization (TMn case) and when h is λ/2 

for the horizontal polarization (TEn case). Thus, the proper gap must be less than λ/4 [20]. PMC 

has no exist in nature. Therefore, we must artificially realize it. Then, they are usually referred to 

as artificial magnetic conductor (AMC) due to the boundary condition that they provide, which is 

the tangential of the magnetic field is zero at the surface. Figure1-8 shows the basic concepts 

for the gap waveguide technology. 

 



 9 

 

 

Figure1-8. Gap waveguide cross section. 

 

One of the advantages of the gap waveguide is that there is no connection between the 

upper and lower metallic surface, which makes them a suitable choice with low cost and low 

loss waveguides component, especially for millimeter wave frequency bands. This concept can 

be realized with different technologies. For example, microstrip gap lines [25], ridge gap 

waveguide [26] and groove gap waveguides [27]. The two first waveguides support quasi-TEM 

mode, and groove gap waveguide supports TE10 mode. It should be noted that the characteristic 

impedance of the quasi-TEM line varies with the frequency [28]. Groove gap waveguide has 

fewer losses (higher Q factor) compared to the RGW losses due to the more volume of the 

current density. However, the resonant length of them can be affected by the tolerance on the 

position of pin walls compared to the rectangular waveguide that has larger Qs. In order to have 

more flexibility in the design, microstrip gap waveguide was introduced in [29]. In this kind of 

waveguide, the dielectric losses are not severe compared to the conduction losses. Figure1-9 

shows these three gap waveguide configurations. There is also some new modified version of 

gap waveguide, which will be explained in the following sections. 
 

            

 

                            (a)                                                                                                       (b) 
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(c) 

Figure1-9. Three different gap waveguide: (a) Groove gap waveguide, (b) Ridge gap 

waveguide, and (c) Microstrip gap waveguide. 

1.6. Ridge Gap Waveguide Technology 

 

Ridge gap waveguide (RGW) is introduced in [30] as a new type of waveguide structure for 

the millimeter-wave application, which is realized with two parallel metallic plates with a central 

metal ridge, which is surrounded by the periodic pins. RGW structure has the ability to create a 

Band Gap for wave propagation in the undesired direction. This band gap is achieved by using 

a periodic structure of pins near the guiding ridge of RGW. These periodic nails referred to as a 

bed of nails in [28]. The bed of nails can act as high impedance surface only with the condition 

that the height of the air gap is less than λ/4. The periodic EBG structure should be designed to 

cover a specific frequency band. This Band Gap is related to the geometry parameters of the 

bed of the nail unit cell. A detailed study to investigate these effects can be found in [31]. 

Moreover, the existence of the ridge has a significant effect on the bandwidth [31] Figure 1-10 

(a) shows the structure dispersion diagram of a unit cell of RGW. The dispersion diagram has 

been calculated with MWS Computer Simulation Technology Microwave Studio (CST) 

Eigenmode solver. The band gap of the unit cell is from 64.45 to 96.46 GHz. 

 



 11 

  

                       (a)                                                                                                               (b) 

 

Figure 1-10. (a) Unit cell dimensions (h1 = 0.765 mm, h2 = 0.254 mm, w1 =1.7 mm, w2 = 1.3 mm). 

(b) Dispersion diagram of a periodic bed of nail structure as an EBG unit cell. 

A single row of the RGW is shown in Figure 1-11 (a).The width of the ridge is tuned to match 

with 50 Ω. Three unit cells are enough to suppress the leakage around the ridgeline. To 

calculate the characteristic impedance of the transition line different approach can be taken. A 

closed-form equation introduced in [28], which has good agreement with the CST results. The 

dispersion diagram of a single row of the RGW is shown in Figure 1-11 (b). The band gap for 

the single row of RGW is smaller than the band gap of RGW unit cells, which is from 64.8 GHz 

to 90.8 GHz. 

  

(a) 
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(b) 

 

Figure1-11 (a) Configuration of a single row of RGW. (b) Dispersion diagram of RGW that 

consist of semi-periodic fakir nails and a guiding ridge. 

 

1.7. Printed Ridge Gap Waveguide 

 

There is another type of RGW that was introduced in [32], which is called printed ridge gap 

waveguide (PRGW). The geometry of PRGW unit cell is shown in Figure 1-12 (a). The unit cell 

has a rectangular patch grounded by a plated via including one substrate with an air gap 

between the substrate and upper metallic plate. The performance of PRGW regarding the loss 

is much better than the conventional microstrip waveguide. In addition, compared to the RGW, 

manufacturing cost of PCB fabrication is significantly lower than CNC machining. The dispersion 

diagram of the PRGW unit cell is shown in Figure 1-12 (b), which shows the band gap of the 

unit cell is 45.8-82.6 GHz. A single row of the PRGW is shown in Figure 1-13. Similar to the 

RGW, three unit cells are sufficient  to suppress the leakage around the ridgeline. In order to 

suppress any of the possible propagating modes under the continuous printed ridge and to 

realize as a ridge, a single row of metallic vias is placed under the guiding ridge connecting it to 

the ground (according to the structure, the number and location of the vias could be changed). 

The width of the ridge is tuned to match with 50 Ω as in Figure 1-13. The dispersion diagram of 

a single row of PRGW in Figure 1-14 shows that the band gap is little less than the unit cell 

band gap, which is 46.02-80.7 GHz. 
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(a) 
 

  
 

(b) 

 

Figure 1-12. (a). Unit cell dimensions (h1 = 0.508 mm, h2 = 0.254 mm, w1 =1.05 mm, w2 = 0.67 

mm). (b). Dispersion diagram of a plated via topped by a square patch. 

                            

 

Figure 13.  Configuration of a single row of PRGW (one substrate layer with an air gap). 
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Figure1-14. Dispersion diagram of a PRGW consists of semi-periodic plated vias and short-

circuited ridge. 

 

1.8. Substrate Integrated Printed Ridge Gap Waveguide 
 

As ensuring the thin air gap height for PRGW structures at millimeter waves is becoming a 

problem for large structures, the gap is filled with thin low loss and low dielectric constant 

substrate layer to guarantee a fixed gap height between the PEC and AMC layers over the 

structure. Therefore, a modified version of PRGW called as substrate integrated gap waveguide 

(SIGW) was introduced in [33], in which a low loss thin substrate is filling the gap to fix the gap 

height over the circuit. This technology used in [34] to increase the aperture of a horn antenna 

and the operational bandwidth. SIGW technology as compared to the RGW technology has 

lower cost, and the fabrication process is much easier. The geometry of SIGW unit cell is shown 

in Figure 1-15 (a). The unit cell has a rectangular patch grounded by a plated via including two 

substrates. The dispersion diagram of the proposed unit cell is shown in Figure 1.15 (b), which 

shows the band gap to be 41.5-82.8 GHz. A single row of the SIGW is shown in Figure 1-16. 

The condition of the vias and mushrooms are same as the condition of PRGW. The width of the 

ridge is tuned to match with 50 Ω in Figure 1-16. The dispersion diagram of the single row of 

SIGW shown in Figure 1-17 is little less than the unit cell bandgap, which is 41.8-80.2 GHz. 
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(a) 

 

(b) 
 

Figure 1-15. (a). Unit cell dimensions (h1 = 0.508 mm, h2 = 0.254 mm, w1 =1.05 mm, w2 = 0.67 

mm). (b). Dispersion diagram of a plated via topped by a square patch. 

             

 

Figure1-16. Configuration of a single row of SIGW consists of two layers of the substrates. 
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Figure1-17. Dispersion diagram of a SIGW consists of semi-periodic plated vias and short-

circuited ridge. 

There is another modified version of SIGW introduced in [35]. The unit cell structure is similar 

to the SIGW unit cell, but there is an air gap between the second layer of the substrate and the 

top metal plate resulting in a low-loss planar circuit using SIGW. In addition, the design process 

is simplified regarding the placement of the cells around the resonators and lines. The structure 

and dispersion diagram of the modified SIGW are shown in Figures 1-18 and 1-19, which show 

that the unit cell has the band gap of 22.4-44.6 GHz. A single row of the modified SIGW is 

shown in Figure 1-20. The condition for the mushroom and via is similar to the SIGW and 

PRGW. The width of the line is tuned to match 50 Ω, Figure 1-20 (a). The dispersion diagram of 

the single row of SIGW shown in Figure 1-20 (b) is little less than the unit cell bandgap, which is 

41.8-80.2 GHz. 

                                          

Figure1-18. Configuration of a single cell of SIGW consists of two layers of substrate and air 

gap (h1 = 0.765 mm, h2 = 0.254 mm, h3 = 0.288 mm, w1 =1.6 mm, w2 = 1.2 mm, d =0.4 mm). 
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Figure1-19. Dispersion diagram of modified SIGW unit cell with two-layer substrates and air 

gap. 

 

                     

(a) 

   

(b) 
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Figure1-20. (a). Configuration of a single row of modified SIGW consists of two layers of 

substrate and air gap. (b). Dispersion diagram of modified SIGW consists of semi-periodic 

plated vias and short-circuited ridge. 

1.9. Objectives 
 

The objective of this work is to introduce a novel design of the LWAs for the millimeter-wave 

frequency band applications. One of the common problem for the LWA is that usually, this kind 

of antenna does not have acceptable performance for the millimeter-wave frequency band. 

RGW technology as low-loss transition introduced for the millimeter-wave frequency band. The 

printed version of this technology which is called PRGW has promising performance and lower 

cost compared to the RGW, SIW and CRLH technologies for the millimeter-wave frequency 

band. This thesis work presents three designs of the LWAs based on the PRGW technology. 

The first objective is to design a periodic structure which has leaky modes that can be 

propagated in the desired operating frequency band. The second objective is to design a low-

loss and wideband transition in order to use the whole bandwidth supported by the unit cell. The 

third goal of this thesis is to introduce a new design of the LWA based on the analysis of the 

periodic structure. In addition, two array designs based on the SIGW technology introduced. All 

these works which are presented in this thesis can be scaled to any frequency band. In addition, 

all the proposed LWAs designed for the WiGig applications, which are more preferred for the 

communication companies and their requirements.  

 

1.10. Thesis Organization 
 

The thesis is divided into five chapters. This chapter discusses the concept of the soft and 

hard surfaces and the advantages and disadvantages of the different EBG unit cells which can 

be used in the RGW, PRGW, and SIGW. The coming chapter presents the basic concepts of 

the leaky-wave antennas (LWA) and their field behavior. In addition, for a periodic structure, a 

Brillouin diagram have been discussed in order to find out which of the space harmonics can act 

like a leaky wave. Chapter three introduced the periodic structure that used in the design of the 

LWA. Furthermore, a quasi-TEM transition and a transition from microstrip to the SIGW are 

presented. The slots of the proposed LWA designed in order to have an almost constant 

leakage ratio (𝛼/𝑘0) which results in an almost constant gain. The proposed antenna has a wide 

impedance bandwidth, high radiation efficiency, high gain with no sidelobe level. In chapter four 

a power divider and two linear array antennas presented. Both array designs can achieve 3 dBi 
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higher gain. In addition, a new termination has been considered which resulted in a shorter 

physical length of the anenna. Last chapter summarized the results obtained in this thesis and 

suggested furture developments. 

 

Chapter 2 

Leaky-Wave Antenna and Fields Behavior 

2.1. Introduction  

Leaky wave antenna (LWA) is a class of antennas that belongs to the family of traveling-

wave antennas [36]. The first LWA was introduced by W.W. Hansen in 1940 [37]. The guiding 

structure of LWA is similar to the pipeline of water with some holes in the longitudinal axes. 

When water goes through the pipeline, we observe that the leakage from the holes occurs [38]. 

In the LWA instead of water the power leaks continuously. LWA is a waveguiding structure that 

radiates by progressively leaking its energy out to free space from a traveling wave with a phase 

velocity larger than the speed of light. Because of the leakage of power, the propagation 

wavenumber (𝑘𝑧 =  𝛽 − 𝑗𝛼) on the guiding structure has complex value, consisting of phase 

constant 𝛽 and an attenuation constant 𝛼 where the phase constant controls the beam angle 

and the attenuation constant controls the beamwidth and radiation efficiency [39]. The aperture 

distribution may be tapered to control the sidelobe level or the beam shape [40]. Most of the 

initial LWA is based on a closed waveguide where the leakage has been obtained by adding a 

long longitudinal slot in the narrow wall of the waveguide as shown in Figure. 2-1. LWA has the 

ability to produce a fan beam, pencil beam and conical beam which can be used in many 

applications such as radar system applications for detecting the objects [41] and it is very 

suitable for an image processing application [42]. The fan beam has also been used with a 

Luneberg lens as a feed of the high gain reflector antenna for millimeter-wave frequencies [43]. 

The LWA is widespread among antenna engineers because of its several advantages over slot 

array and phased array antennas. LWA can easily achieve a beam scanning without any need 

of phase shifters which is necessary for phased array antennas. Plus the radiating elements of 

LWA can be easily excited without any need for the complicated and bulky feeding network as 

used in regular array antennas, which have the ability of beam steering. Therefore, LWA can 

reach a lower fabrication cost. In addition, in the slot array antenna, the scan range is limited 

because of the use of resonant slots (frequency dependent slot). While with the metamaterial–
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based LWA, a wide range scanning can be easily obtained [44], [45] and [46]. However, using 

metamaterial structure adds more complexity to the antenna for the millimeter-wave frequency 

band. In addition, SIW-based LWAs suffer from a large gain variation [47], [48], [49] and low 

radiation efficiency [50]. 

 

                             

Figure. 2-1. Leaky-wave antenna consists of a rectangular waveguide with a long longitudinal 

slot (an infinite ground plane is shown surrounding the slot). 

 

We can categorize the LWA according to their geometry and principle of operation and shape of 

the radiation pattern. We can divide LWA to the one-dimensional (1D) LWA and two 

dimensional (2D) LWA. Another classification is according to the structure of LWA, which can be 

uniform, quasi-uniform, or periodic. A brief discussion about the different type of LWA will be 

addressed in the following sections. 

 

2.2. One-dimensional Uniform Leaky-Wave Antenna 

The geometry of the one-dimensional uniform LWA has been shown in Figure. 2-2 (a). This 

structure consists a rectangular waveguide that has long slit to allow the power to leak. The 

width of the slit must be much narrower than the height of the waveguide [51]. Therefore, it 

causes only a small perturbation of the fast-wave TE10 dominant mode with propagation 

constant                 𝛽10
TE = √𝑘0 − 𝜋/𝑎. The structure in Figure. 2-2 supports a wave travelling 

along the longitudinal slot and, it can be assumed as a uniform structure because the geometry 

of it does not change in the longitudinal (𝑧 axis). However, the slot can be tapered to improve 

the side lobe level. If we feed the waveguide from one side, then, we have regular conical-

shaped fan beam in the radiation hemisphere due to the baffle which is larger than the 

wavelength. The corresponding radiation pattern is in the forward quadrant (𝑧 > 0) due to the 

phase constant which is always positive and nonzero 𝛽 > 0 for all frequencies, since 𝛽 = 𝑘0√𝜀𝑟𝑒 
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with 𝜀𝑟𝑒 > 0, and therefore they are restricted to forward radiation excluding broadside. When 

the beam angle approach 90° or in other words, we have broadside beam, then the shape of the 

radiation pattern change to the narrow beam donut type of pattern. It is difficult to obtain a beam 

at broadside due to the cutoff of the waveguide. To obtain a broadside radiation pattern we can 

feed the waveguide from both sides or excite the waveguide in the middle. Then, we have two 

beams in both sides of broadside (𝛽 ≫ 𝛼) and if the structure is properly designed then these 

two beams near broadside can merge and form a single broadside beam (𝛽 < 𝛼). However, [52] 

shows that a ferrite loaded waveguide can easily obtain a broadside radiation pattern. In 

addition, to obtain a pencil beam type of radiation, we can use 1D-LWA as a linear array [53].  

 

Figure. 2-2. One-dimensional uniform leaky-wave antenna. 

 

2.3. One-dimensional Periodic Leaky-Wave Antenna 

Periodic leaky-wave antenna (PLWA) is a structure consisting of periodic modulation (in the 

form of periodic discontinuity) for one of their features (slots, metallization, permittivity or 

permeability) along the axis of propagation. An example of PLWA is shown in Figure. 2-3. The 

structure consists a rectangular waveguide filled with dielectric material and has a periodic array 

of radiating holes in the narrow wall of the waveguide [54]. Due to the presence of the dielectric, 

the fundamental space harmonic associated with the dominant TE10 mode 

𝛽10
TE = √𝜀𝑟𝑘0 

2 − (𝜋/𝑎)2 is generally a slow wave. This mode does not radiate, but it needs the 

periodic modulation to produce the radiation. According to Bloch-Floquet theory, PLWA 

supports an infinite number of space harmonics (Floquet waves) due to their periodicity [55] 

where the relation between the space harmonics represented as 𝛽𝑛(𝜔) =  𝛽0(𝜔) + 2𝜋𝑛/𝑝 (p is 

the period and n is an integer). The nth Floquet wave has a wavenumber given by 𝑘𝑧𝑛 =  𝑘𝑧0 +

2𝜋𝑛/𝑝 and the wavenumber of the fundamental Floquet (𝑛 = 0) wave given by 𝑘𝑧0 =  𝛽 − 𝑗𝛼. 
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The main (𝑛 = 0) space harmonic is generally a slow wave. Therefore, it does not radiate 

significantly in most PLWAs. Instead, one of the higher space harmonics (usually 𝑛 =  −1) is 

designed to be a fast wave. So that,                  −𝑘0 <  𝛽−1 <  𝑘0 and hence, this space 

harmonic is a radiating wave. Compared to the uniform LWA, PLWA can scan from the 

backward to forward quadrants due to  −𝑘0 < 𝛽−1 < 0  or             0 <  𝛽−1 < 𝑘0, respectively (or 

more precisely the angle of radiation pattern is related to the imaginary part of wave number). In 

PLWA the beam will scan with frequency. In both backward and forward quadrants, the beam 

has a conical shape. However, at broadside, the shape of the beam changes to donut-shape 

and the beamwidth of the antenna dramatically changes. In the most PLWA usually at 

broadside, the input match degrades as the main beam reaches broadside. In addition, at this 

point usually all the slots (periodic discontinuity) of PLWA are in phase and we have standing 

waves instead of travelling waves and the attenuation constant drops to zero due to the open 

stopband (matching is pure and 𝛽0𝑝 = 2𝜋) which is discussed in the following sections. 

 

Figure. 2-3. Dielectric-filled rectangular waveguide with a periodic array of holes in the narrow 

wall of the waveguide and ground plane baffle. 
 

Another type of PLWA is shown in Figure. 2-4.This structure is a microstrip array, which 

consists of transverse strips radiate in the perturbed TM0 surface-wave mode of the grounded 

slab [56]. Leakage into the surface wave will occur when the wave is fast with respect to the 

surface wave             (|𝛽| <  𝑘TM0
), where 𝑘TM0

is the wavenumber of the surface wave. The 

proposed structure can scan from the backward to forward quadrants due to the periodicity of 

the strips (𝑝). This structure has the ability to produce a fan beam or a pencil beam. The pencil 

beam is achieved when the             1D-PLWA is used as an element in an array, or in other 

words, when we have an electrically large transverse aperture, this kind of beam can be easily 

achieved. The pencil beams may be scanned over all quadrants of the hemispherical space, 

except near broadside due to the open-stop band. 
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Figure. 2-4. Microstrip array of transverse strips acting as a periodic leaky-wave antenna that 

radiates from the perturbed surface-wave mode. 

2.4. One-dimensional Quasi-Uniform Leaky-Wave Antenna 

Another type of LWA is quasi-uniform LWA. This kind of antenna is electromagnetically 

similar to the uniform LWA. However, their topology is similar to the PLWA. Their structure is 

similar to the structure in Figure. 2-3 and Figure. 2-4 within the difference that the periodicity is 

much smaller than the guided wavelength of traveling wave (𝑝 ≪ 𝜆𝑔) [57]. Compared with 

uniform and PLWA in quasi-uniform LWA, the fundamental space harmonic (𝑛 = 0) is 

responsible for the radiation which can be a fast wave in specific frequencies. The holey 

waveguide antenna shown in Figure. 2-3 with subwavelength spacing between the holes 

becomes a quasi-uniform antenna radiating from the fundamental space harmonic of the 

perturbed TE10 waveguide mode, provided the permittivity is low enough so that the TE10 

waveguide mode is a fast wave [58]. The radiation pattern of quasi-uniform LWA is limited to the 

forward quadrant and, it is similar to the uniform LWA. However, by using metamaterial-based 

LWA, a wide range scanning can be easily obtained [44], [45] even through the broadside due 

to the elimination of stopband (when we have balanced mode). 

 

2.5. Field Behavior of Leaky Waves 

The radiation for the LWA is usually due to a mode referred to as a leaky mode, which is a 

guided mode that leaks and radiates the power along the structure. [59]. For a uniform LWA, the 

guiding mode is a single fast wave (0 < 𝛽 < 𝑘0) and having a complex number 𝑘𝑧 =  𝛽 − 𝑗𝛼. In 

PLWA the guided mode consists of an infinite number of space harmonics with the wave 

number               𝑘𝑧𝑛 =  𝛽𝑛 − 𝑗𝛼 where 𝛽𝑛 =  𝛽0 + 2𝜋𝑛/𝑝. The 𝑛 =  0 is the fundamental space 

harmonics, which carries most of the power while the 𝑛 =  −1 space harmonics is usually the 

one that causes radiation (−𝑘0 <  𝛽−1 <  𝑘0) through specific frequencies. In the PLWA, if the 

attenuation constant 𝛼 assumes to have a positive value, then according to the periodicity 

between the elements or the value for the 𝛽−1, the radiation pattern could be in the forward or 

backward quadrant. We have a forward wave (𝛽−1 > 0) when the phase and the group velocity 
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of radiating space harmonic (for example 𝑛 =  −1) are in the same direction and we have a 

backward wave (𝛽−1 < 0) when the phase and group velocity of radiating space harmonic are in 

the opposite direction of each other. If we model the LWA of Figure. 2-2 as a magnetic line 

source, then the radial wave number (vertical wavenumber) given by  𝑘𝑝 =  (𝑘0
2 − 𝑘𝑧

2)1/2. 

Therefore, due to the complex value of 𝑘𝑧 there are two possible solutions for the value of 𝑘𝑝: 

 

 

𝑘𝑝
2 =  𝑘0

2 − 𝑘𝑧
2 

(𝛽𝑝 − 𝑗𝛼𝑝)2 =  𝑘0
2 − (𝛽𝑧 − 𝑗𝛼𝑧)2 

𝛽𝑝
2 − 𝛼𝑝

2 − 𝑗2𝛽𝑝𝛼𝑝 = 𝑘0
2 − 𝛽𝑧

2 + 𝛼𝑧
2 + 𝑗2𝛼𝑧𝛽𝑧 

If we take the imaginary part, then we have 𝛽𝑝𝛼𝑝 = −𝛽𝑧𝛼𝑧. If 𝛽−1 > 0 (radiated space harmonic) 

and 𝛼 > 0 then the field will exponentially increase in the radial direction and the power radially 

outward so we have an improper field as shown in Figure. 2-5. For the proper field the 𝛽−1 <

0 and the field will be exponentially decaying in the radial direction and the power is radially 

inward as shown in Figure. 2-6. For the slow waves |𝛽| > 𝑘0 for both forward and backward and 

we have a proper field. However, for the fast waves |𝛽| < 𝑘0 and we have a proper field for the 

backward wave and an improper field for the forward wave. 

 

             

 

Figure. 2-5. Ray picture of the forward leaky wave for a dielectric holly waveguide of the 

structure in Figure. 2-3 [59]. 
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Figure. 2-6. Ray picture of the backward leaky wave for a dielectric holly waveguide of the 

structure in Figure. 2-3 [59]. 

 

2.6. Physics of Leaky Waves 

For a strong leaky mode, the wavenumber must be in the physical region where the wave is 

a fast wave. In LWA in order to radiate the power, we must have a leaky mode that has complex 

wavenumber, and it must be in a physical region and be fast wave ( 𝛽 < 𝑘0). A leaky-mode is 

considered to be physical if we can measure a significant contribution from it. In contrast, leaky 

waves are not physically important if they are slow waves (waves radiate only at discontinuities). 

For a grounded dielectric slab the leaky modes usually can be obtained from a surface-wave 

modes. If we assume that we have a surface - wave mode with a nonzero cutoff frequency, then 

a nonphysical complex leaky mode is achieved at sufficient low frequency [60]. Any mode other 

than TE1 surface-wave mode (which remains real improper surface wave mode at all 

frequencies below cutoff frequency) and TM0 surface-wave mode (which has zero cutoff 

frequency and it can propagate at any frequency) can transform to a complex leaky mode. The 

cutoff frequency is the transition between a proper and improper mode (cutoff for TM1: v = 0, u = 

π) which is shown in Figure. 2-7(below the cut off frequency the mode has nonphysical behavior 

up to 𝑓𝑝).       
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                                 (a)                                                                                      (b)     

              

Figure. 2-7. (a). Cutoff frequency (𝑣 = 0 , 𝑢 =  𝜋) of TM1 ( 𝑓 = 𝑓𝑐), there is also an improper 

surface-wave mode (𝜀𝑟 = 15, h = 0.254 mm, 𝑓 = 157.6 GHz). (b). Two improper surface-wave 

modes (𝜀𝑟 = 15, h = 0.254 mm, 𝑓 = 110 GHz). 

 

Above the cutoff frequency, we have a slow wave (𝛽 > 𝑘0) and the wave decay exponentially 

(proper wave). As the frequency gets lower the normalized phase constant (𝛽/𝑘0) decreases 

and reaches the value 1 at the cutoff frequency. At the frequency range below the cutoff the 

phase constant start to increase and in a lower frequency (splitting point ( 𝑓𝑠 < 𝑓𝑐  ) Figure. 2-8) 

the two nonphysical improper real surface-wave modes merge together. As a result, below the 

splitting point, the real wavenumbers change to complex wavenumbers and we have a complex 

improper leaky mode. Below the splitting point, one of the wavenumber has the form 𝑘𝑧 =  𝛽 −

𝑗𝛼 and another one has complex conjugate of the other. The attenuation constant is zero for the 

frequency above  𝑓𝑠 and it starts to increase for the frequency below 𝑓𝑠 [61]. If we track the 

wavenumber with the form 𝑘𝑧 = 𝛽 − 𝑗𝛼, we will see that as the frequency gets lower, the phase 

constant usually decreases until it reaches  𝑓𝑝 where 𝛽 = 𝑘0. The frequency range between 

𝑓𝑐  and  𝑓𝑝 refers to the spectral-gap region where the mode is nonphysical. Above the spectral-

gap region, we have physical surface waves, which carry power but it does not radiate. Below 

the spectral-gap region, we have a complex physical leaky mode, which can radiate the power 

and it is a fast mode ( 𝛽 < 𝑘0). At a frequency lower than 𝑓𝑝, which refers to 𝑓𝑙 the physical 
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complex, improper fast mode change to nonphysical complex slow mode as shown in Figure. 2-

9. The attenuation constant increases dramatically below the quasi-cutoff frequency where we 

have the maximum power density ( 𝛽 = 𝛼) [61]. 

 

 

 

Figure. 2.8. Splitting point (𝑓 =  𝑓𝑠 = 93.2 GHz, 𝜀𝑟 = 15, h = 0.254 mm), two improper surface-

waves merge. 

 
 

Figure. 2-9. Behavior of normalized phase constant for leaky mode for a grounded dielectric 

slab [59]. 

2.7. Bidirectional Leaky-Wave Antenna 



 28 

A bidirectional LWA has the ability to produce two equal beams in both forward quadrant and 

backward quadrant region [59]. The feeding part of bidirectional LWA is usually in the center of 

the structure, and typically they use two match loads or absorbers at the end of the antenna. If 

the beam angle for one beam is at 𝜃°, another beam usually appears at 𝜋 − 𝜃°. Thus, when 𝜃 

approaches 90°, then the two beams can merge with each other and make a single beam. The 

angle of the beam can be obtained from 𝑠𝑖𝑛𝜃 = 𝛽/𝑘0  when the phase constant is much bigger 

than the attenuation constant (𝛽 ≫ 𝛼). However, this formula is not very accurate for the 

frequency near splitting point  𝛽 = 𝛼 and the angle, of the beams, can be obtained from 𝜃1,2 =

±√𝛽2 − 𝛼2  [62]. At the splitting point the beam has two close peaks with a dip in the middle 

(not null), but off a broadside, as shown as in Figure. 2-10. In addition, at this point usually, we 

have a maximum power density (for lossless structure). This condition is set for slotted parallel-

plated waveguide. However, in [63] shows that for a lossy structure of a periodically loaded 

transmission line, the absolute value of the phase constant is smaller than the attenuation 

constant when we have a maximum power density. The single broadside beam can be achieved 

when the phase constant is smaller than the attenuation constant (𝛽 < 𝛼) and the narrowest 

broadside beam can be obtained when 𝛽/𝛼 = 0.518 and the beam made narrower by a factor 

0.841 compared to the case where the power density is maximum at broadside [62].  

 

 

 

Figure. 2-10. The relation between phase and attenuation constant and radiation pattern when 

we fed the LWA from the center. 
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2.7. Brillouin Diagram Analysis 

Another tool that usually used to analyze the wave of the PLWA is Brillouin diagram, which is 

a graphical representation of the dispersion relation of the space harmonic axial phase 

constants. The Brillouin diagram of a periodic structure (metal strip grating on a grounded 

dielectric slab) is shown in Figure. 2-11. For a reciprocal periodic structure (𝛽0 ↔ −𝛽0), the 

Brillouin diagram is symmetric with respect to the ordinate axis (𝛽𝑛𝑝 / 𝜋 =  𝑛, 𝑛 = 0, ±1, ±2). The 

blue part in   Figure.2-11 refers to the bounded-wave region. In this region, all the spatial 

harmonics are simultaneously slow (𝑘0𝑝 < 𝜋). As mentioned before a LWA usually suffers from 

no broadside radiation. When we have near broadside radiation in PLWA, usually all the slots 

are in phase with 𝛽−1 = 0 (or 𝛽0𝑝 = 2𝜋) and instead of having a travelling wave we have a 

standing wave. The attenuation constant usually drops to zero near this point which is referred 

to as open stopband and it is exactly zero at 𝛽0𝑝 = 2𝜋 which is referred to as stopband null 

point. Another stopband occurs at 𝛽0𝑝 = ±𝜋 which referred to as closed stopband is. At closed 

stopband, the attenuation constant does not drop to zero. However, at the edge of the close 

stopband, the attenuation constant is exactly zero [62]. At close stopband, the overall mode is 

not leaky mode and the mode does not carry the power due to the bounded region. For metal-

strip grating on a grounded dielectric slab the nth spatial harmonic is axially fast only if the 

corresponding point (𝛽𝑛𝑝 /𝜋, 𝑘0𝑝 /𝜋 ) of the dispersion curve is located inside the fast wave 

region (FWR) and the nth spatial harmonic is axially slow only if the corresponding point 

(𝛽𝑛𝑝 /𝜋, 𝑘0𝑝 /𝜋 ) of the dispersion curve is located outside of the FWR as shown in Figure. 2-11.  

 

 

                                    (a)                                                                                     (b) 
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     (c) 

 

Figure. 2-11. (a). Brillouin diagram for a periodic structure (the region with blue color shows the 

bounded region), and (b) Forward and backward wave in the Brillouin diagram, and (c) An 

example of the Brillouin diagram for periodic structure (metal strip grating on a grounded 

dielectric slab) with the periodicity equal to p = 0.425 mm with 𝜀𝑟 = 2.2. 

 

 

 

Chapter 3 

 

Substrate Integrated Printed Ridge Gap Waveguide Leaky-Wave 

Antenna for WiGig Application 

 

3.1. Introduction 

 

In this chapter, we introduce a novel design of an LWA based on ridge gap waveguide 

(RGW) technology. The printed version of the gap waveguide technology known as printed 

ridge gap waveguide (PRGW) has been developed in [32] in which the PMC surfaces has been 

realized by printed mushroom surfaces. As ensuring the thin air gap height for PRGW structures 

at the millimeter waves is becoming a problem for large structures. Therefore, the gap is filled 

with a thin low loss substrate layer in order to have a fixed gap height between the PEC and 
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AMC layers all over the structure. This modified version of PRGW called substrate integrated 

gap waveguide (SIGW) introduced in [34], in which a thin substrate is filling the gap to fix the 

gap height all over the circuit. As mentioned in the previous chapter, the LWA usually suffer 

from large gain variation and low radiation efficiency especially in the millimeter-wave 

frequencies due to the dissipation factor, radiation leakage, and high insertion losses, which 

results in deteriorating the performance of the antenna. In this chapter, a new design of LWA 

based on SIGW technology is introduced. The objective is to design an LWA which has a high 

radiation efficiency and almost a stable gain for the whole operating frequency of the antenna. 

The proposed SIGW-LWA is a kind of 1D-periodic LWA which has no side lobes, high radiation 

efficiency, and almost a stable gain all the scanning frequency range of the antenna. The 

proposed antenna is designed for the WiGig application and fabricated on a two-layer substrate 

which is fed by a transition from microstrip to SIGW. In this chapter, we explain the steps of a 

prototype of SIGW-LWA and simulations and measurement results of proposed antenna are 

illustrated. 

 

3.2. Substrate Integrated Gap Waveguide Configuration 
 

For the desired IMS band, a printed periodic EBG must be designed. The first step is to 

design the unit cell that will provide the EBG within the IMS band. The unit cell structure and its 

dispersion diagram utilized in SIGW-LWA are shown in Figure. 3-1 and Figure. 3-2, respectively. 

The mushroom unit cell has a rectangular patch grounded by a plated via and covered by a 

dielectric substrate, which is topped by a conductor. Rogers RT5880 substrate with the dielectric 

constant of 2.2 is used for the upper layer, and Rogers RT6002 with the dielectric constant of 

2.94 is used for the lower layer. The factors that affect the band gap provided by the periodic 

structure of this unit cell are the layer thicknesses, periodicity, and mushroom dimensions. A 

detailed study to investigate these factors can be found in [31]. The band gap of the designed 

cell is from 31.4 to 70.8 GHz. 
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Figure 3-1. Unit cell dimensions h1 = 0.508, h2 = 0.254, Wp = 0.819, Wc = 1.05 (dimensions are 

in mm). 

 

 

 

Figure 3-2. Dispersion diagram of the unit cell. 

 

In order to show the guiding characteristics of the SIGW, a single line of SIGW surrounded 

from both sides by three rows of cells is considered. However, for this study, it is sufficient to 

study the dispersion diagram of one cell transverse to the line as shown in Figure. 3-3. To 

suppress any possible leakage of the signal under the ridge, a single row of metallic vias is 

included under the ridge to ground the ridgeline. The thin substrate filling the gap height is 

holding the upper conducting plate over the structure. The dispersion analysis of the SIGW line is 

shown in          Figure. 3-4 showing the single quasi-TEM propagating mode along the ridge in 

the stopband of the periodic structure. The cutoff region provided by the AMC-PEC parallel plate 

decays the fields outside of the guiding region. The width of the ridge is tuned for a 50 Ω 

characteristic impedance of the line. The band gap, in this case, is smaller than the unit cell to be 

32.3-67.8 GHz. 
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Figure 3-3. Configuration of layers for SIGW. 
 
 

 
 

 
Figure 3-4. Dispersion diagram of SIGW line. 
 

3.3. Slot Design of Substrate Integrated Gap Waveguide Leaky-

Wave Antenna 

 The geometry of the SIGW-LWA is shown in Figure. 3-5, which consists of two layers of 

substrates. A periodic set of series centered transverse slots is applied on the top of the ground 

plane of the SIGW parallel to the guiding ridge. According to [47], to control and minimize the 

unwanted end reflections, tapered slots are added to both ends that also provide an ideal field in 

the uniform slots region. For tapering the slot, we used Chebyshev method, and in here we 

used 34 uniform slot and 8 tapered slots. The initial SIGW-LWA structure is excited by wave 

ports provided by the simulator. The wave ports are extended for almost one cell size around 

the guiding ridge to capture all fringing fields on both sides of the ridge. By varying the 

frequency, the phase constant and the electrical length between the slots also vary, which 

causes a change in the progressive phase between the slots. Therefore, the angle of the main 

beam is scanned by varying the frequency. 
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Figure 3-5. Configuration of SIGW-LWA. 

 

The appearance of any grating lobes is avoided because the periodicity of the slots is 

considered to be less than a wavelength, which is 2.57 mm due to the dielectric filling. The 

length of the periodic slots is also set to be 1.67 mm, which is almost equal to half of the guided 

wavelength of the SIGW line. To uniformly excite these periodic slots through the SIGW line, the 

width of the ridgeline should be slightly wider than the slot length. For this design, the width of 

the propagating ridge under periodic slots is fixed to be 1.9 mm.On the other hand, the width of 

the periodic slots is designed to reach a low and almost constant value for the attenuation 

constant for all operating frequencies. Accordingly, we could obtain an approximately constant 

gain over the bandwidth due to the fixed amount of leakage per unit length. It should be 

mentioned that to decrease the effect of the fringing fields and to suppress any possible 

propagation under the guiding ridge, two rows of metallic vias are placed under the edge of the 

guiding ridgeline as shown in Figure. 3-6. The vias spacing and diameter are designed 

according to the conditions given in [48], which is d / p > 0.5, to have a minimum leakage of the 

waves under the ridgeline. 
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Figure 3-6. Configuration of SIGW-LWA (𝑑 = 0.3 mm, 𝑝 = 0.56 mm, w =1.32 mm l1 = 1.67 mm, l2 

= 1.85 mm, l3 = 0.52 mm, l4 = 0.18 mm, l5 = 0.15 mm). 

 

According to [64] and [65] for LWA with the normalized leakage constant 𝛼/𝑘0 < 0.02 a 

length of 20 𝜆0 is required to radiate more than 90% of power. Therefore, the length of the whole 

LWA including periodic section and tapered ends is fixed for this length. A parametric study is 

accomplished for different widths of the periodic slots to evaluate the performance of the LWA in 

terms of the reflection coefficient, normalized leakage constant, and gain as illustrated in Figure 

3-7, Figure 3-8 and Figure 3-9, respectively. Based on these analyses, it has been seen that the 

slot width of 1.32 mm results in the most suitable design providing a relatively stable gain, 

constant leakage ratios less than 0.02, and wider impedance bandwidth with a reflection 

coefficient less than -20 dB for all over the frequency band. Therefore, based on this analysis, 

we expect to have a narrow beam for the antenna radiation pattern. The upper layer of the 

structure in Figure 3-6 is similar to the structure of a metal strip grating on a grounded dielectric 

slab. Thus, the angle and the type of wave can be predictable by using the Brillouin diagram of 

the structure of Figure 2-4. Figure 3-10 shows the Brillouin diagram for the periodic structure (𝑝 

= 2.57 mm) of Figure. 2-4 which indicate that the n = -1 space harmonic can be act as a leaky 

wave for the range of the frequency of antenna operation (57-64 GHz). According to the 

analysis of Figure 3-10, we expected to have only one beam for our structure and the wave 
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expected to be a physical backward proper fast wave due to the negative value of the first 

space harmonic (𝑘0 < 𝛽−1 < 0) in the range of the operation frequency of the antenna and the 

power expected to flow inward radially. 

 

 

 

Figure 3-7. Reflection coefficient for different width of slots. 

 

     

 

Figure 3-8. Normalized leakage constant for different width of slots. 
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Figure 3-9. Realized gain for different width of slots. 

 

 

Figure 3-10. Brillouin diagram for the periodic structure (p = 2.57 mm) of Figure. 2-4. 

 

3.4. Antenna Configuration with Transitions 

As mentioned, the width of the ridgeline exciting the periodic slots is set to be 1.9 mm. This 

width of the ridge is corresponding to a characteristic impedance of 29 Ω. However, to excite the 

antenna through a standard connector for measurement purposes, it should be connected to a 

50 Ω transmission line. Therefore, the designed LWA structure has to be matched to the 50 Ω 
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line. The PRGW structures can be easily excited by a microstrip line with the substrate 

thickness equal to the gap height of the PRGW [66]. To excite this LWA, first, a tapered 

transition is applied to match the wide ridgeline of LWA to the 50 Ω SIGW line, as shown in 

Figure. 3-11. This tapered SIGW transition is tuned to be long enough to cover a wide frequency 

band. As seen in the transition geometry, two sets of parallel vias are used close to the ridge 

edge to suppress the possible leakage under wide printed ridge. Along the tapered transition, 

the parallel vias are narrowed down to the single row under the 50 Ω SIGW line. Then, another 

transition is used to connect the 50 Ω SIGW to the 50 Ω microstrip line. The width of MS line is 

smaller than the width of the guiding ridgeline of SIGW-LWA in which the propagation is in the 

air (width of MS is 0.74 mm and width of the guiding ridgeline is 1 mm). A detailed study of this 

transition is given in [67]. The simulated S-parameter of the back-to-back connection with the 

whole transition is plotted in Figure. 3-12 which shows a good insertion loss response. Figure. 

3-13 shows the total configuration and separated layers of SIGW-LWA with the tapered 

transition and the MS line. The electric field distribution inside the antenna starting from the 

feeding MS line is shown in Figure. 3-14. The tapered transition provides a relatively uniform 

field of quasi-TEM propagation of the ridgeline exciting the periodic slots. The fabricated 

prototype of the designed LWA antenna excited by end launch connectors is shown in Figure. 3-

15. A 3D printed holder is prepared to support the antenna safely during the measurement. 

 

         
 

 

Figure. 3-11. Taper ridge transition of SIGW-LWA (d1 = 0.26 mm, d2 = 1.9 mm, d3 = 0.37 mm, p1 

= 0.56 mm, p2 = 0.57 mm, p3 = 0.59 mm, p4 = 0.62 mm, p5 = 0.65 mm, p 6=0.63 mm, w1 = 1mm, 

w2 = 1.9mm). 
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(b) 

 

Figure. 3-12. Simulated S-parameter of the back-to-back 29 Ω SIGW to 50 Ω microstrip 

transition. 

 

 
 

 
Figure. 3-13 (a).Total structure for SIGW-LWA with MS line. 
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Figure. 3-13 (b). Configuration of layers for SIGW-LWA with MS line. 
 
 

 
 
 
 

Figure. 3-13 (c). Close of to the MS transition with part of the upper substrate removed. 
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Figure. 3-14 Uniform field distribution for the SIGW-LWA for the structure of Figure.3-11                     
(f = 60 GHz). 
 
 
 

 

 

 

 

Figure. 3-15. Configuration fabricated prototype of SIGW-LWA. 
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3.5. Simulation and Measurement Results of SIGW-LWA 

The simulated and measured S-parameters of the SIGW-LWA hold by the 3D-printed base is 

shown in Figure. 3-16. The reflection coefficients are below -15 dB with good agreement 

between simulated and measured results. Figure. 3-17 shows the measured and simulated 

leakage ratio of the proposed antenna. The antenna has a low and constant normalized leakage 

constant less than 0.02 (𝛼/𝑘0 < 0.02) indicating that we have a narrow beam and long effective 

aperture. For this antenna, the phase and group velocity are in opposite directions and the 

phase constant is negative (𝛽−1 < 0) in the frequency range of 57-64 GHz. The wave is physical 

backward proper fast wave and the power flows inward radially, based on LWA analysis given in 

[59], and [60]. Figure. 3-18 shows the realized gain of the co-polar E-plane radiation pattern for 

two frequencies at the first and the end of the desired bandwidth (57 GHz and 64 GHz). The 

measured peak gain of the antenna is 17.67 dBi with less than 1.3 dBi variation. The beam 

scanning range of the antenna is from –36 ˚ to –16 ˚ over the bandwidth. The cross-polar 

patterns for all frequencies in E-plane are below 30 dB from the main beam and they are not 

shown in Figure. 3-18. This LWA has a narrow fan beam radiation pattern due to the significant 

width of the antenna in the x-direction. Figure. 3-19 shows the 3D-radiation pattern of SIGW-

LWA at 64 GHz. When the main beam is off the broadside direction (𝜃 = 0°), H-plane pattern 

measurement is difficult, and the lab is not prepared for that. Therefore, we trust the simulated 

result, which shows good agreement with E-plane measurements. Figure. 3-20 shows the 

simulated H-plane at three different frequencies of the bandwidth for different 𝜃 angles. 

      

 

Figure. 3-16. Measured and simulated S-parameters of SIGW-LWA of structure in Figure.3-11. 
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Figure. 3-17. Measured and simulated leakage ratio of SIGW-LWA of structure in Figure. 3-13. 

 

 

 

Figure. 3-18. Comparison between the measured and simulated realized gain of the co-polar E-

plane radiation pattern for two different frequencies 57 GHz and 64 GHz.  
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Figure. 3-19. Simulated 3D-Radiation pattern of SIGW-LWA at 64 GHz. 

 

 

Figure. 3-20. The simulated co- and cross-polar H-plane radiation pattern at three frequencies, 

57 GHz, 60 GHz and 64 GHz at 𝜃=54°, 𝜃=64°, and 𝜃=74°, respectively for the antenna in 

Figure. 3-13. 
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3.6. Conclusion 

A new design of LWA based on SIGW technology for millimeter-wave frequency band has 

been presented. The proposed antenna has achieved almost constant high gains, high radiation 

efficiency with wide impedance bandwidth at millimeter-wave frequencies. The antenna has 

been simply fabricated in a two-layered substrate and fed by a microstrip line. The bandwidth of 

the designed SIGW-LWA has achieved 29% around the center frequency of 58.5 GHz with a 

measured peak gain of 17.67 dBi with less than 1.3 dBi variation with more than 89% radiation 

efficiency over the frequency of 57-64 GHz. Good agreement between simulated and measured 

results of the SIGW-LWA design has been achieved. Compare to the SIW-LWA the proposed 

antenna has a higher radiation efficiency and higher gain with no sidelobe. In addition, 

compared to the RGW-LWA there is no need for the CNC machining which results in a low-cost 

fabrication process for the SIGW-LWA. 
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Chapter 4 

 

Parallel Fed Two Elements Array 

 

4.1. Introduction 

 

In this chapter, we introduce a new design of a linear array of the LWA based on SIGW 

technology. One of the common problems of an array of the 1-D PLWA is that usually, this kind 

of antenna has a narrow bandwidth and considerable gain variation in their operating frequency 

band. To overcome these problems, first, a new wideband Y-shape power divider based on 

SIGW technology is designed. Secondly, a 1x2 array base of the presented SIGW-LWA in the 

previous chapter is also designed which can achieve a 3 dB gain increased and has a high 

radiation efficiency for all its operating frequency bands. The proposed antenna is designed to 

be fabricated on a two-layer substrate and fed by a transition from the microstrip to the SIGW. 

 

 

4.2. Designing of a power divider based on Substrate-Integrated 

Printed Ridge Gap waveguide Technology 

In the following section, a design of a two parallel SIGW-LWA is presented. In order to 

achieve this purpose, a power divider is designed to feed each SIGW-LWA element. A Y-

shaped power divider is designed to cover the whole frequency range of the single SIGW-LWA, 

which is shown in Figure. 4-1. The same periodic structure used for the LWA design with the 

cell configuration given in Figure. 3-1 is used in this SIGW power dividing circuit. The upper 

substrate and metal top plate for the transition of the microstrip are not shown in Figure. 4-1. 

The SIGW power divider arms are designed to match with 50 Ω , and they are excited with the 

50 Ω MS lines with the width of w0 = 0.74 mm on the Rogers RT5880 substrate with 𝜀𝑟 = 2.2. 

Since the SIGW line and microstrip line have different propagation environments, the 50 Ω line 

of SIGW is achieved with the width of w1 = 1 mm. A quarter-wavelength transformer with a 

characteristic impedance of 35.3 Ω is used to match the 50 Ω line with two arms of the Y-

shaped power divider. The length and width of a quarter-wavelength transformer are L2 = 1.9 

mm, and w2 = 1.52 mm, respectively. Figure. 4-2 shows the simulated S-parameters of the 
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power divider. The magnitude of S11 is below -15 dBi for all the operating frequency range. The 

insertion loss (|S21|^2 + (|S31|^2) of the Y shape power divider is 0.9. 

 

 

 

Figure. 4-1. Top view of a 1×2 SIGW Y-shape power divider (p1 = 0.56 mm, p2 = 0.89 mm, w1 = 

1 mm, w2 = 1.52 mm, w3 = 0.74 mm, L1 = 2.46 mm, L2 = 1.9 mm). 

 

 

 

Figure. 4-2. Simulated S-parameters of the Y-shape power divider. 
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4.3. Array Design: Simulated and Measured Result 

 

In order to avoid the appearance of grating lobes, the distance between the two subarrays is 

considered to be less than 𝜆0. Two arms of the Y-shape power divider is extended to connect 

LWA subarrays as shown in Figure. 4-3. In this design, the same power divider is used on the 

other side of the array to be able to connect the array to a single match load.  Since the width of 

the SIGW ridgeline feeding the periodic slots is wider than 50 Ω line, after the power divider 

section of the array, two rows of periodic patches are placed between two ridgelines. 

 
 

Figure 4-3. Configuration of an array of SIGW-LWA. 
 

Simulated S-parameters of the proposed array are shown in Figure. 4-6. The reflection 

coefficient of the array is below -10 dBi for the entire operating frequency range. Such as single 

LWA, the array design also has a low and constant leakage ratio over the band proving the 

narrow beam radiation and long effective aperture. As the length of the antenna is long enough 

to radiate more than 90% of the power (total length = 34𝜆0),  there is just a little power left at the 

end of the array. Therefore, instead of using another power divider for the matched load 

connection, two ends of each subarray are bent to connect together, as shown in Figure. 4-4. In 

this way, the weak propagation at the end of the each LWA sees the same characteristic 

impedance of SIGW.In other words, instead of using two matched loads at the end of each 

subarray, we use each Single array connected in series to act as a matched load for the other 

one. In addition, with this bending termination, the total length of the antenna is decreased 
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around 6𝜆0. Furthermore, the bend length is considered to be an odd multiple of a half 

wavelength. As such, the remaining power constructively contributes to the radiation. This 

design of the array is chosen for fabrication. Figure. 4-5 shows the configuration and fabricated 

prototype of the bend terminated array with the 3D-printed holder. 

 

 

 

Figure. 4-4. Configuration of the bend terminated array of SIGW-LWA. 

 

 
 

 
 

Figure. 4-5. Fabricated prototype of the bend terminated array of SIGW-LWA. 
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The simulated and measured S-parameters of the bend terminated array are shown in Figure. 

4-6. The simulated reflection coefficients of bend terminated and matched load terminated 

arrays are the same and both of them are below -10 dB over the operating frequency band. 

There is good agreement between the simulated and measured results. 

 

 

 

Figure. 4-6. Measured and simulated S-parameters of array and bend terminated array of 

SIGW-LWA of the structure of Figure. 4-3 and Figure. 4-4. 

 

Figure. 4-7 shows the simulated and measured realized gain of the co-polar E-plane 

radiation pattern of the array and bend terminated array for two different frequencies 57GHz and 

64GHz. Both array antennas can achieve a 3 dB gain increment due to the constructive 

coupling of the slots. In the bend terminated array, some minor lobes appear on the forward 

quadrant due to the weak power remaining at the end of each subarray. However, by 

considering the bend length as an odd multiple of half wavelength the level of the minor lobes in 

the forward quadrant decreases. For the proposed antenna the level of the minor lobes in the 

forward quadrant is 20 dB below the peak of the main beam for all the frequency bands. In 

addition, the level of the peak gain of the bend terminated array antenna is a little higher due to 

the constructive contribution of the remaining power to the radiation. The cross-polar E-plane 

patterns of all frequencies are below 27 dB from the main beam peak, and they are not shown 

in Figure. 4-7. There is a small discrepancy for the beam angle observed due to the shift of the 

frequency due to the length of the microstrip transition to SIGW. Figure. 4-8 shows the 3D-
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radiation pattern of SIGW-LWA at 57 GHz. When the main beam is off the broadside direction 

(𝜃 = 0°), H-plane pattern measurement is difficult and the lab is not prepared for that. Therefore, 

we trust the simulated result, which shows good agreement with E-plane measurements. 

Figure. 4-9 shows the simulated H-plane at three different frequencies of the bandwidth for 

different 𝜃 angles. Figure. 4-10 shows the realized gain with radiation efficiency and total 

efficiency for both array antennas and a single element of SIGW-LWA. The measured peak gain 

of the bend terminated array is 21.5 dBi with less than 1.3 dBi variation and -15 dB sidelobe 

level. The beam scanning range of the proposed array is from –35˚ to –15˚ in the frequency 

range of 57-64 GHz. The radiation efficiency for both array antennas is more than 87% over the 

operating frequency band. The total efficiency of the bend terminated array is more than 84%, 

which is a little higher than the simple array. Table. 1 shows a comparison between this work 

and others work of LWAs. 

 

 

Figure. 4-7. Comparison between the measured and simulated realized gain of the co-polar           

E-plane radiation pattern for array and bend terminated array of SIGW-LWA for two different 

frequencies 57 GHz and 64 GHz. 
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Figure. 4-8. Simulated 3D-Radiation pattern of SIGW-LWA at 57 GHz. 

 

 

 

 

Figure. 4-9. The simulated co- and cross-polar H-plane radiation pattern at three frequencies, 

57 GHz, 60 GHz and 64 GHz at 𝜃 = 54°, 𝜃 = 64°, and 𝜃 = 74°, respectively for the antenna in       

Figure. 4-4. 
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Figure. 4-10. Simulated and measured realized gain vs. Frequency for both array antennas and 

a single element of SIGW-LWA with simulated radiation efficiency and total efficiency. 

 

Table. 1. The comparison of the proposed single element and bend terminated array of SIGW-

LWA with the former LWAs. 

 
Antenna 

 
BW 
% 

 
Gain 
(dBi) 

 
Radiation 

Efficiency (%) 
Length (λ0) 

Single Element (V-band) 
(This Work) 

29 17.67 89 28 

Bend Terminated  Array  
(V-band) (This Work) 

 
23 

 
21.5 

 
87 29 

SIW-LWA 
(X-band) [47] 

22 12 70 12 

Butter Fly LWA 
(X-band) [50] 

17 14.8 - 14 

Quasi-Uniform LWA 
(X-band) [57] 

16 14.8 - 10 

SIW-MED-LWA 
(Ka-band) [68] 

20 15.6 83 12 

Dual-Beam DG-LWA 
(V-band) [69] 

10 
25 (F) 
24 (B) 

- 58 

LWA-RGW feed by magic tee 
(K-band) [70] 

14 15 - 15 
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4.4. Conclusion 

A new design of a linear type of an array of LWA based on SIGW technology for millimeter-

wave frequency (WiGig-band) band has been presented. The proposed array has achieved 

almost constant high gains, high radiation efficiency and wide impedance bandwidth at 

millimeter-wave frequencies. The proposed antenna has been fabricated in a two-layered 

substrate and fed by a microstrip line. The bandwidth of the designed array of the SIGW-LWA 

has achieved 23% around the center frequency of 59 GHz with a measured peak gain of 21.5 

dBi with less than 1.3 dBi variation and -15 dB sidelobe level with more than 87% radiation 

efficiency over the frequency of 57-64 GHz. Good agreement between simulated and measured 

results of the SIGW-LWA design has been achieved. Compared to the SIW-LWA and CRLH-

LWA, the proposed antenna has a higher radiation efficiency and almost a steady gain. In 

addition, compared to the RGW-LWA, there is no need for the CNC machining which results in 

a low-cost fabrication process for the SIGW-LWA. 
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Chapter 5. Conclusion and Future Work 

 

The thesis has presented three novel designs of LWA using gap-waveguide technology. Gap 

waveguide technology is an air-filled guiding structure, which does not need any electrical 

contact between the layers, is very attractive for millimeter wave applications. The printed 

version of the RGW compared to the hollow waveguide and RGW, which have high fabrication 

cost, can be represented as a proper alternative for low-loss and low-cost guiding structures. 

However, ensuring a uniform thin air gap for PRGW structures at millimeter waves is 

problematic for large structures. Therefore, the gap is filled with a thin low-loss and low dielectric 

constant substrate layer to guarantee a fixed gap height for this guiding structure, which is 

referred to substrate integrated gap waveguide.  

 

In Chapter 3, a novel design of 1-D PLWA based on the SIGW technology has been 

introduced. The antenna has been designed in order to excite the first space harmonic of the 

periodic structure as a leaky wave for the whole operation frequency band. The proposed 

antenna can be easily fed with a transition from microstrip to SIGW. In addition, it has an almost 

constant gain for the whole operation frequency band due to the constant leakage ratio. The 

proposed SIGW-LWA has better performance compared to the other LWAs such as a substrate 

integrated LWA, magnetoelectric dipole LWA and metamaterial based LWA in terms of the gain, 

radiation efficiency, and impedance bandwidth. In Chapter 4, a Y-shaped power divider and two 

linear arrays have been designed using the SIGW technology. The power divider has covered 

30% of U-band and 44% of V-band. Both 1x2 array designs have achieved an almost constant 

gain with 3 dBi gain increment, and they have achieved a wide bandwidth same as the single 

element with low sidelobe level and a narrow beam due to the low constant leakage ratio of the 

antennas. In addition, for the two parallel fed arrays, a new termination has been considered, 

which resulted in a shorter physical length of the antenna. The objective of this thesis is to 

overcome the two common problems of LWAs in terms of gain variation and low radiation 

efficiency. In addition, all these three LWAs are designed for a WiGig application, which makes 

them more attractive for the 5G applications and today's industry requirements.  

 

 5.1. Future Work     

Several other LWAs can be developed and designed based on the SIGW technology due to 

their characteristics as a low-loss, low-cost and high performance guiding structure for 
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millimeter-wave frequencies. According to the flexibility of the shape of the ridgeline of the 

SIGW, they can be used as a guiding structure for the 2-D PLWAs or slot array antennas in 

order to get a pencil beam type of radiation pattern. Furthermore, a dual-beam LWA based on 

the SIGW technology can be efficiently designed for WiGig application due to the excitation of 

the second space harmonic with first space harmonic simultaneously. In addition, a double 

SIGW can even be designed in order to achieve a high gain LWA with the multi-beam type of 

the radiation pattern. In conclusion, designing LWAs base on the printed version of the RGW 

could be more beneficial compared to the other technologies especially for the millimeter-wave 

applications due to their lower-losses and lower-cost. In addition, compared to the other designs 

of LWAs the performance of the SIGW-LWAs is better, which is the achieved goal of this thesis. 
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